
A Column Generation Scheme
for Faculty Timetabling

Andrea Qualizza1 and Paolo Serafini1,2

1 Department of Mathematics and Computer Science, University of Udine, Italy

2 CISM, Udine, Italy

Abstract. In this paper we deal with the problem of building a timetable
for the courses of a university faculty. We propose an integer linear pro-
gramming approach based on column generation. Each column is asso-
ciated to a weekly timetable of a single course. The constraints referring
to classroom occupancy and non overlapping in time of courses are in
the integer linear programming matrix. The constraints and preferences
related to a single course timetable are embedded in the column gener-
ation procedure. Generating a column for a course amounts to selecting
the currently best time slots in the week. The interaction between the
column generation procedure and the branch-and-bound method is also
discussed. Some computational results are shown.

1 Introduction

Building a timetable for a university faculty is a common task which has been
carried out in many different ways. The reason of this diversity is that perhaps
each faculty has its own peculiarities which suggest home made timetabling
methods. Although the core of a timetable is an assignment problem, there are
always additional constraints which make the problem difficult and not suitable
to a general purpose algorithm. Only some of the work done in designing faculty
timetables has emerged into the literature. General characteristics of the problem
can be found in the papers [1,2].

The methods fall generally into two categories, heuristic methods and integer
linear programming methods. The latter cannot be classified as exact methods
because very rarely the branch-and-bound tree is fully explored due to the size of
most problems. For a review of recent timetabling methods, especially heuristics,
see for instance [3].

In the integer linear programming formulation the problem is usually modeled
with binary variables expressing the fact that a certain course has been assigned
to certain time slots and to certain classrooms, and constraining the variables



accordingly. This has been the approach taken by several authors like (to quote
recent papers) [4,5].

However, the integrality relaxation of this model does not provide a strong
bound and this has obvious drawbacks in terms of computing time. Besides, the
need of introducing more realistic preferences over the set of variables associated
to a single course as a whole, instead of just the preference sum for each time
slot, cannot be practically done. This makes sometimes very difficult to ‘drive’
a solution to a better one.

Therefore this approach is sometimes coupled with heuristic techniques which
on one hand reduce the complexity of the model and on the other hand allow
the user to friendly interact with the procedure to obtain acceptable solutions.
See for instance the SAPHIR system described in [6] and based on [7]. Here the
authors face also a problem feature which is not required in our model, namely
the grouping of students in different course sections. The rigidity of the syllabi in
Italian universities, with very few elective courses, results into a straightforward
grouping task.

In this paper we propose an original approach which is essentially based on
an integer linear programming formulation, but, instead of the usual assignment
binary variables, we use binary variables for each weekly course timetable. Due
to the exponential number of different course timetables the formulation requires
a column generation scheme. The use of column generation procedures is in gen-
eral recommended because part of the combinatorial structure of the problem
is already embedded in the constraint matrix, thus providing stronger bounds
(see next section). The power of column generation techniques has been always
recognized. See for instance [8,9]. Recently in [10] this approach has been exper-
imented for the timetable problem in high schools, which however has a quite
different structure than in academic faculties.

The problem we face consists of courses, classrooms and time slots. Courses
must be assigned to both classrooms and time slots by respecting constraints
of non simultaneous use of the same classrooms in the same time slot and non
overlapping in time of certain groups of lectures. These are the main constraints
we have to take care of. Besides, there are preferences on the time slots due to
teaching reasons and lecturers’ preferences as well. The lecturers may also express
their preferences on the whole set of time slots. However, these preferences cannot
be fully arbitrary and must be known in advance for them to be taken care of
during the column generation phase.

It is convenient to decompose the problem by first considering classroom
types instead of single classrooms, with the idea that classrooms of the same
type are interchangeable. The main integer linear programing model considers
classroom types. Once a timetable is computed, courses are easily assigned to
single classrooms.

In our main model a column is associated to a weekly timetable of a sin-
gle course. The matrix rows take care of the constraints referring to classroom
occupancy and non overlapping in time of some courses.



