
JOB SHOP SCHEDULING WITH DEADLINES

Egon Balas, Carnegie Mellon University, Pittsburgh, PA, Usa

Giuseppe Lancia, Carnegie Mellon University, Pittsburgh, PA, Usa

Paolo Serafini, University of Udine, Italy

Alkiviadis Vazacopolous, Fairleigh Dickinson University, Teaneck N.J.

Abstract: In this paper we deal with a variant of the Job Shop Scheduling Problem. We consider the
addition of release dates and deadlines to be met by all jobs. The objective is makespan minimization if
there are no tardy jobs, and tardiness minimization otherwise. The problem is approached by using a Shifting
Bottleneck strategy. The presence of deadlines motivates an iterative use of a particular one machine problem
which is solved optimally. The overall procedure is heuristic and exhibits a good trade-off between computing
time and solution quality.

1. INTRODUCTION

In this paper we deal with a variant of the Job Shop Scheduling (JSS) Problem. The proposed model

has all usual features of the well known Job Shop model with the addition of release dates and deadlines

which must be met by all jobs. The objective is still the makespan minimization. We refer to this model

simply as the Job Shop Scheduling Problem with Deadlines (JSSD).

There are practical reasons for introducing deadlines. The first reason is that the Job Shop model by

itself does not capture an essential aspect of a production department. In practice there is never a single

production run but new jobs arrive periodically and any schedule must be revised accordingly. Of course the

Job Shop model can be reapplied each time new jobs become available, but there are some drawbacks to this

approach. Most often in practice old jobs are to be completed within previously established deadlines and

new jobs are to be simply completed as soon as possible. Finding the best possible makespan for the new

jobs provides an indication for the setting of their deadlines in case they are needed either for later schedule

computations or to contract delivery dates with the customer. Clearly there is the need to add deadlines to

the usual Job Shop framework in order to cope with this production model.

As a second reason, there may be occasions when some machines are unavailable. This can be due to

either machine breakdown or maintenance but also to the fact that a machine is already assigned to a higher

priority job during a specific time interval. In other words the department manager could judge some jobs

of higher priority and schedule them first. Then the other jobs would be scheduled but provision should

be made that the machines are no longer always available. This can be accomplished by considering all

operations of the higher priority jobs as dummy jobs with release dates and deadlines corresponding to their

starting and completion times.

1

In general, release dates and deadlines constitute a useful tool for controlling the final schedule. It is

often the case that a proposed schedule has to be revised due to factors outside the model. By changing a

posteriori some release dates and/or deadlines it is often possible to modify the solution in the direction of

a more desirable schedule. In spite of this fact and probably because of the difficulty of the problem, to the

best of our knowledge the JSSD has never been investigated in the literature.

Since the Job Shop Problem is NP-hard and it is a special case of the JSSD, the latter problem is

NP-hard as well.

In this paper we develop a heuristic procedure for the JSSD based on the Shifting Bottleneck approach of

Adams, Balas and Zawack (1988). This approach iteratively identifies a bottleneck machine and sequences it

optimally while holding fixed the job sequence on the machines already processed and ignoring the remaining

machines. This is done by solving a one machine problem with release times and due dates. Although this

problem is itself strongly NP-complete, it can nevertheless be solved efficiently in practice by a clever branch-

and-bound procedure due to Carlier (1982). Once all the machines have been sequenced, each machine in

turn is freed up and resequenced cyclically.

Recently two important improvements have been brought to this approach, both of which can be adapted

to JSSD. The first one addresses the following issue. Sequencing a given machine may impose conditions

on the sequence on some other machine, of the type that job i has to precede job j by at least a specified

time lapse. We call these conditions delayed precedence constraints (DPC). Taking into account these DPC

requires a major modification of Carlier’s algorithm. Such a modified algorithm for solving the one-machine

problem with DPC was developed by Balas, Lenstra and Vazacopoulos (1995) and shown to significantly

improve the performance of the Shifting Bottleneck Procedure.

The second improvement consists of combining the Shifting Bottleneck approach, which can be viewed

as optimization over the neighborhood defined by arbitrary changes in the sequence of any single machine,

with optimization over the neighborhood defined by interchanging certain pairs of jobs anywhere in the

overall job sequence. This is achieved by using the Shifting Bottleneck approach as a general framework

and solving a sequence of one-machine problems with DPC by the above procedure, but replacing the cyclic

reoptimization step by a guided local search procedure based on pairwise interchange of jobs. This approach

described in Balas and Vazacopoulos (1994), has brought significant additional improvements.

Both of the above modifications of the Shifting Bottleneck approach are incorporated in our procedure

for the JSSD problem. In particular, we developed an algorithm for solving to optimality the one-machine

problem with DPC in the presence of job deadlines. This exact algorithm constitutes the backbone of our

overall heuristic procedure for the JSSD problem. We also adapt the guided loal search to the presence of

deadlines.

An important special case of the one-machine problem with deadlines has been investigated by Leon and

Wu (1992): namely, the one-machine problem (without DPC) with unavailability over certain time intervals.

This problem can be embedded into the framework of release dates and deadlines in the way outlined above.

Our algorithmic approach is different from that of Leon and Wu (1992) and exhibits better computational

performance.

In order to test our procedure for the JSSD we consider the continuous production model described at

the beginning. First we apply the procedure to a set of data from a factory whose production environment

2

closely resembles a job-shop model. Second we apply the procedure to data derived by a famous benchmark

instance. The results show that we have developed a useful tool for dealing with the problem at hand. In

particular, we seem to have achieved a good trade-off between computing time and solution quality.

We have organized the paper as follows: in Section 2 we provide a formal description of the JSSD.

In Section 3 we introduce and characterize an auxiliary problem which is the main tool in dealing with

deadlines. In Section 4 a high level description of the Shifting Bottleneck Procedure is outlined; its basic

building blocks are a particular one machine problem with deadlines and a local search procedure for the

auxiliary problem. Sections 5 and 6 are devoted to the presentation of these two blocks respectively. Section 7

reports on the computational results for the one machine problem with deadlines and Section 8 reports on

the computational results for the general JSSD procedure.

2. PROBLEM DESCRIPTION

We define the Job Shop Scheduling Problem with Deadlines as follows: a set J = {1, . . . , |J |} of jobs

have to be processed on set M of machines within the minimum possible time, subject to the constraints

that (i) the sequence of machines for each job is prescribed, (ii) each machine can process at most one job

at a time, and (iii) jobs must start after given release dates and be completed before given deadlines. The

processing of a job on a machine is called an operation, and its duration is a given constant.

We denote by

– N = {0, 1, . . . , n} the set of operations, with 0 and n two additional dummy operations used to identify

the start and the end of the job processing;

– α(j) and ω(j) the first and the last operation respectively of job j ∈ J ;

– A the set of ordered pairs of operations constrained by precedence relations, including (0, α(j)) and

(ω(j), n) for all j ∈ J ;

– Ek the set of pairs of operations to be processed on machine k; let E :=
⋃

k Ek;

– pi the duration or processing time for operation i ∈ N ;

– rj the release date of job j ∈ J ;

– dj the deadline of job j ∈ J ;

– dmax := maxj dj .

The variables to be determined are the operation starting times ti. The set of ti is called a schedule

and tn is called its makespan. The problem can be formally stated as

Problem JSSD
t̂n := min tn

s.t.

t0 = 0 (1)

tj − ti ≥ pi (i, j) ∈ A (2)

tj − ti ≥ pi ∨ ti − tj ≥ pj (i, j) ∈ Ek k ∈M (3)

tα(j) ≥ rj j ∈ J (4)

tω(j) + pω(j) ≤ dj j ∈ J (5)

3

By dropping in Problem JSSD the constraints (5) and (4), we obtain a standard Job Shop Problem. We

remark that the constraints (4) can be embedded into a standard Job Shop Problem in a straightforward

way by simply adding dummy operations of duration rj . Therefore we shall assume that release dates have

been already taken care of in this way. It is the presence of deadlines which makes the problem different

from a standard JSS and more difficult.

