1. Il problema del massimo flusso

Nel problema del massimo flusso si considera un grafo, in cui due nodi s e ¢t sono contraddistinti 1'uno
come sorgente e 'altro come pozzo e ad ogni arco e = (4, j) & assegnato un valore positivo ¢;; (oppure c.) detto
capacita. Ad ogni arco (4, j) viene inoltre associata una quantita non negativa z;;, detta flusso, specificando
inoltre se il flusso nell’arco & orientato da i a j oppure da j a 7. Nel primo caso si dice che il flusso esce da @
ed entra in j, nel secondo caso si dice che il flusso esce da j ed entra in i.

Un flusso ¢ ammissibile se soddisfa i due seguenti vincoli

— in ogni arco il flusso non supera la capacita,
— in ogni nodo, tranne la sorgente e il pozzo, tutto il flusso entrante deve essere uguale al flusso uscente.

Si vuole trovare il massimo flusso ammissibile che puo essere fatto uscire dalla sorgente (e che sara
necessariamente uguale a quello entrante nel pozzo)

Un concetto fondamentale nel problema del massimo flusso ¢ costituito dalla capacita di taglio. Un
taglio in un grafo e definito a partire da un sottoinsieme proprio S di nodi. Si definisce come taglio indotto
da S l'insieme di archi

6(S):={e=(@,j)e E:(ieSNj¢gS)Vv(ieSni¢Ss)}

Il termine ‘taglio’ sta ad indicare che, rimuovendo gli archi del taglio, il grafo diventa sconnesso e non c’e
modo di raggiungere i nodi non in S a partire da quelli in S. Ci possiamo chiedere qual & il massimo flusso
che puo passare sul taglio da S a N\ S, indipendentemente da ogni altra condizione. Se il flusso in ogni arco
¢ limitato dalla capacita allora la massima quantita ¢ data dall’espressione

c(S) = Z Ce (1)

e€b(S)

La quantita ¢(S) prende il nome di capacita di taglio. Se consideriamo un generico taglio che divide
la sorgente dal pozzo, cioeé un taglio indotto da S con s € S e t ¢ S, possiamo notare come, dato un
qualsiasi flusso ammissibile, la quantita x(s) in uscita da s deve necessariamente attraversare il taglio §(.5)
per raggiungere il pozzo, e quindi deve valere

x(s) < ¢(5)
Tale relazione deve essere vera per ogni flusso ammissibile e ogni taglio che separa la sorgente dal pozzo.
Quindi possiamo scrivere
max z(s) < mine(S) (2)
T S
dove il minimo va inteso fra tutti i tagli che separano s da t e il massimo fra tutti i flussi ammissibili. Il
teorema fondamentale del probema del massimo flusso € che la relazione precedente vale sempre con il segno
di uguaglianza
max z(s) = min ¢(S5) (3)
T S
Per dimostrare (3) serve il concetto di cammino aumentante. Data una soluzione ammissibile z, in un
generico arco (4,7) il flusso, che supponiamo orientato da i a j, pud essere aumentato al massimo della
quantita positiva ¢, — x. se T, < c. e puo essere diminuito al massimo della quantita positiva c. + x.
(cambiando quindi orientazione). Su un cammino P da s a ¢ il flusso puo essere aumentato se per ogni arco
in cui il flusso & orientato con il cammino si ha z. < c.. La massima quantita di flusso che puo essere fatta
transitare sul cammino P e data da
min ¢, — x,
(eeP+
dove P sono gli archi in cui il flusso & orientato con il cammino.

