
SCHEDULING JOBS ON SEVERAL MACHINES
WITH THE JOB SPLITTING PROPERTY

Paolo Serafini
Department of Mathematics and Computer Science

University of Udine, Italy

ABSTRACT: This scheduling model is derived from the real problem of scheduling looms in a textile
industry. Jobs may be independently split over several specified machines and preemption is allowed. Dead-
lines are specified for each job and jobs are assumed to be available. It is shown that minimizing maximum
weighted tardiness can be done in polynomial time. The case of uniform machines (as in the considered
application) can be modeled as a network flow and minimization of maximum tardiness can be done in
strongly polynomial time. The case of unrelated machines can be solved either by generalized flow tech-
niques or by Linear Programming. Attention is also focused on the problem of finding so-called Unordered
Lexico Optima, in order to schedule non-binding jobs as early as possible.

This paper deals with a scheduling problem that arises in the production of different types of fabric in
a textile industry. The problem is characterized by the presence of several machines (the looms) on which
several jobs have to be processed (the articles to be woven). Each job is associated to a definite subset of
compatible machines on which it can be processed. A peculiar feature of the problem is that each job can
be split arbitrarily and processed independently on these machines. Preemption is also allowed. Each job
has a deadline and the objective is to minimize the maximum tardiness or the maximum weighted tardiness
in case the jobs have been assigned different weights.

It turns out that this problem is solvable in polynomial time. In the general case of unrelated machines,
i.e. machines with different speeds for different jobs, the problem can be solved by Linear Programming or
by generalized network flow techniques. In the case of uniform machines, which has a practical relevance
in the mentioned application, a network flow model can be developed with algorithms based on max flow
computations. In general the proposed algorithms are weakly polynomial. However, the case of uniform
machines and equal weights can be solved even in strongly polynomial time.

Minimizing the maximum tardiness may provide optimal solutions with non-binding jobs scheduled later
than necessary. In order to schedule all jobs as early as possible we will address also the problem of finding
so-called Unordered Lexico optimal solutions.

1

In our model there are no release dates, since all known jobs are assumed to be available for processing.
This assumption is usually met in practice. Of course, it always happens in the real production process
that new jobs, previously not known, enter the process before the current production is completed. Since
preemption is allowed it is enough to recompute from scratch the schedule each time a new job is available.
This situation corresponds to the one described as ‘on-line’ by Labetoulle et al. (1984).

Apparently this specific problem has not been investigated in the literature. There are papers (like Horn
1974, Labetoulle et al. 1984, Slowinski 1984, 1988, Blazewicz, Drabowski and Weglarz 1986 and Federgruen
and Groenevelt 1986) dealing with parallel machines and independent jobs. However, the special possibility
of independent job splitting is not present in these papers and this makes the problem different. For instance
Horn (1974) allows job splitting without simultaneous processing on two machines of the same job. The same
type of constraint is considered by Labetoulle et al. (1984) and Federgruen and Groenevelt (1986) where
each job can be processed on at most one machine at a time and this possibility combined with preemption
is like the job splitting considered by Horn.

Moreover the quoted papers make the assumption of uniform machines whereas we also address the
general problem of unrelated machines. Clearly, the possibility of a polynomial-time algorithm also for the
general case is due to the independent job splitting property.

As will be shown network flow techniques may be efficiently applied to the case of uniform machines. The
idea of using these techniques to solve scheduling problems is not new. For instance Horn (1974), Labetoulle
et al. (1984) and Federgruen and Groenevelt (1986) use them in a way which has some similarities with our
approach. However, since the problem we address is different, the derivation of the results is simpler.

As mentioned at the outset this paper originated from the practical need to schedule looms in a textile
factory. Although we prefer to focus on the properties of the abstract scheduling model we provide a brief
description of the real production process in Section 1, so that the reader can attach a concrete meaning to
the various features of the abstract model.

The rest of the paper is organized as follows: in Section 2 we describe and characterize the problem
mathematically; then we investigate first the case of uniform machines in Sections 3 and 4. Section 3 is
devoted to the design of algorithms for the maximum tardiness problem whereas Section 4 is devoted to
the problem of finding Unordered Lexico optimal solutions. Then Section 5 deals with the general case of
unrelated machines.

1. A BRIEF DESCRIPTION OF THE LOOM SCHEDULING PROBLEM

The scheduling problem presented in this paper originated in a few textile factories in Northern Italy.
However, its features can be considered typical of most textile factories, since loom technology differs very
little from plant to plant.

In general the scheduling manager has to face two problems. First he must assess meaningful delivery
dates in making contracts with customers. Then he has to decide how to divide the production of all his
articles among the compatible looms and when to schedule these partial productions in order to respect the
delivery dates as much as possible. Both problems can be reduced to the same scheduling problem.

The technological constraints which must be taken into account will now be explained. In principle
there is no restriction on the assignment of articles to looms since each article can be woven by any loom.
However, each loom must be equipped with a warp chain and a particular article can be produced only by
the looms equipped with a warp chain belonging to a definite set of warp chains.

The production of an article requires a definite number of beats per length unit (a beat corresponds
to the insertion of the weft yarn). Each loom has a standard productivity which is measured in beats per
minute and is computed statistically, taking into account the idle times and the weft breaks (see below).

2

The time required to produce a certain length of fabric on a certain loom is immediately derived from these
data. From this type of computation it turns out that the looms are nearly uniform (see next section) so
that it is more convenient to adopt the model described in Sections 3 and 4.

When the yarn of the warp chain is finished, it takes only a few hours to replace a chain of the same
type, while it takes a few days to replace a chain of a different type, and during these times the loom is
idle. So the latter operation is performed as rarely as possible (typically once in several months) and is
regarded as an exceptional event which is not taken into consideration in normal current planning. Since
we are interested in providing a model for current planning we do not address the problem of changing the
chain type. In the situations we have seen the current plan is computed once in a month either manually or
with the aid of a spreadsheet. This way it takes one full day to produce a new plan. In order to increase
productivity and also to assist in deciding the delivery dates it would certainly pay to produce these plans
more frequently with the aid of a faster computing support.

Switching from weaving one article to weaving another one on the same loom can be accomplished by
simply moving a bar or a similar device. So there is virtually no set-up time.

The production of an article can be split over any set of compatible looms, as long as the length of a single
piece of article produced on each loom is not shorter than 200 or 300 meters, which is a quantity typically
much shorter than a usual order length (several thousand meters). This is a constraint of a disjunctive type
(either no production or at least a certain quantity) and introducing it explicitly into the model calls for
integer variables with all the related complications. We disregard this constraint and assume it is possible
to preempt and split jobs without any limitation since we expect that solutions which do not violate the
constraint are found in most cases, due to the large ratio between the quantity to be produced and the
minimum admissible length. If they do violate, we may think of adjusting the schedule a posteriori, for
instance by excluding a loom from the subset compatible with the article.