We may represent the problem on a disjunctive graph G = (N,A, E) with node set N , directed arc set

A and undirected edge set E. The edges in E are orientable and are therefore called disjunctive whereas

the arcs in A are called conjunctive. The length of an arc (i, j) ∈ A is pi, whereas the length of an edge

{i, j} ∈ E is either pi or pj depending on its orientation (if we choose (i, j) then it is pi, otherwise it is pj).

Each machine k corresponds to a set Nk of nodes (operations) and a set Ek of edges which form a disjunctive

clique.

Let D = (N,A) denote the directed graph obtained from G by removing all the disjunctive edges. A

machine selection Sk is a set of arcs obtained by orienting each edge in Ek. If Sk is acyclic then it induces

a total ordering on the operations on machine k.

3. THE AUXILIARY JOB SHOP PROBLEMS

Let M ′ be a subset of machines. We define a relaxation RJSSD(M ′) of problem JSSD by imposing

the constraints (3) only for the subset M ′. We denote the optimal makespan of such a relaxed problem

by t̂n(M ′). A selection S over M ′ is the union of machine selections Sk, for k ∈ M ′. The selection is

partial if M ′ is a proper subset of M , otherwise it is complete. A selection S gives rise to the directed graph

DS = (N,A∪S). A selection is acyclic if the digraph DS is acyclic. Every acyclic selection S defines a family

of schedules feasible for (1), (2), (4) and (3) restricted to M ′, but not necessarily for (5), and every such

schedule induces an acyclic selection over the same machines. The minimum makespan over the schedules

induced by S is equal to the length of a longest path in DS . Let us denote this value by tn(S). An acyclic

selection is feasible if (5) is also satisfied for at least one schedule of the family associated with S. Thus

problem RJSSD(M ′) corresponds to finding an acyclic selection S over M ′ that is feasible and minimizes

the length of a longest path in the directed graph DS , that is t̂n(M ′) = minS tn(S).

To any problem RJSSD(M ′) and nonnegative number τ , we associate a standard JSS problem (without

deadlines) by appending to each job j a (last) dummy operation labeled ω′(j) := n + j, whose processing

time is pω′(j) = max {0; τ − dj}. We call this auxiliary problem PQ(M ′, τ). Note that in the new disjunctive

graph, for each job j the dummy operation ω′(j) is preceded by operation ω(j) and followed by operation

n, so that the makespan of the auxiliary problem is still given by the starting time of operation n A family

of auxiliary JSS problems corresponding to different values of τ is used to solve problem RJSSD(M ′) as

described in the next section. In Figure 1-a an example is provided of a JSS with 3 jobs, 7 operations

(n = 8) and d1 = 22, d2 = 14 and d3 = 17. The auxiliary problem for τ = 20 is shown in Figure 1-b with

the duration of dummy operation i written on arc (i, n)

By T (τ) = (T0(τ), . . . , Tn(τ), Tn+1(τ), . . . , Tn+|J|(τ)) we denote a schedule (solution) of the problem

PQ(M ′, τ) with Tn(τ) being the corresponding makespan. By T̂ (τ) and T̂n(τ) we indicate the optimal

schedule and optimal makespan of PQ(M ′, τ).

4

Figure 1

Given a schedule t for RJSSD(M ′), for any τ we define the schedule T (τ) for PQ(M ′, τ), associated

with t, as Ti(τ) := ti for i ∈ N \ n, Tω′(j)(τ) := tω(j) + pω(j) for j ∈ J , and Tn(τ) := maxj∈J{tω(j) + pω(j) +

max {0; τ − dj}} . Conversely, given a schedule T (τ) for PQ(M ′, τ), we define the associated schedule t for

RJSSD(M ′) as ti := Ti(τ) for i ∈ N \ n, and tn := maxj∈J{Tω(j) + pω(j)}
The relationship between problem RJSSD(M ′) and the family of auxiliary problems is characterized by

the following Propositions. For the sake of simplicity we occasionally omit the dependence of T̂i(τ) on τ and

simply write T̂i if there is no risk of ambiguity. Similarly, when there is no risk of confusion, we will omit

the suffix (M ′) from RJSSD(M ′).

Proposition 1: If T̂n(τ) ≤ τ then the schedule t associated with T̂ is feasible for problem RJSSD, i.e.

tω(j) + pω(j) ≤ dj, for all j ∈ J .

Proof: For all j ∈ J we have

τ ≥ T̂n(τ) ≥ T̂ω′(j) + pω′(j) ≥ T̂ω(j) + pω(j) + pω′(j) ≥ T̂ω(j) + pω(j) + τ − dj

Hence T̂ω(j) + pω(j) = tω(j) + pω(j) ≤ dj .

Proposition 2: If T̂n(τ) > τ then all feasible schedules for RJSSD have makespan tn at least equal to

T̂n(τ).

Proof: Let t denote a feasible schedule for RJSSD with makespan tn, and let T (τ) be the associated schedule

for PQ(M ′, τ). We have

T̂n(τ) = max
j∈J

T̂ω′(j) + pω′(j) = max
j∈J

T̂ω(j) + pω(j) + pω′(j) ≤ max
j∈J

Tω(j) + pω(j) + pω′(j) =

max
j∈J

max
{
tω(j) + pω(j) ; tω(j) + pω(j) + τ − dj

}
≤ max {tn ; τ} = tn

The first inequality holds by the optimality of the schedule T̂ (τ) and the last equation holds because of the

hypothesis T̂n(τ) > τ : the maximum cannot be attained for τ because that would imply τ < τ .

From Proposition 2 we can deduce

5

Proposition 3: If T̂n(τ) > τ and the schedule t associated with T̂ (τ) is feasibile for RJSSD, then t is also

optimal.

Proof: Let t̂ be an optimal schedule for RJSSD. We have tn := maxj∈J{T̂ω(j) + pω(j)} = maxj∈J T̂ω′(j) ≤
T̂n(τ) ≤ t̂n, where the last inequality follows from Proposition 2. Hence tn = t̂n and t is optimal.

We may also derive an infeasibility condition as

Proposition 4: τ ≤ dmax and T̂n(τ) > dmax imply infeasibility of Problem RJSSD.

Proof: Feasible solutions of RJSSD have makespan not larger than dmax. But by Proposition 2, feasible

solutions have makespan not smaller than T̂n(τ) > dmax. Thus there can be no feasible solutions under the

conditions of the proposition.

The above results could be used to solve a Problem RJSSD through a sequence of Problems PQ(M ′, τ)

by adopting for instance a binary search strategy. In fact, given a guess τ of the optimal makespan for

Problem RJSSD, and the corresponding makespan T̂n(τ), Proposition 1 and 2 provide a restricted range of

values for the next guess.

However, such an approach requires the exact solution of each auxiliary problem and this is not practical.

If we are able to produce only a heuristic solution, having makespan T̃n(τ) ≥ T̂n(τ), then only Proposition 1

can be applied, namely if T̃n(τ) ≤ τ then the schedule t associated with T̃ is feasible for RJSSD.

4. THE SHIFTING BOTTLENECK PROCEDURE

In this section we generalize the Shifting Bottleneck Procedure to the JSSD. The Shifting Bottleneck

Procedure is based on the idea of sequencing the machines one at a time. Priority is dynamically assigned

to the current most critical machine. A brief review of the Shifting Bottleneck Procedure of Adams, Balas

and Zawack (1988) (called here SB1) for the Job Shop Problem (without deadlines) is as follows. Let M ′ be

the set of machines already sequenced, that is the set of machines for which a selection has been computed

(M ′ = ∅ at the start).

