
1. Il problema del massimo flusso

Nel problema del massimo flusso si considera un grafo, in cui due nodi s e t sono contraddistinti l’uno
come sorgente e l’altro come pozzo e ad ogni arco e = (i, j) è assegnato un valore positivo cij (oppure ce) detto
capacità. Ad ogni arco (i, j) viene inoltre associata una quantità non negativa xij , detta flusso, specificando
inoltre se il flusso nell’arco è orientato da i a j oppure da j a i. Nel primo caso si dice che il flusso esce da i
ed entra in j, nel secondo caso si dice che il flusso esce da j ed entra in i.

Un flusso è ammissibile se soddisfa i due seguenti vincoli
– in ogni arco il flusso non supera la capacità,
– in ogni nodo, tranne la sorgente e il pozzo, tutto il flusso entrante deve essere uguale al flusso uscente.

Si vuole trovare il massimo flusso ammissibile che può essere fatto uscire dalla sorgente (e che sarà
necessariamente uguale a quello entrante nel pozzo)

Un concetto fondamentale nel problema del massimo flusso è costituito dalla capacità di taglio. Un
taglio in un grafo è definito a partire da un sottoinsieme proprio S di nodi. Si definisce come taglio indotto
da S l’insieme di archi

δ(S) := {e = (i, j) ∈ E : (i ∈ S ∧ j /∈ S) ∨ (j ∈ S ∧ i /∈ S)}

Il termine ‘taglio’ sta ad indicare che, rimuovendo gli archi del taglio, il grafo diventa sconnesso e non c’è
modo di raggiungere i nodi non in S a partire da quelli in S. Ci possiamo chiedere qual è il massimo flusso
che può passare sul taglio da S a N \S, indipendentemente da ogni altra condizione. Se il flusso in ogni arco
è limitato dalla capacità allora la massima quantità è data dall’espressione

c(S) :=
∑

e∈δ(S)

ce (1)

La quantità c(S) prende il nome di capacità di taglio. Se consideriamo un generico taglio che divide
la sorgente dal pozzo, cioè un taglio indotto da S con s ∈ S e t /∈ S, possiamo notare come, dato un
qualsiasi flusso ammissibile, la quantità x(s) in uscita da s deve necessariamente attraversare il taglio δ(S)
per raggiungere il pozzo, e quindi deve valere

x(s) ≤ c(S)

Tale relazione deve essere vera per ogni flusso ammissibile e ogni taglio che separa la sorgente dal pozzo.
Quindi possiamo scrivere

max
x

x(s) ≤ min
S

c(S) (2)

dove il minimo va inteso fra tutti i tagli che separano s da t e il massimo fra tutti i flussi ammissibili. Il
teorema fondamentale del probema del massimo flusso è che la relazione precedente vale sempre con il segno
di uguaglianza

max
x

x(s) = min
S

c(S) (3)

Per dimostrare (3) serve il concetto di cammino aumentante. Data una soluzione ammissibile x, in un
generico arco (i, j) il flusso, che supponiamo orientato da i a j, può essere aumentato al massimo della
quantità positiva ce − xe se xe < ce e può essere diminuito al massimo della quantità positiva ce + xe

(cambiando quindi orientazione). Su un cammino P da s a t il flusso può essere aumentato se per ogni arco
in cui il flusso è orientato con il cammino si ha xe < ce. La massima quantità di flusso che può essere fatta
transitare sul cammino P è data da

min
(e∈P+

ce − xe

dove P+ sono gli archi in cui il flusso è orientato con il cammino.
Dato un flusso, se esiste un cammino aumentante, allora la soluzione corrente può essere aumentata e

quindi non può essere massima. Supponiamo allora che non esistano cammini aumentanti. Definiamo come
raggiungibili quei nodi i per i quali esiste un cammino aumentante da s ad i. Sia S questo inieme. Se

1

1

54

2 3

6

87 9

5 4
3

524 6

22

3

1

6

5

5

1

1

54

2 3

6

87 9

0 0
0

001 3

20

0

1

0

1

1

1

assumiamo l’ipotesi che non esiste un cammino aumentante da s a t allora t /∈ S. Consideriamo gli archi del
taglio δ(S). Per ogni arco e = (i, j) ∈ δ(S) con i ∈ S e j /∈ S deve essere xe = ce e il flusso orientato da i a
j altrimenti esisterebbe un cammino aumentante da s a j contro l’ipotesi che j /∈ S. Quindi la quantità di
flusso che attraversa il taglio è esattamente uguale alla capacità di taglio, e valendo la relazione (2) il flusso
non può che essere quello massimo e il taglio quello di capacità minima e quindi vale (3).