As far as the deadlines are concerned it is important to observe that deadlines are assigned in terms
of weeks and in practice shorter time units are not considered. Therefore the idle times caused by chain
replacements correspond to a small fraction of production time and can be simply taken into account in the
standard productivity. This simplification is justified both by the fact that the error introduced this way
is comparable to the data error and also by the computational tractability of the resulting mathematical
model.

The main objective in the production process is to respect the deadlines as much as possible, also
considering that not all articles have the same importance. Therefore it is quite realistic to minimize the
maximum weighted tardiness. This allows the manager also to revise a solution, if necessary, by simply
adjusting the weights. If the total weighted tardiness were chosen as an objective, this would result in an
NP-hard model with no appreciable gain in the accuracy. Therefore we have opted for objectives of maximum
tardiness type.

Another feature of the real production process is that each loom is subject to frequent and very short
breakdowns due to the weft break. They last from a few seconds to a few minutes. Experienced workers are
assigned to the immediate repair of the weft. Since these breaks are evenly distributed in time it is better
to take into account these very short idle times in the computation of loom productivity.

As a matter of fact the real problem raised by the weft breaks is another. It is obviously necessary
that all looms in production are attended by some workers. This means that not all looms can be used if
there is not sufficient manpower and only particular subsets, according to their spatial distribution within
the factory, may be attended and put into production.

This constraint constitutes a severe challenge for a mathematical programming modelling. Not only
does the added combinatorial feature make the problem much harder, but due to the many factors involved
in the decision it seems very difficult to formalize all of them within a mathematical programming model. It

3

seems more reasonable to leave this decision to the sole expertise of the manager aided possibly by partial
solutions offered by the model.

The algorithms designed for the uniform machine case have been used in a prototype decision support
system which has been tested by the manager of one of the factories. The algorithmic core of the DSS
worked very promptly, as expected, since it is based on max flow computations, and the schedules provided
by the algorithms were approved by the manager. Then there was the need to visualize all data and design
a customized interactive interface, but problems of this kind are out of the scope of this paper.

2. PROBLEM MODELLING

The following quantities constitute the data of the problem:

M := set of machines,

M j := set of machines on which job j may be processed,

J := set of jobs,

Jm := set of jobs which can be processed on machine m,

n :=
∑

j

|M j | =
∑

m

|Jm| ≤ |M | · |J | = the ‘size’ of the problem,

qj := quantity to be processed by job j,

dj := deadline of job j,

rjm := time required for machine m to process a unit quantity of job j,

ν := scheduling time unit.

According to the values of the parameters rjm we may distinguish the following three cases:

1. The machines are identical, that is rjm =: rj , ∀m ∈M j ;

2. The machines are uniform, that is

rjm
rjh

=
rkm
rkh

=: ρmh =
1
ρhm

∀m,h ∈M j ∩Mk, ∀j, k ∈ J ;

3. The machines are unrelated.

These assumptions fall into the usual taxonomy of multi-machine scheduling (see Lawler 1983). Just note
that for uniform machines the quantities rjm can be easily extended to all pairs (j,m) even if j /∈ Jm.
(In fact in some cases they cannot be extended, but this is because the problem is split into independent
problems with fewer jobs and machines).

We have already remarked that in the loom scheduling problem the machines can be considered uniform.
Hence greater emphasis is given to this case in the paper. However, the general case is also discussed for the
sake of completeness.

The particular type of process we are considering allows both for job preemption (i.e. any job can be
interrupted at any time to process another job with no set-up time) and job splitting (i.e. any job can be
split and processed independently on different machines).

In this scheduling model there are no release dates since all jobs are known and available for processing.
This is not a serious limitation. It is simple to extend this model to allow new jobs to become available in
later times. The possibility of preempting jobs allows the schedule to be recomputated from scratch.

4

Finally, the unknown quantities which characterize a problem solution are:

xjm := quantity of job j assigned to machine m,

Cjm := completion time of quantity xjm,

Cj := max
m

Cjm := completion time of job j.

Let us note that Cjm is left undefined if xjm = 0. In this case we may conventionally assign Cjm := 0. In
order to evaluate a schedule we consider the following quantities:

Tj := max{0, Cj − dj} := the tardiness of job j,

T∗ := max
j
Tj := the maximum tardiness,

Tw
∗ := max

j
wjTj := the maximum weighted tardiness,

where the wj ’s are positive weights assigned to the jobs according to their perceived importance. Let us also
denote by Problem T∗ and Problem Tw

∗ the problems of minimizing the respective quantities.
By schedules compatible with certain deadlines we mean schedules with completion times within the

stated deadlines. So schedules compatible with dj are schedules with tardiness equal to zero.
In general we may also consider monotonically non-decreasing cost functions with respect to the com-

pletion times for each job fj(Cj). We may also assume quite reasonably that they are lower-semicontinuous.
Let us define the inverse functions as f−1

k (zk) := sup {C : fk(C) ≤ zk}. Note that the inverse functions are
monotonically non decreasing and upper-semicontinuous.

We denote by T f the problem of finding a schedule whose cost achieves a stated goal z ∈ R|J|, i.e.
a schedule with completion times Cj such that fj(Cj) ≤ zj , ∀j; and by T f

∗ the problem of minimizing
maxj fj(Cj). Note that finding solutions with values T∗ or Tw

∗ not larger than a stated quantity is a
particular case of Problem T f .

Any minimal solution of Problem T∗, Problem Tw
∗ or Problem T f

∗ is called optimum. However, we
note that optima may not be satisfactory solutions. Among optima there usually exist schedules whose
completion times Cj are dominated by the completion times C ′

j of some other optimal schedule, in the sense
that Cj ≥ C ′

j , with strict inequality for at least one j. Clearly we prefer non-dominated optima.
Still, non-dominated optima may not be satisfactory solutions either. Among them there are many

solutions which favor one job too much with respect to the others and these solutions may not be acceptable.
Our attitude is to give highest priority to the criterion of minimizing the maximum tardiness (or any other
monotone function of it). Once this objective is reached we may then consider minimizing the maximum
tardiness of those jobs whose completion times can be anticipated. This procedure is repeated recursively
until all jobs have been assigned definite completion times.

The solution found this way is obviously optimal and non-dominated. Solutions of this type have been
introduced in Game Theory under the name of Nucleolus of the Game by Maschler, Peleg and Shapley
(1979) although the concept seems to be older (see Maschler 1992, p. 610, for a general presentation). They
also appeared in the framework of Mathematical Programming under a different name, namely Unordered
Lexico Optima (see Schrage 1991, p. 298). This is the term we shall use in this paper.