Step 1. Identify a bottleneck machine k among the unscheduled machines M \M ′ and sequence it

optimally. Set M ′ ←M ′ ∪ {k} and go to step 2.

Step 2. Reoptimize the sequence on the machines in M ′. If M ′ = M , stop; otherwise go to 1.

The resequencing phase in Step 2 is executed on one machine at a time. This task and the one of

identifying the bottleneck machine were carried out in the original version of the SB1 by solving a one

machine problem with the algorithm of Carlier, (1982). Later an improvement has been obtained by Balas,

Lenstra and Vazacopoulos (1995) by defining and solving a one machine problem with delayed precedence

constraints (DPC’s).

Recently a variant of the Shifting Bottleneck Procedure has been proposed by Balas and Vazacopoulos

(1994), in which Step 2 is carried out by a new local search procedure based on pairwise interchange, instead

of computing a sequence of one machine problems. This local search depends on a particular definition of

neighborhood of a solution and relies on the properties of critical paths in the disjunctive graph DS . This

new approach, which we call SB2, has given better computational results than SB1.

6

We will use a procedure like SB2 in order to solve the Job Shop Problem with Deadlines. Note that in

SB2 there are two basic tools: the Balas, Lenstra and Vazacopoulos (1995) algorithm for the one machine

problem and a local search for a JSS Problem proposed in Balas and Vazacopoulos (1994). Thus we have to

modify both the one machine problem and the local search in order to deal with the deadlines.

As far as the one machine problem is concerned we have designed an exact procedure for solving a one

machine problem with deadlines. We describe this method in the next section. As for the local search we

have slightly modified the local search defined in Balas and Vazacopoulos, (1994), by relying on the auxiliary

job shop problems. This will be described in Section 6.

A general scheme of the resulting procedure, denoted SBD, is as follows:

Let M ′ be the set of machines already sequenced, that is the set of machines for which a selection has

been computed (M ′ = ∅ at the start).

Step 1. Identify a bottleneck machine k among the unscheduled machines M \M ′ and sequence it

optimally by solving a one machine problem with deadlines. Set M ′ ←M ′ ∪ {k} and go to step 2.

Step 2. Improve the current partial selection through the modified local search procedure. If M ′ = M ,

stop; otherwise go to 1.

The criterion to identify a bottleneck machine in Step 1 is as follows: if all one machine problems are

feasible then the bottleneck machine is the one with the largest maskespan; if there exist infeasible one

machine problems then the bottleneck machine is the one with the largest tardiness, that is with the largest

deadline violation.

5. THE ONE MACHINE SCHEDULING PROBLEM WITH DEADLINES

In this section we describe the model of one machine problem adopted in Step 1 of SBD and the algorithm

for its solution. We denote this new problem as MPD. Formally it can be stated as

One Machine Problem with Delayed Precedence constraints and Deadlines (MPD): a set I

of operations, and a partial order ≺ on I are given. Let R ⊂ I × I be the set of unordered pairs {i, j} such

that neither i ≺ j nor j ≺ i. To each pair of operations such that i ≺ j a nonnegative integer lij (delay) is

assigned. To each i ∈ I four nonnegative integer quantities ri (heads), pi (processing times), qi (tails) and

dli (deadlines) are assigned. The problem consists in finding a schedule ti, i ∈ I such that

ti ≥ ri i ∈ I

tj − ti ≥ pi + lij i ≺ j

ti + pi ≤ dli i ∈ I

tj − ti ≥ pi ∨ ti − tj ≥ pj {i, j} ∈ R

and the makespan

max
i∈I
{ti + pi + qi}

is minimized.

The relationship of Problem MPD with the procedure SBD is the following. The input of Step 1 consists

of a set M ′ of machines already sequenced with partial selection S, and a corresponding graph DS . Let

7

L(i, j) denote the length of a longest path from i to j in DS (L(i, j) = −∞ if such a path does not exist).

Let k /∈M ′ be any machine not sequenced yet. Then a problem MPD is defined with the following data:

– I := Nk

– i ≺ j if there exists a directed path from i to j in DS ;

– lij := L(i, j) for all i ≺ j;

– ri := L(0, i) for all i ∈ Nk;

– pi := pi for all i ∈ Nk;

– qi := L(i, n)− pi for all i ∈ Nk;

– dli := minj∈J

{
dj − pω(j) − L(i, ω(j))

}
+ pi.

The one machine problem investigated by Balas, Lenstra and Vazacopoulos (1995) differs from MPD

only in the missing deadline constraints. We refer to this problem as MP. We solve MPD through a sequence

of MP until either a feasible optimal solution is obtained or it can be asserted that no feasible solution exists.

In the latter case we want to find a schedule that minimizes the maximum tardiness.

As in the case of the job shop problem our strategy consists in defining an auxiliary problem based on

a guess of the optimal makespan for problem MPD. Results like those of Section 3 can be obtained also

for this case. The difference is that now an exact algorithm is available to solve the auxiliary one machine

problems so that it is possible to fully exploit those results and derive an exact algorithm also for MPD.

Before describing in detail the algorithm we remark that problem MPD is worth studying in its own,

besides its use as a submodule of the job shop problem. A special case of this problem, without the delayed

precedences, has been already investigated by Leon and Wu (1992). They consider the case of several

forbidden times for the machine, that is time intervals in which the machine is unavailable for processing.

Our model can easily take care of a forbidden time (ai, bi) by using a dummy job with head ai, deadline bi

and processing time bi − ai which compel the dummy job to be executed during the forbidden time. This

model with forbidden times can be useful in many circumstances like breakdown or maintenance periods,

priority scheduling and others.

Let us now define a family of auxiliary one machine problems MP (τ). These problems have the same

data as problem MPD with the only difference that deadlines are missing and the tails qi are reset as:

q′i := max { qi ; τ − dli } (6)

Again the relationship between problem MPD and the family of auxiliary problems is characterized by

results analogous to those in Section 3. We restate them here for the sake of clarity but we do not provide

proofs.

Let m(τ) be the optimal makespan of the auxiliary problem MP (τ) and T (τ) be the corresponding

optimal schedule. Note that the makespan of the original problem is never larger than the makespan of the

auxiliary problem, for any value of τ .

Proposition 5: If m(τ) ≤ τ then the schedule T (τ) is feasible for MPD, i.e. Ti(τ)+pi ≤ dli, for all i ∈ I.

Proposition 6: If m(τ) > τ then all feasible schedules of MPD have makespan at least equal to m(τ).

Proposition 7: m(τ) > τ and feasibility of T (τ) imply optimality.

8

A

B

m(!)

!

m*

=m ! (!)

Figure 2 - Graph of the map τ 7→ m(τ)

Proposition 8: τ ≤ maxi(qi + dli) and m(τ) > maxi(qi + dli) imply infeasibility of MPD.

Proposition 8 provides a feasibility test consisting of solving a problem MP(maxi(qi + dli)). If the

instance is not feasible, the computed solution minimizes the maximum tardiness, as it is easy to see.

We can view this process of computing a makespan m(τ) from a guess τ as a map τ 7→ m(τ). This map

is piecewise linear and nondecreasing, the optimal makespan corresponds to the smallest fixed point of the

map and the slope of each piece is either zero or one, according to the following result.

Proposition 9: For every δ ≥ 0, m(τ) ≤ m(τ + δ) ≤ m(τ) + δ. Further, if δ = 1, then either

m(τ + 1) = m(τ) or m(τ + 1) = m(τ) + 1.

Proof: Clearly m(τ) ≤ m(τ + δ) as the tails increase from one problem to the other. Further, since they

increase by at most δ, the solution T (τ) has a makespan not greater than m(τ) + δ in MP (τ + δ), thus

showing m(τ + δ) ≤ m(τ) + δ. The second statement then follows from the integrality of the data.