Il ragionamento fatto contiene in sé anche un’idea algoritmica per trovare il massimo flusso: si itera
generando cammini aumentanti e si termina quando non esistono più cammini aumentanti. Tuttavia, se
attuata ingenuamente, quest’idea porta ad un algoritmo solo pseudopolinomiale. Esaminiamo dapprima
come effettuare la ricerca di un cammino aumentante.

I nodi vengono ripartiti in tre insiemi: nodi raggiunti e processati S, nodi raggiunti e non ancora
processati R, nodi non ancora raggiunti T . Inizialmente S = ∅, R = {s} e T = N \ {s}. Un generico passo
d’iterazione consiste nel prendere un nodo k in R valutare gli archi incidenti in k con altro estremo in T e
vedere se possono appartenere ad un cammino aumentante. In particolare se il flusso è diretto da k a j ∈ T
deve essere xkj < ckj ; se invece il flusso è diretto da j a k l’arco può essere aumentante. Se l’arco può essere
aumentante allora il nodo j passa da T a R e viene memorizzato un puntatore da j a k per ricostruire alla
fine il cammino. Terminato l’esame degli archi incidenti in k, il nodo k passa da R in S.

La procedura termina non appena t ∈ R oppure quando R = ∅. Nel primo caso si è trovato un
cammino aumentante che viene determinato usando ricorsivamente i puntatori a partire da t. In questa fase
si determina anche la quantità di flusso che può essere inviata sul cammino. Nel secondo si è determinato
che non esiste nessun cammino aumentante e quindi si è trovato il massimo flusso e un taglio di minima
capacità indotto da S.

La procedura di ricerca di un cammino aumentante prende in esame al più un arco alla volta e quindi la
sua complessità è O(|E|). In generale però non ci sono garanzie che il numero globale di iterazioni a partire
dalla soluzione nulla sia polinomiale nei dati del problema. Infatti tutto quello che si può dire è che, in
presenza di dati di capacità interi, il flusso aumenta almeno di una unità per ogni cammino aumentante, ma
questo porta ad un numero di iterazioni pseudopolinomiale.

Si può tuttavia dimostrare che se la ricerca del cammino aumentante viene eseguita in larghezza, cioè i
nodi vengono scelti da R secondo la regola first-in-first-out, allora il numero di iterazioni è polinomiale, in par-
ticolare O(n2 m). Con ricerche di cammini aumentanti non necessariamente ad albero si ottiene una comples-
sità O(n3). Vi sono infine algoritmi di massimo flusso molto complicati con complessità O(mn log(n2/m)),
che per grafi densi (m = Θ(n2)) è comunque O(n3) e per grafi sparsi (m = O(n)) invece si abbassa a
O(n2 log n).

Esempio. Si riconsideri la rete in figura 1. Scegliendo i cammini aumentanti con una ricerca in larghezza
i nodi vengono raggiunti (ad esempio scegliendo i nodi da raggiungere in T in ordine di indice crescente)
secondo l’ordine (indicando l’arco con cui il nodo viene raggiunto) (1,2), (1,4), (1,5), (2,3), (4,7), (4,8), (5,6),
(5,9). Quindi si è trovato il cammino aumentante 1 → 5 → 9 sul quale possono essere inviate due unità di
flusso. Ripetendo la ricerca del cammino aumentante i nodi vengono raggiunti secondo l’ordine (1,2), (1,4),
(1,5), (2,3), (4,7), (4,8), (5,6), (8,9). Si è trovato il cammino aumentante 1 → 4 → 8 → 9 sul quale può essere
inviata una unità di flusso. Nella terza iterazione i nodi vengono raggiunti secondo l’ordine (1,2), (1,4), (1,5),
(2,3), (4,7), (5,6), (7,8), (6,9). Si è trovato il cammino aumentante 1 → 5 → 6 → 9 sul quale può essere
inviata una unità di flusso. In totale finora il flusso in uscita dalla sorgente è di 4 unità, rappresentato in
figura 2