Dato un flusso, se esiste un cammino aumentante, allora la soluzione corrente puo essere aumentata e
quindi non puo essere massima. Supponiamo allora che non esistano cammini aumentanti. Definiamo come
raggiungibili quei nodi ¢ per i quali esiste un cammino aumentante da s ad ¢. Sia S questo inieme. Se

1

assumiamo 'ipotesi che non esiste un cammino aumentante da s a t allora t ¢ S. Consideriamo gli archi del
taglio 6(S). Per ogni arco e = (i,5) € 6(S) coni € S e j ¢ S deve essere z. = ¢, e il flusso orientato da i a
j altrimenti esisterebbe un cammino aumentante da s a j contro 'ipotesi che j ¢ S. Quindi la quantita di
flusso che attraversa il taglio € esattamente uguale alla capacita di taglio, e valendo la relazione (2) il flusso
non puo che essere quello massimo e il taglio quello di capacita minima e quindi vale (3).

Il ragionamento fatto contiene in sé anche un’idea algoritmica per trovare il massimo flusso: si itera
generando cammini aumentanti e si termina quando non esistono piti cammini aumentanti. Tuttavia, se
attuata ingenuamente, quest’idea porta ad un algoritmo solo pseudopolinomiale. Esaminiamo dapprima
come effettuare la ricerca di un cammino aumentante.

I nodi vengono ripartiti in tre insiemi: nodi raggiunti e processati S, nodi raggiunti e non ancora
processati R, nodi non ancora raggiunti 7. Inizialmente S = (), R = {s} e T = N \ {s}. Un generico passo
d’iterazione consiste nel prendere un nodo k in R valutare gli archi incidenti in k£ con altro estremo in 7" e
vedere se possono appartenere ad un cammino aumentante. In particolare se il flusso ¢ direttoda k a j € T
deve essere x1; < cy;; se invece il flusso ¢ diretto da j a k I’arco puo essere aumentante. Se ’arco puo essere
aumentante allora il nodo j passa da T a R e viene memorizzato un puntatore da j a k per ricostruire alla
fine il cammino. Terminato I’esame degli archi incidenti in k, il nodo k passa da R in S.

La procedura termina non appena t € R oppure quando R = (). Nel primo caso si ¢ trovato un
cammino aumentante che viene determinato usando ricorsivamente i puntatori a partire da ¢t. In questa fase
si determina anche la quantita di flusso che puo essere inviata sul cammino. Nel secondo si & determinato
che non esiste nessun cammino aumentante e quindi si & trovato il massimo flusso e un taglio di minima
capacita indotto da S.

La procedura di ricerca di un cammino aumentante prende in esame al pit un arco alla volta e quindi la
sua complessita ¢ O(|E|). In generale perd non ci sono garanzie che il numero globale di iterazioni a partire
dalla soluzione nulla sia polinomiale nei dati del problema. Infatti tutto quello che si puo dire € che, in
presenza di dati di capacita interi, il flusso aumenta almeno di una unita per ogni cammino aumentante, ma
questo porta ad un numero di iterazioni pseudopolinomiale.

Si puo tuttavia dimostrare che se la ricerca del cammino aumentante viene eseguita in larghezza, cioe i
nodi vengono scelti da R secondo la regola first-in-first-out, allora il numero di iterazioni € polinomiale, in par-
ticolare O(n? m). Con ricerche di cammini aumentanti non necessariamente ad albero si ottiene una comples-
sitd O(n?). Vi sono infine algoritmi di massimo flusso molto complicati con complessita O(m n log(n?/m)),
che per grafi densi (m = O(n?)) & comunque O(n3) e per grafi sparsi (m = O(n)) invece si abbassa a
O(n? logn).

Esempio. Si riconsideri la rete in figura 1. Scegliendo i cammini aumentanti con una ricerca in larghezza
i nodi vengono raggiunti (ad esempio scegliendo i nodi da raggiungere in 7' in ordine di indice crescente)
secondo l'ordine (indicando I’arco con cui il nodo viene raggiunto) (1,2), (1,4), (1,5), (2,3), (4,7), (4,8), (5,6),
(5,9). Quindi si e trovato il cammino aumentante 1 — 5 — 9 sul quale possono essere inviate due unita di
flusso. Ripetendo la ricerca del cammino aumentante i nodi vengono raggiunti secondo l'ordine (1,2), (1,4),
(1,5), (2,3), (4,7), (4,8), (5,6), (8,9). Si & trovato il cammino aumentante 1 — 4 — 8 — 9 sul quale pud essere
inviata una unita di flusso. Nella terza iterazione i nodi vengono raggiunti secondo ordine (1,2), (1,4), (1,5),
(2,3), (4,7), (5,6), (7,8), (6,9). Si ¢ trovato il cammino aumentante 1 — 5 — 6 — 9 sul quale puo essere
inviata una unita di flusso. In totale finora il flusso in uscita dalla sorgente € di 4 unita, rappresentato in
figura 2