The graph of this map is given in Figure 2 for a feasible instance. There we denote by m∗ the sought

optimal makespan of MPD. According to Proposition 6, the map cannot intersect the region A delimited

by m(τ) > τ and m(τ) > m∗. Analogously, because of Proposition 5, and since feasible schedules have

makespan at least m∗, the region B delimited by m(τ) ≤ τ and m(τ) < m∗ is forbidden.

These propositions suggest designing two alternative strategies; one consists of monotonically increasing

guesses and the second one of guesses computed in a binary search fashion.

In the first strategy we test feasibility and if the instance is feasible we iterate according to

τ0 := 0 repeat τ i+1 := m(τ i) until τ i+1 = τ i (7)

Proposition 10: : If the instance of MPD is feasible, the iteration (7) converges to an optimal solution.

Proof: : Let τ i and τ i+1 be two consecutive guesses, i.e. τ i+1 = m(τ i). First, we need to show that the

method eventually halts. Second, that it terminates at an optimal solution. As for finiteness, note that

if the instance is feasible, by Proposition 6 the condition m(τ i) > τ i cannot be repeated infinitely many

times, or otherwise the makespan of MPD would be unbounded. Therefore at some iteration we must have

m(τ i+1) = τ i+1 and m(τ i) > τ i. By Proposition 5 the schedule T (τ i+1) is feasible. Further, by Proposition 6,

m(τ i) is a lower bound for the optimal makestpan. Therefore, since m(τ i+1) = τ i+1 = m(τ i), then T (τ i+1)

is an optimal schedule.

9

A crucial point of the above approach is the number of auxiliary problems to be solved. First we note

that the difference between two consecutive guesses is nonincreasing.

Proposition 11: τ i+1 − τ i ≤ τ i − τ i−1.

Proof: Let δ = τ i−τ i−1; by Proposition 9, m(τ i−1+δ) ≤ m(τ i−1)+δ, i.e. m(τ i) ≤ τ i+τ i−τ i−1. Therefore

τ i+1 − τ i ≤ τ i − τ i−1.

According to Proposition 11, the convergence speed of the method decreases, i.e. the largest steps

toward the optimal guess are the first ones. Moreover, once the guess increases by one at a certain iteration,

it will always increase by one until the end. Therefore, in the worst case, the monotonic search requires a

pseudopolynomial number of auxiliary problems M(τ) to be solved.

There are examples where the tails are increased by one at each iteration. For instance consider two

operations with r1 := 0, p1 := a, q1 := b, dl1 = ∞, r2 := a − 1, p2 := b, q2 := 0, dl2 := a + b − 1. This

example requires a + b + 1 iterations and the guess is increased by one at each iteration.

This drawback can be avoided by adopting a binary search over the possible values of the makespan.

At a generic step of the binary search there is a lower bound and an upper bound for the optimal makespan,

and a solution is available with makespan equal to the upper bound. Let us denote by τL the lower bound

and by τU the upper bound. From these two values a guess τ is computed according to:

τ :=
⌊

τL + τU

2

⌋
(8)

and the problem MP(τ) is solved yielding a value m(τ).

If m(τ) > τ then, according to Proposition 6, the optimal makespan is not smaller than m(τ) and there-

fore the lower bound is reset to τL := m(τ) (unless the solution is feasible in which case we exit the binary

search since the solution is also optimal according to Proposition 7). If m(τ) ≤ τ then, according to Proposi-

tion 5, the schedule is feasible for MPD, with makespan v = maxi∈I {Ti + pi + qi} ≤ maxi∈I {Ti + pi + q′i} =

m(τ); then the upper bound is reset to τU := v.

Before starting the binary search we test feasibility. If the solution is feasible let v be the corresponding

makespan. Then the binary search is initialized with τL := 0 and τU := v. It terminates when τL = τU this

being also the optimal makespan of the MPD.

The binary search is superior to the monotonic search in the worst case. However, while the binary

search requires almost invariably the same number of steps, most of the time the monotonic search finds

the optimal value in a few steps (say two or three). In view of these empiric results we have adopted a

mixed strategy by first testing feasibility, then starting a monotonic search for at most three steps and, if

no solution has been found, switching to the binary search. In Section 7 we report some computational

experiments.

6. THE LOCAL SEARCH PROCEDURE

The output of Step 1 in SBD consists of a partial selection S over a subset M ′ of machines and a

corresponding makespan tn(S). These data are given as input to the first iteration of the local search. The

input of each iteration of the local search consists again of a partial selection S over the same subset M ′ and

10

a corresponding makespan tn(S), which are received from the previous iteration. Furthermore each iteration

uses a guess τ in order to define the auxiliary problem PQ(M ′, τ). The neighbourhood of the selection S in

PQ(M ′, τ) is explored to generate a new selection by using the same definitions and techniques as in Balas

and Vazacopoulos, (1994). Also the stopping rule for the local search is the same.

The guess is computed in the following way: first set τ := tn(S), then if at the end of an iteration a

selection S′ is found such that Tn(τ) ≤ τ reset τ := tn(S′) − 1. Note that if m(τ) ≤ τ then the current

selection is feasible according to Proposition 1 (whose conclusion holds also with an approximate value for

m(τ) as already remarked).

A twofold goal is pursued in the local search, namely minimizing the makespan and obtaining feasibility.

In the auxiliary problem the guess sets a trade–off between the two goals. For a large value of the guess

the objective of the auxiliary problem becomes simply feasibility. For this purpose it is enough to have a

value τ = dmax as apparent from Proposition 4. For a small value of the guess the objective of the auxiliary

problem consists in the mere minimization of the makespan ignoring the presence of the deadlines. For this

purpose it is enough to set τ = minj dj as obvious from the definitions. Values of τ between these two

extremes realize a compromise between the two goals. Hence we keep the guess corresponding to the best

makespan found so far, so that in the following iterations feasible solutions will be found within this target

value of makespan.

If the partial selection received from Step 1 is infeasible, it might seem reasonable to start the local

search with a guess τ = dmax. However, computational experiments have shown that it is more effective to

start with τ = tn(S) even if S is infeasible. Note also that the local search is not necessarily improving at

each step (if so at every step the selection would be feasible by Proposition 1) so that it might happen that

infeasible selections are produced during the local search. In these cases the guess is not changed.

In conclusion, the guess is either equal to the best feasible makespan found so far or to the initial

makespan if no feasible solution has been found (including the initial solution), and is clearly monotonically

decreasing during the local search.

7. COMPUTATIONAL RESULTS FOR THE ONE MACHINE PROBLEM

We have carried out two sets of computational experiments. The first one verifies that the exact proce-

dure for solving the One Machine Scheduling Problem with Delayed Precedence constraints and Deadlines

(MPD) takes, on the average, a reasonable computating time so it can be used within the general SB pro-

cedure. Furthermore, we have compared our results with those of Leon and Wu who address a special case

of the problem we define.

As far as the MPDP is concerned, the branch and bound algorithm was implemented in C on a

SUNSparc-330 workstation, then it was applied to two types of experiments. First, a set of data was

kindly provided by Professor Leon, (1992), which consisted of 5 sets of one machine problems with 50 jobs

and forbidden times. Notice that this is a special instance of our model since a forbidden time from t1 to

t2 is a (dummy) job with a single operation, with release time t1, processing time t2 − t1, and deadline

time t2. Leon and Wu generated this set as follows: the processing times, pi, are generated based on a

normal distribution, N(50, 102), and the release dates of jobs are generated exponentially with parameter

11

λ = 40 (a random variable X is exponentially distributed with parameter λ if Prob[X ≤ x] = 1 − e−x/λ;

its expected value is λ). The tails are generated as qi =
∑s

j=1 pj , with s uniformly distributed between 1

and 50 (for more details see at Leon and Wu, 1992).

