
A time-indexed LP-based approach
for min-sum job-shop problems

Giuseppe Lancia, Franca Rinaldi and Paolo Serafini
University of Udine, Dept. of Mathematics and Computer Science, Via delle Scienze 206, Udine, Italy,

{giuseppe.lancia,franca.rinaldi,paolo.serafini}@uniud.it

Abstract: In this paper we propose two time-indexed IP formulations for job-shop scheduling problems with
a min-sum objective. The first model has variables associated to job scheduling patterns. The exponential
number of variables calls for a column generation scheme which is carried out by a dynamic programming
procedure. The second model is of network flow type with side constraints. This model can be strengthened
by adding cutting inequalities of clique type. It turns out that the two models are equivalent, since the
dual of the second formulation is equivalent to the compact dual of the first model. However, they require
significantly different solution approaches and may behave differently in terms of computing time and memory
usage. Good upper bounds are found by a heuristic procedure that randomly generates schedules from
fractional solutions. These features allow for an effective pruning of the branch-and-bound tree and narrowing
the gap between lower and upper bounds. However, the size of both models is critically affected by the time-
indexed formulation which may heavily slow down the computation.

Keywords:job-shop, flow-shop, total weighted completion time, time-indexed formulation.

1 Introduction

The job-shop problem has been extensively studied in the last three decades especially in the formulation of
makespan minimization. Although there are good heuristic procedures based on local search (for instance,
the celebrated shifting bottleneck procedure [1] for the makespan minimization is a local search with a very
large neighborhood), the performance of exact procedures has never been satisfying. The hardness of the
job-shop problem, even with respect to other NP-hard problems, has been soon recognized [18] and it is
widely believed that large-size instances cannot be solved exactly unless a huge amount of computing time
is used [8].

The job-shop problem we consider has the objective of minimizing the total job cost, i.e., the sum
of the penalties on the job completion times. We do not make any assumption on the type of function
measuring the penalty, and earliness/tardiness penalties can be easily accommodated as well as release dates
and deadlines. As remarked above, much of the research on job-shop problems has been devoted to the
makespan minimization (see the surveys [5, 17, 7, 24] and the papers cited therein) and a relatively smaller
number of papers has investigated the version of minimizing the total cost [10, 25, 13]. Furthermore only
few papers have considered non regular objective functions, i.e., functions non monotonic with respect to
completion times [11, 12, 3].

We introduce two time-indexed formulations, i.e., formulations in which the time is discretized into a
finite number of time slots and constraints and variables are possibly associated with each time slot.

The first formulation, already presented in [19] in a preliminary form, is an ILP model with column gen-
eration, in which each column is a scheduling pattern for all operations of a job. This way the combinatorial
structure implicit in the operation sequences for each job is already embedded in the matrix columns. The
machine constraints are taken care of by typical ILP inequalities and there are also assignment constraints
to impose the selection of exactly one pattern for each job. The fact that part of the combinatorial structure

1

is embedded in the ILP matrix, a feature typical of ILP formulations with column generation, provides a
reliable lower bound to the LP relaxation.

The second formulation, first presented in [20], is a network flow model in which flows are associated to
schedules of single operations. The network structure embeds the operation sequence constraints for each
job. The machine constraints are added to the network flow constraints.

The integrality relaxations of the two models have the same value. This fact can be proven directly,
and it is also due to the fact that the second model can be derived from the first one by exploiting duality.
Indeed, the dual of the first model can be compactly rewritten and the dual of this compact formulation is
nothing but the network flow model.

The second model allows for adding cutting inequalities derived by an equivalent stable set problem with
clique inequalities. A large number of clique inequalities are already embedded into the two models, and this
explains why the gap between the lower bound and the optimal value is not large. The violation of a class of
other clique inequalities can be easily identified. Clearly, adding violated inequalities makes the lower bound
stronger, but slows down the computation and one should consider the trade-off between these two aspects.

Furthermore, from each fractional solution of both models we derive feasible schedules by a randomized
procedure followed by a local search. This heuristic tool is essential in having quickly good solutions (most of
the times it finds the optimal solution or a (very) good upper bound in the first levels of the branch-and-bound
tree).

All these features have a positive effect in narrowing the gap between lower and upper bounds to the
optimal solution and therefore in pruning the nodes of the branch-and-bound tree. However, both models
suffer from the large size of the LP models due to the time-indexed formulation. If the time unit is small in
comparison to the time horizon the size of the problems that can be solved is greatly reduced.

In this paper we do not claim to be able to solve exactly large-size instances. Indeed, we support
the general belief that large-size job-shop instances defy exact solution in reasonable computing time [8].
However, we also think that small steps towards understanding the job-shop structure followed by small
improvements in computing time have their value. Maybe in the future the problem will be successfully
tackled by exploiting a large number of different tools. For instance, the recently developed techniques,
known as matheuristics, call for complex recipes in which smaller subproblems are solved exactly by means
of mathematical programming tools (see [21] for an updated and comprehensive survey). The job-shop could
be tackled by these techniques within which exact models like the one proposed in this paper could prove
very useful.

Among other promising approaches for the solution of job-shop scheduling problems we recall constraint
programming [6, 4] and a number of heuristic procedures, such as local search metaheuristics [27, 23, 31],
or hybrid procedures that combine local search and constraint programming approaches [2]. The heuristic
procedures are essential in solving large-size instances, but they are also useful within exact techniques.
Indeed, as already remarked, finding good incumbents as soon as possible is mandatory and this can be
achieved by exploiting ideas from heuristics.

The models presented in this paper allow to solve exactly in a few seconds instances of size up to 5 jobs
and 5 machines and in a few minutes instances with unit processing times of up to 10 jobs and 10 machines.
Larger size instances require a much larger computing time to close the gap between upper and lower bounds.
However, we may stop the computation at an early stage with a small gap in the hope that the upper bound
is the optimum. We provide computational experiments which show the behavior of the approach. However,
we point out that our code is just an academic prototype. It is possible that by profiling and optimizing
our implementation, using more powerful computers and/or faster LP engines, the computing times can be
considerably reduced.

We stress the fact that our models can deal with weighted earliness-tardiness penalties in the same way

2

they deal with the sum of completion times. This is a positive feature typical of time-indexed formulations.
We also note that both models can be immediately extended to deal with some variants of the job-shop, like
the no-wait job-shop scheduling. In this case the problem size is even smaller.

The positive aspects of time-indexed formulations for scheduling problems have been pointed out in
[29]. The first time-indexed formulation is due to [15] for a one machine problem. The idea of using column
generation for scheduling problems has been already exploited (see [28, 29]). In [28] a single machine problem
is studied and a time-indexed formulation is turned into a more compact model by exploiting the structure
of single machine problems. In [29], a problem with identical machines and several jobs is investigated,
and variables are associated to single machine scheduling patterns. In the above papers the computational
burden of a time-indexed formulation can be successfully avoided. However, for more complex cases with
many operations and machines, like the job-shop problem, there does not seem to be an easy way to escape
from the many constraints of a time-indexed formulation.

The idea of using Lagrangian relaxation to split job precedences and machine constraints has been
successfully used in [3] for the job-shop problem with earliness and tardiness costs. Actually, there are
strong similarities between our model and one of the two models presented in [3], although the starting
points of the two approaches and the solution techniques are quite different.

The paper is organized as follows. In Section 2 we define the type of job-shop problem we deal with. In
Section 3 we present the integer LP model based on column generation. In Section 4 we introduce the compact
network flow model. In Section 5 we investigate some cutting inequalities derived by a particular class of
violated clique inequalities. In Section 6 we provide a small example to illustrate the cutting inequalities. In
Section 7 we describe the heuristic procedure to generate schedules starting from fractional solutions of both
models. In Section 8 we present some computational results. Finally, some conclusions follow in Section 9.

2 The job-shop problem

In the job-shop problem, a set M of m machines and a set J of n jobs are given. Every job j ∈ J consists
of a given sequence of n(j) operations Oj

1 → · · · → Oj
k → · · · → Oj

n(j) and each operation Oj
k has to be

processed without preemption on the machine µ(j, k) with a known processing time q(j, k) > 0. A feasible
schedule of the jobs in J is a set of completion times t(j, k) associated to each operation Oj

k such that: (i) the
job precedence relations of the operations are respected and (ii) operations associated to the same machine
do not overlap in time. It is not excluded that a machine can process more than one operation for the same
job.