It turns out that generating a column for a course can be computed very
quickly because it amounts to picking the best numbers in an array. Once a
fractional solution of the integrality relaxation is found we compute an integral
solution by resorting to an integrality solver on the generated columns. This may
already provide a good solution.

If we want to improve the solution (or if we need to find a solution at all
because there was none with the generated columns) we have to start a branch-
and-price procedure. However, the column generation scheme conflicts with the
branch-and-bound method. There are some subtle issues connected to this point.
We are confronted with an NP-hard problem and we show how dynamic pro-
gramming techniques can be used to design a pseudopolynomial algorithm to
generate columns under the additional requirements that some variables are
fixed to zero.

The approach proposed in this paper offers two main advantages: the first one
derives from the combinatorial properties of the model and, as already remarked,
results in a better bound for the branch-and-bound procedure; the second one
consists in the possibility of better “controlling” the structure of the weekly
schedule, as we shall see later.

The main features of the model are discussed in Section 2, 3 and 4. A small
example is provided in Section 5 to better show how columns are generated. The
issues related to the branch-and-price procedure are described in Section 6. In
Section 7 we briefly describe the computational results obtained by applying the
method to the real data of our faculty. Finally we show in Section 8 how courses
are assigned to classrooms.

2 The Integer Linear Programming Model

We assume that the classrooms can be partitioned into sets of classrooms of the
same type. Classrooms of the same type are interchangeable, i.e. a course can be
assigned to any classroom of a certain type. Hence it is simpler to first assign a
course to a classroom type and later, via a simple assignment problem, assign the
course to a specific classroom. Therefore in this phase we only consider classroom
types. We address the problem of assigning courses to classrooms in Section 8.
Let K be the set of classroom types and let nk be the number of classrooms of
type k ∈ K.

Let C be the set of courses. Usually a course is ideally suited to a certain
classroom type. However, it may be convenient, in case of unavailability, to
assign it to a classroom of a different type, if available and feasible. For instance
a course with few students should be placed in a small classroom, but it may
also be assigned to a large classroom, although this is less preferred in general.
Let K(c) be the set of feasible classroom types for course c.

The time-table we consider is weekly. The week is partitioned in a set of
time slots. The time slots do not necessarily have the same duration, although
equal time slots (e.g. two hours or one hour each) are preferrable in the column
generation phase. In this paper we only consider equal time slots. Let H be the
set of time slots. Let d(c) be the required number of time slots for course c.



A typical feature of faculty timetabling is that certain courses must not be
taught in the same time slot. The most obvious case concerns courses taught by
the same person. Besides, there are always courses which should be attended by
the same group of students and therefore must be scheduled in different times.
Let us define as Cq ⊂ C, q ∈ Q, the sets of non overlapping courses (with Q an
abstract index set). Conversely let Q(c) := {q ∈ Q : c ∈ Cq}, i.e. the list of non
overlapping groups to which c belongs.

Let P (c) be the set of timetable patterns for the course c. By ‘pattern’ we
mean an assignment of all the required hours per week for the course to definite
time slots and definite classroom types. The number of possible patterns for each
course is exponential, but we will generate only a subset of patterns. In order to
constrain the patterns we need to define the following matrices:

a(kh)(jc) =

{
1 if course c is assigned the time slot h

in a classroom of type k for the pattern j ∈ P (c),
0 otherwise

a′(h)(jc) =

{
1 if course c is assigned the time slot h

for the pattern j ∈ P (c),
0 otherwise

Clearly a′(h)(jc) = 0 if and only if a(kh)(jc) = 0 for each k ∈ K and∑
h∈H

a′(h)(jc) =
∑
h∈H

∑
k∈K(c)

a(kh)(jc) = d(c) j ∈ P (c), c ∈ C .