Formally these particular optima can be defined in the following way: given a vector a ∈ Rn let
θ(a) ∈ Rn be the vector obtained from a by permuting its entries so that the entries in θ(a) are arranged
in non-increasing order (in case of equal entries break the tie in any fixed way). Then given two vectors
a, b ∈ Rn we say that a is Unordered Lexico better than b if θ(a) is lexicographically smaller than θ(b), i.e.
there exists an integer k such that θi(a) = θi(b) for i < k and θk(a) < θk(b). A vector a ∈ A ⊂ Rn is an
Unordered Lexico Optimum in A if there is no b ∈ A which is Unordered Lexico better than a.

5

Then Unordered Lexico optimal schedules can be defined by considering the vectors T , or wT or f(C)
according to the chosen optimality criterion. This is a robust optimality concept for our problem taking
into account its multi-objective characteristics. Of course the decision maker may be not satisfied with
a particular Unordered Lexico optimal schedule either, but this is because he is giving the jobs different
priorities. In this case we should remodel the problem with different weights .

As far as the scheduling process is concerned, we may note that there is no advantage in preempting a
given job on a given machine, because all jobs are simultaneously available. So the quantity xjm is always
processed without interruption and we may speak of the processing sequence, or permutation, of jobs on
each machine.

Let π := {πm}m∈M denote permutations of jobs on the machines (in general the permutations are not
equal on each machine). Thus πm is a particular permutation of the set Jm such that the job j takes the
πmj -th place. Let π̂m := (πm)−1 be the inverse permutation, i.e. π̂mπm

j
= j, so that π̂mh is the job taking the

h-th place. In order to have a shorthand notation for the job which follows or immediately precedes another
job in a certain permutation on a particular machine, if (k,m) is a pair denoting job k on machine m, let

(k+,m) = (π̂mπm
k

+1,m) and (k−,m) = (π̂mπm
k
−1,m)

be the pairs denoting respectively the jobs immediately following and preceding job k on machine m. Let

Jm
k (π) :=

{
j ∈ Jm : πmj ≤ πmk

}
= {j ∈ Jm : j = π̂mh , h ≤ k} ,

i.e. the set consisting of the jobs preceding job k on machine m plus job k itself. For any given permutation
π the following relationships hold, if xkm > 0:

∑

j∈Jm
k

(π)

rjmxjm = Ckm(π) , ∀k ∈ Jm, ∀m ∈M, (1)

where the dependence of the completion time Ckm on π has been emphasized. The following constraints
must be observed in order to produce the stated quantities for the jobs:

∑

m∈Mj

xjm = qj , ∀j ∈ J

xjm ≥ 0 , ∀j,m.
(2)

For arbitrary deadlines d̄j , j ∈ J , we may write from (1)

∑

j∈Jm
k

(π)

rjmxjm ≤ d̄k ∀k ∈ Jm, ∀m ∈M, (3)

constraining a schedule (under a given sequence π) to be completed within the deadlines d̄j . From (3) it is
immediate to derive the following constraints concerning Problems T∗, Tw

∗ and T f respectively:

∑

j∈Jm
k

(π)

rjmxjm ≤ dk + T∗ ∀k ∈ Jm, ∀m ∈M, (4)

constraining a schedule (under a given sequence π) to have maximum tardiness value not larger than T∗,

∑

j∈Jm
k

(π)

rjmxjm ≤ dk +
Tw
∗
wk

∀k ∈ Jm, ∀m ∈M, (5)

6

constraining a schedule (under a given sequence π) to have maximum weighted tardiness value not larger
than Tw

∗ , and ∑

j∈Jm
k

(π)

rjmxjm ≤ f−1
k (zk) ∀k ∈ Jm, ∀m ∈M, (6)

constraining a schedule (under a given sequence π) to meet the goals zj , or if zj = T f
∗ , ∀j, to have maximum

cost not larger than T f
∗ .

A crucial point consists in the choice of π. For the kind of problems we are dealing with the choice of
π is based on the following result:

Lemma 1: Given arbitrary deadlines d̄j, for each assignment xjm there is a permutation πm on machine
m, given by non-decreasing deadlines d̄j, which minimizes maxj∈Jm

{
Cjm − d̄j

}
.

Proof: On each machine m we deal with a One Machine Problem with processing times xjm, j ∈ Jm. It is
a well known result (see Lawler 1983) that tardiness minimization is accomplished by scheduling the tasks
in order of non-decreasing deadlines.

Then we immediately derive that:

Theorem 2: Given arbitrary deadlines d̄j, there exists a schedule compatible with them, if and only if the
constraints (2) and (3) are feasible with respect to permutations πm given by non-decreasing deadlines d̄j.

Proof: The thesis derives in a straightforward way from the lemma. The only detail which has to be
cleared concerns the fact that the inequality

∑
j∈Jm

k
(π) rjmxjm ≤ d̄k should be removed from (3) if xkm = 0.

However, due to the hypothesis on the permutation this constraint is redundant in this case, since it is not
more binding than the one given by the job h = k− immediately preceding job k on machine j. For if
xkm = 0 ∑

j∈Jm
k

(π)

rjmxjm =
∑

j∈Jm
h

(π)

rjmxjm ≤ d̄h ≤ d̄k.

The argument can be applied recursively if xhm = 0 as well. So we may consider the whole set of inequalities
(3) without worrying about the actual values xkm.

Then the following corollaries follow easily.

Corollary 3: There exists a schedule with maximum tardiness value not larger than T∗ if and only if the
constraints (2) and (4) are feasible with respect to a permutation π given by non-decreasing deadlines.

Corollary 4: There exists a schedule with maximum weighted tardiness value not larger than Tw
∗ if and

only if the constraints (2) and (5) are feasible with respect to a permutation π given by non-decreasing values
(dk + Tw

∗ /wk).

Corollary 5: There exists a schedule meeting the goals zk if and only if the constraints (2) and (6) are
feasible with respect to a permutation π given by non-decreasing values f−1

k (zk).

7

In the case of uniform machines the constraints (2) and (3) can be rewritten in a form which allows a
network flow modelization. By definition of uniform machines we have

Ckm(π) =
∑

j∈Jm
k

(π)

rjmxjm =
∑

j∈Jm
k

(π)

rj1ρm1xjm

and by defining ξjm := rj1xjm we have

Ckm(π) =
∑

j∈Jm
k

(π)

ρm1ξjm = ρm1

∑

j∈Jm
k

(π)

ξjm =
1
ρ1m

∑

j∈Jm
k

(π)

ξjm,

whence ∑

j∈Jm
k

(π)

ξjm = ρ1mCkm(π) ∀k ∈ Jm, ∀m ∈M, (7)

and the inequalities (3) can be rewritten as

∑

j∈Jm
k

(π)

ξjm ≤ ρ1md̄k ∀k ∈ Jm, ∀m ∈M. (8)

From (2) we may write ∑

m∈Mj

ξjm = rj1qj ∀j ∈ J,

ξjm ≥ 0 ∀j ∈ Jm, ∀m ∈M,
(9)

so that the constraints (8) and (9) which replace the constraints (3) and (2) for the case of uniform machines
exhibit only sums of variables.

