1. Accoppiamento

Definizione. Dato un grafo (non orientato) G = (N, E), un sottoinsieme M di archi, tale che ogni nodo
del grafo ¢é incidente in al piv, un arco di M, viene detto accoppiamento, (matching). I nodi incidenti in M

vengono detti nodi accoppiati, mentre gli altri nodi vengono detti esposti. ]

Definizione. Se il grafo e bipartito, un accoppiamento viene anche detto assegnamento. 1

Il motivo per cui ’accoppiamento viene detto anche assegnamento nel caso bipartito ¢ ovviamente dovuto

al fatto che un accoppiamento realizza una corrispondenza fra due sottoinsiemi di due insiemi dati.

Definizione. Un accoppiamento in cui tutti i nodi sono accoppiati viene detto perfetto. 1

Definizione. Il problema dell’accoppiamento di cardinalita consiste nel trovare un accoppiamento di mas-
stma cardinalita. 1

Se per ogni arco € assegnato un costo c., e € E, e se il peso di un insieme M di archi viene semplicemente
definito come c¢(M) := ., ce, allora si puod definire:

Definizione. Dato un grafo completo, il problema dell’accoppiamento pesato consiste nel trovare un
accoppiamento perfetto di costo minimo. 1

Definizione. Dato un grafo bipartito completo, il problema dell’assegnamento pesato consiste nel trovare
un accoppiamento perfetto di costo minimo. 1

Ovviamente nei problemi pesati il grafo deve avere un numero pari di nodi e nel caso bipartito i due
insiemi di nodi devono avere la stessa cardinalita.

Anche se i problemi di accoppiamento bipartito sono un caso particolare di quelli definiti su un grafo
generale, e tuttavia utile distinguere I’accoppiamento bipartito da quello non bipartito. Non solo un ac-
coppiamento bipartito corrisponde ad un assegnamento e quindi riveste una speciale importanza in alcuni
problemi di ricerca operativa, ma avviene anche che la particolare struttura semplifichi in modo essenziale il
problema.

Un problema di assegnamento pesato puo anche essere definito da una tabella n x n di pesi, ad esempio:

3 8 2 9 3
7 ) 5 1 2
5 3 8 8 2
2 2 5 4 3
6 5 2 5 6

con il compito di scegliere n elementi, esattamente uno per ogni riga e uno per ogni colonna, in modo da

minimizzare la somma dei pesi scelti. Nell’esempio I'ottimo & costituito dai pesi evidenziati in grassetto.

SN |o 3| w
oo | W] o oo
N | ot|oo| o] N
G| oo || ©
S|l w| || W




2. Cammini aumentanti

Nello sviluppo di algoritmi per problemi di accoppiamento uno dei concetti chiave e quello di cammino
aumentante. Sia G = (N, E) un grafo assegnato (indifferentemente se completo o non, bipartito o generico)
e sia M C FE un accoppiamento assegnato.

Definizione.

— Un cammino semplice che parte da un nodo esposto e consiste alternativamente di archi accoppiati e archi
non accoppiati viene detto cammino alternante.

— Un cammino alternante viene detto cammino aumentante se termina con un nodo esposto. 1

E opportuno notare che le definizioni dipendono dal particolare accoppiamento M. L’importanza dei

cammini aumentanti viene espressa dal seguente teorema:

Teorema. Un accoppiamento & di cardinalita massima se e solo se non esistono cammini aumentanti.
Dimostrazione: E evidente che se esiste un cammino aumentante & possibile ottenere un nuovo accop-
piamento M’ tale che |M’'| = |M| + 1, semplicemente rendendo liberi gli archi accoppiati del cammino e
viceversa, e quindi M non puo essere ottimo.

