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1 Introduction

By solving a particular counting problem related to the number of occurrences of strings in words, we have

derived an analytic expression for this number. The generating function of this sequence is very close to the

generating function of the m-step Fibonacci numbers. Putting together the two results it turns out that it

is possible to express all m-step Fibonacci numbers via a family of sequences. In particular the n-th m-step

Fibonacci number can be computed by a sum of (n−1)/(m+1) terms with alternating signs from the family

of sequences. The only difference for different m is that these sequences enter the sum shifted to the right

by (m+ 1) places. We have also investigated the possibility of inverting the formulas, i.e., of expressing the

sequences of this family via sums of m-step Fibonacci numbers.

2 Exact occurrences of strings in words

Consider the following problem: let w be a word of m letters over an alphabet of k letters. Suppose that no

final substring of w is also an initial string of w. Use the sieve method to count the words of n letters, over

that alphabet of k letters, that do not contain the substring w.

This problem is listed as Exercise 10 page 159 in [2]. By exploiting the technique explained in Section 4.2

of [2] it is not difficult to find out the following expression

gk,m,t(n) =
∑

r≤bn/mc

(−1)r−t kn−r m

(
r + n−mr

r

)(
r

t

)
for the number of words of length n that contain exact t occurrences of w. By considering k, m and t fixed,

the generating function Gk,m,t(x) of the sequence gk,m,t(n) can be easily computed as

Gk,m,t(x) =
∑

n

gk,m,t(n)xn =
xm t

(1− k x+ xm)t+1
.

We are interested in the case k = 2 (a binary alphabet) and t = 0 (no occurrences) for which (by omitting

from now on the reference to k and t in the indices)

gm(n) =
∑

r≤bn/mc

(−1)r 2n−r m

(
r + n−mr

r

)
, Gm(x) =

1
1− 2x+ xm

.

Since x = 1 is a zero of the denominator of Gm(x) we may factor the denominator as

Gm(x) =
1

(1− x) (1− x− x2 − . . .− xm−1)
.
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Let

F̂m(x) =
1

1− x− x2 − . . .− xm−1
=
∑

n

f̂m(n)xn .

Then by standard techniques of generating functions

f̂m(0) = gm(0) = 1, f̂m(n) = gm(n)− gm(n− 1), n > 0 .

Therefore

f̂m(n) =
∑

r≤bn/mc

(−1)r 2n−r m

(
r + n−mr

r

)
−

∑
r≤b(n−1)/mc

(−1)r 2n−1−r m

(
r + n− 1−mr

r

)
.

The upper limits in the two sums are different when r = n/m. If we substitute this value in the binomial

coefficient in the second sum we obtain(
r + n− 1− n

r

)
=
(
r − 1
r

)
which is zero for r > 0. The case r = 0 and r = n/m occurs when n = 0. Hence we may write for n > 0

f̂m(n) =
∑

r≤bn/mc

(−1)r

(
2n−r m

(
r + n−mr

r

)
− 2n−1−r m

(
r + n− 1−mr

r

))
. (1)

It is useful to define

hr(k) :=
2k−1

r

(
k + r − 1
r − 1

)
(k + 2 r) = 2k−1

((k + r

r

)
+
(
k + r − 1
r − 1

))
so that for n > 0

f̂m(n) =
∑

r≤bn/mc

(−1)r hr(n−mr) . (2)

Clearly h0(k) = 2k−1. It is however convenient to redefine h0(0) := 1 so that the formula (2) is valid also for

n = 0. Note that h1(k) is the sequence A001792 in [1], h2(k) is the sequence A001793, h3(k) is the sequence

A001794, h4(k) is the sequence A006974, etc.

The family of sequences {
{hr(k)}k≥0 : r ≥ 0

}
should deserve a special name because, as we shall see in the next section, they fully define the m-step

Fibonacci numbers.

3 m-step Fibonacci numbers

The m-step Fibonacci numbers fm(n) are defined as

fm(n) = 0, n ≤ 0, fm(1) = 1, fm(n) =
m∑

k=1

fm(n− k), n > 1 . (3)
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For m = 2 they are just the usual Fibonacci numbers. For m > 2 they are also called with the special names

Tribonacci (m = 3, sequence A058265 in [1]), Tetranacci (m = 4, A000078), Pentanacci (m = 5, A001591),

etc. Their generating function is

Fm(x) =
x

1− x− x2 − . . .− xm
= x F̂m+1(x) .