3. TARDINESS MINIMIZATION FOR UNIFORM MACHINES

Although it is possible to solve both Problem T∗ and Tw
∗ by Linear Programming as we will show in

Section 5, it is more convenient in the case of uniform machines to exploit the particular structure embodied
in the constraints (8) and (9) and to build a network flow model for which faster algorithms may be designed
with more compact data structures.

For each permutation π we build the following network G(π) = (N,E(π)): there are |J | source nodes,
denoted s(j), j ∈ J , one sink node t and nodes n(j,m), ∀j ∈ Jm, ∀m ∈ M (or equivalently ∀m ∈ M j ,
∀j ∈ J).
There is a set of arcs, called vertical arcs, independent of the permutation π, given by

(s(j), n(j,m)), ∀m ∈M j , ∀j ∈ J,

and a set of arcs, called horizontal arcs, dependent on π given by

(n(k,m) , n(k+,m)), k = π̂mh , h := 1, . . . , |Jm|, ∀m ∈M,

where we have conventionally denoted n(k+,m) := t, if k = π̂m|Jm|, ∀m. The horizontal arcs form |M | chains
of arcs. Note that the number of both nodes and arcs is O(n).

The flow must be non-negative on all arcs. Each node s(j) sends a flow equal to rj1qj , which is split into
quantities ξjm on the vertical arcs (s(j), n(j,m)), thus taking care of the constraints (9). On each horizontal
arc (n(k,m) , n(k+,m)) the flow amounts to

∑
j∈Jm

k
(π) ξjm =: ζkm. So by suitably upper bounding the flow

8

ζkm on the horizontal arcs with a capacity ckm, we may take care of the inequalities (8). Finally all flow
goes into the sink t.

In Figure 1 a small example is provided with four machines labeled A, B, C and D and six jobs, labeled
1 through 6. The four horizontal chains correspond to the sequences of jobs on the machines and to the
horizontal arcs. The four sets Jm are JA := {1, 4, 5, 6}, JB := {2, 3, 4}, JC := {1, 2, 4, 6}, JD := {3, 4, 5, 6}.
The deadlines are d1 := 50, d2 := 70, d3 := 100, d4 := 150, d5 := 200, d6 := 300, and the quantities to be
processed are q1 := 100, q2 := 100, q3 := 50, q4 := 100, q5 := 500, q6 := 210; furthermore rjm := 1, ∀j,m.
The permutation on each machine is given in order of increasing deadlines. In the sequel we shall use this
example to illustrate the procedures.

For given capacities ckm a simple way to find a feasible flow on G(π) is to add a supersource s and arcs
(s, s(j)), j ∈ J , with capacities rj1qj . Let Ĝ(π) be the enlarged network. Then if the max flow s → t on
Ĝ(π) has value F :=

∑
j∈J rj1qj this flow is also feasible for G(π). Otherwise there is no feasible flow. Let

us denote by MF (n) the polynomial time complexity bound for a max flow algorithm applied to Ĝ(π).
Therefore in order to solve Problem T f we have simply to set ckm := ρ1mf

−1(zk) with permutation π
given by non-decreasing values f−1(zk) and solve a max flow problem on Ĝ(π). So we have:

Theorem 6: Problem T f can be solved in time O(MF (n)) if the machines are uniform.

Now we are going to derive a general scheme based on binary search in order to solve Problems T∗,
Tw
∗ and T f

∗ for the uniform machines case. This scheme leads to weakly polynomial algorithms. However,
Problem T∗ can also be solved in strongly polynomial time by a different method as will be shown later. Let
us first deal with Problem T∗.

If we fix π as the permutation with non-decreasing deadlines and set the capacities as ckm := ρ1m(dk+T),
the feasible flow ξ (if any) corresponds to assignments xjm := ξjm/rj1 for which the maximum tardiness
value is not larger than T . This fact suggests we can find the minimum maximum tardiness through a series
of max flow computations in a binary search fashion. The search is carried out in the interval [0, U] with U
the trivial upper bound U := maxm(

∑
j rjmqj) − minj dj and it is stopped within an approximation ν. So

we have:

Theorem 7: Problem T∗ can be solved by binary search with approximation ν in time O(MF (n) log(U/ν))
if the machines are uniform.

The solution obtained through the binary search is approximated, but it is possible to refine it to
optimality. Although there is quite often no practical need to have a solution more refined than the actual
scheduling time unit ν, we do need exact optimality for algorithmic purposes in order to find Unordered
Lexico Optima as will be clear later.

Let T̃∗ be the optimal tardiness. Let Q be any source-sink cut in Ĝ. For a given value of T the capacity
c(Q) of the cut Q can be expressed as c(Q) = α(Q) + β(Q)T with α(Q) ≥ 0 and β(Q) ≥ 0 values depending
only on the cut Q. So the function F (T) expressing the max flow value with respect to T , i.e.

F (T) := min
Q
α(Q) + β(Q)T, (10)

is an increasing piecewise linear concave function for T ≤ T̃∗ and constant with value F for T ≥ T̃∗. Therefore
for values T < T̃∗ sufficiently close to T̃∗ there is a minimal cut Q̃ which is also minimal for T̃∗. Hence the
following equality must hold

α(Q̃) + β(Q̃)T̃∗ = F

9

t

2 4 6

t

2 4 6

b t

t t

a

e d

t

a t t t

Figure 1

Figure 2

10

from which

T̃∗ :=
F − α(Q̃)
β(Q̃)

. (11)

If the binary search is executed with a sufficiently small value for ν then the cut output by the max
flow routine for the left extreme of the final search interval is precisely Q̃. In this case a simple computation
gives α(Q̃) and β(Q̃) and T̃∗ is immediately computed from (11).

However, we must check whether the obtained cut is indeed Q̃. If not the value T̃∗ given by (11) is less
than the optimal one. In order to check the optimality of T̃∗ it is enough to run the max flow routine again
with this value. If the max flow f is equal to F this is a proof of the optimality of T̃∗. If f < F then ν was
chosen not small enough and we have to proceed in the binary search until the stated optimality condition
is satisfied. These further computations still have polynomial time complexity as shown in the following
theorem where L is the maximum size of any problem input number:

Theorem 8: Problem T∗ can be solved exactly by binary search in time O(MF (n) (L+log n)) if the machines
are uniform.