In Table 1 we compare our computational results with those from Leon and Wu, (1992). In our algorithm

we solve a series of one machine scheduling problems, therefore the number of explored nodes is equal to

the total number of nodes for all the subproblems (a node is considered explored when its lower bound is

calculated). We have succeeded in solving every problem by using less than 100 nodes. Comparing the

results with those from Leon and Wu, (1992), we can see that our method needs considerably fewer explored

nodes.

We generated a second set of problems which is similar to Leon and Wu (1992). These are 1,400, 50-job

problems. The ri, pi, qi are randomly generated with uniform distribution between 1 and rmax, pmax, qmax

(with pmax held fixed to 100). The forbidden times are assigned by generating exponentially with parameter

λ1 their durations and by generating exponentially with parameter λ2 the times between two consecutive

forbidden times. Forbidden times are generated only within the interval [0,
∑50

j=1 pj]. We report these

computational results in Table 2. Note here that we have solved all the problems to optimality. Leon and

Wu, (1992), in their computational experience have not solved 89 problems among 1,400 using less than

1,500 nodes. Our algorithm has successfully solved all the problems and the maximum number of nodes

used is 216.

We generated a third set of problems as follows: for every problem of the second set delayed precedence

constraints are added. A precedence constraint is generated between jobs i and j with probability pij ∈
{0.02, 0.05, 0.10} and the delay L(i, j) is generated as follows. For each (i, j) in F a number l(i, j) is drawn

from a uniform distribution over the interval [1, (rmax + qmax)/2]; and L(i, j) is set to l(i, j) if l(i, j) > pi,

and to l(i, j) + pi otherwise. The results are shown in Tables 3-5.

8. COMPUTATIONAL RESULTS FOR THE JSSD

We have tested the overall procedure both on a real set of data and on some generated sets of data.

The real set of data has been provided by a factory near Pittsburgh which produces card board boxes. The

production environment is typical of job-shop models. There are 13 machines devoted to various operations

like cutting, slitting, printing, flexing, flattening, stitching, and others. An order consists in a request of

producing a high number of boxes. Each order has a predefinite sequence of operations and consequently

of machines. Hence an order has the same structure of a job. The number of operations for each job can

vary between one and five and most jobs have two or three operations. The scheduling manager decides the

batch size independently of the schedule. Thus the processing time of each operation is fixed and given.

Every day new orders become available with a definite deadline already contracted with the customer.

Hence a job shop problem should be solved every day in order to schedule the jobs arrived on that day plus

the jobs still to be processed or to be completed from the previous days. We have approached this problem

by using deadlines and minimizing the makespan. The operations carried over from one day to the other

receive a new deadline if they are already tardy. However, if an operation starts in one day and has to be

finished in the next day, then the remaining part of the operation is viewed as a new operation which has

12

to be restarted immediately and therefore is assigned a deadline equal to the remaining processing time.

Therefore by using deadlines we both take care of real deadlines and control the production flow. Moreover

by minimizing the makespan we try to improve the lead time of the work in process.

We have used the data of one full month, January 1996. This corresponds to 22 working days and each

working day consists of ten working hours. The time unit is the minute. In the first column of Table 6 we

have indicated the day of the month, in the second column we have reported the number of new operations

for that day, in the third column the number of operations whose schedule has to be computed on that

day (not to be processed on that day), in the fourth column the number of operations which have been

processed beyond the deadline and in the fifth column the maximum tardiness value (in minutes) of tardy

jobs. The schedule has been computed cyclically (but in one run) for all 22 days and has required less than

one minute CPU time. So the procedure has exhibited a good behaviour in term of computing time. As for

the schedule quality this was better than the one actually implemented. The presence of tardy jobs seems

to be unavoidable due to the sudden accumulation of many orders at the same time.

We have then made a similar computation with a generated set of data. We have taken the famous

6×6×6 instance (6 jobs with 6 operations each on 6 machines) defined in Fisher and Thompson (1963) and

have simulated a production environment by supposing that every day a new 6×6×6 set of jobs is sent to the

shop (every day the same). It is not difficult to show that the work backlog is not accumulating indefinitely

if the day working time is at least equal to the sum of the processing times of the critical machine, that is the

one most heavily loaded (43 time units in this case). Then, on the average, every day 6 jobs are processed,

although the lead time for each of them may be longer than one day. Minimizing the makespan is equivalent

to minimizing the lead time of the operations. On every run the deadlines of the jobs have been fixed in the

following way: the new jobs have no deadline, and the old jobs still to be completed are assigned a deadline

which corresponds to the previously computed completion time.

Our goal has been to show that, by defining a fictitious day of length 43 time units, our procedure is

able to compute every day the schedule (of old and new jobs) reaching a steady state in which there is no

accumulation of old jobs. We point out that unless the critical machine works without interruption this

steady state behaviour cannot be obtained. Therefore the procedure must find out a schedule which does

not allow the critical machine to be idle. Because of this fact we consider this as a robust test to judge the

quality of the solution.

The solution is shown in Figures 3-a,b,c,d for the first four runs. As can be seen, the solution becomes

periodic with a constant makespan of 62 after the fourth run. We recall that the optimal makespan of the

6× 6× 6 instance is 55 (see Figure 3-a). This is clearly a transient value obtained in the first computation.

In the next runs there are a few more jobs from the previous days and the makespan value is higher than 55.

We have also tested our procedure against some instances described in the literature. We have considered

160 instances (DMU1–DMU160, indicated as J//Lmax by the authors) generated by Demirkol, Mehta, Uzsoy

(1996). In these instances the authors aim at minimizing the lateness with respect to given due dates. We

consider these due dates as deadlines.

The instances have four values for the number of jobs (n = 20, 30, 40, 50) and two for the number of

machines (m = 15, 20). Hence the total number of operations varies from 300 to 1000.

In Tables 7, 8, 9 and 10 we compare our results with those from Demirkol, Mehta, Uzsoy (1996).

13

We report in column DMU the best tardiness found by Demirkol, Mehta, Uzsoy (1996) after running eleven

dispatching rules and three different versions of the Shifting Bottleneck Procedure. We report in the adjacent

CPU column the computation time in seconds. This is the computation time taken by the method yielding

the best solution. In column SBD1 we report the best tardiness obtained by our procedure and in the

adjacent CPU column its computing time in seconds. We observe that for all the problems we have obtained

better solutions by using less computing time in almost all cases. In addition we report for every instance

a lower bound produced by using the one machine relaxation. This is obtained in the first iteration of the

Shifting Bottleneck Procedure. We observe that all the instances are infeasible.

In Tables 11 and 12 we report our results for other 80 instances generated from DMU1–DMU80 as

follows: for every instance we changed the due date (deadline in our case) of every job by adding to the old

due date the quantity 3(UB + LB)/4, where UB is the upper bound obtained by Demirkol, Mehta, Uzsoy

(1996), and LB is the corresponding lower bound. We call these instances BLSVk, where k = 1, . . . , 80. For

all these instances we obtained feasible schedules with respect to the deadlines. We report in column SBD1

the best makespan found by our procedure, in column CPU he corresponding CPU time in seconds and in

column LB the lower bound obtained by using the one machine relaxation.

Demirkol, Mehta, Uzsoy (1996) used a SUN SPARCserver 1000 Model 1104 with four 50Mhz CPUs and

256MB of RAM. Our algorithm was run on an alpha workstation.

9. REFERENCES

Adams, J., E. Balas and D. Zawack,1988, “The Shifting Bottleneck Procedure for Job Shop

Scheduling”, Management Science, 34, 391-401.