Hence fm(n) = f̂m+1(n − 1) and we have a direct formula for the m-step Fibonacci numbers provided by

(1). The interesting fact is that all numbers can be computed by the same list of sequences, namely hr(k),

as apparent from (2). Indeed

fm(n) =
∑

r≤b(n−1)/(m+1)c

(−1)r hr(n− 1− (m+ 1) r), n > 0 . (4)

The only difference for different m is that the list hr(k) enters the computation of fm(n) displaced by (m+1)

entries with respect to hr−1(k). The situation is displayed for m = 2, m = 3, m = 4 and m = 5 in Table 1.

The sequences are shown up to n = 18. For instance the Fibonacci numbers can be computed by taking the

sequence h0(k), subtracting the sequence h1(k) shifted to the right three places, adding the sequence h2(k)

shifted to the right six places, subtracting the sequence h3(k) shifted to the right nine places and so on, until

there are only zeros. In general, for the m-step Fibonacci number, starting always with the sequence h0(k),

one has to subtract the sequence h1(k) shifted to the right (m + 1) places, then to add the sequence h2(k)

shifted to the right 2 (m+ 1) places, and so on.

Note that by shifting the hr(k) sequences by two places we get the sequence of all ones, and by shifting

the sequences by one entry we get the sequence of all zeros (except the first term), as from the definition (3).

The formula (4) may be compared with the known formula

fm(n) =
∑

k1≤k2≤...≤km−1

(
n− k1

k1 − k2

)(
k1 − k2

k2 − k3

)
· · ·
(
km−3 − km−2

km−2 − km−1

)(
km−2 − km−1

km−1

)
where a number of terms exponentially growing with m has to be computed.

4 Inverse formulas

The formula (4) shows that the m-step Fibonacci numbers can be expressed as particular sums of the family

hr(k). We may wonder whether it is possible to express each sequence hr(k) through particular sums of

the m-step Fibonacci numbers. This is indeed possible, although the expressions we have found involve an

exponentially increasing number of terms.

For n− 1 < m+ 1 we have

fm(n) = h0(n− 1)

which implies, by choosing n = m+ 1,

h0(m) = fm(m+ 1) .

For m+ 1 ≤ n− 1 < 2 (m+ 1) we have

fm(n) = h0(n− 1)− h1(n− 1−m− 1) = fn−1(n)− h1(n− 1−m− 1)
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so that

h1(n− 1−m− 1) = fn−1(n)− fm(n)

which implies, by choosing n = 2 (m+ 1),

h1(m) = −fm(2 (m+ 1)) + f2 m+1(2 (m+ 1)) .

For 2 (m+ 1) ≤ n− 1 < 3 (m+ 1) we have

fm(n) = h0(n− 1)− h1(n− 1−m− 1) + h2(n− 1− 2m− 2) =

fn−1(n)− f2 (n−m−1)−1(2 (n−m− 1)) + f(n−m−2)(2 (n−m− 1)) + h2(n− 1− 2m− 2)

so that

h2(n− 1− 2m− 2) = fm(n)− fn−1(n) + f2 (n−m−1)−1(2 (n−m− 1))− f(n−m−2)(2 (n−m− 1))

which implies, by choosing n = 3 (m+ 1),

h2(m) = fm(3 (m+ 1))− f3 m+2(3 (m+ 1)) + f4 m+3(4 (m+ 1))− f2 m+1(4 (m+ 1)) .

For 3 (m+ 1) ≤ n− 1 < 4 (m+ 1) we have

fm(n) = h0(n− 1)− h1(n− 1− (m+ 1)) + h2(n− 1− 2 (m+ 1))− h3(n− 1− 3 (m+ 1))

which, by choosing n = 4 (m+ 1), yields

h3(m) = − fm(4 (m+ 1)) + f4 m+3(4 (m+ 1))

+ f2 m+1(6 (m+ 1)) + f3 m+2(6 (m+ 1))− 2 f6 m+5(6 (m+ 1))

− f4 m+3(8 (m+ 1)) + f8 m+7(8 (m+ 1)) .

