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Abstract. In this paper we deal with a functional equation that plays an important role in random graphs and in
branching processes. In branching processes the functional equation relates offspring probabilities to population size
probabilities, while in random graph it relates degree probabilities to small component size probabilities. We present
an iterative scheme that allows to compute numerically the size probabilities. It is also theoretically possible to invert
the iteration, although this inverse iteration is numerically unstable.
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1 Introduction

Let G(x) and H(x) be two probability generating functions that are linked through the functional equation

H(x) = xG(H(x)).

Functions of this type occur in branching processes and in random graphs [1, 3, 4, 2, 6, 7]. In branching
processes G(x) represents the probabilities of new offsprings from a member of the population and H(x)
represents the population size probabilities. In the configuration model [4] of random graphs, G(x) represents
the excess degree probabilities of a vertex in small components and H(x) represents the small component
size probabilities. Note that in both cases H(x) can be a defective generating function, i.e. H(1) < 1.

Usually G(x) is given and H(x) has to be computed. The coefficients of H(x) can be computed by using
the Lagrange inversion formula if G(x) has a nice analytical expression. If G(x) is assigned by its coefficients,
applying the Lagrange inversion formula can be problematic. However, a numerical iteration to compute the
coefficients of H(x) is always possible. In this paper we propose this iteration.

Interestingly enough, this iteration can be inverted, i.e., from the size distribution we can infer the degree
probabilities. We present also this inverse iteration, although it has to be remarked that the inverse iteration
is numerically unstable.

The paper is organized as follows. In Section 2 we provide the mathematical background by referring
to the case of random graphs. Then in Section 3 we present the main result, i.e., the iteration to compute
the size probabilities of the small components of the graph. The possibility of inverting this computation is
presented in Section 4. Then in Section 5 we point out how the same iteration can be used for a branching
process. Some conclusions are presented in Section 6.

2 Mathematical background

We first present our result by explicitly referring to random graphs in the configuration model for which the
picture is more complex. In a later section we show how to relate the iteration to branching processes. Hence
all definitions in this section and in Sections 3 and 4 are related to random graphs.
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A random graph has assigned degree probabilities ph, h = 0, 1, . . . ., i.e., ph is the probability that a
randomly selected vertex has degree h. We recall that the degree of a vertex is the number of vertices
adjacent to it. The study of random graphs through generating functions is asymptotic, i.e., it assumes an
infinite number of vertices. Let G0(x) be the probability generating function of the degree distribution, i.e.,

G0(x) =
∑
h≥0

ph x
h.

Let d = G′0(1) be the average degree and

G1(x) =
G′0(x)

d
=
∑
h≥0

qh x
h, (1)

where clearly

qh =
(h+ 1) ph+1

d
.

The values qh are known as excess degree probabilities. Let H0(x) and H1(x) be two generating functions
that can be expressed as power series as

H0(x) =
∑
k≥1

sk x
k, H1(x) =

∑
k≥1

rk x
k,

and that are defined by the equations

H0(x) = xG0(H1(x)), H1(x) = xG1(H1(x)). (2)

Our aim is to compute the coefficients sk and rk.
The motivation for the generating functions H0(x) and H1(x) derives from the analysis of the asymptotic

properties of the random graph in the configuration model. If the graph is sufficiently dense the graph exhibits
the so-called giant component, i.e., a connected component whose size asymptotically goes to infinity. The
giant component, if present, is unique. The rest of the graph consists of an infinite number of finite trees,
the so-called small components. See [3], among many possible references.

It can be shown that, if ph is the probability that a randomly chosen vertex (in the whole graph) has
degree h, then sk is the probability that a randomly chosen vertex belongs to a small component of size k,
and rk is the probability that, after choosing a random vertex i of degree at least one and then a random
vertex j adjacent to i, the vertex j belongs to a small component of size k after removing the edge {i, j}.

If the giant component is present the conditional probability p̂h of choosing in the small components a
vertex of degree h is different from ph, and similarly for the excess degree probability q̂h. It can be shown
that

p̂h =
uh

v
ph, q̂h = uh−1 qh, (3)

where u is the solution of u = G1(u) and v = G0(u) is the fraction of vertices in the small components. We
can briefly justify (3) by using Bayes’ formula

p̂h =
Pr{S |Dh} ph

Pr{S}
.
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with S the random event of choosing a vertex in a small component and Dh the random event of choosing a
vertex of degree h. Clearly Pr{S |D0} = 1 and consequently p̂0 = p0/v. If h > 0, Pr{S |Dh} is the probability
that all adjacent h vertices belong to a small component once we have removed the corresponding edges,
and so its value is uh. This explains the left expression in (3). To justify the right expression we need to
compute the average degree in the small components by taking the derivative of G0(ux)/v (by using (3)) and
computing it for x = 1, i.e., uG′0(u)/v = u dG1(u)/v = u2 d/v. From this we immediately get the expression
at the right.