Figura 1 - capacità Figura 2

2

1

54

2 3

6

87 9

4 4
0

401 3

20

0

1

0

5

1

1

1

54

2 3

6

87 9

4 4
0

403 3

22

0

1

2

5

3

1

Nella quarta iterazione i nodi vengono raggiunti secondo l’ordine (1,2), (1,4), (1,5), (2,3), (4,7), (3,6),
(7,8), (6,9), generando il cammino 1 → 2 → 3 → 6 → 9 sul quale si possono inviare 4 unità di flusso. La
nuova soluzione è in figura 3. Nella quinta iterazione i nodi vengono raggiunti secondo l’ordine (1,2), (1,4),
(1,5), (4,7), (5,3), (7,8), (3,6), (8,9), generando il cammino 1 → 4 → 7 → 8 → 9 sul quale si possono inviare
2 unità di flusso. La nuova soluzione è in figura 4.

Figura 3 Figura 4

Nella sesta iterazione i nodi vengono raggiunti secondo l’ordine (1,2), (1,4), (1,5), (5,3), (3,6). Altri
nodi non vengono raggiunti in quanto gli archi (2, 3), (4, 7), (4, 8), (5, 6), (5, 9) e (6, 9) sono saturi. Quindi
la soluzione corrente è quella di massimo flusso e il taglio di minima capacità è quello indotto dall’insieme
S = {1, 2, 3, 4, 5, 6} con valore uguale a 10.

Se in particolare le capacità sono unitarie il problema del massimo flusso diventa il problema di trovare
il massimo numero di cammini disgiunti negli archi che connettono due nodi dati. Il teorema del massimo
flusso-minima capacità può pertanto essere riformulato come: il massimo numero di cammini disgiunti negli
archi fra due nodi dati è uguale al minimo numero di archi necessario a sconnettere i nodi dati.

Piccolo aneddoto storico sul problema del massimo flusso: quanto segue è stato portato alla luce da
Schrijver e raccontato ad un recente congresso. Il problema del massimo flusso che apparentemente fu studiato
per la prima volta negli Stati Uniti da Ford e Fulkerson negli anni 50, fu in realtà oggetto d’indagine in anni
anteriori in Unione Sovietica come risulta da un articolo (in russo), che si trova nella Biblioteca Lenin di
Mosca e in cui si descrive il problema di trasportare tramite ferrovia il massimo numero di truppe dalle
frontiere europee al Pacifico (o viceversa). Gli autori dell’articolo, pur non usando i concetti poi sviluppati
da Ford e Fulkerson, trovano una soluzione che, come ha verificato Schrijver, risulta corretta. Nella sua
ricerca storica Schrijver si è poi imbattuto in una citazione contenuta nei lavori di Ford a Fulkerson in merito
ad una particolare applicazione del problema. L’articolo citato però era ancora classificato. Inoltrata e
ottenuta la richiesta di declassificazione al Pentagono, si è scoperto che anche gli americani erano interessati
ad una applicazione ferroviaria del problema, solo che questa riguardava il sistema ferroviario ... dell’Unione
Sovietica. Evidentemente, mentre i russi erano interessati al massimo flusso, gli americani erano interessati
al minimo taglio...

2. Tagli di capacità minima

Spesso viene richiesto di trovare in un grafo non orientato un taglio di capacità minima. Si noti che il
taglio indotto da un insieme S ha la stessa capacità di quello indotto dall’insieme N \ S data la simmetria
dei valori di capacità su ogni arco in entrambe le direzioni.

Un caso particolarmente rilevante consiste nel trovare il taglio con il minor numero di archi che sconnette
il grafo. Se il grafo rappresenta una rete di comunicazione (vedi per esempio il caso sopra citato delle ferrovie
russe) è importante sapere qual è il minimo numero di archi necessari a sconnettere il grafo. Tanto più piccolo
sarà questo numero tanto meno affidabile sarà la rete. Per questo problema, come detto precedentemente,
basta porre capacità unitarie su ogni arco.

Un modo per risolvere il problema consiste nel risolvere ripetutamente un problema di massimo flusso. Si
sceglie arbitrariamente un nodo come sorgente e poi si risolvono n−1 problemi di massimo flusso assumendo
come destinazione a turno uno degli altri nodi e prendendo il minimo dei tagli di minima capacità trovati.