Viceversa sia M un accoppiamento per il quale non esistono cammini aumentanti e sia M’ un altro
accoppiamento. Consideriamo l'insieme di archi £’ := M’ \ M U M \ M’. In generale E’ & un insieme
sconnesso di archi e, siccome il grado di ogni nodo rispetto a E’ ¢ al massimo due, consiste di circuiti e/o
cammini disgiunti. Due archi di E’ incidenti nello stesso nodo devono necessariamente appartenere 1'uno a
M e Taltro a M’. Quindi in tutti i cammini e i circuiti di E’ gli archi di M e M’ si alternano; inoltre i
circuiti devono contenere lo stesso numero di archi di M e di M’. Siccome M non ha cammini aumentanti
ogni cammino di E’ deve contenere alle sue estremita archi di M che quindi risultano in numero maggiore
di quelli di M’ da cui |[M| > |M’|. Dato che M’ & un qualsiasi accoppiamento, M & ottimo. 1

Il teorema fornisce pertanto un metodo per ottenere un accoppiamento di cardinalita massima: dato un
accoppiamento corrente, si tratta di trovare un cammino aumentante, aggiornare 1’accoppiamento corrente
che chiameremo accoppiamento aumentato da M e proseguire iterativamente fino a quando non esistono
pit cammini aumentanti. Il seguente teorema (dato senza dimostrazione) facilita la ricerca di cammini
aumentanti:

Teorema. Sia s un nodo esposto in un accoppiamento M e non esista nessun cammino aumentante da s
relativamente all’accoppiamento M. Allora non esistono cammini aumentanti da s neppure relativamente
ad accoppiamenti aumentati da M. 1

Esercizio. Sia m la cardinalita di un accoppiamento massimo e sia M un accoppiamento. Si dimostri che

esistono 7 — | M| cammini aumentanti disgiunti nei nodi. 1

In base al teorema la ricerca di cammini aumentanti puo essere fatta in modo sistematico a partire da
un nodo esposto alla volta. Un nodo dal quale non esistono cammini aumentanti puo non essere pitt preso
in considerazione.

Il problema si sposta allora sulla determinazione di un cammino aumentante da un nodo esposto as-
segnato. Siccome l'esistenza di un cammino (qualsiasi) fra un nodo ed un insieme assegnato di nodi puo
essere determinata tramite una ricerca sul grafo, possiamo pensare di usare la stessa tecnica limitata pero
ai cammini alternanti.

La ricerca di un cammino aumentante su un grafo generico presenta alcuni problemi. Ad esempio nel
seguente grafo
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la ricerca del cammino aumentante a partire dal nodo 1, raggiungerebbe prima i nodi 2 e 3, poi perod i cammino
aumentante 1 — 3 — 2 — 4 non sarebbe pil visibile per ché il nodo 2, essendo gia stato selezionato, non e
pi]‘u raggiungibile da 3. L’inconveniente si pud superare con una tecnica di ricerca diversa, ad esempio non
‘bloccando’ i nodi pari del cammino e selezionando solo quelli dispari. Si generano pero problemi di altro
tipo. Nel seguente grafo

partendo dal nodo 5 e ‘saltando’ i nodi pari del cammino si selezionano nell’ordine i nodi 5, 7 (da 5 saltando
6), 3 (da 7 saltando 8), 8 (da 7 saltando 3), 1 (da 3 saltando 2), 6 (da 3 saltando 7), 2 (da 6 saltando 1).
A questo punto, arrivata la ricerca al nodo 2, adiacente ad un nodo esposto (diverso da quello di partenza)
sembrerebbe che si e trovato un cammino aumentante. In realta il cammino, includendo a anche i nodi
saltatie 5 -6 -7 —>8 -3 -7 —6 — 1 — 2 — 4, che presenta un ciclo con dei nodi ripetuti. Quindi
non puod essere un cammino aumentannte.