We assume that, for each job j ∈ J and k := 1, . . . , n(j), a function

fjk : R → R ∪ {+∞}, t(j, k) 7→ fjk(t(j, k)) (1)

is defined assigning a penalty to each operation completion time. The function fjk(t) takes on value +∞
when its argument t is an infeasible completion time for operation Oj

k (clearly, +∞ can be replaced by a
suitably large number in an implementation, in fact any value larger than an upper bound to the optimum).

The cost of a feasible schedule is defined as the following separable objective function

∑
j∈J

n(j)∑
k=1

fjk(t(j, k)). (2)

The functions fjk can model release dates rjk and deadlines djk for each operation by setting fjk(t) = +∞
for t < rjk + q(j, k) and t > djk, respectively. Fixed idle times of the machines can be dealt with by similar
techniques.

3

We consider the problem of finding a feasible schedule of minimum cost. As usual, we assume that all
data are integer, being integer multiples of a given time unit. As a consequence, we may restrict our attention
to integral completion times t(j, k).

3 A column generation model

In a discrete-time framework, we denote by [a, b] the set of integers {z ∈ Z : a ≤ z ≤ b} and call it time
interval. A scheduling pattern (or simply a pattern) p for the job j ∈ J is a sequence of n(j) time intervals
[s(j, k), t(j, k)], 1 ≤ k ≤ n(j) with t(j, k− 1) ≤ s(j, k) for each 2 ≤ k ≤ n(j) and t(j, k)− s(j, k) = q(j, k) for
each k. A scheduling pattern defines for each operation k of a job its starting time s(k) and its ending time
t(k). The cost of a pattern is given by

c(p) =
n(j)∑
k=1

fjk(t(j, k)). (3)

Note that a pattern is a particular schedule of the job operations. If p is a pattern for job j, we denote
by t(p) the completion time of the last operation of the pattern, i.e. t(p) := t(n(j)).

Let T be a value for the time horizon. We assume that T is sufficiently large to contain an optimal
schedule. We comment on this assumption in the next section. Let us denote by P j the set of patterns for
job j with t(p) ≤ T .

We associate to each pattern p in P j an m T -dimensional {0, 1}–vector ap with m fields of length T , one
for each machine h ∈ M . The t-th entry of the h-th field ap

h,t is 1 if and only if the operation of the job
which must be executed by machine h is processed in the time slot [t− 1, t]. In other words, for each k and
for each t, the component ap

µ(j,k),t is 1 if and only if s(j, k) + 1 ≤ t ≤ t(j, k).
Now we associate a binary variable xp to each pattern p of P j , with the meaning that xp = 1 if and only

if the job j is scheduled according to the pattern p. Then the job-shop problem with total cost objective
may be formulated as the following binary linear programming problem:

BP:

min
∑
j∈J

∑
p∈P j

c(p)xp∑
p∈P j

xp = 1 j ∈ J (4)

∑
j∈J

∑
p∈P j

ap
h,t xp ≤ 1 h ∈ M, t = 1, . . . T (5)

xp ∈ {0, 1} p ∈ P j , j ∈ J. (6)

Constraints (4) state that each job has to be scheduled according to exactly one pattern and are thus
called assignment constraints. Conditions (5) guarantee that each machine processes no more than one job
at a time and are called machine constraints. Finally, we have the binary conditions (6) on the variables.
The integrality relaxation of BP, where constrains (6) are replaced by xp ≥ 0 for each p ∈ P j , j ∈ J , will
be denoted as RP (note that the condition xp ≤ 1 is not needed, as it is implied by (4)). BP contains a
constraint matrix having |J |+m T rows and an exponential number of columns, one for each feasible pattern
of each job. In order to solve RP, one has to resort to a column generation approach.

4

3.1 The pricing procedure

Let us denote by u(j) the dual variable corresponding to the j-th assignment constraint and by v(h, t) ≤ 0
the dual variable corresponding to machine h and the time slot [t − 1, t]. Moreover for job j, operation
k ∈ {1, . . . , n(j)} and pattern p ∈ P j , let us denote by s(j, k, p) the starting time of operation k within
pattern p. Then the dual of RP is the following problem:

DP:

max
∑
j∈J

u(j) +
∑
h∈M

T∑
t=1

v(h, t)

u(j)−
n(j)∑
k=1

s(j,k,p)+q(k,j)∑
t=s(j,k,p)+1

(−v(µ(j, k), t)) ≤ c(p) p ∈ P j , j ∈ J

v(h, t) ≤ 0.

(7)

Let û and v̂ denote the optimal dual variables of a reduced RP, i.e., a subproblem of RP containing all
the constraints and only the columns generated so far. Then checking dual feasibility (and hence primal
and dual optimality) is carried out by solving the following n independent problems, one for each job j, and
checking non-negativity of the result:

−û(j) + min
p∈P j

c(p) +
n(j)∑
k=1

s(j,k,p)+q(j,k)∑
t=s(j,k,p)+1

(−v̂(µ(j, k), t)). (8)

The pricing problem (8) can be solved for each job j by a forward dynamic programming procedure. We first
note that, apart from the constant û(j), the reduced cost of a pattern p ∈ P j is given by its original cost c(p)
augmented by the sum of the dual variables associated to the time slots when the operations are processed
according to p. So we may interpret each value −v̂(h, t) as an additional cost on the use of machine h in
the time interval [t − 1, t]. Let ṽ(k, t) :=

∑t
τ=t−q(k)+1(−v̂(µ(k), τ)) (here and in the sequel we occasionally

simplify the notation by dropping the dependence on j).
In order to solve (8), we define labels

V (k, t), 0 ≤ k ≤ n(j), q(k) ≤ t ≤ T − q(k)

where

q(k) :=
k∑

h=1

q(h), q(k) :=
n(j)∑

h=k+1

q(h).

Each V (k, t) represents the minimum reduced cost of a pattern consisting of the first k operations and
completing the k-th operation within t.

We conventionally set V (0, t) := 0 for each t and initialize the other values as V (k, t) := +∞. Then the
labels V (k, t) can be recursively computed, for k := 1, . . . , n(j) and q(k) ≤ t ≤ T − q(k), as

V (k, t) = min{V (k, t− 1), V (k − 1, t− q(k)) + ṽ(k, t) + fjk(t)} (9)

where the two terms in the above expression represent the minimum reduced cost of patterns which complete
the k-th operation before t and exactly at time t, respectively (it is understood that for some values of k

and t one of the two terms may be missing in (9)). As a consequence, for any time t, the minimum reduced
cost of a pattern p ∈ P j with t(p) ≤ t is given by V (n(j), t)− û(j).

From the computational point of view, it is clearly convenient to work with values of T as small as
possible. On the other side, if the optimal solutions have completion times larger than T , they cannot

5

be produced if T is chosen too small. In order to be sure that optimal solutions are not lost with the
chosen time horizon T , the following result can be useful. Given the current optimal solution x of RP,
let T (x) := min{τ : v̂(h, t) = 0 for each h ∈ M, t > τ}. Note that, by the complementarity conditions,
T (x) ≤ max{t(p) : xp > 0}.

Proposition 1: Let us assume that the functions fjk(t) are non decreasing for t ≥ T (x). If, for each j ∈ J ,
T (x) +

∑n(j)
k=1 q(k) ≤ T , then x is an optimal solution of RP for any time horizon larger than T (x).

Proof: Let us extend the time horizon and consider a pattern p ∈ P j with t(p) > T . By extending the
time horizon the dual variables associated to times t > T are zero. Let τ(1), . . . , τ(n(j)) be the completion
times of the different operations of the pattern p. Denote by 0 ≤ k < n(j) the maximum index for which
τ(k)− q(k) + 1 ≤ T (x). Since v(k, t) = 0 for each t > T (x) (so that ṽ(k, τ(k)) = 0 for k > k) it follows that

c(p) = −û(j) +
k∑

k=1

ṽ(k, τ(k)) +
k∑

k=1

fk(τ(k)) +
n(j)∑

k=k+1

fk(τ(k)).

In particular, because of the optimality of labels V (k, t), we have

c(p) ≥ −û(j) + V (k, τ(k)) +
n(j)∑

k=k+1

fk(τ(k)).

Finally, the hypothesis on the functions fk implies that

c(p) ≥ −û(j) + V (k, τ(k)) +
n(j)∑

k=k+1

fk

(
τ(k) +

k∑
i=k+1

q(i)
)
.