3

3 2

4

7

6

5

17 5

10
8

12

6

4

6

13

15
7

3 2

4

6 5,7

17 5

1 0
8

1 2

6

4

2 1
7

Nessun taglio viene trascurato da questa procedura. Infatti assegnato un taglio arbitrario indotto da un
insieme S di nodi (si può sempre scegliere S in modo che s ∈ S, data la simmetria esposta sopra) esiste
almeno un nodo k /∈ S. Questo taglio viene considerato quando si risolve il problema del massimo flusso da s
a k. La complessità di questo metodo dipende dall’algoritmo di massimo flusso usato. Usando un algoritmo
particolarmente veloce si ottiene una complessità O(mn2 log(n2/m)).

Esistono comunque anche algoritmi diretti che non usano concetti di flusso. Presentiamo due algoritmi,
il secondo dei quali è stocastico e permette di trovare la soluzione solo con probabilità prefissata.

L’idea del primo algoritmo si basa sull’osservazione che, dati due nodi qualsiasi, o il taglio minimo
separa i due nodi oppure non li separa. In questo secondo caso i due nodi possono essere fusi in uno
fondendo eventualmente archi incidenti in entrambi i nodi e sommandone le capacità, e il taglio minimo del
grafo ridotto è uguale a quello del grafo originario. Quindi, se si è in grado di trovare due nodi di cui si
conosce il minimo taglio separatore, basta confrontare questo valore con quello del minimo taglio del grafo
ridotto. Ricorsivamente nel grafo ridotto si determinano due nodi di cui si conosce il minimo taglio separatore
e si prosegue finché il grafo è ridotto a due soli nodi. A questo punto basta confrontare tutti i tagli generati
e prendere il migliore.

La parte difficile consiste ovviamente nel determinare due nodi e il minimo taglio che li separa. Natu-
ralmente non è pensabile definire a priori i due nodi, altrimenti dovremmo risolvere un problema di massimo
flusso per calcolare il minimo taglio. La procedura per generare due nodi di cui si conosca anche il minimo
taglio separatore è abbastanza semplice, anche se la dimostrazione di correttezza non è banale.

Per descrivere l’algoritmo è necessaria la seguente definizione: dati due insiemi A e B sia

c(A : B) :=
∑
i∈A
j∈B

cij

L’algoritmo procede nel seguente modo: si sceglie arbitrariamente un nodo come nodo iniziale v1 e si pone
S := {v1}. Ad esempio sia v1 := 1. Poi si sceglie un nodo v2 come

v2 := argmax
k/∈S

c(S : {k})

e si aggiorna S := S ∪{v2}. La procedura viene ripetuta fino a definire il nodo vn. A questo punto si calcola
la capacità del taglio indotto da vn, cioè c({vn}) =: Cn.

Terminata questa fase, i nodi vn−1 e vn vengono fusi generando il grafo G′. La procedura viene ripetuta
sul grafo G′ generando una successione di nodi (possibilmente diversa dalla precedente) v′1, . . . , v

′
n−1 e una

capacità di taglio Cn−1 := c(
{
v′n−1

}
).

La procedura viene ripetuta fino ad avere un grafo di due nodi in cui il valore C2 è la capacità dell’unico
arco del grafo e che corrisponde al taglio indotto da v1 = 1 sul grafo originale (per costruzione il nodo 1 non
viene mai fuso con altri nodi). Infine si sceglie il minimo fra i valori Ci. Questo individua il taglio di minima
capacità.

Figura 5 Figura 6

Ad esempio dato il grafo in figura 5, la sequenza di nodi nella prima fase è v1 = 1, v2 = 4, v3 = 3,
v4 = 6, v5 = 2, v6 = 5, v7 = 7. Quindi C7 = c({7}) = 23. Si fondono i nodi 5 e 7 ottenendo il grafo in
figura 6. Su questo grafo si ripete la procedura ottenendo il seguente ordine di nodi v1 = 1, v2 = 4, v3 = 3,
v4 = 6, v5 = (5, 7), v6 = 2. Quindi C6 = c({2}) = 32. Si fondono i nodi 2 e (5,7) ottenendo il grafo in
figura 7.