Balas, E., J.K. Lenstra and A. Vazacopoulos, 1995, “The One Machine Problem with Delayed

Precedence Constraints and its Use in Job Shop Scheduling”, Management Science, 41, 94-109.

Balas, E. and A. Vazacopoulos, 1994, “Guided Local Search and Shifting Bottleneck Procedure

for Job Shop Scheduling”, Management Science Research Report #MSSR-609, Graduate School of Industrial

Administration, Carnegie Mellon University, Pittsburgh.

Carlier, J., 1982, “The One-Machine Sequencing Problem”, European Journal of Operational Re-

search, 11, 42-47.

Demirkol, E., S. Mehta, R. Uzsoy, 1996, “Benchmarking for Shop Scheduling Problems”, Research

Memorandum No. 96-4, Purdue University.

Fisher, H., and G.L. Thompson, 1963, “Probabilistic Learning Combinations of Local Job-Shop

Scheduling Rules”, in Industrial Scheduling, J.F. Muth and G.L. Thompson (editors), Prentice-Hall, Engle-

wood Cliffs, NJ.

Leon, V.J., 1992, , personal communication.

Leon, V.J. and S.D. Wu, 1992, “On Scheduling with Ready-Times, Due-Dates and Vacations”,

Naval Research Logistics, 39, 53-65.

14

Table 1: Results for the One Machine Scheduling with Forbidden Times

Set A B C D E

1 205 555 45.16 86 0.22

2 132 285 33.68 78 0.20

3 95 268 53.47 84 0.23

4 232 467 25.68 44 0.08

5 229 566 19.05 32 0.07

A = Average number of nodes (LW)

B = Maximum number of nodes (LW)

C = Average number of nodes (BLSV)

D = Maximum number of nodes (BLSV)

E = Average CPU seconds (BLSV)

15

Table 2, n = 50.