We introduce the following variables

xjc =
{

1 if pattern j ∈ P (c) is used for course c
0 otherwise

(1)

The constraints are as follows: we require that∑
c∈C

∑
j∈P (c)

a(kh)(jc) xjc ≤ nk k ∈ K, h ∈ H (2)

to avoid simultaneous use of more than nk classrooms of type k. We require that∑
c∈Cq

∑
j∈P (c)

a′(h)(jc) xjc ≤ 1 h ∈ H, q ∈ Q (3)

to impose non overlapping of courses in the same group q. We require that∑
j∈P (c)

xjc = 1 c ∈ C (4)

to impose that a course is assigned to exactly one pattern. The number of rows
of the problem is given by |H| · |K|+ |H| · |Q|+ |C|, which can be large but not
intractable. We consider as objective function the maximization of a preference∑

c∈C

∑
j∈P (c)

rjc xjc (5)



where
rjc =

∑
h∈H

∑
k∈K(c)

a(kh)(jc) skhc

and skhc is the preference of using the time slot h and the classroom type k for
the course c.

Therefore the integer linear programming problem consists in the maximiza-
tion of (5) subject to (1), (2), (3) and (4). The approach to solve it is via
branch-and-bound with column generation (i.e. branch-and-price). The integral-
ity constraint is relaxed to xjc ≥ 0 and the patterns (i.e. the columns) are
generated until optimality of the integrality relaxation is reached. At this point,
unless the solution is integer, the branch-and-price procedure starts.

If we compare this model to the usual model in which binary variables are
associated to course-time slots assignments (assignment model) we may observe
that each feasible solution of the integrality relaxation of (1), (2), (3) and (4)
can be easily turned into a feasible solution of the integrality relaxation of the
assignment model, whereas the converse is not true in general (if for instance
the assignment variables have different values for the same course in different
time slots). Therefore the integrality relaxation of the model of this paper yields
a better bound than the relaxation of the assignment model.

3 Column Generation

Let us define the dual variables wkh, vhq, uc for the constraints (2), (3) and (4)
respectively. Then the dual constraints are∑
h∈H

∑
k∈K

a(kh)(jc) wkh +
∑
h∈H

∑
q∈Q(c)

a′(h)(jc) vhq + uc ≥

∑
h∈H

∑
k∈K

a(kh)(jc) skhc j ∈ P (c), c ∈ C ,

i.e.∑
h∈H

( ∑
k∈K

a(kh)(jc) (wkh−skhc)+
∑

q∈Q(c)

a′(h)(jc) vhq

)
+uc ≥ 0, j ∈ P (c), c ∈ C .

So, in order to generate a pattern j for the course c, we have to minimize, with
respect to a and a′∑

h∈H

( ∑
k∈K

a(kh)(jc) (wkh − skhc) +
∑

q∈Q(c)

a′(h)(jc) vhq

)
. (6)

Let us define
ŵhc = min

k∈K(c)
wkh − skhc

v̂hc :=
∑

q∈Q(c)

vhq



and
thc := ŵhc + v̂hc .

Then minimizing (6) is equivalent to minimize, for each c,∑
h∈H

thc a
′
(h)(jc) . (7)

Minimizing (7) can be subject to some constraints or preferences related to
the particular course. Let us consider some relevant cases.

The simplest case is the one without constraints, i.e. any set of d(c) time slots
is feasible for course c. In the sequel, to ease the notation, we drop the dependence
of d on c. In this case minimizing (7) can be done by selecting the d minimum
values of thc, h ∈ H. This computation can be carried out with complexity
O(|H| log d). It is clear that we deal with fixed and generally small values of |H|
and d and consequently, it is seems out of place to provide asymptotic bounds.
Yet it is useful to realize that the algorithm for a column generation is a fast
one.

Quite often we are not allowed to assign more than one time slot per day to
a course. In this case the minimization of (7) is carried out by selecting the d
minimum values of thc on different days. This is simply carried out by taking
the best values of thc for each day, let us denote them by t̂1, t̂2, t̂3, t̂4, t̂5, and
then selecting the d best values out of them. Here we need just to scan all |H|
values and then to scan at most twice the t̂i values.

Sometimes teachers prefer to teach on consecutive days without any particu-
lar preference for the actual days. Then the pattern is generated by considering
the best value among (t̂1 + t̂2 + t̂3), (t̂2 + t̂3 + t̂4), (t̂3 + t̂4 + t̂5) (if for instance
d = 3).