Proof: Let us note that the breakpoints of F (T) correspond exactly to the T -coordinates, in the space
R×Rn of the variables T and ξjm, of some vertices of the polyhedron defined by

∑

m∈Mj

ξjm ≤ rj1qj ∀j ∈ J,

∑

j∈Jm
k (π)

ξjm − ρ1mT ≤ ρ1mdk ∀k ∈ Jm ∀m ∈M,

ξjm ≥ 0 ∀j ∈ Jm ∀m ∈M.

(12)

Hence the T -coordinate of any vertex is obtained by solving a linear system of (n+ 1) equations from (12).
All entries in this submatrix are either 0 or 1 except for the T -column. By Cramer’s rule the value of T
is given by the ratio of two determinants, and both determinants can be computed by expanding along
the T -column. So they are given by sums of problem input numbers times the determinants of 0-1 n × n
submatrices. Since these submatrices are totally unimodular, as is not difficult to see, the size (i.e. the
number of its digits) of T is O(L + log n). Therefore also the difference between two distinct breakpoints
T ′ and T ′′ is bounded by the same quantity, i.e. − log |T ′ − T ′′| = O(L + log n) which combined with the
previous results proves the thesis.

Let us remark that we could just start the binary search without any approximation value ν and instead
perform at every step the optimality check previously described. However, this would increase the number
of max flow problems to be solved. From a practical point of view it is better to take a value for ν which
experience has shown to be good and only then to check optimality at every step.

An alternative approach to find T̃∗ is given by the following recursion which exploits the property that
F (T) is piecewise linear and concave: starting with the value T := 0, compute the capacities ckm, then the
max flow f and the minimal cut Q; if β(Q) > 0 reset T := (F − α(Q))/β(Q); if f = F or β(Q) = 0 stop,
else repeat the loop with the new T value. We call this procedure monotone search.

The number of iterations of the monotone search depends on the number of breakpoints of F (T). We
are going to show that there are at most |M | breakpoints. First we need two lemmas. The first lemma is
a known fact, already stated in Hu (1970). A very short proof can also be found in Picard and Queyranne
(1980). Here we provide an alternative proof. Given a cut Q let S(Q) denote the subset of nodes induced
by the cut Q and containing the source.

11

Lemma 9: If Q′ and Q′′ are two optimal cuts in a Max Flow Problem, then the cuts induced by the node
subsets S(Q′) ∩ S(Q′′) and S(Q′) ∪ S(Q′′) are also optimal.

Proof: Let Q∩ and Q∪ be the cuts corresponding to the node subsets S(Q′) ∩ S(Q′′) and S(Q′) ∪ S(Q′′)
respectively. The capacity of a cut viewed as a set function over subsets of nodes is submodular, i.e.
c(Q∪) + c(Q∩) ≤ c(Q′) + c(Q′′). Since by minimality we have c(Q′) = c(Q′′) ≤ c(Q∩) and similarly for
c(Q∪), by comparing the inequalities we get c(Q′) = c(Q∪) = c(Q∩).

Lemma 10: At most one saturated horizontal arc for each horizontal chain is contained in an optimal
cut.

Proof: Let us suppose there are two saturated horizontal arcs from the same chain in an optimal cutset Q,
denoted as (n(j,m), n(j+,m)) and (n(k,m), n(k+,m)) with job j preceding job k. Then n(j,m) ∈ S(Q),
n(j+,m) /∈ S(Q) and similarly for n(k,m). Obviously n(j+,m) �= n(k,m). Then the path n(k,m) →
n(j+,m) along the chain has at least one arc and at least one arch of this path must traverse the cut in
the backward direction. Then it must have zero flow. But the arc (n(j,m), n(j+,m)) is saturated and this
implies a positive flow on all arcs of the chain following (n(j,m), n(j+,m)).

Theorem 11: Problem T∗ can be solved exactly by monotone search in time O(|M |MF (n)) if the machines
are uniform.

Proof: Let us first note that we may freely restrict the set of cuts in (10) to those cuts which are optimal
for some value T . Hence from Lemma 10 we may write β(Q) =

∑
m∈M ′ ρ1m for some subset M ′ of machines

depending on the cut Q, which depends in turn on the value of T for which it is optimal. Next we want to
show that there are at most |M | subsets M ′ since they are ordered by inclusion.

Let T̂ be a breakpoint of the function F (T). This means that there exist two cuts Q1 and Q2 such that
for a sufficiently small ε > 0

α(Q1) + β(Q1)(T̂ − ε) = min
Q
α(Q) + β(Q)(T̂ − ε),

α(Q2) + β(Q2)(T̂ + ε) = min
Q
α(Q) + β(Q)(T̂ + ε) (13)

and

α(Q1) + β(Q1)T̂ = α(Q2) + β(Q2)T̂ = min
Q
α(Q) + β(Q)T̂ ,

with β(Qi) =
∑

m∈Mi ρ1m, and M1 �= M2 otherwise T̂ is not a breakpoint. From Lemma 9 also the cut Q̂
such that S(Q̂) = S(Q1) ∩ S(Q2) is optimal for T = T̂ , so that

α(Q2) + β(Q2)T̂ = α(Q̂) + β(Q̂)T̂ . (14)

Clearly β(Q̂) =
∑

m∈M̂ ρ1m with M̂ ⊂M1 ∩M2. Hence M̂ ⊂M2. The inclusion cannot be strict otherwise
β(Q̂) < β(Q2) and this together with (14) contradicts (13). Therefore M̂ = M2, whence M2 ⊂ M1 with
strict inclusion. Therefore the breakpoints correspond to subsets ordered by strict inclusion and so there can
be at most M of them.

12

Techniques based on binary search can be applied to Problem Tw
∗ as well. The main difference is that

the permutation on each machine is not necessarily given a priori by non-decreasing deadlines. Due to
the presence of weights the optimal permutation depends on the optimal assignments xjm, which in turn
depend on the optimal permutation. In order to overcome this difficulty we may fix several different target
values of maximum weighted tardiness, thereby implicitly fixing deadlines which must not be violated by any
job. Clearly the best way to find a solution compatible with these deadlines is to sort these values and to
schedule the jobs in this order, according to Theorem 2. Then we may use again a binary search technique
to find an approximated solution. Note that the permutations may change in each iteration of the binary
search, which requires rebuilding the network at each step. However, this extra work is dominated by the
max flow computation. A trivial upper bound on the optimal value of weighted tardiness can be given by
Ū := maxj wj · U . So we have :

Theorem 12: Problem Tw
∗ can be solved by binary search with approximation ν in time O(MF (n) log(Ū/ν))

if the machines are uniform.