rmax qmax λ1 λ2 A B C D E

5000 5000 1000 400 1.80 3.4000 8 0.0075 0.0170

5000 5000 1000 100 2.08 3.0800 6 0.0071 0.0170

5000 5000 500 400 2.84 3.0400 10 0.0068 0.0330

5000 5000 500 100 3.62 3.0800 10 0.0064 0.0330

4000 4000 1000 400 1.86 4.0400 12 0.0088 0.0170

4000 4000 1000 100 2.70 4.5600 12 0.0102 0.0330

4000 4000 500 400 2.70 4.0400 8 0.0085 0.0330

4000 4000 500 100 3.92 3.6000 10 0.0081 0.0330

3000 3000 1000 400 2.10 6.2000 22 0.0155 0.0500

3000 3000 1000 100 2.24 5.3200 20 0.0121 0.0670

3000 3000 500 400 3.08 7.0000 38 0.0168 0.0830

3000 3000 500 100 4.32 5.8400 16 0.0138 0.0500

2500 2500 1000 400 1.88 9.7600 22 0.0257 0.0670

2500 2500 1000 100 2.36 10.8800 90 0.0294 0.2670

2500 2500 500 400 3.00 9.8400 18 0.0251 0.0500

2500 2500 500 100 4.40 10.2800 32 0.0261 0.1000

4000 5000 1000 400 1.96 4.0000 14 0.0095 0.0330

4000 5000 1000 100 2.28 3.8000 8 0.0082 0.0170

4000 5000 500 400 3.20 4.2000 12 0.0098 0.0330

4000 5000 500 100 4.40 4.0000 12 0.0085 0.0330

3000 5000 1000 400 2.16 5.4000 18 0.0125 0.0330

3000 5000 1000 100 2.22 10.0800 216 0.0258 0.5670

3000 5000 500 400 3.00 5.6800 16 0.0141 0.0330

3000 5000 500 100 4.18 4.9600 12 0.0122 0.0330

2500 5000 1000 400 1.98 10.0400 20 0.0237 0.0500

2500 5000 1000 100 2.60 9.4800 26 0.0241 0.0670

2500 5000 500 400 2.86 9.9600 20 0.0251 0.0670

2500 5000 500 100 3.86 9.2400 24 0.0231 0.0670

A = Average forbidden times

B = Average nodes

C = Maximum nodes

D = Average CPU seconds

E = Maximum CPU seconds

16

Table 3. n = 50, Density = 2%

rmax qmax λ1 λ2 A B C D E

5000 5000 1000 400 1.80 3.56 10 0.0109 0.0330

5000 5000 1000 100 2.08 3.90 10 0.0112 0.0330

5000 5000 500 400 2.84 4.12 10 0.0139 0.0330

5000 5000 500 100 3.62 3.58 10 0.0128 0.0330

4000 4000 1000 400 1.86 4.48 30 0.0125 0.1170

4000 4000 1000 100 2.70 5.08 16 0.0148 0.0330

4000 4000 500 400 2.70 3.86 16 0.0111 0.0330

4000 4000 500 100 3.92 3.98 11 0.0112 0.0330

3000 3000 1000 400 2.10 7.10 28 0.0200 0.0830

3000 3000 1000 100 2.24 5.20 21 0.0148 0.0670

3000 3000 500 400 3.08 6.64 42 0.0178 0.1500

3000 3000 500 100 4.32 6.40 22 0.0181 0.0500

2500 2500 1000 400 1.88 12.78 268 0.0471 1.4000

2500 2500 1000 100 2.36 11.22 50 0.0294 0.1670

2500 2500 500 400 3.00 8.54 33 0.0244 0.1170

2500 2500 500 100 4.40 9.06 36 0.0277 0.1000

4000 5000 1000 400 1.96 5.46 16 0.0141 0.0500

4000 5000 1000 100 2.28 5.88 49 0.0168 0.1500

4000 5000 500 400 3.20 4.02 12 0.0111 0.0330

4000 5000 500 100 4.40 4.36 10 0.0115 0.0330

3000 5000 1000 400 2.16 4.94 14 0.0138 0.0330

3000 5000 1000 100 2.22 6.18 20 0.0182 0.0500

3000 5000 500 400 3.00 5.40 20 0.0165 0.0500

3000 5000 500 100 4.18 5.60 19 0.0165 0.0500

2500 5000 1000 400 1.98 6.96 44 0.0201 0.1330

2500 5000 1000 100 2.60 7.22 24 0.0204 0.0670

2500 5000 500 400 2.86 6.18 18 0.0184 0.0500

2500 5000 500 100 3.86 7.24 54 0.0208 0.1670

A = Average forbidden times

B = Average nodes

C = Maximum nodes

D = Average CPU seconds

E = Maximum CPU seconds

17

Table 4. n = 50, Density = 5%

rmax qmax λ1 λ2 A B C D E

5000 5000 1000 400 1.80 3.44 10 0.0128 0.0330

5000 5000 1000 100 2.08 3.50 12 0.0119 0.0330

5000 5000 500 400 2.84 3.60 8 0.0131 0.0330

5000 5000 500 100 3.62 3.48 10 0.0128 0.0330

4000 4000 1000 400 1.86 4.00 16 0.0138 0.0830

4000 4000 1000 100 2.70 4.08 10 0.0162 0.0500

4000 4000 500 400 2.70 4.02 12 0.0142 0.0330

4000 4000 500 100 3.92 3.78 10 0.0155 0.0330

3000 3000 1000 400 2.10 5.40 14 0.0201 0.0670

3000 3000 1000 100 2.24 4.60 16 0.0165 0.0670

3000 3000 500 400 3.08 5.30 12 0.0184 0.0500

3000 3000 500 100 4.32 4.52 14 0.0165 0.0500

2500 2500 1000 400 1.88 6.32 24 0.0211 0.0670

2500 2500 1000 100 2.36 7.26 28 0.0234 0.0830

2500 2500 500 400 3.00 6.24 14 0.0261 0.0670

2500 2500 500 100 4.40 5.94 31 0.0221 0.1500

4000 5000 1000 400 1.96 4.48 15 0.0191 0.0500

4000 5000 1000 100 2.28 4.66 36 0.0162 0.1170

4000 5000 500 400 3.20 3.50 14 0.0118 0.0330

4000 5000 500 100 4.40 3.74 11 0.0145 0.0500

3000 5000 1000 400 2.16 4.02 14 0.0138 0.0330

3000 5000 1000 100 2.22 3.90 10 0.0162 0.0330

3000 5000 500 400 3.00 4.20 12 0.0141 0.0330

3000 5000 500 100 4.18 4.02 10 0.0152 0.0330

2500 5000 1000 400 1.98 3.90 10 0.0141 0.0330

2500 5000 1000 100 2.60 5.26 16 0.0191 0.0670

2500 5000 500 400 2.86 5.34 11 0.0204 0.0500

2500 5000 500 100 3.86 5.30 32 0.0185 0.0830

A = Average forbidden times

B = Average nodes

C = Maximum nodes

D = Average CPU seconds

E = Maximum CPU seconds

18

Table 5. n = 50, Density = 10%

rmax qmax λ1 λ2 A B C D E

5000 5000 1000 400 1.80 3.28 8 0.0174 0.0500

5000 5000 1000 100 2.08 3.34 12 0.0192 0.0500

5000 5000 500 400 2.84 2.90 10 0.0152 0.0330

5000 5000 500 100 3.62 3.30 10 0.0204 0.0500

4000 4000 1000 400 1.86 3.78 8 0.0244 0.0500

4000 4000 1000 100 2.70 4.28 13 0.0240 0.0670

4000 4000 500 400 2.70 3.70 10 0.0224 0.0500

4000 4000 500 100 3.92 3.12 10 0.0198 0.0330

3000 3000 1000 400 2.10 4.14 8 0.0243 0.0500

3000 3000 1000 100 2.24 4.34 10 0.0260 0.0500

3000 3000 500 400 3.08 4.32 16 0.0234 0.0830

3000 3000 500 100 4.32 3.92 14 0.0247 0.0670

2500 2500 1000 400 1.88 4.62 18 0.0274 0.1000

2500 2500 1000 100 2.36 4.32 11 0.0267 0.0500

2500 2500 500 400 3.00 5.30 16 0.0313 0.0670

2500 2500 500 100 4.40 5.44 36 0.0320 0.1830

4000 5000 1000 400 1.96 3.26 7 0.0194 0.0330

4000 5000 1000 100 2.28 3.40 14 0.0207 0.0500

4000 5000 500 400 3.20 3.48 20 0.0184 0.0830

4000 5000 500 100 4.40 3.30 10 0.0188 0.0330

3000 5000 1000 400 2.16 3.90 18 0.0227 0.0670

3000 5000 1000 100 2.22 3.64 12 0.0204 0.0670

3000 5000 500 400 3.00 3.36 8 0.0201 0.0500

3000 5000 500 100 4.18 3.32 8 0.0185 0.0670

2500 5000 1000 400 1.98 3.56 11 0.0218 0.0670

2500 5000 1000 100 2.60 4.76 32 0.0277 0.1330

2500 5000 500 400 2.86 3.82 12 0.0241 0.0500

2500 5000 500 100 3.86 3.60 8 0.0231 0.0500

A = Average forbidden times

B = Average nodes

C = Maximum nodes

D = Average CPU seconds

E = Maximum CPU seconds

19

Table 6

day DO SO TO T

Tu 2 27 27

We 3 35 35

Th 4 44 48

Fr 5 97 121

Mo 8 40 133 1 60

Tu 9 13 121

We 10 19 119 5 286

Th 11 41 133

Fr 12 38 38

Mo 15 43 49

Tu 16 89 112

We 17 34 90

Th 18 23 83 2 466

Fr 19 28 72 6 421

Mo 22 127 172

Tu 23 33 60 4 312

We 24 17 34

Th 25 24 33

Fr 26 42 51

Mo 29 38 56

Tu 30 28 43

We 31 31 34

DO = Number of Day Operations (operations arrived on that day)

SO = Number of Scheduled Operations (operations whose schedule has been computed on that day)