It turns out that using p̂h instead of ph in the definition of G0 and G1 has the only effect of scaling
the values sk by the constant factor v and rk by the constant factor u, that correspond to the conditional
probability of choosing within the small components. In particular we have H0(1) = v and H1(1) = u if we
use ph and qh in the definition of G0 and G1 respectively, whereas we have H0(1) = 1 and H1(1) = 1 if we
use p̂h and q̂h.

We also define the probability tk that a randomly selected small component has size k. Of course

sk
v

=
k tk
t̄
,

with t̄ the average size of a small component. Here we have to discount sk because the choice of a small
components necessarily conditions the choice within the small components.

3 Computing the coefficients of H0(x) and H1(x)

From the recursive equation

H1(x) = xG1(H1(x)) = x
∑
h≥0

qhH1(x)h, (4)

and from

H1(x) =
∑
k≥1

rk x
k,

(necessarily r0 = 0) we derive∑
k≥1

rk x
k = x q0 + x

∑
h≥1

qh (
∑
j≥1

rj x
j)h = x q0 +

∑
h≥1

qh x
h+1(

∑
j≥0

rj+1 x
j)h,

so that ∑
k≥1

rk x
k = x q0 +

∑
h≥2

qh−1 x
h(
∑
j≥0

rj+1 x
j)h−1. (5)

Let ahk be the coefficient of xk in (
∑

j≥0 rj+1 x
j)h. Note that a1k = rk+1 and in particular a10 = r1. From (5)

r1 = q0, rk =

k∑
h=2

qh−1 a
h−1
k−h, k ≥ 2. (6)

Hence the computation of rk requires the coefficients a1k−2, a
2
k−3, . . . a

k−1
0 . In turn the computation of ahk

requires the terms r1, . . . , rk+1 and so to compute rk we only need knowledge of r1, . . . , rk−1.
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The recursion works as follows: initially r1 = q0, and then

rk =

k∑
h=2

qh−1 a
h−1
k−h,

a1k−1 = rk

ahk−1 =

k−1∑
j=0

ah−1j a1k−1−j =

k−1∑
j=0

ah−1j rk−j , h = 2, . . . , k − 1

akh =

h∑
j=0

ak−1j rh+1−j h = 0, . . . , k



k = 2, 3, . . . (7)

Note that ak0 = ak−10 r1 = ak−10 q0 and therefore ak0 = qk0 , where k is an upper index for a and a power
exponent for q.

We also derive from
H0(x) = xG0(H1(x)), H0(x) =

∑
k≥1

sk x
k,

the expression ∑
k≥1

sk x
k = x p0 +

n∑
h=2

ph−1 x
h(
∑
j≥0

rj+1 x
j)h−1,

so that

s1 = p0, sk =

k∑
h=2

ph−1 a
h−1
k−h, k ≥ 2. (8)

In this case the computation is straightforward since it involves all quantities previously computed.
Theoretically the generating functions H0(x) and H1(x) involve an infinite series, but obviously only

a finite number of coefficients can be computed. Hence the computation has to be stopped after having
computed the desired number of terms rk and sk. Since each term is computed only once and it is not the
result of subsequent smaller and smaller additions, truncating the computation up to a certain index has no
effect on the accuracy of the values we compute. In other words, if we compute just a few terms, they are
computed with the same accuracy as we had computed all coefficients.

It is clear from the definitions and the previous iteration that H1(x) implies H0(x), i.e., once we know
the rk values, the sk values are also known and implied by the rk values. It is not difficult to see that the
converse is also true. By differentiating (2) and using (1) we get

H ′0(x) =
H0(x)

x
+ x dG1(H1(x))H ′1(x) =

H0(x)

x
+ dH1(x)H ′1(x), (9)

and by integrating (9) we get
d

2
H2

1 (x) = H0(x)−
∫ x

0

H0(ξ)

ξ
dξ,

i.e.,
d

2
(
∑
k≥1

rk x
k)2 =

∑
k≥1

sk x
k −

∫ x

0

∑
k≥1

sk ξ
k−1 dξ,
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which leads to the following identities term by term

d

2

k−1∑
h=1

rh rk−h = sk (1− 1

k
), k ≥ 2.