Another preference expressed sometimes by teachers consists in having all
classes either all in the morning or all in the afternoon. This can be easily
carried out by considering the d best values of thc of the morning hours and the
d best values of thc of the afternoon hours and by selecting the better solution.

Finally, in case the time slots do not consist of two consecutive hours (as is
anyway advisable in general) but of single hours, one typical requirements is that
hours for the same course come out in pairs as much as possible. This type of
constraint is particularly nasty in the usual formulation. On the contrary it does
not make the pattern generation too much harder. Suppose we have to allocate
five hours and four of them must be in pairs. Furthermore let us assume that no
more than two hours per day can be taught. Then we compute the best values
t̂1, t̂2, t̂3, t̂4, t̂5 as before. We also compute all values thc + th′c with h and h′

consecutive hours and we take the best of these values for each day. Let t̃1, t̃2,
t̃3, t̃4, t̃5 be these values. Now we have to select three different indices i, j, k such
that t̃i + t̃j + t̂k is maximum. Although implementing this computation is not
straightforward, the computation itself is quick.

Let Mc be the minimum obtained for the course c (no matter the particular
rule to generate the pattern for that course). If Mc + uc ≥ 0 the optimality



condition is satisfied for the course c whereas if Mc+uc < 0 the pattern obtained
by minimizing (7) has to be inserted into the matrix.

4 Initialization
Since finding a feasible time-table is by itself NP-hard, we cannot initialize the
matrix with a set of feasible patterns. It is more convenient to introduce artificial
variables zc to the equality constraints (4), which become∑

j∈P (c)

xjc + zc = 1 c ∈ C (8)

and the original objective function is replaced by

min
c∈C

zc i.e. max
c∈C

−zc .

The only difference in the column generation procedure is that the values s are
zero. The initial solution is taken as zc = 1 and xjc = 0. Due to the null value of
xjc, any pattern can be used to fill up the matrix initially. However, we may even
think of starting without any pattern at all and generate all of them. Indeed,
no matter which are the initial patterns, the initial values for the dual variables
are whk = 0, vhq = 0, uc = −1, and therefore the first generated patterns can
be any. In order to speed up the computation it is advisable to use as objective
function a weighted sum of the original objective and the artificial one.

We recall that we solve the relaxed problem and therefore the initial solution
can be fractional. In other words we may find an initial fractional feasible solution
even if there is no feasible integer solution.

5 An Example
We limit ourselves to show one single column generation, because everything
else is standard. The example is a small instance for illustration purposes. Let
us suppose that there are 4 time slots (H = 4) and 5 courses c1, c2, c3, c4, c5
with d(c1) = 2, d(c2) = 2, d(c3) = 1, d(c4) = 1, d(c5) = 2. The courses are
grouped into two non overlapping sets C1 = {c1, c2} and C2 = {c3, c4, c5}. There
are two classroom types (K = {k1, k2}) and two classrooms for each type, i.e.
n(k1) = n(k2) = 2. The relationship between courses and classrooms is defined
as K(c1) = {k1}, K(c2) = K(c5) = {k2}, K(c3) = K(c4) = {k1, k2}. We assume
that the ideal classroom type for courses c3 and c4 is k1. They can fit type k2

but in this case their preferences (columns 3 and 4 of table below) are reset to 0.
The preferences are

shc =


0 2 1 2 2
2 0 1 0 2
1 1 0 1 1
2 1 2 1 0


Let us suppose that three columns have been generated for each course, so

that the matrix A (constraints (2)) is (the columns in boldface correspond to
the current solution):



k1


k2





1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 0 1 1 0 0 0 0 0 0 0 1 0 0


The matrix A′ (constraints (3)) is:

C1


C2





1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0


and the assignment matrix (constraints (4)) is:

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1


The objective function coefficients are

( 1 4 3 1 3 1 1 2 1 0 2 1 1 4 3 )

so that the current solution value is 13. The computed dual variables at this
stage are

w = 0, vh1 = (0 2 0 1), vh2 = (1 0 0 0), uc = (1 2 2 1 3) .