Now the right hand side of the above expression corresponds to the reduced cost of a pattern p̂ which
completes the k-th operation in τ(k) at a cost V (k, τ(k)) and the following operations afterwards without
idle times. Since p̂ completes the last operation of job j within time T (x) +

∑n(j)

k=k
q(k) ≤ T , c(p̂) ≥ 0 by

hypothesis. Therefore c(p) ≥ c(p̂) ≥ 0.

The previous proposition has two different implications. On one side, we may reduce the time horizon to
maxj T (x) +

∑n(j)

k=k
q(k) if the current time horizon T is larger than needed. This way the computing time

is not heavily affected by the initial choice of T . On the other side, it tells how to reset T if it has been
underestimated.

3.2 The overall branch and price

Problem BP can be solved by a branch and price procedure based on its LP relaxation. We remark that,
because of the column generation approach, the classical rule of branching on fractional components of the
optimal solution of the relaxation cannot be used in this case. Indeed, while a branching constraint that fixes
a variable xp to 1 can be easily handled in the solution of the subproblems, a constraint xp = 0 cannot be
enforced. In particular, it could happen that a pattern fixed to 0 in a subproblem turns out to be the optimal
solution of the pricing problem returned by the dynamic procedure. In order to overcome this difficulty, we
have chosen to adopt the following branching rule.

At each node i of the tree search a time interval [σ(j, k, i), τ(j, k, i)] is defined for each job j and each
operation k of job j. At the root node σ(j, k, i) = 0, τ(j, k, i) = T . The set of the feasible patterns is
restricted to those elements in P j which complete every operation k = 1, . . . , o(j) in [σ(j, k, i), τ(j, k, i)].

6

Since this restriction simply corresponds to assign release and due dates to the different operations, it may
be modeled by updating the values of the penalty functions fk,j according with

fk,j(t) = +∞ ∀t /∈ [σ(j, k, i), τ(j, k, i)].

This way the pricing procedure generates patterns of minimum reduced cost which are feasible in the node.
Let now x be an optimal fractional solution of the linear relaxation solved in the node i and define

Rj = {p ∈ P j : 0 < xp < 1}. Since x is fractional, the set J(x) = {j ∈ J : |Rj | ≥ 2} is not empty. Take any
job j ∈ J(x). There exists at least one operation k(j) whose completion time is different in two patterns of
Rj . Let t(p, k(j)) be the completion time of the operation k(j) for pattern p. Then t̂ =

∑
p∈Rj t(p, k(j))xp is

the average completion time of the operation k(j). We branch at node i by creating two subproblems i′ and
i′′. We restrict the set of the feasible patterns of job j to those completing the operation k(j) not later than
t̂ in one subproblem, and in the other subproblem strictly later than t̂. These restrictions are accomplished
by defining τ [ĵ, k̂, i′] = t̂ and σ[ĵ, k̂, i′′] = t̂ + 1.

Before solving the relaxations corresponding to the new subproblems one has to eliminate from the
formulation the patterns which are not any more feasible with respect to the last branching constraint.

4 A network flow model

We have found that a large number of columns need to be generated before reaching optimality in RP and
this affects the computing times. In order to overcome this difficulty, we have reformulated RP in a compact
way with size polynomial in the number of jobs and machines, and pseudopolynomial in the processing times.
The new model is based on network flow properties.

We define a network G = (N,E) as follows. The node set N of G is given by

N =
{
(j, k, t) : j ∈ J, 0 ≤ k ≤ n(j), q(j, k) ≤ t ≤ T − q(j, k)

}
,

where, as before, q(j, k) :=
∑k

h=1 q(j, h) and q(j, k) :=
∑n(j)

h=k+1 q(j, h). The nodes of G can be partitioned
into levels L(j, k), j ∈ J and 0 ≤ k ≤ n(j) where each level L(j, k), k > 0, contains a node (j, k, t) for each
possible completion time t of the k-th operation of j and each level L(j, 0) contains a node (j, 0, t) for each
possible starting time of the first operation.

In the network there are n source-sink pairs. The sources are the nodes sj := (j, 0, 0,) and the sinks are
the nodes dj := (j, n(j), T).

The graph contains arcs of two types. The arcs of

E0 :=
{
((j, k, t− 1), (j, k, t)) : j ∈ J, 0 ≤ k ≤ n(j), q(j, k) < t ≤ T − q(j, k)

}
are called idle arcs and connect nodes of the same level corresponding to consecutive time instants, while
the arcs of

E1 :=
{
((j, k − 1, t− q(j, k)), (j, k, t)) : j ∈ J, 0 < k ≤ n(j), q(j, k) ≤ t ≤ T − q(j, k)

}
are called active arcs and connect nodes in consecutive levels L(j, k−1) and L(j, k) with time labels differing
for the processing time of the operation (j, k). Let E = E0∪E1. The network G has n connected components,
one for each job. Since each node (j, k, t) is the end node of at most one idle arc and at most one active arc,
we denote the arcs in E0 by e0(j, k, t) and the arcs in E1 by e1(j, k, t), i.e. by simply using the same labels
of the end node of the arcs. We associate to each arc a cost defined by

c(e0(j, k, t)) = 0, c(e1(j, k, t)) = fjk(t).

7

(a) CRP with two jobs, two operations per job and time horizon T = 12

(b) arcs entering the bundle constraints for machine 1 and time 4

(c) optimal solution

(d) arcs corresponding to a clique in G1 for nodes (1, 1, 4), (1, 1, 7), (2, 1, 7)

Figure 1: The network flow model for two jobs and four operations

8

Let ξ0(j, k, t) and ξ1(j, k, t) be flow variables associated to the arcs e0(j, k, t) and e1(j, k, t) respectively.
The idea is to send one flow unit from each source sj to each sink dj . If the flow is integral it gives rise to a
path sj → dj which can be interpreted as a scheduling of the job j. Each arc e1(j, k, t) traversed by the flow
corresponds to scheduling the operation k of job j with completion time t, i.e. t(j, k) =

{
t : ξ(e1(j, k, t)) = 1

}
.

In order to have a feasible flow for the machine constraints we have to introduce specific constraints, that
we call bundle constraints. The resulting integer linear program is the following problem

CBP

min
∑

(j,k,t)

fjk(t) ξ1(j, k, t)

ξ0(j, k, t) + ξ1(j, k, t) = ξ0(j, k, t + 1) + ξ1(j, k + 1, t + q(j, k + 1)) ∀(j, k, t) 6= (j, 0, 0) = sj

6= (j, n(j), T) = dj

ξ0(j, n(j), T) + ξ1(j, n(j), T) = 1 ∀j∑
(j,h,τ)

{
ξ1(j, h, τ) : µ(j, h) = h, t ≤ τ ≤ t + q(j, h)− 1

}
≤ 1 ∀(k, t)

ξ0(j, k, t), ξ1(j, k, t) ∈ {0, 1} ∀(j, k, t)
(10)

where it is tacitly understood that some variables are missing if any label in the triple (j, k, t) is out of range.
The first set of constraints takes care of flow conservation in all nodes except the sources and the sinks. The
second set is the requirement of one flow unit arriving to each sink (and consequently starting from each
source). The third set of constraints are the bundle constraints which impose at most one flow unit for each
time t and for all operations requiring the same machine.

Let CRP be the integral relaxation of CBP. There is a close relationship between CRP and RP, as
stated in the following proposition.

Proposition 2: CRP and RP have the same optimal value and CBP and BP have the same optimal
value.

Proof: By the decomposition flow theorem, any solution ξ of CRP can be decomposed into a finite set
of flows along source-sink paths. Since any path from sj to dj corresponds to a pattern p ∈ P j with the
same cost, we may easily derive from ξ a solution x of RP with the same cost. This solution satisfies the
assignment constraints (4) and the machine constraints (5) because ξ satisfies the flow constraints and the
bundle constraints, respectively. The converse can be proven in a straightforward way. The second part of
the statement follows easily.

Actually the relationship between CRP and RP goes beyond the stated result. The problem (7), dual
of problem RP, can be alternatively rewritten as a problem with a polynomial number of constraints by
dropping the exponentially many constraints and substituting them with a set of linear constraints (after
possibly introducing a polynomial number of new variables), which impose the optimality condition of the
pricing dynamic programming procedure. This kind of reformulation is called compact [9, 22]. The dual of
the compact reformulation problem is CRP.