4

3

4

6 2,5,7

17

51 0
8

1 2

1 0

7

3

4

2,5,6,7

17
5

1 0
8

1 2
7

4

2,3,5,
 6,7

11 2

1 0
1 5 2,3,5,

4,6,7

12 2

vnvn−1
v1 v2

S

Ai

Ai+1

Figura 7 Figura 8

Si ottiene il seguente ordine di nodi v1 = 1, v2 = 4, v3 = 3, v4 = (2, 5, 7), v5 = 6. Quindi C3 = c({6}) =
22. Si fondono i nodi 6 e (2,5,7) ottenendo il grafo in figura 8. Si ottiene il seguente ordine di nodi v1 = 1,
v2 = 4, v3 = 3, v4 = (2, 5, 6, 7). Quindi C2 = c({(2, 5, 6, 7)}) = 24. Si fondono i nodi 3 e (2,5,6,7) ottenendo
il grafo in figura 9.

Figura 9

Si ottiene il seguente ordine di nodi v1 = 1, v2 = (2, 3, 5, 6, 7), v3 = 4. Quindi C3 = c({4}) = 25. Si
fondono i nodi 4 e (2,3,5,6,7) ottenendo il grafo in figura. Infine C2 = c({1}) = 22. Confrontando i valori
C2, . . . , Cn, il taglio minimo è C2 = 22, indotto da {1}.

Per dimostrare la correttezza dell’algoritmo, basta dimostrare che c(δ({vn})) è il taglio di minima
capacità fra tutti i tagli che separano vn−1 da vn. Come detto precedentemente, se il taglio minimo separa
vn−1 da vn deve essere quello indotto da {vn}, altrimenti ha i nodi vn−1 e vn dalla stessa parte e quindi
questi possono essere fusi e il taglio minimo si cercherà nel grafo ridotto per fusione dei nodi.

Definiamo Ai := {v1, . . . , vi}. Quindi c(An−1 : {vn}) = c(δ({vn})). Sia S un qualsiasi insieme tale che
vn−1 ∈ S e vn /∈ S

Definiamo critici i nodi vi tali che vi ∈ S e vi−1 /∈ S oppure vi /∈ S e vi−1 ∈ S. In figura i nodi critici
sono in nero. In particolare vn è critico per ogni S che separa vn−1 da vn. Sia Si := Ai ∩ S e S̄i := Ai \ Si.
Quindi Si e S̄i sono una partizione di Ai.

Vogliamo dimostrare che se vi è critico allora

c(Ai−1 : {vi}) ≤ c(Si : S̄i) (4)

5

Siccome vn è critico, la diseguaglianza (4) implica che δ({vn}) è minimo fra i tagli che separano vn−1 da vn.
La dimostrazione di (4) verrà fatta per induzione sui nodi critici. Se vh è il primo nodo critico, consideriamo
i due casi vh ∈ S e vh /∈ S. Se vh ∈ S si ha Sh = {vh} e S̄h = Ah−1 e quindi (4) diventa

c(Ah−1 : {vh}) = c(Sh : S̄h) (5)

Se invece vh /∈ S, allora Ah−1 ⊂ S e Sh = Ah−1 e S̄h = {vh} e ritroviamo (5).
Ora si supponga vera la relazione (4) per il nodo critico vi. Dobbiamo dimostrare che la relazione è vera

per il successivo nodo critico vj . Allora si ha

c(Aj−1 : {vj}) = c(Ai−1 : {vj}) + c(Aj−1 \Ai−1 : {vj})
≤ c(Ai−1 : {vi}) + c(Aj−1 \Ai−1 : {vj})
≤ c(Si : S̄i) + c(Aj−1 \Ai−1 : {vj})
≤ c(Sj : S̄j)

(6)

dove l’uguaglianza deriva dalla definizione additiva della capacità di taglio, la prima diseguaglianza dalla
definizione stessa dei nodi vi e la seconda diseguaglianza dall’ipotesi induttiva. Per quel che riguarda la
terza diseguaglianza si supponga vi ∈ S e vj /∈ S. Allora Sj−1 = Sj . Siccome vi e vj sono due nodi critici
successivi si ha