Figura 1 - capacita Figura 2

Nella quarta iterazione i nodi vengono raggiunti secondo lordine (1,2), (1,4), (1,5), (2,3), (4,7), (3,6),
(7,8), (6,9), generando il cammino 1 — 2 — 3 — 6 — 9 sul quale si possono inviare 4 unita di flusso. La
nuova soluzione ¢ in figura 3. Nella quinta iterazione i nodi vengono raggiunti secondo l'ordine (1,2), (1,4),
(1,5), (4,7), (5,3), (7,8), (3,6), (8,9), generando il cammino 1 — 4 — 7 — 8 — 9 sul quale si possono inviare
2 unita di flusso. La nuova soluzione ¢ in figura 4.

Figura 3 Figura 4

Nella sesta iterazione i nodi vengono raggiunti secondo l'ordine (1,2), (1,4), (1,5), (5,3), (3,6). Altri
nodi non vengono raggiunti in quanto gli archi (2,3), (4,7), (4,8), (5,6), (5,9) e (6,9) sono saturi. Quindi
la soluzione corrente € quella di massimo flusso e il taglio di minima capacita e quello indotto dall’insieme
S =1{1,2,3,4,5,6} con valore uguale a 10. 1

Se in particolare le capacita sono unitarie il problema del massimo flusso diventa il problema di trovare
il massimo numero di cammini disgiunti negli archi che connettono due nodi dati. Il teorema del massimo
flusso-minima capacita puo pertanto essere riformulato come: il massimo numero di cammini disgiunti negli
archi fra due nodi dati & uguale al minimo numero di archi necessario a sconnettere i nodi dati.

Piccolo aneddoto storico sul problema del massimo flusso: quanto segue & stato portato alla luce da
Schrijver e raccontato ad un recente congresso. Il problema del massimo flusso che apparentemente fu studiato
per la prima volta negli Stati Uniti da Ford e Fulkerson negli anni 50, fu in realta oggetto d’indagine in anni
anteriori in Unione Sovietica come risulta da un articolo (in russo), che si trova nella Biblioteca Lenin di
Mosca e in cui si descrive il problema di trasportare tramite ferrovia il massimo numero di truppe dalle
frontiere europee al Pacifico (o viceversa). Gli autori dell’articolo, pur non usando i concetti poi sviluppati
da Ford e Fulkerson, trovano una soluzione che, come ha verificato Schrijver, risulta corretta. Nella sua
ricerca storica Schrijver si € poi imbattuto in una citazione contenuta nei lavori di Ford a Fulkerson in merito
ad una particolare applicazione del problema. L’articolo citato perd era ancora classificato. Inoltrata e
ottenuta la richiesta di declassificazione al Pentagono, si & scoperto che anche gli americani erano interessati
ad una applicazione ferroviaria del problema, solo che questa riguardava il sistema ferroviario ... dell’'Unione
Sovietica. Evidentemente, mentre i russi erano interessati al massimo flusso, gli americani erano interessati
al minimo taglio...

2. Tagli di capacita minima

Spesso viene richiesto di trovare in un grafo non orientato un taglio di capacita minima. Si noti che il
taglio indotto da un insieme S ha la stessa capacita di quello indotto dall’insieme N \ S data la simmetria
dei valori di capacita su ogni arco in entrambe le direzioni.