In order to refine the solution to optimality we may use the previous ideas. There is one important
difference. The function F (T) is not necessarily concave since in this case

F (T) = max
π
Fπ(T) (15)

with Fπ(T) defined as in (10) with respect to the permutation π. In this case we also have to consider
breakpoints given by those values of T for which the ordering of jobs changes. We call these breakpoints
permutation breakpoints to distinguish them from the previous ones which we call cutset breakpoints. At
permutation breakpoints which do not coincide with cutset breakpoints the slope of F (T) increases as it is
apparent from (15) and illustrated in the following example: there are jobs 1 and 2 and machines a, b and c.
Job 1 is processed on machines a and b, and job 2 is processed on machines a and c. Furthermore d1 := 40,
q1 := 200, w1 := 1, d2 := 60, q2 := 100, w2 := 2 and rjm := 1. At the value T = 40 the function F (T) has
a permutation breakpoint due to the fact that job 2 exchanges priority with job 1. It is easy to see that
F (T) = 160 + 2T for 0 ≤ T ≤ 40, F (T) = 140 + 2.5T for 40 ≤ T ≤ 64 and F = 300 for T ≥ 64. The value
T = 64 is clearly optimal.

However, within intervals given by adjacent permutation breakpoints, F (T) is concave with possible
cutset breakpoints. Since the permutation breakpoints can be computed in advance in time O(|J |2) as

T̂hk :=
whwk

wh − wk
(dh − dk) ∀h, k ∈ J : wh �= wk, (16)

it is easy to take care of them.
Since the size of the distance between two successive permutation breakpoints is O(L) as evident from

(16), arguments similar to the ones used in Theorem 8 show that

Theorem13: Problem Tw
∗ can be solved exactly by binary search in time O(MF (n) (L+log n)) if the machines

are uniform.

The arguments used in Theorem 11 cannot be applied to Problem Tw
∗ . In this case β(Q) is given by∑

m∈M ′ ρ1m/wk where the job index k depends, for each machine m, on the particular cut Q. This added
feature makes it difficult to give a polynomial bound to the number of cutset breakpoints within two adjacent
permutation breakpoints.

Theorem 12 extends immediately to Problem T f
∗ . We may suppose that the functions fj are coded so

that an upper bound Û on the optimal value has polynomial size with respect to the size of the encoding of
the functions fj . So we may write:

13

Theorem 14: Problem T f
∗ can be solved by binary search with approximation ν in time O(MF (n) log(Û/ν))

if the machines are uniform.

4. FINDING UNORDERED LEXICO OPTIMA FOR UNIFORM MACHINES

We first consider Problem T∗. Let us suppose Problem T∗ has been solved with optimal value T̂ =
maxj(Ĉj − dj) and with corresponding capacities ĉkm. As remarked in Section 2 this solution has the best
possible tardiness value but it may be not satisfactory because some jobs which are not binding at the optimal
value may have any completion time Ĉj ≤ dj + T̂ , without affecting the value of the objective function.

For instance let us consider an optimal solution for the previous example with the following values
for xjm:

1 2 3 4 5 6

A 0 - - 0 250 70

B - 100 50 50 - -

C 100 0 - 50 - 70

D - - 0 0 250 70

and completion times C1 = 100, C2 = 100, C3 = 150, C4 = 200, C5 = 250 and C6 = 320, tardiness values
T1 = 50, T2 = 30, T3 = 50, T4 = 50, T5 = 50, T6 = 20 and maximum tardiness T̂ = 50. This solution is
clearly optimal as can be seen by inspection of how job 5 is scheduled on machines A and D. However, it is
not apparent whether also jobs 1, 3 and 4, whose tardiness value is equal to the maximum tardiness, have
the smallest possible completion times.

Therefore we now address the problem of identifying the binding jobs. Clearly jobs for which Ĉj < dj+T̂
are not binding. However, there may be jobs with Ĉj = dj + T̂ and yet not binding. We note that due to
the particular way of saturating the arcs of some max flow algorithms this is not a rare possibility. It is also
clear that a job is binding if and only if at least one of its horizontal arcs is saturated and in a minimal cut.
The problem is that there may be several minimal cuts and identifying all minimal cuts is computationally
expensive in general. However, we may use a result of Picard and Queyranne (1980), which allows arcs
belonging to minimal cuts to be identified quickly without necessarily enumerating all minimal cuts.

Given a max flow solution, we build the residual graph and compute its strongly connected components,
by also contracting to t the set of all vertices which can reach t (in our case there are no vertices reachable
from s since all arcs (s, s(j)) are saturated). A saturated arc has its endpoints in two different strongly
connected components if and only if it belongs to some minimal cut (Corollary 6 in Picard and Queyranne
1980). So it is only matter of finding the strongly connected components of the residual graph, which can
be done in O(n) time (the network has O(n) arcs).

After the binding jobs have been identified an algorithm minimizing the maximum tardiness is restarted
with the capacities related to the binding jobs held fixed to the last found value. The procedure is repeated
recursively until all jobs are binding. So we may conclude:

Theorem 15: If the machines are uniform, Unordered Lexico optimal solutions for Problem T∗ can be found
either by monotone search in time O(nMF (n)) or by binary search in time O(|J |MF (n) (L+ log(n))).

Proof: First note that the overall procedure alternates between the process of finding an optimal solution and
the one of identifying binding jobs. Obviously there are at most |J | repetitions and the overall cost of finding

14

optimal solutions is O(|J | |M |MF (n)) = O(nMF (n)) by monotone search and O(|J |MF (n) (L + log(n)))
by binary search. The overall computation of finding the binding jobs costs O(n|J |). Clearly the first
computation dominates the second one.

Considering the example again it may be seen from Figure 2 (the strongly connected components are
identified by a lower-case letter near a node) that jobs 1 and 5 are binding, so that the tardiness mimimization
can be restarted by varying the capacities only for jobs 2,3,4 and 6. This gives an optimal value T∗ = 40
with binding jobs 2 and 3. Then we get T∗ = 25 with job 4 binding. Finally job 6 can be completed even
before the deadline. The final Unordered Lexico optimal solution has the following xjm values:

1 2 3 4 5 6

A 0 - - 0 250 45

B - 90 50 35 - -

C 100 10 - 65 - 120

D - - 0 0 250 45

with completion times C1 = 100, C2 = 110, C3 = 140, C4 = 175, C5 = 250 and C6 = 295, tardiness values
T1 = 50, T2 = 40, T3 = 40, T4 = 25, T5 = 50, T6 = 0 and maximum tardiness obviously T∗ = 50.

The procedure extends in a straightforward way to Problem Tw
∗ . The only additional feature we must

pay attention concerns the case in which the optimal value Tw
∗ is also a permutation breakpoint. In this case

the search for Unordered Lexico optimal solutions must be performed with the permutation immediately to
the left of Tw

∗ .
As far as Problem T f

∗ is concerned, the identification of the binding jobs cannot be carried out along
the previous lines if the functions fj(Cj) are not one-to-one. In this case, since f−1

j is upper-semicontinuous,
an infinitesimal decrease of the cost at a discontinuity point turns into a finite decrease of the completion
time. We do not pursue this problem here.