Aj−1 \Ai−1 = {vi, vi+1, . . . , vj−1} ⊂ S

da cui
Aj−1 \Ai−1 = Sj−1 \ Si−1 = Sj \ Si−1

Allora
c(Si : S̄i) + c(Aj−1 \Ai−1 : {vj}) = c(Si : S̄i) + c(Sj \ Si−1 : {vj}) (7)

Da S̄j = S̄i ∪ {vj} e dalla definizione di c(A : B) abbiamo

c(Sj : S̄j) = c(Sj : S̄i ∪ {vj}) = c(Sj : S̄i) + c(Sj : {vj}) (8)

e siccome Sj ⊃ Si ⊃ Si−1, abbiamo

c(Sj : S̄i) ≥ c(Si : S̄i), c(Sj : {vj}) ≥ c(Sj \ Si−1 : {vj}) (9)

Quindi, combinando (7), (8) e (9) si dimostra la terza diseguaglianza di (6) per il caso vi ∈ S e vj /∈ S.
Per il caso opposto vi /∈ S e vj ∈ S si ha S̄j = S̄j−1 e Aj−1 \Ai−1 ∩ S = ∅, da cui

Aj−1 \Ai−1 = S̄j−1 \ S̄i−1 = S̄j \ S̄i−1

Allora
c(Si : S̄i) + c(Aj−1 \Ai−1 : {vj}) = c(Si : S̄i) + c(S̄j \ S̄i−1 : {vj}) (10)

Da Sj = Si ∪ {vj}, come nel caso precedente, possiamo scrivere

c(Sj : S̄j) = c(Si ∪ {vj} : S̄j) = c(Si : S̄j) + c({vj} : S̄j) (11)

e siccome S̄j ⊃ S̄i ⊃ S̄i−1, si ha

c(Sj : S̄j) ≥ c(Si : S̄i), c(S̄j : {vj}) ≥ c(S̄j \ S̄i−1 : {vj}) (12)

e combinando (10), (11) e (12) si dimostra la terza diseguaglianza di (6) per il caso vi /∈ S e vj ∈ S.
Per quel che riguarda la complessità computazionale l’algoritmo esegue n iterazioni. All’interno di

ogni iterazione bisogna calcolare i valori c(S : {k}) e valutarne il massimo. Questo si può realizzare con
delle strutture ad heap. All’interno di ogni iterazione bisogna quindi al più scandire tutti gli archi e per
ogni scansione aggiornare dei valori su uno heap. Questo costa O(m log n). Le operazioni di fusione dei

6

3 2

4

7

6

5

17 5

10
8

12
6

4

6

13

15
7

2

4

7
3,6

5

1

7

5

10

8

6

4

6

13

15
7

2

7
3,6

5

1,4

15

5

6

4

6

13

15

7

2

7
3,6

1,4

15

20

6

4

6

13

5

7
3,6

1,4

21

4

19

5,2

3,6

1,4

25

5,2,7

nodi possono anche essere eseguite riscrivendo il grafo con complessità O(m), che è comunque dominata da
O(m log n) (si possono anche usare strutture Union-Find senza dover riscrivere ogni volta tutto il grafo,
visto che l’aggiornamento riguarda solo due nodi e gli archi incidenti). In totale quindi si ha una complessità
O(mn log n). Usando heap di Fibonacci la complessità può essere abbassata a O(mn + n2 log n)

Il secondo algoritmo è probabilistico e permette di trovare il taglio di capacità minima con probabilità
arbitrariamente bassa.

Prima di descrivere l’algoritmo è utile dire cosa sia un algoritmo probabilistico. In un algoritmo proba-
bilistico alcune scelte sono lasciate al caso secondo un preciso meccanismo probabilistico. Questo fa s̀ı che
la soluzione desiderata sia ottenuta solo con una certa probabilità p. Se si ripete l’algoritmo la probabilità
che in nessuna delle due iterazioni si sia trovata la soluzione desiderata è (1− p)2. In generale la probabilità
di non ottenere mai la soluzione in k iterazioni è (1 − p)k. Se si fissa a priori un valore ε e si vuole che
(1− p)k ≤ ε, il numero di iterazioni deve essere almeno log ε/ log(1− p). Se 1/ log(1− p) è polinomiale allora
si parla di un algoritmo probabilistico polinomiale.