Il modo per superare questo inconveniente non e del tutto banale e non viene qui presentato. Si fa solo
notare come in entrambi gli esempi il problema e derivato dalla presenza di circuiti dispari. Siccome un
grafo € bipartito se e solo se tutti i circuiti sono pari, la ricerca di un cammino aumentante (con complessita
O(m), in entrambe le modalita viste) non presenta problemi. Tenuto conto che tale ricerca viene ripetuta al
massimo O(n) volte in base al precedente teorema abbiamo il seguente risultato:

Teorema. Un assegnamento di massima cardinalita si puo trovare, eseqguendo ricerche di cammini aumen-
tanti, con complessita O(nm). ]

Si puo tuttavia far meglio di cosi trasformando il problema in un problema di massimo flusso. Si
aggiungano al grafo bipartito G = (N1, N3, E) un nodo sorgente s ed un nodo pozzo t, si aggiungano archi
da s a ogni nodo di N; e da ogni nodo di Ny a t. Tutti gli archi abbiano intervallo di capacita [0,1]. E
immediato verificare che la massimizzazione del flusso da s a t & equivalente a realizzare un assegnamento di

cardinalita massima in G. Gli archi accoppiati sono esattamente quelli con flusso unitario.

L’algoritmo del massimo flusso nel caso particolare di capacita [0, 1] ha complessita inferiore e inoltre si
puo dimostare che bastano meno di n cicli aumentanti per il particolare problema di massimo flusso derivato
dal problema dell’assegnamento. Questo permette di risolvere un problema di assegnamento di cardinalita
con complessita O(m /n).



3. Descrizione poliedrale dei problemi dell’assegnamento e dell’accoppiamento

Sia dato un grafo (non necessariamente completo) con dei costi assegnati agli archi e si supponga di
voler determinare 'assegnamento di costo massimo (il costo di un assegnamento ¢ la somma dei costi dei
singoli archi dell’assegnamento). Per affrontare il problema definiamo le seguenti variabili

_ 1 sel’arco e fa parte dell’assegnamento
Te = S (1)
0 altrimenti

Quindi le variabili x definiscono, a seconda dei valori che assumono, tutti i sottoinsiemi di archi. Per ottenere
solo sottoinsiemi corrispondenti ad assegnamenti si devono imporre dei vincoli. Siccome per ogni nodo al
piu un arco del tagio indotto dal nodo deve essere presente si puo imporre il seguente vincolo

Y w<1  VieN (2)
e€b(i)

Soluzioni che soddisfano (1) e (2) sono soltanto gli accoppiamenti. Siccome pero il vincolo (1) & difficile da
trattare, si pud pensare di rilassare (1) nel pitt generico vincolo

0<z.<1 (3)

che ammette anche soluzioni frazionarie, che non possiamo interpretare come sottoinsiemi di archi. L’insieme
ammissibile dato dai vincoli (2) e (3) & un poliedro, dato che tutti i vincoli sono diseguaglianze e/o eguaglianze
di tipo lineare.

La minimizzazione (o alternativamente massimizzazione) di una funzione lineare su un poliedro definito
da diseguaglianze (con eventualmente anche eguaglianze) ¢ il problema detto della Programmazione Lineare.
Si tratta di uno dei problemi piu studiati e per il quale esistono algoritmi particolarmente efficaci, che sono
in grado di risolvere istanze con migliaia di variabili e di vincoli. Inoltre, se si minimizza (o massimizza) una
funzione lineare, allora 'ottimo puo essere cercato fra i vertici e gli algoritmi di Programmazione Lineare
forniscono sempre soluzioni di vertice. Quindi l'interesse maggiore ricade sui punti del poliedro che sono
anche vertici. La domanda fondamentale & percio: che relazione c¢’¢ fra i vertici del poliedro dato da (2) e
(3) e gli accoppiamenti ammissibili di un grafo?

Prima di rispondere a questa domanda & utile capire con piccoli esempi la struttura del problema. Si
consideri il semplice grafo (bipartito):

per il quale i vincoli (2) sono
x12 < 1, 12 + 723 < 1, xo3 <1
tenendo conto di (3) ed eliminando i vincoli ridondanti (perché gia implicati da altri) rimangono le tre
diseguaglianze
z12 2 0, T3 > 0, Ti2 + @23 <1
che danno luogo all’insieme ammissibile indicato in figura (il triangolo), i cui vertici hanno coordinate 0-1

e sono quindi identificabili con sottoinsiemi di archi. Come si vede i tre vertici corrispondono esattamente
agli unici tre accoppiamenti possibili (includendo anche l'accoppiamento vuoto)
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Come secondo esempio consideriamo grafi di tre archi (i primi due sono bipartiti)