As stated both CRP and RP yield the same lower bound and thus they exhibit the same strength in
exploring the branch-and-bound tree. However, they behave differently. Whereas RP requires an ad hoc
branch-and-price procedure, CRP can be solved by any integer linear programming solver. Moreover, taking
care of branching constraints in CRP is simpler than in RP (see Section 3.2).

As an example of CRP consider an instance with two jobs and four operations. The first job consists of
the operations (1,1) and (1,2) with processing times q(1, 1) = 2, q(1, 2) = 3 and the second job consists of the

9

operations (2,1) and (2,2) with processing times q(2, 1) = 4, q(2, 2) = 1. Let us suppose that the operations
(1,1) and (2,1) require one machine, while the operations (1,2) and (2,2) require a second machine. By
fixing a time horizon T = 12 we build the network in Figure 1(a), where all arcs are directed left-right and
top-down. The black nodes are the sources and the sinks. In Figure 1(b) the non-dashed arcs are those
present in the machine constraints associated to the first machine and time 4. In Figure 1(c) the optimal
solution is shown for the objective function fjk(t) = t, for all j,k.

5 Cutting inequalities

If the feasible flow for the network G is fractional we may try to find cutting inequalities. The cutting
inequalities we are going to define are based on violated clique inequalities for an independent set problem
in another graph G.

The graph G = (N , E) is defined as follows. Its nodes correspond to the arcs of E1 in G. We may label
the nodes of G as (j, k, t), exactly like the nodes of G for k ≥ 1, since there is a one-to-one correspondence
between these nodes and arcs in E1. Therefore, each node (j, k, t) ∈ N corresponds to scheduling the k-th
operation of job j with completion time t. We want to represent feasible schedules as subsets of N . To this
aim we define the edges E so that an independent set in N corresponds to a feasible schedule.

It is convenient to partition the nodes in N in two alternative ways: either by defining the node sets
Njk := {(j′, k′, t) : j′ = j, k′ = k}, consisting of the nodes referring to the k-th operation of job j or by
defining the node sets N h = {(j, k, t) : µ(j, k) = h}, consisting of the nodes referring to the machine h.

The edges of E are built as follows. For each operation (j, k), all nodes in Njk are linked into a clique
(operation clique) whose edges are called operation edges. We denote these edge sets as Ejk. These edges
express the constraint that an operation cannot be scheduled twice (or more) at different times.

For any job j, we draw an edge between (j, k, t) and (j, k′, t′), if k < k′ and t′−
∑

k<h≤k′ q(j, h) < t. These
edges, denoted as Ej , are called precedence edges and express the precedence condition among operations of
the same job.

Let us fix an arbitrary real 0 < ε < 1 and associate the real interval [t − q(k) + ε , t] (operation
interval) to each node (j, k, t). For each machine h, we draw an edge between (j, k, t) and (j′, k′, t′) if
µ(j, k) = µ(j′, k′) = h and the intervals [t− q(k)+ ε , t] and [t′− q(k′)+ ε , t′] have non empty intersection.
We denote these edge sets as Eh (machine edges). These edges express the constraint that each machine can
process at most one operation at a time. Note that some edges referring to the same operation can be both
machine and operation edges.

Finally we define
E :=

⋃
1≤j≤n

1≤k≤n(j)

Ejk ∪
⋃

1≤j≤n

Ej ∪
⋃

1≤h≤m

Eh.

Let us associate to each node (j, k, t) ∈ N the flow ξ1(j, k, t). Clearly, any 0-1 feasible flow for the network
G corresponds to an independent set in G with

∑n
j=1 n(j) nodes and viceversa. Therefore it must satisfy

the clique inequality
∑

(j,k,t)∈K ξ1(j, k, t) ≤ 1 for each clique K of G.
However, fractional feasible flows for the network G could violate some clique inequalities. Our aim is

to identify such inequalities. Let us first note that a fractional solution ξ1(j, k, t) cannot violate any clique
inequality induced by a clique K in ∪k=1,...,n(j)Njk, i.e., whose nodes correspond to operations of the same
job. Indeed, any flow for job j can be decomposed into a finite set of paths sj → dj in G. Now it is easy to
see that different nodes of K correspond to arcs in G that, by construction, cannot belong to a same path.
Hence the sum of the corresponding ξ1(j, k, t) values cannot exceed 1 by the flow constraints in (10). So
these clique inequalities are already embedded in the constraints of CRP.

10

Let us now consider cliques in the graph Gh := (N h, Eh) for machine h. By construction, Gh is an interval
graph and thus all maximal cliques in Gh are of the form

N h(τ) := {(j, k, t) : µ(j, k) = h , t− q(j, k) + ε ≤ τ ≤ t}

for some (real) τ . Therefore the bundle constraints for CRP are clique inequalities for the interval graph Gh

and all maximal cliques in Gh are present in the bundle constraints. Some bundle constraints are redundant
because some cliques are not maximal (in Figure 1(b) the inequalities for machine 1 and times t ∈ {1, 9, 10, 11}
are not maximal).

The fact that the bundle constraints are clique inequalities and the operation cliques and precedence
cliques are implicitly taken care of by the flow constraints makes CRP (and RP as well) an effective model
with a good lower bound. However, a fractional solution may violate a clique inequality of G for cliques
containing edges both in Eh and in Ejk ∪Ej . As a simple example of a clique of this type, consider two nodes
(j, k, t), (j, k, t′), with t′ − t > q(j, k), together with a third node (j′′, k′′, t′′), with t′′ − q(j′′, k′′) < t, and
t′′ > t′ − q(j, k). These three nodes form a clique which is neither an operation clique nor a machine clique.
See Figure 1(d).

In general, there exist many maximal cliques with edges both in Eh and in Ejk ∪ Ej . In order to describe
them we define, for each h, the subgraph Gh ⊂ G induced by the nodes in N h. Under the common assumption
that different operations of a same job are performed by different machines, nodes of N h cannot be linked
by precedence edges. Therefore Gh

:= (N h,
⋃

µ(j,k)=h Ejk ∪ Eh).

The rest of the section is devoted to characterize the maximal cliques of Gh
that can be violated by a

fractional flow in G. Let us first give an informal description of the main result. Differently from Gh, Gh
is

not an interval graph. Having added edges, it is possible that a subset K of nodes that is not a clique in Gh

becomes a clique in Gh
. The structure of this clique is quite interesting. The extra edges which turn this

set into a clique come all from the operations edges of one specific operation and not from edges of different
operations. This result makes the identification of cliques of this type easy.

The main result needs the following lemma.

Lemma 3: Given four intervals a = [a1, a2], b = [b1, b2], c = [c1, c2], d = [d1, d2], such that a and b are
disjoint and c and d are disjoint, the corresponding interval graph cannot have all four edges (a, c), (a, d),
(b, c), (b, d).

Proof: Assume a2 < b1 and c2 < d1. Assuming that the four edges exist implies b1 ≤ c2 and d1 ≤ a2, so
that

a2 < b1 ≤ c2 < d1 ≤ a2.

Proposition 4: Let K be a clique in Gh
but not in Gh. Let K1, . . . ,Kp be a partition of K according to the

operations. Then exactly one Ki is not a clique in Gh.

Proof: Since nodes in different sets Ki are all joined in Gh
by edges of Eh and K is not a clique in Gh, at

least one Ki is not a clique in Gh. If there are two sets Ki and Kj which are not cliques in Gh, then there exist
two nodes in Ki not joined by an edge, i.e. their intervals are disjoint. Similarly for Kj . However all edges
between nodes of Ki and Kj , which are machine edges, must be present and this leads to a contradiction
with Lemma 3. So it is impossible that two (or more) sets Ki are not cliques in Gh.

11

As a consequence of Proposition 4 we have that any clique K of Gh
which is not a clique in Gh is a union

of a clique of Gh and an operation clique. This property suggests a simple procedure to list all maximal
cliques in Gh

. For a better understanding of the procedure the reader can also refer to the example in the
next section.

For each machine h and for each operation (j, k) such that µ(j, k) = h we look for cliques in Gh
that

may be obtained by adding an operation clique in Njk to a clique in N h not containing nodes of Njk. To
this aim we need to define a set of cliques based on intervals. For each interval [a, b] let Q(j, k, a, b) be the
clique containing all nodes in N h \ Njk associated to operation intervals containing [a, b], i.e.