So we compute the following values for the course c1

ŵh1 = min
k∈K(c1)

wkh − skhc = w1h − s1hc = ( 0 −2 −1 −2 ) ,

v̂h1 := vh1 = ( 0 2 0 1 )

and
th1 := ŵh1 + v̂h1 = ( 0 0 −1 −1 ) .

We have to allocate two time slots for course c1 so that the minimum is in
selecting time slots 3 and 4 with minimum value M1 = −2. Since M1 + u1 =
−1 < 0, the optimality condition is not satisfied for c1 and the pattern (0, 0, 1, 1)
has to be generated.

For the course c3 we have

ŵh3 = min
k∈K(c3)

wkh−skh3 = min {w1h − sh3 ; w2h} = −sh3 = (−1 −1 0 −2 )



v̂h3 := vh2 = ( 1 0 0 0 )

and
th3 := ŵh3 + v̂h3 = ( 0 −1 0 −2 ) .

In this case we have to allocate only one time slots and the best way to do it is
to allocate the fourth time slot. So M3 = −2. Since M3 + u3 = 0 the optimality
condition is satisfied and there is no need to generate columns for c3. We omit
the similar computations for the courses c2, c4 and c5.

6 Branch-and-Price Strategy

We first solve the relaxed problem by generating columns until optimality is
reached. If we end up with a fractional solution, we invoke a ILP routine on
the generated columns to get a first incumbent. Then we start a branch-and-
bound search. The branching is done by setting the fractional variables to 0 and
to 1. These additional constraints however conflict with the column generation
scheme. While fixing a variable to 1 poses no problem, there are problems in
fixing a variable to 0. Indeed there is no way to prevent generating again columns
whose corresponding variables are forced to 0.

We circumvent the problem as follows. Let us suppose that we are solving
a subproblem in the branch-and-bound tree for which (K − 1) variables have
been set to 0. If we compute the first K minima in (7), we are sure that among
those minima there is the minimum of (7) with the additional requirement of
excluding the (K − 1) columns associated to the variables set to 0.

However, computing the first K minima in (7) is not a straightforward prob-
lem. Let us consider the case when (7) is minimized without constraints. There
is an array of values T :=

{
t1, t2, . . . , t|H|

}
(in general unrestricted in sign). Let

J ⊂ {1, 2, . . . , |H|}. The value of the subset J is defined as
∑

j∈J tj . We ask if
there are at least K distinct subsets of {1, 2, . . . , |H|} with value at most −uc.
This is a variant of the K-th LARGEST SUBSET problem, which is known to be
NP-hard (see for instance [11]). Our problem is a variant with subsets of equal
cardinality and values unrestricted in sign. It is not hard to see that the variant
is NP-hard as well. However, it may be solved pseudopolynomially, for instance
in the following way. Let Tj := {t1, t2, . . . , tj} and Ij := {1, 2, . . . , j}. Define
L(i, j) to be a list of the values of the K best subsets of Ij with i elements (the
list may have less than K values if K subsets do not exist) and L∗(i, j) to be
the list of the corresponding subsets. Then the following dynamic programming
recursion holds:

L(i, j) = min {L(i, j − 1) ; tj + L(i− 1, j − 1)} (9)

where tj +L(i−1, j−1) means that the value tj is added to each value of the list
L(i− 1, j − 1) and the ‘min’ operation is actually a merge operation extracting
the best K values from the two lists. The same merge operation is carried out
on L∗(i, j − 1) and L∗(i − 1, j − 1) ∪ j. This operation has complexity O(K)
on sorted lists and produces a sorted list. The meaning of (9) is that L∗(i, j) is
obtained by merging the lists which do not contain j and those which do. By



the optimality principle the latter are optimal if the subsets with one element
less up to j − 1 are optimal.

The recursion is initialized as

L(0, j) = {0} , L∗(0, j) = {∅} , j := 0, . . . |H|

and is computed for increasing values of i and j (note that L(i, j) and L∗(i, j)
are undefined for i > j). The complexity is O(K |H| d). In our case due to the
small values of d, H and K this computation is quite fast.