Un caso particolarmente rilevante consiste nel trovare il taglio con il minor numero di archi che sconnette
il grafo. Se il grafo rappresenta una rete di comunicazione (vedi per esempio il caso sopra citato delle ferrovie
russe) ¢ importante sapere qual € il minimo numero di archi necessari a sconnettere il grafo. Tanto piu piccolo
sard questo numero tanto meno affidabile sara la rete. Per questo problema, come detto precedentemente,
basta porre capacita unitarie su ogni arco.

Un modo per risolvere il problema consiste nel risolvere ripetutamente un problema di massimo flusso. Si
sceglie arbitrariamente un nodo come sorgente e poi si risolvono n — 1 problemi di massimo flusso assumendo
come destinazione a turno uno degli altri nodi e prendendo il minimo dei tagli di minima capacita trovati.

3

Nessun taglio viene trascurato da questa procedura. Infatti assegnato un taglio arbitrario indotto da un
insieme S di nodi (si pud sempre scegliere S in modo che s € S, data la simmetria esposta sopra) esiste
almeno un nodo k ¢ S. Questo taglio viene considerato quando si risolve il problema del massimo flusso da s
a k. La complessita di questo metodo dipende dall’algoritmo di massimo flusso usato. Usando un algoritmo
particolarmente veloce si ottiene una complessita O(mn? log(n?/m)).

Esistono comunque anche algoritmi diretti che non usano concetti di flusso. Presentiamo due algoritmi,
il secondo dei quali & stocastico e permette di trovare la soluzione solo con probabilita prefissata.

L’idea del primo algoritmo si basa sull’osservazione che, dati due nodi qualsiasi, o il taglio minimo
separa i due nodi oppure non li separa. In questo secondo caso i due nodi possono essere fusi in uno
fondendo eventualmente archi incidenti in entrambi i nodi e sommandone le capacita, e il taglio minimo del
grafo ridotto e uguale a quello del grafo originario. Quindi, se si & in grado di trovare due nodi di cui si
conosce il minimo taglio separatore, basta confrontare questo valore con quello del minimo taglio del grafo
ridotto. Ricorsivamente nel grafo ridotto si determinano due nodi di cui si conosce il minimo taglio separatore
e si prosegue finché il grafo e ridotto a due soli nodi. A questo punto basta confrontare tutti i tagli generati
e prendere il migliore.

La parte difficile consiste ovviamente nel determinare due nodi e il minimo taglio che li separa. Natu-
ralmente non e pensabile definire a priori i due nodi, altrimenti dovremmo risolvere un problema di massimo
flusso per calcolare il minimo taglio. La procedura per generare due nodi di cui si conosca anche il minimo
taglio separatore ¢ abbastanza semplice, anche se la dimostrazione di correttezza non e banale.

Per descrivere 1'algoritmo ¢ necessaria la seguente definizione: dati due insiemi A e B sia

C(A : B) = Z Cij

i€A

JjEB
L’algoritmo procede nel seguente modo: si sceglie arbitrariamente un nodo come nodo iniziale v; e si pone
S := {v1}. Ad esempio sia v1 := 1. Poi si sceglie un nodo vy come

vy 1= argmax (S : {k})
k¢S

e si aggiorna S := SU{vs}. La procedura viene ripetuta fino a definire il nodo v,,. A questo punto si calcola
la capacita del taglio indotto da v, cioe c({v,}) =: C,,.

Terminata questa fase, i nodi v,_1 e v, vengono fusi generando il grafo G’. La procedura viene ripetuta
sul grafo G’ generando una successione di nodi (possibilmente diversa dalla precedente) v{,...,v),_; e una
capacita di taglio C,—1 := c({v},_, }).

La procedura viene ripetuta fino ad avere un grafo di due nodi in cui il valore Cs ¢ la capacita dell’unico
arco del grafo e che corrisponde al taglio indotto da v; = 1 sul grafo originale (per costruzione il nodo 1 non
viene mai fuso con altri nodi). Infine si sceglie il minimo fra i valori C;. Questo individua il taglio di minima
capacita.