5. TARDINESS MINIMIZATION FOR UNRELATED MACHINES

For unrelated machines there seems to be no way of expressing the constraints (2) and (3) as network
flow constraints. We propose two alternative approaches: the first one is based on generalized network flow
techniques and the second one on linear programming.

We only sketch the first approach. In generalized networks the flow entering an arc is allowed to leave
the same arc multiplied by a gain factor. In our case the parameters rjm are gain factors to be attached to
the vertical arcs (s(j), n(j,m)). Physically they represent conversion factors from job quantity to time. On
all other arcs the gains are equal to one.

The techniques developed by Goldberg, Plotkin and Tardos (1991) can be applied to our case. In order
to fit exactly into the framework of Goldberg, Plotkin and Tardos (1991) we reverse the orientation of all arcs
(so that the gains of the vertical arcs (n(j,m), s(j)) are changed to 1/rjm) and add one arc from the source
to the sink with a very large gain. Since the source is the only node allowed to violate flow conservation,
this large gain has the effect of almost canceling the flow coming out of the source (in the new reversed
orientation), so that the excess at the source is almost entirely given by the flow entering into the source,
and it is precisely this the quantity we wish to maximize, as in the case of uniform machines.

Then we are looking for a generalized circulation which maximizes the excess at the source. This
problem, called the Generalized Circulation Problem, can be used for the binary search in the same way the

15

Max Flow Problem was used in the uniform machine case. Just note that our network is already restricted
(in the terminology of Goldberg, Plotkin and Tardos 1991).

There are weakly polynomial algorithms which solve the Generalized Circulation Problem. The exact
tardiness value can be obtained by rounding the solution obtained from the binary search once a sufficient
degree of approximation is reached, since the problem is linear. Note however that the approximation required
in this case is much stronger than in the uniform case, for which total unimodularity of the constraint matrix
can be exploited.

Then generalized flow techniques can also be used to find the binding jobs in a way similar to the
uniform case. In this case if there exists a generalized augmenting path to a node s(j) then the job j is
not binding. We recall that, when applied to our special network, a generalized augmenting path is either a
residual directed path t→ s(j) or a residual directed cycle with gain larger than one plus a residual directed
path from a node in the cycle to s(j). For instance the gain of the cycle n(i, a) → s(i) → n(i, b) → n(j, b) →
s(j) → n(j, c) → n(k, c) → s(k) → n(k, a) → n(i, a) (only cycles of this type can be flow augmenting) can
be expressed as

rib
ria

rj,c
rj,b

rk,a
rk,c

and it is clear that this expression is always equal to one for uniform machines. In the general case it is
possible to exploit the lack of uniformity of the machines in order to get more job quantity within the same
time limits if the above expression is larger than one. We recall that discovering a generalized augmenting
path reduces to finding a negative length cycle with arc lengths computed by the negative of the logarithms
of the gains. Hence the overall computation of finding Unordered Lexico optimal solutions is polynomial.

As a second approach we suggest using Linear Programming techniques. The disadvantage of using LP
techniques is that it is not possible to exploit the efficient data structures typical of networks. The constraint
matrix is rather sparse. On the other hand the LP formulation of the problem allows for direct minimization
of the tardiness without resorting to the trick of binary search.

We assume without loss of generality that the optimal tardiness is strictly positive. It is a simple matter
to check whether it is zero. In this case the techniques described in the sequel can be applied to minimize
the maximum lateness (i.e. maxj(Cj − dj)).

In general Problem T∗ can be solved exactly via the following Linear Programming problem with π
given by non-decreasing deadlines:

min T
∑

j∈Jm
k

(π)

rjmxjm ≤ dk + T ∀k ∈ Jm, ∀m ∈M,

∑

m∈Mj

xjm = qj ∀j ∈ J,

xjm ≥ 0 ∀j,m.

(17)

The situation is more complicated for Problem Tw
∗ because the optimal permutation π is not known in

advance. The approach we adopt for Problem Tw
∗ in the case of unrelated machines is also based on iterating

guessed solutions. The difference is that we do not guess tardiness values, rather we guess permutations. By
doing so we need only a strongly polynomial number of iterations (however, since only weakly polynomial
algorithms are known to date for Linear Programming, the overall algorithm remains weakly polynomial).

Given a target value T of weighted tardiness we associate to it the permutation P (T) given by non-
decreasing values dk + T/wk. For some values of T the permutation is not uniquely defined because two
or more values may coincide. These are the permutation breakpoints previously introduced. If T is a
permutation breakpoint the tie is solved by ordering for increasing values wk. No other tie is possible unless

16

both wk and dk coincide and in this case the order between these jobs is irrelevant. The tie can be broken
in a fixed arbitrary way. Alternatively P (T) for a breakpoint T can be defined as P (T − ε) where ε > 0 is
chosen so that the interval (T (π) − ε, T (π)) does not contain breakpoints.

There are at most O(|J |2) breakpoints and they define a set of adjacent intervals (more exactly the
number of breakpoints is given by the sum over the jobs of the number of steps one job has to move upwards
in passing from its place in the permutation given by increasing deadlines to the new place in the permutation
given by decreasing weights). Let Π := {P (T)}T . Π can be naturally ordered as the corresponding intervals,
so that we may write π > π′ for any two permutations π, π′ ∈ Π. Clearly |Π| = O(|J |2).

Conversely given a permutation π we may define a tardiness value T (π) as follows

T (π) := min T
∑

j∈Jm
k

(π)

rjmxjm ≤ dk +
T

wk
∀k ∈ Jm, ∀m ∈M,

∑

m∈Mj

xjm = qj ∀j ∈ J,

xjm ≥ 0 ∀j,m.

(18)

Let X(π, T) be the set of feasible xjm in (18) for a given permutation π and tardiness T . Note that if
X(π, T) �= ∅ then X(π, T ′) �= ∅ for all T ′ ≥ T . Now we may define the following composite map

π �→ Ψ(π) := P (T (π))

which has the following properties.

Theorem 16: Ψ(π) ∈ Π, ∀π.

Theorem 17: Let π ∈ Π. Then π is the optimal permutation and T (π) is the optimal maximum weighted
tardiness if and only if Ψ(π) = π.

Proof: Suppose π = Ψ(π). By definition of Ψ we have P (T (π)− η) = π for 0 ≤ η ≤ ε1 and for a sufficiently
small ε1 > 0. Suppose there exists π′ such that T (π′) = T (π) − ε2, ε2 > 0. Let ε := min {ε1, ε2}. Hence
X(π′, T (π) − ε) �= ∅ whereas X(π, T (π) − ε) = ∅. In other words, for the same target value T (π) − ε there
exist a compatible schedule for π′ and there exists none for π. However, for this target value π should be
the best permutation to find a compatible schedule according to Theorem 2. From the contradiction the
sufficiency follows. The necessity is trivial if we only note that in Π the optimal permutation is unique (it is
here that the assumption of strictly positive tardiness plays a crucial role).