TO = Number of Tardy Operations on that day

T = Maximum tardiness on that day

20

Table 7

20 Jobs 15 Machines 30 Jobs 15 Machines

Problem DMU CPU SBD1 CPU LB Problem DMU CPU SBD1 CPU LB

DMU1 1448 157 1271 145 1027 DMU41 1379 401 1295 133 1185

DMU2 1552 145 1459 135 1127 DMU42 1459 315 1308 167 1263

DMU3 1492 155 1396 127 1160 DMU43 1441 394 1270 108 1255

DMU4 1464 143 1263 175 1140 DMU44 1360 255 1209 134 1205

DMU5 1501 157 1304 98 1182 DMU45 1483 394 1386 142 1320

DMU6 2090 132 1817 85 1769 DMU46 2810 631 2455 108 2240

DMU7 2092 123 1873 39 1775 DMU47 3029 648 2526 85 2436

DMU8 2246 155 2020 37 1956 DMU48 2311 611 1982 59 1935

DMU9 2181 152 1949 37 1925 DMU49 2940 605 2601 115 2475

DMU10 1785 137 1636 15 1599 DMU50 2531 493 2320 77 2169

DMU11 1957 162 1908 118 1575 DMU51 2750 521 2493 191 2252

DMU12 2100 130 1976 131 1727 DMU52 2347 537 2157 192 2042

DMU13 2165 158 2000 11 1785 DMU53 2470 484 2339 124 2189

DMU14 1839 144 1726 121 1521 DMU54 2496 472 2366 194 2224

DMU15 2143 118 1968 110 1858 DMU55 2666 447 2549 184 2401

DMU16 1682 149 1541 119 1282 DMU56 2433 571 2149 183 1734

DMU17 2174 160 1877 123 1688 DMU57 2678 661 2377 133 2068

DMU18 2381 146 2118 119 1894 DMU58 2515 672 2212 141 1960

DMU19 1943 180 1778 93 1596 DMU59 2380 516 2195 133 1922

DMU20 2018 143 1762 77 1663 DMU60 2510 456 2196 149 2075

21

Table 8

20 Jobs 20 Machines 30 Jobs 20 Machines

Problem DMU CPU SBD1 CPU LB Problem DMU CPU SBD1 CPU LB

DMU21 2013 399 1911 174 1391 DMU61 1816 1238 1587 335 1268

DMU22 1708 345 1583 145 1182 DMU62 1952 1166 1656 269 1412

DMU23 1962 369 1756 147 1366 DMU63 2173 1210 1846 303 1575

DMU24 2248 340 2023 205 1569 DMU64 2237 1073 1880 202 1710

DMU25 1753 367 1576 158 1226 DMU65 2094 1239 1855 317 1611

DMU26 2631 281 2249 91 2147 DMU66 3260 1162 2527 223 2314

DMU27 2842 338 2533 126 2376 DMU67 3577 1133 3023 226 2713

DMU28 2465 336 2199 81 2106 DMU68 3601 1096 2897 142 2817

DMU29 2835 313 2469 10 2469 DMU69 3021 1130 2641 246 2386

DMU30 2712 274 2378 9 2378 DMU70 2896 1 2315 42 2292

DMU31 2638 392 2431 192 1776 DMU71 2953 1264 2669 318 2178

DMU32 2647 415 2247 179 1868 DMU72 3032 1048 2780 361 2298

DMU33 2535 356 2392 189 1845 DMU73 3116 1106 2766 303 2461

DMU34 2627 395 2429 172 1927 DMU74 3074 1025 2873 272 2496

DMU35 2640 369 2391 165 1947 DMU75 3104 902 2833 285 2562

DMU36 2617 345 2344 146 1982 DMU76 2959 1370 2349 340 2061

DMU37 3118 401 2621 128 2419 DMU77 3106 1181 2560 211 2254

DMU38 3029 388 2567 109 2401 DMU78 3409 1139 2781 228 2485

DMU39 2851 383 2651 111 2294 DMU79 3330 1046 2713 224 2570

DMU40 2966 390 2720 112 2518 DMU80 3088 1179 2514 198 2412

22

Table 9

40 Jobs 15 Machines 50 Jobs 15 Machines

Problem DMU CPU SBD1 CPU LB Problem DMU CPU SBD1 CPU LB

DMU81 1431 1199 1308 212 1191 DMU121 1419 2822 1072 381 1050

DMU82 1787 1155 1630 311 1533 DMU122 1545 1193 1418 330 1418

DMU83 1468 806 1308 185 1299 DMU123 2042 1331 1983 201 1957

DMU84 1648 1011 1601 162 1542 DMU124 1764 1528 1707 267 1707

DMU85 1527 456 1527 76 1460 DMU125 1804 1605 1757 150 1757

DMU86 2397 1509 1706 128 1563 DMU126 3024 4943 2364 251 2217

DMU87 2459 2030 1923 187 1669 DMU127 3102 4619 2346 133 2284

DMU88 2053 1792 1589 114 1545 DMU128 2834 5714 2301 122 2192

DMU89 2191 2168 1746 81 1695 DMU129 2692 4212 2154 207 2085

DMU90 2420 1720 1940 37 1936 DMU130 2661 4095 2195 107 2137

DMU91 3093 1180 2911 204 2893 DMU131 3492 2238 3216 273 3216

DMU92 2894 928 2855 128 2815 DMU132 3525 1723 3397 228 3391

DMU93 3120 642 3048 43 3048 DMU133 3466 1526 3396 332 3396

DMU94 2875 831 2854 78 2818 DMU134 3220 1188 3181 389 3181

DMU95 2924 841 2878 146 2878 DMU135 3316 1556 3281 237 3277

DMU96 3042 1574 2575 269 2125 DMU136 3338 3816 2724 375 2323

DMU97 2617 1855 2125 269 1836 DMU137 3415 1 2812 329 2464

DMU98 2539 2308 2234 231 1896 DMU138 3186 1 2615 272 2381

DMU99 2767 1577 2350 242 2119 DMU139 3130 4027 2619 342 2345

DMU100 2641 1709 2275 208 2038 DMU140 3307 5608 2775 434 2486

23

Table 10

40 Jobs 20 Machines 50 Jobs 20 Machines

Problem DMU CPU SBD1 CPU LB Problem DMU CPU SBD1 CPU LB

DMU101 2058 2800 1679 461 1395 DMU141 2181 5657 1757 551 1591

DMU102 2337 2940 1810 481 1597 DMU142 2390 6402 1948 743 1746

DMU103 2143 2526 1888 326 1640 DMU143 2355 4870 2007 551 1794

DMU104 1834 2602 1643 394 1411 DMU144 2219 4888 1912 464 1845

DMU105 2212 2460 1941 499 1835 DMU145 2142 4612 1881 608 1786

DMU106 3444 1 2630 180 2610 DMU146 3455 1 2595 361 2363

DMU107 3862 2280 3146 204 2964 DMU147 3385 1 2445 176 2440

DMU108 3565 3258 2819 192 2798 DMU148 3898 9540 2914 305 2824

DMU109 3895 2672 3071 38 3059 DMU149 3852 1 3044 327 2918

DMU110 3064 2336 2500 98 2441 DMU150 4091 6795 3229 287 3205

DMU111 3430 2784 3051 405 2827 DMU151 3788 7068 3277 467 3189

DMU112 3691 2823 3360 437 3113 DMU152 3875 7102 3504 552 3419

DMU113 3366 2449 3043 496 2843 DMU153 3789 4632 3522 435 3407

DMU114 3572 2384 3273 468 3025 DMU154 3971 4140 3708 246 3642

DMU115 3535 1978 3334 380 3129 DMU155 3758 4570 3562 547 3527

DMU116 3985 4245 3310 431 2687 DMU156 4042 5504 3142 602 2628

DMU117 3154 1 2443 362 2234 DMU157 4184 1 3347 550 2774

DMU118 3469 1 2788 387 2479 DMU158 3712 7791 3020 473 2500

DMU119 3560 5717 3071 438 2643 DMU159 3649 7573 3099 636 2472

DMU120 3540 3044 3038 431 2673 DMU160 3762 5752 3072 614 2551

24

Table 11

20 Jobs 15 Machines 30 Jobs 15 Machines

Problem SBD1 CPU LB Problem SBD1 CPU LB

BLSV1 2724 320 2427 BLSV41 3545 311 3473

BLSV2 2874 412 2532 BLSV42 3523 401 3457

BLSV3 2736 255 2520 BLSV43 3417 318 3408

BLSV4 2856 246 2646 BLSV44 3465 92 3465

BLSV5 2774 295 2689 BLSV45 3469 315 3427

BLSV6 2717 36 2717 BLSV46 3721 32 3721

BLSV7 3077 16 3077 BLSV47 3811 300 3691

BLSV8 2791 323 2750 BLSV48 3603 292 3587

BLSV9 2792 214 2564 BLSV49 3536 608 3344

BLSV10 2625 264 2407 BLSV50 3730 584 3635

BLSV11 2745 245 2467 BLSV51 3689 441 3560

BLSV12 2831 254 2583 BLSV52 3458 43 3458

BLSV13 2802 177 2617 BLSV53 3549 401 3463

BLSV14 2595 225 2473 BLSV54 3594 219 3550

BLSV15 2851 327 2749 BLSV55 3867 351 3824

BLSV16 2831 253 2576 BLSV56 3975 500 3671

BLSV17 2707 309 2438 BLSV57 3454 178 3454

BLSV18 3021 75 2984 BLSV58 3756 281 3590

BLSV19 2693 307 2446 BLSV59 3852 324 3829

BLSV20 2851 342 2547 BLSV60 3663 182 3628

25

Table 12

20 Jobs 20 Machines 30 Jobs 20 Machines

BLSV21 3327 362 2758 BLSV61 3773 944 3580

BLSV22 3213 276 2704 BLSV62 3719 874 3498

BLSV23 3168 268 2694 BLSV63 3993 879 3707

BLSV24 3429 357 2905 BLSV64 3976 428 3966

BLSV25 3008 250 2618 BLSV65 4000 941 3705

BLSV26 3302 272 2978 BLSV66 4153 988 3666

BLSV27 3378 314 3046 BLSV67 3930 467 3843

BLSV28 3164 339 2936 BLSV68 4066 293 4017

BLSV29 3106 240 2699 BLSV69 4167 823 3930

BLSV30 3100 324 2829 BLSV70 4095 1023 3827

BLSV31 3162 336 2634 BLSV71 3887 858 3430

BLSV32 3186 284 2751 BLSV72 3941 954 3544

BLSV33 3198 389 2698 BLSV73 3955 730 3665

BLSV34 3166 337 2707 BLSV74 4193 910 3936

BLSV35 3161 306 2828 BLSV75 4038 1093 3826

BLSV36 3213 265 2831 BLSV76 4021 751 3664

BLSV37 3450 287 2917 BLSV77 3841 865 3460

BLSV38 3242 286 2712 BLSV78 4203 611 4103

BLSV39 3387 428 3003 BLSV79 4069 700 3996

BLSV40 3251 329 2821 BLSV80 3845 1058 3547

26

Figure 3 - a

Figure 3 - b

27

Figure 3 - c

Figure 3 - d

28