Figura 5 Figura 6

Ad esempio dato il grafo in figura 5, la sequenza di nodi nella prima fase ¢ v; = 1, vo = 4, v3 = 3,
vy =6, v5 = 2, vg = 5, v7 = 7. Quindi C7 = ¢({7}) = 23. Si fondono i nodi 5 e 7 ottenendo il grafo in
figura 6. Su questo grafo si ripete la procedura ottenendo il seguente ordine di nodi v1 = 1, vy = 4, v3 = 3,
vy = 6, vs = (5,7), v = 2. Quindi Cs = ¢({2}) = 32. Si fondono i nodi 2 e (5,7) ottenendo il grafo in
figura 7.

Figura 7 Figura 8

Si ottiene il seguente ordine di nodi v1 =1, vo =4, v3 =3, v4 = (2,5,7), v5 = 6. Quindi C3 = ¢({6}) =
22. Si fondono i nodi 6 e (2,5,7) ottenendo il grafo in figura 8. Si ottiene il seguente ordine di nodi v; = 1,
va =4, v3 =3, vy =(2,5,6,7). Quindi Cy = ¢({(2,5,6,7)}) = 24. Si fondono i nodi 3 e (2,5,6,7) ottenendo
il grafo in figura 9.

Jo

Figura 9

Si ottiene il seguente ordine di nodi v; = 1, va = (2,3,5,6,7), v3 = 4. Quindi C5 = ¢({4}) = 25. Si
fondono i nodi 4 e (2,3,5,6,7) ottenendo il grafo in figura. Infine Cy = ¢({1}) = 22. Confrontando i valori
Cy,...,Cy, il taglio minimo & Cy = 22, indotto da {1}.

Per dimostrare la correttezza dell’algoritmo, basta dimostrare che ¢(6({v,})) ¢ il taglio di minima
capacita fra tutti i tagli che separano v,_1 da v,. Come detto precedentemente, se il taglio minimo separa
vp—1 da v, deve essere quello indotto da {v,}, altrimenti ha i nodi v,_; e v, dalla stessa parte e quindi
questi possono essere fusi e il taglio minimo si cerchera nel grafo ridotto per fusione dei nodi.

Definiamo A; := {vy,...,v;}. Quindi ¢(Ap_1 : {vn}) = c¢(6({vn})). Sia S un qualsiasi insieme tale che
Up_1 ESev, &85

Definiamo critici i nodi v; tali che v; € S e v;_1 ¢ S oppure v; ¢ S e v;_1 € S. In figura i nodi critici
sono in nero. In particolare v,, & critico per ogni S che separa v,,_; da v,. Sia S; := A4;N S e S; := A; \ S;.
Quindi S; e S; sono una partizione di A;.

Vogliamo dimostrare che se v; € critico allora

C(Aq;_l : {UZ}) S C(Sz : S,) (4)

5

Siccome vy, & critico, la diseguaglianza (4) implica che §({v,}) & minimo fra i tagli che separano v,_1 da v,,.
La dimostrazione di (4) verra fatta per induzione sui nodi critici. Se vy, € il primo nodo critico, consideriamo
iduecasiv, € Sevy, ¢ S. Sevp, € SsihaS,={vn}eS,=Ap_1 e quindi (4) diventa

C(Ah,1 : {Uh}) = C(Sh : Sh) (5)

Se invece vy, ¢ S, allora A,y C S e S, = Ap_1 e S, = {vp} e ritroviamo (5).
Ora si supponga vera la relazione (4) per il nodo critico v;. Dobbiamo dimostrare che la relazione & vera
per il successivo nodo critico v;. Allora si ha

c(Aj—1 :{v;}) = c(Aim1 + {vj}) + (A1 \ Aimr : {v;})