For k = 2 we get in particular

r1 =

√
s2
d

and for k > 2 we have

d

2
(2 r1 rk−1 +

k−2∑
h=2

rh rk−h) = sk (1− 1

k
),

which allows to write

rk−1 =

2
sk
d

(1− 1

k
)−

k−2∑
h=2

rh rk−h

2 r1
, (10)

so that all rk values can be recursively computed once we know d. We note that p1 > 0 implies q0 = r1 > 0.
Hence the recursion is well defined if p1 > 0, which is an almost necessary assumption if we investigate about
the presence of small components. Hence knowledge of the sk values implies knowledge of the rk values.

If we don’t know d we may still compute d from the recursion. We first note that all rk depend on d
through the factor 1/

√
d. Therefore we initially guess the value d = 1 and compute tentative values r̃k. Since∑

k rk = u we find the correct value for d as d = (
∑

k r̃k/u)2 and so we have the correct values

rk =
r̃k∑
k r̃k

u.

4 Inferring the degree probabilities from the component size probabilities

We may also consider the inverse problem of finding G0(x) and G1(x) from H0(x) and H1(x), i.e., computing
the degree distribution which gives raise to a particular small component size distribution. This problem
presents interesting features. Arbitrary degree distributions of rk and sk may not be feasible, i.e., there may
be no degree distribution which can lead to those values.

Formally, the recursion can be easily inverted, i.e., knowing the rk values, we can compute the values pk
and qk. Indeed we have from (6)

rk = qk−1 a
k−1
0 +

k−1∑
h=2

qh−1 a
h−1
k−h,

i.e.,

qk−1 =
rk −

∑k−1
h=2 qh−1 a

h−1
k−h

ak−10

. (11)

Computing the akh values is straightforward once we know the rk values. From the values qk we easily deduce
the values pk, apart from the fact that p0 cannot be derived from the qk values. However p0 = s1 and so it
is known a priori. Note also that r1 > 0 implies ak−10 > 0.
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There is however a subtle point to be settled. Let us assume that a giant component may be present but
we don’t know the values u and v. Then it is simpler to work with the conditional probabilities within the
small components. Starting from the (conditional) sk probabilities we compute the rk values as explained
in the previous section but by using the normalization

∑
k r̃k = 1. This way we actually compute q̂h and

p̂h. Then from (3) we get ph and qh. The unknowns u and v are computed by imposing
∑

h ph = 1 and∑
h qh = 1, which is equivalent to solving G1(u−1) = u−1 and G0(u−1) = v−1 with G0 and G1 defined on

p̂h and q̂h.
However, the inverse recursion is numerically unstable, and, unless we use exact data, it can produce

absurd outcomes, like probabilities outside the range [0, 1]. The reason of the instability is clear from (11)
where we have a difference in the numerator and the denominator is getting smaller and smaller as qk0 . As
a simple exercise suppose we wonder which degree distribution gives raise to a size distribution of the small
components of exponential type, i.e.,

tk = (1− β)βk−1, k ≥ 1,

with 0 < β < 1. Hence we have t̄ = 1/(1− β) and

sk =
k tk
t̄

= k (1− β)2 βk−1.

We remark that these sk are conditional probabilities. Now we have to compute the rk values from the sk
values. As explained in the previous section we initially fix d = 1 and compute from (10) the tentative values

r̃k =

√
2

β
(1− β)βk,

for which
∑

k r̃k =
√

2β. Hence d = 2β, implying the correct values

rk = (1− β)βk−1.

If we carry out the computation (11) symbolically we get

q̂0 = 1− β, q̂1 = β, q̂k = 0, k > 1,

from which
p̂0 = (1− β)2, p̂1 = 2 (1− β)β, p̂2 = β2, p̂k = 0, k > 2.

From (3) we have

ph =
v

uh
p̂h, qh =

1

uh−1
q̂h.

By imposing
∑

h qh = 1 we get
u (1− β) + β = 1 =⇒ u = 1,

and also v = 1. Hence there is no giant component in this case.
Now assume we have experimental data from which we infer the values

t1 = 0.667499, t2 = 0.221782, t3 = 0.0739131, t4 = 0.024639,

t5 = 0.00821253, t6 = 0.00273827, t7 = 0.000912502, t8 = 0.000304167
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(these data have been generated by slightly perturbing the previous theoretical values with β = 1/3). The
previous computation leads to

q̂0 = 0.667002, q̂1 = 0.333269, q̂2 = 0.0000610268,

q3 = −0.0000590538, q̂4 = 0.0000833483, q̂5 = −0.000133577,

q̂6 = 0.00018942, q̂7 = −0.00542309.