Theorem 18: T (Ψ(π)) ≤ T (π).

Proof: If T (π) is not a permutation breakpoint then, since X(π, T (π)) is not empty and P (T (π)) is a
better permutation than π for the target value T (π) then X(Ψ(π), T (π)) is not empty as well and there-
fore T (Ψ(π)) ≤ T (π). If it is a breakpoint, then either X(Ψ(π), T (π) − ε) �= ∅ and the thesis follows or
X(Ψ(π), T (π)− ε) = ∅ for all ε > 0 but X(Ψ(π), T (π)) �= ∅ because X(Ψ(π), T (π)) = X(π, T (π)) due to the
fact that T (π) is a breakpoint and the thesis follows with equality.

17

Theorem 19: Let π, π∗ ∈ Π with π∗ the optimal permutation. If Ψ(π) > π then π∗ > π and if Ψ(π) < π
then π∗ < π.

Proof: Clearly π∗ �= π for both statements otherwise there would be a contradiction between the hypotheses
and the results of Theorem 17. So suppose π∗ < π. This means T ′ ≥ T (π∗) for any T ′ such that P (T ′) = π.
Since X(π∗, T (π∗)) �= ∅ by optimality we also have X(π∗, T ′) �= ∅. By Theorem 2, X(π, T ′) �= ∅ whence
T (π) ≤ T ′ and Ψ(π) ≤ π. By contradiction the first statement is proved. The second statement is a simple
consequence of Theorem 18, from which π∗ ≤ Ψ(π) always holds.

Two alternative algorithms may be derived from these results. The first one is very simple and performs
a monotone search of the optimal permutation: starting with an arbitrary permutation π (not necessarily in
Π), iterate π := Ψ(π) until π = Ψ(π). The optimality of the final permutation is guaranteed by Theorem 17,
the finiteness of the method is guaranteed by the monotone condition expressed by Theorem 18 and the
strongly polynomial number of iterations by Theorem 16. Note that there is no need to compute the
permutation breakpoints in advance. If we denote with LP (n) the computational complexity of solving the
LP problem (18) and assume that this computation dominates the sorting of the values dk +T/wk, then the
optimal maximum weighted tardiness can be found in time O(|J |2 LP (n)).

As a second algorithm we may perform a binary search over the permutations in Π by using the results of
Theorem 19. Note that the binary search can be speeded up by resetting the right-hand-side permutation as
Ψ(π) instead of π when the optimal permutation is on the left of the intermediate guess π. In order to start
the binary search we need to compute and to sort the permutation breakpoints, which takes O(|J |2 log |J |)
time. Then we only need O(log |J | LP (n)) time to compute the optimal solution. So we have proven:

Theorem 20: Problem Tw
∗ can be solved exactly in time O(|J |2 log |J | + LP (n) log |J |) for unrelated

machines.

The algorithm based on binary search is theoretically better than the monotone search. However, it
may be argued that the upper bound of |J |2 iterations is rarely met in practice and only a few iterations
are needed. In addition, since the monotone search need not compute the breakpoints it may be worth
considering.

We also note that Problem T f
∗ can be solved with the same reasoning as Problem Tw

∗ if the functions fj
are well behaved, in the sense that it is possible to bound the number of breakpoints. If this is not possible
it is better to approach the problem through a binary search on guessed goals.

The problem of finding Unordered Lexico Optima is somewhat simplified if we use the LP approach.
Since the LP problem solves the tardiness problem directly, the optimal dual variables of this problem are
directly linked to the binding jobs. It is clear that jobs whose corresponding dual variables are strictly
positive are binding and so we may fix the tardiness values for these jobs and solve a new LP problem. It
is also possible to show that the new LP problem has more strictly positive optimal dual variables than the
previous one, so that we can repeat the procedure recursively. For Problem Tw

∗ we also have to take care of
the permutations.

6. CONCLUSIONS

By abstracting from the features of the real process of several looms weaving different types of fabric a
particular scheduling problem has been defined and thoroughly investigated. The main difference between
this and other multi machine scheduling models is that it allows jobs to be split over several machines with
independent processing. Due to this possibility it has been possible to derive polynomial algorithms.

18

In particular the problem with uniform machines, which closely corresponds to the real application, can
be solved via the Max Flow problem. Due to the efficient data structures and time bounds these algorithms
can be easily implemented in a system to support the decisions of the scheduling manager.

19

REFERENCES

Blazewicz, J., M. Drabowski and J. Weglarz. 1986. Scheduling Multiprocessor Tasks to Minimize
Schedule Length. IEEE Trans. on Computers C-35 5, 389-393.

Federgruen, A. and H. Groenevelt 1986. Preemptive Scheduling of Uniform Machines by Ordinary
Network Flow Techniques. Management Science 32, 341-349.

Goldberg, A.V., S.A. Plotkin and E. Tardos 1991. Combinatorial Algorithms for the Generalized
Circulation Problem. Mathematics of Operations Research 16, 351-381.

Horn, W.A. 1974. Some Simple Scheduling Algorithms. Naval Res. Logist. Quart. 21, 177-185.

Hu, T.C. 1970. Integer Programming and Network Flows. Addison-Wesley, Reading, Ma.

Labetoulle, J., E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan 1984. Preemptive Scheduling
of Uniform Machines Subject to Release Dates. In Progress in Combinatorial Optimization, W.R.
Pulleyblank (ed.). Academic Press, New York, 245-261.

Lawler E. 1983. Recent results in the Theory of Machine Scheduling. In Mathematical Programming: The
State of the Art, A. Bachem, M. Grötschel and B. Korte (eds.). Springer, Berlin, 202-234.

Maschler, M. 1992. The Bargaining Set, Kernel, and Nucleolus. In Handbook of Game Theory, with
Economic Applications, Vol. I, R.J. Aumann, and S. Hart (eds). North Holland, Amsterdam, 591-667.

Maschler, M., B. Peleg and L.S. Shapley 1979. Geometric Properties of the Kernel, Nucleoulus, and
Related Solution Concepts. Mathematics of Operations Research 4, 303-338.

Picard, J.C. and M. Queyranne 1980. On the Structure of all Minimum Cuts in a Network and
Applications. Mathematical Programming Study 13, 8-16.

Schrage, L. 1991. LINDO: An Optimization Modeling System, Fourth Edition. The Scientific Press, San
Francisco, Cal..

Slowinski, R. 1984 . Preemptive scheduling of independent jobs on parallel machines subject to financial
constraints. European J.of Operational Research 15, 366-373.

Slowinski, R. 1988 . Production scheduling on parallel machines subject to staircase demands. Eng.
Costs and Prod. Economics 14, 11-17.

20