(Aim1 :{vi}) + (A1 \ i1 : {v;}) (©)
(Si:8i) +e(Aj1 \ Aior = {v;})
(

2 55)

dove 'uguaglianza deriva dalla definizione additiva della capacita di taglio, la prima diseguaglianza dalla
definizione stessa dei nodi v; e la seconda diseguaglianza dall’ipotesi induttiva. Per quel che riguarda la
terza diseguaglianza si supponga v; € S e v; ¢ S. Allora S;_1 = S;. Siccome v; e v; sono due nodi critici
successivi si ha

IA A CIA

Cc
C
Cc

n

A1\ Ao ={vi,Vi41,...,v;-1} C S

da cui
A \NAio1 =851\ Si—1 =5\ Si—1

Allora
C(Sl : Sl) + C(Aj—l \ Ai—l : {’Uj}) = C(Sl : Sl) + C(Sj \ Si—l . {'Uj}) (7)

Da S; = S; U {v;} e dalla definizione di ¢(A4 : B) abbiamo

o(8j + 8;) = (S + S U{v;}) = (S + 8i) + (S « {v;}) (8)
e siccome S; D S; D S;_1, abbiamo

o(Sj i) = e(8i: 8i), (S {v;}) = e(S; \ Si—1+ {vs}) (9)

Quindi, combinando (7), (8) e (9) si dimostra la terza diseguaglianza di (6) per il caso v; € S e v; ¢ .
Per il caso opposto v; ¢ Sewv; € Ssiha S; =5;_1eA;_1\A4i-1NS=0,dacui

Aj_1\Ai1 =821\ Sic1 =55\ Siza

Allora
C(SZ : SZ) + C(Aj,1 \ Ai,1 : {’Uj}) = C(SZ : 5'1) + C(Sj \ S’i,1 : {Uj}) (].0)

Da S; = S; U {v;}, come nel caso precedente, possiamo scrivere
o(8j : §j) = (S U v} : 8;) = e(Si : 8j) + e({v;} : 5j) (11)
e siccome Sj o5, D85, 1,5 ha
c(8;+ 8j) = e(Si+ 8i), (S {v}) = (S \ Si—1 + {v;}) (12)

e combinando (10), (11) e (12) si dimostra la terza diseguaglianza di (6) per il caso v; ¢ S e v; € S.

Per quel che riguarda la complessita computazionale 'algoritmo esegue n iterazioni. All'interno di
ogni iterazione bisogna calcolare i valori ¢(S : {k}) e valutarne il massimo. Questo si puod realizzare con
delle strutture ad heap. All’interno di ogni iterazione bisogna quindi al piu scandire tutti gli archi e per
ogni scansione aggiornare dei valori su uno heap. Questo costa O(m logn). Le operazioni di fusione dei

6

nodi possono anche essere eseguite riscrivendo il grafo con complessita O(m), che & comunque dominata da
O(m logn) (si possono anche usare strutture Union-Find senza dover riscrivere ogni volta tutto il grafo,
visto che I'aggiornamento riguarda solo due nodi e gli archi incidenti). In totale quindi si ha una complessita
O(mn logn). Usando heap di Fibonacci la complessita pud essere abbassata a O(mmn + n? logn)

Il secondo algoritmo & probabilistico e permette di trovare il taglio di capacita minima con probabilita
arbitrariamente bassa.

Prima di descrivere ’algoritmo e utile dire cosa sia un algoritmo probabilistico. In un algoritmo proba-
bilistico alcune scelte sono lasciate al caso secondo un preciso meccanismo probabilistico. Questo fa si che
la soluzione desiderata sia ottenuta solo con una certa probabilita p. Se si ripete ’algoritmo la probabilita
che in nessuna delle due iterazioni si sia trovata la soluzione desiderata & (1 — p)2. In generale la probabilita
di non ottenere mai la soluzione in k iterazioni & (1 — p)*. Se si fissa a priori un valore ¢ e si vuole che
(1—p)* <, il numero di iterazioni deve essere almeno log e/ log(1—p). Se 1/log(1 — p) & polinomiale allora
si parla di un algoritmo probabilistico polinomiale.