Q(j, k, a, b) =
{
(j, k, t) ∈ N h : (j, k) 6= (j, k), t− q(j, k) + ε ≤ a ≤ b ≤ t

}
={

(j, k, t) ∈ N h : (j, k) 6= (j, k), b ≤ t ≤ a + q(j, k)− ε
}

.

Now, for each pair of nodes (j, k, t′), (j, k, t′′) such that t′ ≤ t′′ − q(j, k) (so that they are not connected by
a machine edge) we consider the interval [t′ − 1 + ε, t′′ − q(j, k) + 1]. Then the set of nodes

Q(t′ − 1 + ε, t′′ − q(j, k) + 1) ∪
{
(j, k, t′)

}
∪

{
(j, k, t′′)

}
is a clique, but not of machine type nor of operation type. We expand this clique into a maximal one by
adding nodes (j, k, t) such that t′ < t < t′′. Explicitly, given t′ and t′′, this maximal clique can be expressed
as

K(j, k, t′, t′′) =
⋃

(j,k) 6=(j,k)

µ(j,k)=h

{
(j, k, t) : t′′ − q(j, k) + 1 ≤ t ≤ t′ − 1 + q(j, k)

}
∪

{
(j, k, t) : t′ ≤ t ≤ t′′

}
.

We are going to prove that all the maximal cliques in Gh
that are not machine cliques nor operation

cliques can be listed among the cliques K(j, k, t′, t′′).

Proposition 5: Any maximal clique in Gh
that is not a clique in Gh is of the form K(j, k, t′, t′′) for some

operation (j, k) and times t′, t′′.

Proof: Let K be a maximal clique in Gh
. According to Proposition 4 its nodes can be split into an operation

clique K1, for a particular operation (j, k) whose edges are not all machine edges, and a machine clique K2

containing nodes corresponding to the other operations of the same machine. Let t′ and t′′ be the minimum
and maximum time indices, respectively, appearing in nodes of K1. Then K1 ⊂

{
(j, k, t) : t′ ≤ t ≤ t′′

}
. The

intersection of all intervals corresponding to nodes of K2 can be expressed as [a + ε, b] with a and b integers
and K2 ⊂ Q(j, k, a + ε, b). Since K is a clique and all the nodes of K1 correspond to intervals of the same
length, in order to have intersection between each interval corresponding to a node of K1 and [a + ε, b], it
must be

t ≥ a + ε and t− q(j, k) + ε ≤ b for each t′ ≤ t ≤ t′′

that is
a + ε ≤ t′ and b ≥ t′′ − q(j, k) + ε.

Sinc a + ε ≤ t′ implies a + ε ≤ t′ − 1 + ε and b ≥ t′′ − q(j, k) + ε implies b ≥ t′′ − q(j, k) + 1 it follows

Q(j, k, a + ε, b) ⊂ Q(j, k, t′ − 1 + ε, t′′ − q(j, k) + 1).

Therefore

K = K1 ∪ K2 ⊂
{
(j, k, t) : t′ ≤ t ≤ t′′

}
∪Q(j, k, t′ − 1 + ε, t′′ − q(j, k) + 1) = K(j, k, t′, t′′)

and, by the maximality of the clique K, K = K(j, k, t′, t′′).

12

node (1,1,2) node (1,1,6)

node (2,1,3)

node (2,1,9)

node (3,1,7)

0 1 2 3 4 5 6 7 8 9

Figure 2: An odd hole generated by three operations

Since we are interested in listing only those cliques whose corresponding inequality is violated by the
current solution, it makes sense to consider only cliques generated by pairs (t′, t′′) with t′ + q(j, k) ≤ t′′

such that ξ1(j, k, t′) > 0 and ξ1(j, k, t′′) > 0. Indeed, as it is easy to verify, these cliques include all the
cliques corresponding to inequalities with maximum violation. This speeds-up the computation and makes
the procedure quite effective in finding cutting inequalities.

In G there are also odd holes with five or more nodes (a clique of three nodes is also a particular odd
hole). See Figure 2 for an example of an odd hole generated by three operations of processing times 2, 3 and
4 respectively. We recall that for an odd hole H, an odd hole inequality is defined by∑

(j,k,t)∈H

ξ1(j, k, t) ≤ |H| − 1
2

and is facet defining for the independent set polyhedron of G. A fractional solution can violate some odd
hole inequalities and it can be useful to detect and add them in order to improve the lower bound.

Odd holes can be generated by the procedure described in [16]. In detail, given a fractional solution
ξ
1

of CRP, we consider the subgraph G(ξ
1
) induced by the nodes of G corresponding to strictly positive

components of ξ
1

and associate to each edge ((j, k, t), (j′, k′, t′)) of G(ξ
1
) the cost 1− ξ

1
(j, k, t)− ξ

1
(j′, k′, t′).

Then the odd hole inequality induced by H is satisfied if and only if H has cost not smaller than 1. So
the separation problem with respect to the odd hole inequalities may be solved by finding the odd hole of
minimum cost in the subgraph G(ξ

1
) and this task may be accomplished in polynomial time.

All these inequalities can be used to strengthen the lower bound also for RP. Since any fractional
solution for RP can be immediately translated into a fractional solution or CRP, the valid inequality for
the flow variables in CRP becomes a valid inequality for the pattern variables in RP. However, a non
trivial complication arises for problem RP. One should take care of the new constraints in generating new
columns. It is possible to deal with this problem by modifying the pricing dynamic procedure. We do not
deal with this issue in this paper.

6 An example of cutting inequalities

As a small example let us consider an instance with 4 jobs, 4 operations per job and 4 machines whose data
are:

job\op. 1 2 3 4
1 2 5 3 2
2 4 1 4 3
3 3 6 2 1
4 5 2 2 3

processing times q(j, k)

job\op. 1 2 3 4
1 1 2 3 4
2 4 2 1 3
3 1 2 3 4
4 3 4 1 2

machines µ(j, k)

13

Solving CRP with time horizon T = 24 we get a fractional solution of value 60.75. Before starting
the branch-and-bound procedure we try to strengthen the lower bound by adding clique inequalities. We
illustrate the procedure described in the previous section by referring to the machine 2. We show in Figure 3
the subgraph Gh for the machine 2. Each node is labeled as (j, k, t) with (j, k) written at the left of each
node row and t written on the top of each column. The black nodes are those with ξ1(j, k, t) > 0 (the
variable value is written near the node) and only edges of Eh connecting black nodes are shown. The number
in brackets at the right are the operation processing times. The graph Gh

is obtained by adding all edges
between nodes on the same row.

Suppose we want to identify violated cliques in G2
. Then we have to consider in turn the operations (1, 2),

(2, 2), (3, 2) and (4, 4) and build the interval graphs G2(j, k). Let us illustrate the case (j, k) = (4, 4). As
stated in the previous section, we consider only pairs of nodes (4, 4, t′) and (4, 4, t′′) such that the associated
operation intervals are disjoint, i.e., t′ + 3 ≤ t′′, and ξ1(4, 4, t′) > 0, ξ1(4, 4, t′′) > 0.

There are three pairs to be processed, namely (t′, t′′) = (12, 16), (t′, t′′) = (12, 17) and (t′, t′′) = (14, 17).
For the pair (t′, t′′) = (12, 16), by applying the formula [t′ − 1 + ε, t′′ − q(j, k) + 1], we derive the interval
[11 + ε, 14] that must be contained in the operation interval of each node of the clique associated to an
operation different from (4, 4). From this interval we define the clique

Q(4, 4, 11 + ε, 14) = {(1, 2, 14), (1, 2, 15), (1, 2, 16), (3, 2, 14), (3, 2, 15), (3, 2, 16), (3, 2, 17)} .

All these nodes are associated to null values of ξ1 and so we may discard this clique because it cannot
produce a violated inequality. For the pair (t′, t′′) = (12, 17) we derive the interval [11 + ε, 15]. Since
Q(4, 4, 11 + ε, 15) ⊂ Q(4, 4, 11 + ε, 14) we may discard this clique as well. For the pair (t′, t′′) = (14, 17) we
derive the interval [13 + ε, 15], from which we define the clique

Q(4, 4, 13 + ε, 15) = {(1, 2, 15), (1, 2, 16), (1, 2, 17), (1, 2, 18), (3, 2, 15), (3, 2, 16), (3, 2, 17), (3, 2, 18), (3, 2, 19)}

so that

K(4, 4, 14, 17) = {(1, 2, 15), (1, 2, 16), (1, 2, 17), (1, 2, 18),

(3, 2, 15), (3, 2, 16), (3, 2, 17), (3, 2, 18), (3, 2, 19), (4, 4, 14), (4, 4, 15), (4, 4, 16), (4, 4, 17)}.