By using the same tools we get

h4(m) = + fm(5 (m+ 1))− f5m+4(5 (m+ 1))

− f2m+1(8 (m+ 1))− f4m+3(8 (m+ 1)) + 2 f8m+7(8 (m+ 1))

− f3m+2(9 (m+ 1)) + f9m+8(9 (m+ 1))

+ f4m+3(12 (m+ 1)) + 2 f6m+5(12 (m+ 1))− 3 f12m+11(12 (m+ 1))

− f8m+7(16 (m+ 1)) + f16m+15(16 (m+ 1)) .

All terms are of the form fp (m+1)−1(q (m + 1)) as can be seen inductively. Assume that hr(m), r < k, can

be expressed as

hr(m) =
∑
p,q

αr
p,q fp (m+1)−1(q (m+ 1)) . (5)

For k (m+ 1) ≤ n− 1 < (k + 1) (m+ 1) we have

fm(n) =
∑
r≤k

(−1)rhr(n− 1− r (m+ 1))
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and by choosing n = (k + 1) (m+ 1) we have

fm((k + 1) (m+ 1)) = (−1)k hk(m) +
∑
r<k

(−1)rhr((k + 1− r) (m+ 1)− 1)

i.e.,

hk(m) = (−1)k fm((k + 1) (m+ 1)) +
∑
r<k

(−1)k+1−rhr((k + 1− r) (m+ 1)− 1)

which becomes, after substituting (5)

hk(m) = (−1)k fm((k + 1) (m+ 1)) +
∑
r<k

(−1)k+1−r
∑
p,q

αr
p,q fp (k+1−r) (m+1)−1(q (k + 1− r) (m+ 1)) .

Hence also hk(m) can be expressed as a linear combination of terms of the form fp (m+1)−1(q (m + 1)).

Moreover, this expression shows how the coefficients αk
pq can be computed from the coefficients αr

pq, r < k.

Indeed we must have

αk
p′,q′ =

∑
p,q,r

[p′ = p (k + 1− r) ∧ q′ = q (k + 1− r)] (−1)k+1−r αr
p,q (6)

or equivalently

αk
p′,q′ =

∑
p,q,r>1

[p′ = p r ∧ q′ = q r] (−1)r αk+1−r
p,q . (7)

Furthermore there is the coefficient

αk
1,k+1 = (−1)k .

In the following tables we see the values of αk, k = 0, . . . , 4:

α0 = p \ q 1
1 1 α1 =

p \ q 2
1 −1
2 1

α2 =

p \ q 3 4
1 1
2 −1
3 −1
4 1

α3 =

p \ q 4 6 8
1 −1
2 1
3 1
4 1 −1
6 −2
8 1

α4 =

p \ q 5 8 9 12 16
1 1
2 −1
3 −1
4 −1 1
5 −1
6 2
8 2 −1
9 1

12 −3
16 1

It can be proven by induction that
∑

p α
k
pq = 0, k > 0, and any q. According to (7) the entries in table

α4 come from those of table α3 with row and column indices multiplied by 2, plus the entries in table α2,

inverted in sign, with row and column indices multiplied by 3, plus the entries in table α1 with row and

column indices multiplied by 4, plus the entry in table α0, inverted in sign with row and column indices

equal to 5 and plus the entry (−1)4 in position (1, 5).
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+ 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

− 1 3 8 20 48 112 256 576 1280 2816 6144 13312 28672 61440 131072

+ 1 5 18 56 160 432 1120 2816 6912 16640 39424 92160

− 1 7 32 120 400 1232 3584 9984 26880

+ 1 9 50 220 840 2912

− 1 11 72

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584

Fibonacci numbers

+ 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

− 1 3 8 20 48 112 256 576 1280 2816 6144 13312 28672 61440

+ 1 5 18 56 160 432 1120 2816 6912 16640

− 1 7 32 120 400 1232

+ 1 9

1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513

Tribonacci numbers

+ 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

− 1 3 8 20 48 112 256 576 1280 2816 6144 13312 28672

+ 1 5 18 56 160 432 1120 2816

− 1 7 32

1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10671 20569 39648

Tetranacci numbers

+ 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

− 1 3 8 20 48 112 256 576 1280 2816 6144 13312

+ 1 5 18 56 160 432

1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 13624 26784 52656

Pentanacci numbers

Table 1: How the sequences hr(k) enter the computation of fm(n)
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