Per descrivere ’algoritmo probabilistico per il minimo taglio si definisca preliminarmente

C* = capacita del minimo taglio, Cy = Z Ce, C;= Z Ce
ecE e€d(i)

L’algoritmo consiste dei seguenti passi: un arco é = (u,v) viene scelto con probabilita ¢./Cy, i nodi u e v
vengono fusi, é viene rimosso e gli archi eventualmente incidenti in » e in v vengono fusi (con somma delle
capacitd). Se é non appartiene al taglio minimo, il nuovo grafo ha il medesimo taglio minimo con lo stesso
valore (infatti ogni taglio del grafo originario che non contiene é & presente anche nel grafo contratto, mentre
ogni taglio del grafo originario che contiene é non esiste nel grafo contratto, inoltre i tagli corrispondenti
hanno le medesime capacita di taglio). La procedura continua finché rimangono solo due nodi che individuano
il taglio finale.

Tllustriamo la procedura con un esempio. Sia dato il grafo rappresentato in figura 10-a con i valori di
capacita indicati accanto agli archi. Supponiamo che ’arco scelto a caso sia (3 —6). Dopo la fusione dei nodi
3 e 6 si ha il grafo in figura 11-b. Nelle figure 11-¢, 11-d, 11-e, 11-f, si vedono le varie fasi dell’algoritmo.
Gli archi scelti sono rispettivamente (1 —4), ((1,4) —5), ((1,4,5) — 2), e ((1,4,5,2) — 7). Questo identifica
il taglio indotto da S = {1,4,5,2,7} di capacita 25 (non si tratta del taglio minimo).

Figure 11-e Figure 11-f

Analizziamo ora la probabilita con cui viene generato il taglio di capacita minima. Ovviamente si ha
c;,>cCr

7

e sommando su tutti i nodi si ottiene

> Ci=ncr

E siccome
Y Ci=2Cx
i
si ottiene
c* 2
< Z
Cs —n
Quindi la probabilita di non scegliere un arco del taglio minimo e almeno
2
12
n

Nel grafo successivo con (n — 1) nodi la probabilita diventa

2
n—1

1—
L’ultimo grafo ha 3 nodi e quindi la probabilita e

2

12

3

Quindi la probabilita di non scegliere mai un arco del taglio minimo (e quindi fornire come soluzione proprio
il taglio minimo) & almeno

2 2 2 2 2 2 2 2

(1_5)(1_71—1)(1_71—2)”'(1_3)(1_1)(1_5) :n(n—l) 2712

e la probabilita di non trovare il taglio minimo & al piu

1 2
n2

dopo k tentativi la probabilita di non trovare mai il taglio minimo ¢ al pit

2 2
(1 _ _Q)k s e—Qk/n
n
quindi
2k 2lnet
N —— <lhe = kzin ne
n 2

Per valutare la complessita bisogna considerare quanto costa ogni singola iterazione: ogni fusione re-
alizzata con struttura Union-Find ha un costo O(logn). La scelta casuale di un arco richiede una ricerca
binaria fra gli archi ancora da scegliere ed ha complessita O(logm) = O(logn). Anche 'aggiornamento della
struttura dati per la scelta casuale ha complessita O(logm). Il numero di iterazioni per la ricerca di un
taglio & al pin pari a m — 1 (ad esempio due cliques connesse con un solo arco potrebbero richiedere la scelta
di tutti gli archi delle due cliques). Quindi un taglio si trova con complessitad O(m logn). Quindi per avere
il taglio minimo con probabilitd 1 — &, la complessita ¢ O(mn? logn loge™1).

La limitazione trovata alla probabilita di trovare il taglio minimo e stretta. Si consideri un circuito con
n archi e capacita M per due archi e M + 1 per gli altri n — 2 archi. Allora C* =2M,Cy=nM+n—2e

cr 2M 2

= — M
Csx, nM+n—2_>n 5 -

Quindi il rapporto puo essere reso arbitrariamente vicino alla limitazione e questo fatto ¢ vero anche per i
successivi grafi ottenuti per fusione.