This is a violated inequality since
∑

(j,k,t)∈K(4,4,14,17) ξ1(j, k, t) = 1.25 > 1. We repeat the procedure for
the other operations. For (j, k) = (1, 2) there is no new clique, because the nodes (1, 2, 7) and (1, 2, 11) are
already linked by a machine edge. For (j, k) = (2, 2) we identify the cliques producing violated inequalities:

K(2, 2, 5, 6) = {(1, 2, 6), (1, 2, 7), (1, 2, 8), (1, 2, 9), (2, 2, 5), (2, 2, 6),

(3, 2, 6), (3, 2, 7), (3, 2, 8), (3, 2, 9), (3, 2, 10), (4, 4, 6), (4, 4, 7)}
K(2, 2, 8, 9) = {(1, 2, 9), (1, 2, 10), (1, 2, 11), (1, 2, 12), (2, 2, 8), (2, 2, 9),

(3, 2, 9), (3, 2, 10), (3, 2, 11), (3, 2, 12), (3, 2, 13), (4, 4, 9), (4, 4, 10)}

and for (j, k) = (3, 2) we identify the clique producing a violated inequality:

K(3, 2, 12, 19) = {(1, 2, 14), (1, 2, 15), (1, 2, 16), (1, 2, 17),

(3, 2, 13), (3, 2, 14), (3, 2, 15), (3, 2, 16), (3, 2, 17), (3, 2, 18), (3, 2, 19), (4, 4, 14), (4, 4, 15)}.

We identify three more violated inequalities by processing the other machine graphs. After introducing
these seven inequalities, we obtain an integral solution of value 61. We show in Figure 4 the gantt diagram
of this schedule (the numbers in the boxes refer to the machines).

14

Figure 3: Machine edges in G2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 4: Optimal schedule

7 Computing a schedule from a fractional solution

Since the structure of a fractional solution embeds a lot of information on a possible integer solution, optimal
fractional solutions can often be used to generate integer solutions by rounding procedures (see for instance
[26]). In our case we have designed a randomized rounding procedure for both RP and CRP, which has
turned to be crucial in having a viable branch-and-bound procedure. Indeed it takes too much time to obtain
good integer solutions on some deep leaves of the branch-and-bound tree and therefore it is mandatory to
have good incumbents available as soon as possible.

The rounding procedure works as follows. Given a solution of RP, for each job j we randomly select a
pattern with probability proportional to the value of the corresponding variable. Given a solution of CRP,
we recursively compute a path from sj to dj , for each job j, as follows: once a node (j, k, t) has been reached,
the next node of the path is selected with probability proportional to the flow values of the two arcs exiting
from (j, k, t). This is the same as decomposing the flow in paths and choosing randomly a path, i.e. a
pattern, with probability proportional to its flow value.

After computing a scheduling pattern [s(j, k), t(j, k)], 1 ≤ k ≤ n(j) for all jobs j, we may determine
a permutation of the jobs on each machine m by sorting the intervals [s(j, k), t(j, k)], µ(j, k) = m, with
respect to the s(j, k) values. Let [s(k), t(k)] and [s(h), t(h)] be two consecutive intervals. If t(h) > t(k) the
machine precedence constraint between k and h is fixed as k → h. If t(h) ≤ t(k) the two operations k and h

are switched with probability (t(k)− t(h))/(t(k)− t(h) + s(h)− s(k)). The probabilities are fixed to 1/2 if
t(k)− t(h) = s(h)− s(k) = 0.

Once the precedence graph is defined, if the functions f(j, k) are regular (i.e. non decreasing functions of
the completion times), the cost of the corresponding schedule can be computed as a function of the longest
paths on the graph. When the functions f(j, k) are not regular, as in the case of earliness costs, the cost of
the schedule can be determined by an LP procedure.

Since the procedure is randomized, we can generate many solutions and apply to each one a local search

15

heuristic based on the following moves. Let πh be the ordering of the operations processed by machine h.
For each πh we define a neighborhood N(πh) as the set of permutations which may be obtained from πh

by interchanging the values πh(i) and πh(j) for some i, j, i.e., by interchanging the positions of a pair of
operations (not necessarily successive) on one machine.

In our experience we have observed that this composite procedure provides good feasible solutions most
of the times.

8 Computational results

We have solved BP by an ad hoc branch-and-price algorithm in C, using CPLEX 6.5 as the LP solver, on
a Sun Workstation. The algorithm uses both column and row generation. After each column generation,
it launches the local search procedure to obtain feasible solutions starting from the current fractional solu-
tion. Next, it checks the machine constraints by complete enumeration and adds all the violated machine
inequalities to the current formulation.

We have solved CBP in two alternative ways. In the first way, which we may call full mode, we have
used glpk as the LP solver together with a branch-and-cut framework developed by us in C on a 2 GB
RAM 1.4 GHz Intel Core Duo CPU. The interaction with the framework involves launching the heuristic to
get upper bounds and finding cutting clique inequalities to improve the lower bounds. More precisely, the
heuristic described in Section 7 is launched after each LP computation. Starting from the current fractional
solution, the procedure is called three times to generate feasible schedules on which the local search is applied.
Adding clique inequalities is done as follows. After solving the first LP, we detect violated clique inequalities
for each machine. All these violated inequalities are added to CRP at the same time and the problem is
re-optimized. Since clique inequalities cut effectively mainly at the root node, we run three phases of clique
inequality generation at this node and only one in the other nodes of the branch-and-bound tree.

In the second way, which we may call batch mode, CBP was solved as a stand-alone ILP problem by
using CPLEX 11.210 on a 4 GB RAM 2.4GHz Intel Core Duo CPU. The mentioned framework is not able at
the moment to interface with more recent versions of CPLEX and so we have to trade-off the possibility of
launching heuristics and using effective cuts but with a slow solver (like glpk or CPLEX 6.5), with a faster
solver (like CPLEX 11.210) but without the extra benefits of ad-hoc heuristics and cutting inequalities.

As a first test, we ran four sets of flow-shop instances with 5 and 10 jobs and 3 and 5 machines with
objective function the sum of job completion times. Each set contains 10 instances with processing times
randomly generated in the range [3, 10] according to [30]. The instances with 5 jobs have been solved via
CBP, full mode, whereas the instances with 10 jobs have been solved both via CBP, full mode, and BP.
We fixed a time limit of 900 seconds for both.

We report the computational results on the ten instances of each set in Tables 1–4. The column LB1 and
LB2 report the lower bounds obtained at the root node before and after introducing the clique inequalities,
respectively. The LB2 value is not reported in case the problem is already solved before introducing the
clique inequalities. For instances with 5 jobs, the column UB provides the optimal value of the instances.
For instances with 10 jobs, the columns UB0, UB1 and UB2 provide the best upper bound found (by local
search) during the solution of the root node for BP and the best upper bound found at the time limit solving
BP and CBP, respectively. Usually, these upper bounds are found by the heuristic procedure which is much
quicker in generating good integer solutions than the branch-and-bound procedure itself. Values with the
star indicate that the instance has been solved to proved optimality. The column GAP refers to the ratio
(UB−LB1)/UB, expressed as a percentage, where UB is the best upper bound found. The next two columns
report the number of the branch-and-bound tree nodes explored and CPU time in seconds for CBP.

We note that all instances with 5 jobs are solved to optimality in few seconds by both algorithms. Also,
in the case of 10 jobs, in 15 minutes the exact procedures always produce feasible solutions of value at most

16

3% and 5% larger than the LP lower bound for the instances with 3 and 5 machines, respectively, and solve
to optimality four out of ten instances with 3 machines.