O—O0—~0B—™0

O—06—0
Per il primo grafo i vincoli (2) sono
z12 < 1, T12 +x23 < 1, T3 +x34 < 1, w34 <1
che, insieme a (3) danno luogo all’insieme non ridondante di vincoli
12 > 0, To3 > 0, 234 > 0, T12 + 23 < 1, Toz + 234 <1 4)
Per il secondo grafo i vincoli (2) sono
z12 < 1, T12 + T3 + T34 < 1, r34 <1, Taq <1
che, insieme a (3) danno luogo all’insieme non ridondante di vincoli
12 2 0, 223 > 0, 34 > 0, Ti2 + 223 + 234 <1 (5)
Per il terzo grafo i vincoli (2) sono
T2+ 213 < 1, T12 + x93 < 1, 13+ 223 <1
che, insieme a (3) danno luogo all’insieme non ridondante di vincoli
z12 2 0, Ta3 > 0, x34 > 0, T12 + 213 < 1, T12 + x23 < 1, T13 + w23 <1 (6)

I vincoli (4) generano il seguente poliedro, i cui vertici sono interi e corrispondono agli accoppiamenti indicati

in figura. Come si vede, c¢’eé un’esatta corrispondenza biunivoca fra i vertici e tutti gli accoppiamenti possibili.
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I vincoli (5) generano il seguente poliedro, anch’esso con vertici interi e accoppiamenti corrispondenti. Anche
in questo caso c’eé un’esatta corrispondenza biunivoca fra i vertici e tutti gli accoppiamenti possibili.

[

I vincoli (6) generano un poliedro che presenta, oltre ai vertici interi corrispondenti a tutti gli accoppiamenti

anche un vertice di coordinate frazionarie, e che ovviamente non corrisponde ad alcun accoppiamento.

6



Un importante teorema afferma che per grafi bipartiti il poliedro definito da (2) ha vertici a coordinate
intere corrispondenti a tutti gli assegnamenti possibili. Quindi risolvendo un problema di assegnamento con
la Programmazione Lineare si ha la garanzia di ottenere una soluzione intera.

Invece, per un grafo generico puo succedere che un algoritmo di Programmazione Lineare fornisca una
soluzione frazionaria non traducibile come accoppiamento. In questi casi si possono seguire due strade (o
anche entrambe): si ripristina il vincolo d’interezza x. € {0,1} per una particolare variabile frazionaria
T, ad esempio imponendo una volta x. := 0 ed un’altra z. := 1 e risolvendo due problemi. Si noti che
ognuno dei due problemi potrebbe a sua volta richiede la soluzione di altri due problemi e cosi di seguito
portando immediatamente ad un numero esponenziale di problemi da risolvere. Con opportuni accorgimenti,
che verranno esposti pill avanti, si riesce a contenere il numero di problemi da risolvere e rendere quindi
praticabile questa tecnica. Questo approccio prende il nome branch-and-bound.

Nel secondo metodo si possono aggiungere vincoli che eliminino la soluzione frazionaria senza pero
eliminare soluzioni intere. Ad esempio la soluzione (1/2,/1/2,1/2) pud essere eliminata aggiungendo il
vincolo

T12 +x13 + 223 < 1

Infatti in un insieme di tre nodi al piti un arco puo essere accoppiato. In generale per ogni insieme dispari
di nodi S un vincolo del tipo

) weS‘S'T_l (7)

ecE(S)

¢ valido in quanto non esclude alcuna soluzione intera. Un teorema molto importante afferma che il poliedro
definito dalle seguenti diseguaglianze