Not only there are negative values but the absolute value of qk is increasing with k showing an amplifying
effect of error propagation. Therefore a lot of care should be exerted in order to carry out computations on
experimental data. This can be matter of further investigation, beyond the scope of this paper.

We show a second example for the inverse computation. Assume that

r2k+1 =
3k+1

24k+2
Ck, r2k+2 = 0, k = 0, 1, . . .

where Ck are the Catalan numbers. If we carry out the computation (11) symbolically we get

q̂0 =
3

4
, q̂1 = 0, q̂2 =

1

4
, q̂k = 0, k > 2,

from which

p̂1 =
9

10
, p̂2 = 0, p̂3 =

1

10
, p̂k = 0, k > 3,

so that

q0 =
3

4
u, q1 = 0, q2 =

1

4u
, qk = 0, k > 2,

and

p1 =
9 v

10u
p2 = 0, p3 =

v

10u3
, pk = 0, k > 3.

The normalization yields u = 1/3 and v = 5/27, so that p1 = p3 = 1/2. Again, we show how perturbed data
can lead to strange outcomes. If we perturb the data as

r1 = 0.746705, r3 = 0.141068, r5 = 0.0529938, r7 = 0.02473,

r9 = 0.0130018, r11 = 0.00728396, r13 = 0.00430417, r15 = 0.00261343,

r17 = 0.00163685, r19 = 0.00104289,

with rk = 0 for the other indices, we get

q̂0 = 0.746705, q̂2 = 0.253005, q̂4 = −0.000988595,

q̂6 = −0.000552489, q̂8 = 0.00141413, q̂10 = −0.00223664,

q̂12 = 0.00360276, q̂14 = −0.00597299, q̂16 = 0.0098459,

q18 = −0.0155087.

We see again the same inconsistencies and the amplifying effect. In any case we may note that the values
with odd index are correctly computed as null values.
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5 Branching processes

Now we define qh, h = 0, 1 . . ., as the probability that a member of the population generates h offsprings. We
are interested in computing the probability rk that the population will eventually have k members, starting
from a population consisting of one member. If G(x) and H(x) are the probability generating functions of
qh and rk respectively, then the following functional equation holds

H(x) = xG(H(x))

Hence the same relations (5) and (6) hold as well as the recursion (7). This time there are no sk coefficients
to be computed and the picture is simplified. We may still view a branching process like a random graph.
However, while in random graphs we pick up randomly any vertex within the small components, in branching
processes the small components are rooted trees and we pick up randomly the roots. Hence the values rk we
state here for a branching process can be related to the tk values of random graphs.

The iteration (7) can also be carried out in exact arithmetic, thus producing results from which closed
formulas can be inferred. As a simple example suppose that q0 = q1 = q2 = 1/3 (qi = 0 for i > 2). Then by
applying (7) we obtain a sequence whose first terms are{

1

3
,

1

9
,

2

27
,

4

81
,

1

27
,

7

243
,

17

729
,

127

6561
,

323

19683
,

835

59049
,

2188

177147
, . . .

}
(12)

We may guess that the denominator grows as the powers of 3, and so if we multiply the n-th term of (12)
by 3n we obtain the new sequence

{1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, . . .} (13)

By looking at [5] we discover that these are the Motzkin numbers whose n-th term is in closed form

Mn =

bn/2c∑
k≥0

Ck

( n

2 k

)
with Ck the k-th Catalan number. Hence

rn = 3−nMn−1

and we have found another combinatorial interpretation of the Motzkin numbers, beside the many listed
in [5]. The reason of n − 1 as subscript is due to the fact that the first index of the sequence rn is n = 1,
whereas Motzkin numbers in (13) as defined above start from n = 0. In this case, where G(x) has a simple
analytical expression, this result can be also obtained by the Lagrange inversion formula.

The same considerations about inferring the probabilities qk from the probabilities tk (= rk) can be
applied also to branching processes. The example with tk = (1− β)βk−1 is almost trivial if we have in mind
a branching process.

6 Conclusions

In this paper we have presented an iterative scheme to compute the coefficients of a generating function that
plays an important role in random graphs and in branching processes. The generating function is related
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to the population size probabilities for a branching process and to the small component size probabilities
for random graphs. We also show that the iteration can be inverted, i.e. for a branching process, from the
population size probabilities one can infer the offspring probabilities, but the inverse iteration is numerically
unstable.

Statement: The author declares that there is no conflict of interest regarding the publication of this paper.
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