As a second test, we applied CBP, batch mode, to the job-shop instances with earliness/tardiness costs,
2 machines, 10, 15 and 20 jobs and 5 machines, 10 jobs, proposed in [3]. These instances are divided into four
classes depending on the due-date generation. This accounts for the terms ‘tight’ vs ‘loose’ and ‘equal’ vs
‘tard’ in the instance names. For details how the instances have been generated see [3]. The results of the test
are reported in Table 5, where LB is the CRP value at the root node of the branch-and-bound tree (clearly
without adding clique inequalities), UB is the best incumbent value (as before the star indicates that this
value is proved optimal) found within a time limit of 1800 seconds, CPU is the cpu time in seconds, LB [3]
and UB [3] are the lower bounds and upper bounds reported in [3] for the same instances, v∗ is the optimal
value of the instance and GAP refers to the ratio (UB − LB)/UB, expressed as a percentage, where UB is
the best known upper bound. We remark that the values v∗ have been computed by applying CBP, batch
mode, and allowing very large computing times. We report these values mainly for the sake of reference and
gap evaluation.

Note that a guaranteed optimal solution was found for all instances with 2 machines and 10 jobs, for
all instances with 2 machines and 15 jobs but one, for three instances with 2 machines and 20 jobs and for
two instances with 5 machines and 10 jobs. For the other instances the time limit of 1800 sec was reached
and either we have available only an upper bound or CPLEX has been unable to find at least one feasible
solution. The latter circumstance has happened in two instances with 5 machines and 10 jobs. These two
instances plus an additional third instance for which we do not have the optimum, seem particularly difficult
as indicated by the much larger gaps. On the other hand, as can be seen by comparing with the optimal
values v∗ in the last column, in five out of the twelve cases where the time limit has been reached without
proving optimality, the upper bound is indeed the optimum.

We point out an inconsistency in the first row of Table 5. We have found an LB of 460 and a proved
optimal value of 462 for this instance. However, [3] reports an upper bound of 453! Clearly there must be
some data error, which is very difficult to be traced back at this point.

This is the only test where it has been possible to compare directly our model with another model
proposed in the literature by using the same instances. The method proposed in [3] is one of the most
effective methods. They solve also other larger instances, that we have not considered for problems of model
size which, as remarked, is an intrinsic limit of time-indexed formulations. However, we consider a positive
result for our model that in the instances in which we have made the comparison we can obtain almost
always a better or an equal solution. We may also note that our model yields a stronger lower bound for the
majority of instances.

As a third test, we have solved two sets of randomly generated job-shop instances with 10 jobs, 5 and
10 machines, respectively, and unit processing times with objective function the sum of the job completion
times. We have solved problem CBP, batch mode. The results are reported in Table 6 and Table 7. Note
that for such instances the clique inequalities are all induced by either operations cliques or by machine
cliques and thus are already embedded in CBP, making the solution batch mode very effective. All the
instances were solved to optimality in a short time and the relative gap (UB− LB)/UB is at most 8% over
all instances.

9 Conclusions

In this paper we have presented a time-indexed model for flow-shop and job-shop problems with a separable
objective function. For each job, any type of objective function of the completion time can be modeled.
The time-indexed model has two possible formulations. The first one is based on column generation and
each pricing procedure is carried out by a dynamic programming algorithm. The second one is a compact

17

reformulation of the first model and turns out to be a network flow model with additional cross-arcs con-
straints. This second formulation allows for adding cutting inequalities and for a simple branching scheme.
The advantage of these formulations consists, as already observed for time-indexed models [29], in having
good lower bounds for the branch-and-bound method. On the other hand the size of the model increases
considerably especially if the time unit is small with respect to the scheduling horizon. This is a drawback
which at the moment prevents solving exactly instances of medium-large size, which, however, are out of
reach with respect to the current available methods [8].

The computational tests we have carried out are based on codes that have not been optimized. These are
complex codes whose optimization can be envisaged only after promising computational tests. In our opinion
the results are satisfactory and worth carrying out future work toward improving various implementation
phases.

There are some issues we have not covered in this paper. For instance the model allows quite naturally to
include some variants of the job-shop problem, like the no-wait flow-shop, in which the job operations must
be executed consecutively, i.e. without idle times between them. In general constraints within each jobs can
be embedded in the pricing procedure and most of the times can be handled by the dynamic programming
algorithm. However, constraints for the machine operations, like presence of set-up times, cannot be dealt
with because the model can handle only, separately, constraints for each instant of time.

Moreover, considering that instances with many machines cannot be solved exactly, we may nonetheless
approach these instances in a matheuristic fashion ([21]) by solving exactly small subproblems with one or
two machines. These subproblems can be solved exactly with the techniques developed in this paper.

References

[1] J. Adams, E. Balas and D. Zawack, “The shifting bottleneck procedure for job-shop scheduling”, Management
Science, vol. 34, pp. 391–401, 1988.

[2] J.C. Back, T.K. Feng and J. Watson, “Combining Constraint Programming and Local Search for Job-Shop
Scheduling”, to appear on INFORMS Journal on Computing.

[3] P. Baptiste, M. Flamini and F. Sourd, “Lagrangian bounds for just-in-time job-shop scheduling”, Computers &
Operations Research, 35, pp. 906–915, 2008.

[4] P. Baptiste, C. Le Pape and W. Nuijten, “Constraint-Based Scheduling”, Springer, Berlin, 2001.

[5] J. Blażewicz, W. Domschke and E. Pesch, “The job shop scheduling problem: Conventional and new solution
techniques”, European Journal of Operational Research, 93, pp. 1–33, 1996.

[6] S.C. Brailsford, C.N. Potts and B.M. Smith, “Constraint satisfaction problems: Algorithms and applications”,
European Journal of Operational Research, 119, pp. 557–581, 1999.

[7] P. Brucker, Scheduling Algorithms, Springer, Berlin, 5th edition, 2007.

[8] P. Brucker, “The Job-Shop Problem: Old and New Challenges”, in Proceedings of the MISTA Conference 2007,
pp. 15-22, P. Baptiste, G. Kendall, A. Munier-Kordon and F. Sourd eds, 2007.

[9] R. D. Carr and G. Lancia, “Compact vs Exponential-Size LP Relaxations”, Operations Research Letters, 30(1),
pp. 57–65, 2002.

[10] S. Chakrabarti, C. Phillips, A. Schulz, D. Shmoys, C. Stein and J. Wein, “Improved scheduling algorithms for
minsum criteria”, Proceedings of the 23rd International Colloquium on Automata, Languages and Programming,
pp. 646–657, Springer, 1996.

[11] H. Chen, C. Chu and J.M. Proth, “An improvement of the Lagrangean relaxation approach for job shop schedul-
ing: a dynamic programming method”, IEEE Transactions on Robotics and Automation, 14, pp. 786–795, 1998.

[12] A. Chen and P. Luh, “An alternative framework to Lagrangian relaxation approach for job shop scheduling”,
European Journal of Operational Research, 149, pp. 499–512, 2003.

[13] F. Della Croce, M. Ghirardi and R. Tadei, “An improved branch-and-bound algorithm for the two machine total
completion time flow shop problem”, European Journal of Operational Research, 139, pp. 293–301, 2002.

[14] U. Dorndorf, E. Pesch and T. Phan-Huy, “Constraint propagation and problem decomposition: A preprocessing
procedure for the job shop problem”, Annals of Operations Research, 115, pp. 125–145, 2002.

18

[15] M.E. Dyer and L. A. Wolsey, “Formulating the single machine sequencing problem with release dates as a mixed
integer program”, Discrete Applied Mathematics, 26, pp. 255–270, 1990.

[16] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer-
Verlag, Berlin, 1993.

[17] A.S. Jain and S. Meeran, “Deterministic job-shop scheduling: Past, present and future”, European Journal of
Operational Research, 113, pp. 390–434, 1999.

[18] B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, “Job-shop scheduling by implicit enumeration”, Manage-
ment Science, vol. 34, pp. 441–450, 1977.

[19] G. Lancia, F. Rinaldi and P. Serafini, “A column generation approach to solve job-shop problems”, IFORS99
Conference, Beijing, P.R. China, August 16-20, Final Program, p. 11, 1999.

[20] G. Lancia, F. Rinaldi and P. Serafini, “A compact optimization approach to solve job-shop problems”, Proceedings
of the MISTA Conference 2007, pp. 293–300, P. Baptiste, G. Kendall, A. Munier-Kordon and F. Sourd eds , 2007.

[21] V. Maniezzo, Th. Stützle and S. Voß eds, Hybridizing Metaheuristics and Mathematical Programming, Springer-
Verlag, Berlin, 2010.

[22] K. Martin, “Using Separation Algorithms to Generate Mixed Integer Model Reformulations”, Operations Re-
search Letters, vol. 10, pp. 119–128, 1991.