Per descrivere l’algoritmo probabilistico per il minimo taglio si definisca preliminarmente

C∗ = capacità del minimo taglio, CΣ =
∑
e∈E

ce, Ci =
∑

e∈δ(i)

ce

L’algoritmo consiste dei seguenti passi: un arco ê = (u, v) viene scelto con probabilità ce/CΣ, i nodi u e v
vengono fusi, ê viene rimosso e gli archi eventualmente incidenti in u e in v vengono fusi (con somma delle
capacità). Se ê non appartiene al taglio minimo, il nuovo grafo ha il medesimo taglio minimo con lo stesso
valore (infatti ogni taglio del grafo originario che non contiene ê è presente anche nel grafo contratto, mentre
ogni taglio del grafo originario che contiene ê non esiste nel grafo contratto, inoltre i tagli corrispondenti
hanno le medesime capacità di taglio). La procedura continua finché rimangono solo due nodi che individuano
il taglio finale.

Illustriamo la procedura con un esempio. Sia dato il grafo rappresentato in figura 10-a con i valori di
capacità indicati accanto agli archi. Supponiamo che l’arco scelto a caso sia (3−6). Dopo la fusione dei nodi
3 e 6 si ha il grafo in figura 11-b. Nelle figure 11-c, 11-d, 11-e, 11-f, si vedono le varie fasi dell’algoritmo.
Gli archi scelti sono rispettivamente (1 − 4), ((1, 4) − 5), ((1, 4, 5) − 2), e ((1, 4, 5, 2) − 7). Questo identifica
il taglio indotto da S = {1, 4, 5, 2, 7} di capacità 25 (non si tratta del taglio minimo).

Figure 11-a Figure 11-b Figure 11-c

Figure 11-d Figure 11-e Figure 11-f

Analizziamo ora la probabilità con cui viene generato il taglio di capacità minima. Ovviamente si ha

Ci ≥ C∗

7

e sommando su tutti i nodi si ottiene ∑
i

Ci ≥ nC∗

E siccome ∑
i

Ci = 2CΣ

si ottiene
C∗

CΣ
≤ 2

n

Quindi la probabilità di non scegliere un arco del taglio minimo è almeno

1 − 2
n

Nel grafo successivo con (n− 1) nodi la probabilità diventa

1 − 2
n− 1

L’ultimo grafo ha 3 nodi e quindi la probabilità è

1 − 2
3

Quindi la probabilità di non scegliere mai un arco del taglio minimo (e quindi fornire come soluzione proprio
il taglio minimo) è almeno

(1 − 2
n

) (1 − 2
n− 1

) (1 − 2
n− 2

) . . . (1 − 2
5
) (1 − 2

4
) (1 − 2

3
) =

2
n (n− 1)

≥ 2
n2

e la probabilità di non trovare il taglio minimo è al più

1 − 2
n2

dopo k tentativi la probabilità di non trovare mai il taglio minimo è al più

(1 − 2
n2

)k ≈ e−2k/n2

quindi

e−2k/n2 ≤ ε =⇒ −2 k
n2

≤ ln ε =⇒ k ≥ n2 ln ε−1

2
Per valutare la complessità bisogna considerare quanto costa ogni singola iterazione: ogni fusione re-

alizzata con struttura Union-Find ha un costo O(log n). La scelta casuale di un arco richiede una ricerca
binaria fra gli archi ancora da scegliere ed ha complessità O(logm) = O(log n). Anche l’aggiornamento della
struttura dati per la scelta casuale ha complessità O(logm). Il numero di iterazioni per la ricerca di un
taglio è al più pari a m− 1 (ad esempio due cliques connesse con un solo arco potrebbero richiedere la scelta
di tutti gli archi delle due cliques). Quindi un taglio si trova con complessità O(m log n). Quindi per avere
il taglio minimo con probabilità 1 − ε, la complessità è O(mn2 log n log ε−1).

La limitazione trovata alla probabilità di trovare il taglio minimo è stretta. Si consideri un circuito con
n archi e capacità M per due archi e M + 1 per gli altri n− 2 archi. Allora C∗ = 2M , CΣ = nM + n− 2 e

C∗

CΣ
=

2M
nM + n− 2

→ 2
n

se M → ∞

Quindi il rapporto può essere reso arbitrariamente vicino alla limitazione e questo fatto è vero anche per i
successivi grafi ottenuti per fusione.

8