> oz <1 Vie N
e€é (1)
Sl—1
Z ZTe < % VS C N, dispari (8)
e€E(S)
Te >0

ha vertici interi. Questo non significa pero che si puo risolvere direttamente il problema di PL con vincoli
dati da (8). Infatti sono presenti in (8) un numero esponenziale di vincoli e non ¢ pensabile né formulare né
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tanto meno risolvere un problema di PI di tali dimensioni. Cio che si puo invece fare computazionalmente &
usare solo quei vincoli (7) che servono effettivamente. A questo scopo si risolve inizialmente solo il problema

max g Ce Te
e

Y w. <1 VieN 9)
ec€6(1)

x, >0

Se la soluzione ¢ intera, il problema e ovviamente risolto e non c’e altro da fare. Se invece la soluzione e
frazionaria, il teorema citato assicura che almeno uno dei vincoli (7) & violato dalla soluzione. Si tratta di
identificarlo e aggiungerlo a (9). Quindi il problema dell’accoppiamento si risolve risolvendo la successione

max g Ce Te
S

di problemi:

> ze=1 Vie N
ecs(i) (10)
Yoz <(5-1)/2  S=8,5,...5
e€E(S)
Te >0 Vee E
per ¢ :=0,1,..., e insiemi S dispari, generati in modo che la soluzione ottima 29 del problema g-mo non

sia ammissibile per il problema (g + 1)-mo.

La successione di problemi (10) termina con 'ottimo. L’identificazione di una diseguaglianza violata da
una soluzione frazionaria non ¢ in generale semplice. Tuttavia, nella maggior parte dei casi i valori frazionari
sono 1/2; e allora non possono che disporsi secondo un circuito dispari. Che i valori si dispongano secondo un
circuito & abbastanza ovvio. Che il circuito sia dispari € meno ovvio. Infatti nessun vertice puo avere valori
frazionari su un circuito pari, in quanto esiste sempre un £ > 0 per cui la soluzione si puo esprimere come
combinazione convessa della soluzione ottenuta aggiungendo e sottraendo ¢ ad archi alterni e della soluzione
ottenuta in maniera analoga scambiando gli archi. Il circuito pertanto identifica un insieme S sul quale si
ha Y .o @ = [S]/2, per cui la soluzione non ¢ ammissibile per il vincolo » gz, < (|S| —1)/2. Tuttavia e
bene tenere a mente che soluzioni frazionarie con valori diversi da 1/2 si possono presentare. In questi casi,
se non si vuole fare ricorso a tecniche piu complesse di identificazione delle diseguaglianze violate, si puo
affrontare il problema con una tecnica branch-and-bound.

Si veda nelle figure 1, 2, 3 e 4, la risoluzione di un’istanza euclidea con 50 nodi. La prima soluzione,
ottenuta con il solo vincolo di grado nei nodi ha valore 211.5 e presenta quattro circuiti dispari con valore 1/2
sugli archi dei circuiti. Aggiungendo la diseguaglianza relativa all’insieme {19, 29, 32} si ottiene la soluzione
in figura 2 di valore 213.5. Si aggiunge la diseguaglianza relativa a {12,21,30} e si ottiene la soluzione in
figura 3 ancora di valore 213.5. Aggiungendo infine la diseguaglianza relativa a {21,41, 48} si ottiene 1’ottimo
(figura 4) di valore 215.

Si consideri il problema dell’accoppiamento di massima cardinalita e lo si formuli come un problema di
PL intera
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si rilassi il vincolo d’interezza in
v = max E Te
ecE
> z. <1 Q€N (12)
e€é(1)

Te >0 ec &

Ovviamente si ha m < v. Il duale di (12) &

d = min Z Yi

. 13
yz‘+yj21 (1,j) € E (13)
yi =0 ieN
Per la dualita si ha m < v = d. Si restringa 'insieme ammissibile di (13) in
¢ = min Z Yi
ieN u
yity; =1 (1,j) e E (14)

y;€{0,1} ieN

e quindi m < v = d < ¢. Si noti che (14) ¢ un problema di minima copertura di nodi. Quindi si ot-
tiene il risultato che il massimo accoppiamento ¢ sempre limitato superiormente dalla minima copertura di
nodi. Questo risultato si ottiene agevolemente ragionando direttamente sul problema: infatti per ogni ac-
coppiamento almeno uno dei due nodi dell’accoppiamento deve essere presente in ogni copertura, altrimenti
I’arco non sarebbe coperto. Tuttavia il passaggio tramite la PL permettera di provare I'uguaglianza nel caso
speciale di grafi bipartiti.