[23] E. Nowicki and C. Smutnicki, “An Advanced Tabu Search Algorithm for the Job Shop Problem”, Journal of
Scheduling, 8, pp. 145 – 159, 2005.

[24] C.N. Potts and V.A. Strusevich, “Fifty years of scheduling: a survey of milestones”, Journal of the Operational
Research Society, 60, pp. S41–S68, 2009.

[25] M. Queyranne and M. Sviridenko, “Approximation algorithms for shop scheduling problems with minsum ob-
jective”, Journal of Scheduling, 5, pp. 287–305, 2002.

[26] M.W.P. Savelsbergh, R.N. Uma and J. Wein, “An Experimental Study of LP-Based Approximation Algorithms
for Scheduling Problems”, INFORMS Journal on Computing,17, pp. 123–136, 2005.

[27] R.J.M. Vaessens, E.H.L. Aarts and J.K. Lenstra, “Job Shop Scheduling by Local Search”, INFORMS Journal
on Computing, 8, pp. 302-317, 1996.

[28] J.M. Van den Akker, H. Hoogeveen and S. Van de Velde, “Parallel machine scheduling by column generation”,
Operations Research, vol. 47, pp. 862–872, 1997.

[29] J.M. Van den Akker, C.A.J. Huskens and M.W.P. Savelsbergh, “Time-Indexed formulations for machine schedul-
ing problems: column generation”, INFORMS Journal on Computing, vol. 12, pp. 111–124, 2000.

[30] J.P. Watson, L. Barbulescu, A.E. Howe and L.D. Whitley, “Algorithm Performance and Problem Structure for
Flow-shop Scheduling”, Proceedings of the Sixteenth National Conference on Artificial Intelligence, pp. 688–695,
1999.

[31] C.Y Zhang, P.G. Li, Y.Q. Rao and Z.L. Guan, “A very fast TS/SA algorithm for the job shop scheduling
problem”, Computers & Operations Research, 35, pp. 282–294, 2008.

19

Instance LB1 LB2 UB GAP B&B CPU
1 143.16 144.12 145* 1.27 1 5
2 144.00 – 144* 0.00 1 1
3 132.12 – 133* 0.66 1 4
4 139.50 – 140* 0.38 1 1
5 140.00 – 140* 0.00 1 1
6 152.81 153.65 157* 2.67 9 16
7 139.66 – 140* 0.24 1 1
8 171.44 172.10 174* 1.47 5 15
9 130.79 131.18 132* 0.92 1 3
10 149.00 – 149* 0.00 1 1

Table 1: Flow-Shop: 5 jobs, 3 machines

Instance LB1 LB2 UB GAP B&B CPU
1 202.99 203.87 207* 1.94 13 85
2 227.00 – 227* 0.00 1 2
3 192.58 194.70 196* 1.74 5 23
4 195.07 195.60 197* 0.98 3 17
5 203.66 – 204* 0.17 1 2
6 210.66 212.10 214* 1.57 3 19
7 215.70 217.00 218* 1.05 1 12
8 192.39 194 194* 0.83 1 10
9 260.66 261.74 264* 1.26 5 29
10 199.59 200.64 204* 2.16 3 25

Table 2: Flow-Shop: 5 jobs, 5 machines

Instance LB1 LB2 UB0 UB1 UB2 GAP B&B CPU
1 474.99 476.04 486 486 486 2,26 102 900
2 483.01 483.49 486 486* 486* 0.61 23 221
3 394.59 395.21 404 403 403 1.99 119 900
4 388.38 389.50 395 393* 393* 1.18 45 287
5 437.54 439.09 448 447 447 1.12 111 900
6 438.80 439.52 447 447 447 1.83 84 900
7 377.99 378.62 386 386 386 2.07 124 900
8 497.87 499.76 504 504* 504* 1.22 13 170
9 386.35 387.11 396 394 394 1.94 122 900
10 420.85 421.55 428 426* 428 1.21 88 900

Table 3: Flow-Shop: 10 jobs, 3 machines

Instance LB1 LB2 UB0 UB1 UB2 GAP B&B CPU
1 586.62 591.26 615 607 603 2.72 27 900
2 630.16 631.87 656 656 658 3.50 21 900
3 548.22 549.97 578 571 575 3.99 25 900
4 567.96 568.74 600 600 591 3.89 25 900
5 569.39 570.75 597 597 596 3.98 35 900
6 581.79 584.93 607 604 604 3.36 33 900
7 575.49 576.32 599 599 586 1.79 18 900
8 622.39 624.81 640 635 635 1.98 30 900
9 512.18 513.69 541 538 535 4.26 31 900
10 659.31 661.04 673 673 673 1.60 17 900

Table 4: Flow-Shop: 10 jobs, 5 machines

20

Instance LB UB CPU LB [3] UB [3] v∗ GAP

I-10-2-tight-equal-1 460 462* 8 434 (453) 462 0.43
I-10-2-tight-equal-2 437 449* 18 418 458 449 2.67
I-10-2-loose-equal-1 218 225* 2 219 225 225 3.11
I-10-2-loose-equal-2 313 320* 13 313 324 320 2.19
I-10-2-tight-tard-1 178 180* 3 174 195 180 1.11
I-10-2-tight-tard-2 144 146* 2 143 147 146 1.37
I-10-2-loose-tard-1 413 416* 8 413 416 416 0.72
I-10-2-loose-tard-2 136 138* 3 137 138 138 1.45

I-15-2-tight-equal-1 3325 3363 1800 3316 3559 3345 0.60
I-15-2-tight-equal-2 1470 1480* 1069 1449 1579 1480 0.67
I-15-2-loose-equal-1 1028 1042* 138 1032 1142 1042 1.34
I-15-2-loose-equal-2 491 498* 32 490 520 498 1.40
I-15-2-tight-tard-1 783 791* 725 786 913 791 1.01
I-15-2-tight-tard-2 901 906* 45 886 906 906 0.55
I-15-2-loose-tard-1 646 655* 289 650 730 655 1.37
I-15-2-loose-tard-2 279 280* 8 278 310 280 0.35

I-20-2-tight-equal-1 1922 1946 1800 1901 2008 1934 0.62
I-20-2-tight-equal-2 933 942* 590 912 1014 942 0.96
I-20-2-loose-equal-1 2535 2548 1800 2546 2708 2548 0.51
I-20-2-loose-equal-2 3057 3070 1800 3013 3318 3070 0.42
I-20-2-tight-tard-1 1657 1672 1800 1515 1913 1672 0.90
I-20-2-tight-tard-2 1438 1474 1800 1375 1594 1449 0.76
I-20-2-loose-tard-1 1195 1204* 459 1194 1271 1204 0.75
I-20-2-loose-tard-2 760 769* 887 735 857 769 1.17

I-10-5-tight-equal-1 662 690 1800 660 826 690 4.05
I-10-5-tight-equal-2 749 764* 1374 612 848 764 1.96
I-10-5-loose-equal-1 1627 - 1800 1263 1905 - 14.06
I-10-5-loose-equal-2 882 - 1800 878 1010 984 10.37
I-10-5-tight-tard-1 362 380 1800 361 405 380 4.74
I-10-5-tight-tard-2 568 1724 1800 461 708 - 19.77
I-10-5-loose-tard-1 168 176* 361 168 188 176 4.54
I-10-5-loose-tard-2 452 528 1800 355 572 486 7.00

Table 5: Job-shop: earliness/tardiness costs, 10-15-20 jobs, 2 machines; 10 jobs, 5 machines

21

Instance LB root v∗ CPU GAP
1 79.07 80 1 1.16
2 83.00 83 1 0.00
3 79.46 82 3 3.10
4 77.83 79 2 1.48
5 80.24 82 4 2.15
6 78.00 80 2 2.50
7 80.00 81 1 1.23
8 85.00 85 1 0.00
9 83.00 83 1 0.00
10 82.00 82 1 0.00

Table 6: Job-shop: 10 jobs, 5 machines, unit processing times

Instance LB root v∗ CPU GAP
1 123.07 131 52 6.05
2 119.34 129 129 7.50
3 117.82 122 5 3.43
4 119.00 126 32 5.56
5 120.45 126 11 4.40
6 124.63 130 61 4.13
7 136.00 136 2 0.00
8 125.63 129 12 2.61
9 125.00 131 77 4.58
10 121.25 128 29 5.27

Table 7: Job-shop: 10 jobs, 10 machines, unit processing times

22