The other cases of minimizing (7) can be taken care of in similar ways. For
instance if we consider the case of allowing at most one time slot per day, then
we denote the time slots as (jk) (j-th time slot of day k) and define L(i, k) to
be a list of the values of the K optimal subsets up to the day k with i elements
and L∗(i, k) to be the lists of the same subsets. Then the recursion is as follows:

L(i, k) = min{L(i, k − 1) ; t(1k) + L(i− 1, k − 1)) ;

t(2k) + L(i− 1, k − 1) ; . . . ; t(pk) + L(i− 1, k − 1)}
(p is the number of time slots per day) with complexity O(K |H| d) as before
(L∗(i, j) is computed accordingly).

7 Computational Results

We have applied the model to the actual data of one teaching period of our
faculty. There are 63 courses, 25 time slots (5 days, 5 time slots per day), 4 class-
room types and 25 groups of non overlapping courses. This can be considered a
medium size model. The starting LP model has 788 rows and 168 columns. We
use CPLEX routines to solve the model.

Solving the LP relaxation requires 731 columns to be generated. The frac-
tional optimum has a value of 1443. At this point the CPLEX MIP routine is
called to solve the ILP problem with the currently generated columns. The MIP
routine returns the first incumbent with value 1411. The computation time up
to this point is 225 seconds, of which 173 seconds are spent on the MIP routine.

As expected the LP relaxation provides a strong upper bound (it is a max-
imization problem). The gap is (1443 − 1411)/1443 = 0.02217, i.e. around 2 %.
Since the objective function is an artificial one, in the sense that the preferences
are numbers which reflect in an imprecise way the real preferences of teachers
and students, we might consider that any solution within a certain gap is ac-
ceptable. This has the obvious implications that the branch-and-bound tree does
not grow too much. Indeed if we consider acceptable a gap within 3 % we might
just take the first incumbent and stop the computation.

If on the contrary we continue the computation up to the very end, we need
building a branch-and-bound tree with 556 nodes and depth 53 and generating
534 more columns and we eventually find an integer solution of value 1443.
This shows that the gap provided by the relaxed model is actually zero for this
instance. This is quite remarkable. It raises however the need of finding a better
incumbent to prune more efficiently the branch-and-bound tree and also to look



for better strategies to explore the tree in order to find the optimum as soon as
possible. This is subject of future research.

We also point out that it is advisable to implement a derived model in which
constraint violations are allowed at the price of high penalty values in the objec-
tive function. This does not introduce any new feature in the column generation
scheme. If there is no feasible solution (which unfortunately may happen) then
the artificial variables associated to the penalty values do not vanish and it is
possible to detect which contraints are responsible for the infeasibility, thereby
suggesting new requirements on the time table.

Once an initial solution is available this can be modified manually by the user
either directly or by fixing part of the timetable and running again the model.
We are currently experimenting this successive phase of timetable building.

8 Assigning Courses to Classrooms
Once an integer solution is found to the main problem we have a complete
assignment for each time slot of each course to a certain classroom type. We
know that the constraint on the number of available classrooms for each type
is satisfied by the solution. It is therefore a trivial task to assign a definite
classroom for each course if we do not ask for more. We mean that, as long
as we consider each time slot independent of the others, we may simply assign
in a greedy way the classrooms for each time slot. However, we usually would
like to have all lectures of the same course in the same classrooms. Although
this is not a compulsive requirement, it is a desired property of a time table.
Sometimes, it is more than a soft requirement. If there are many students in a
class, it may be very annoying and time consuming having them moving around
between lectures.

So it is reasonable to require that certain lectures stay in the same classroom
as much as possible. Let the solution of the main model be represented by a set
of triples (c, h, k). Each triple states that course c is taught in time slot h in
classroom of type k. Clearly the problem we face is decomposed into classroom
types, so we may just consider pairs (c, h), taking for granted the classroom type.
Let Z be the set pairs (c, h). We partition Z into sets Z1, Z2, . . . , Zf with the
idea that pairs in Zi should be in the same classroom as much as possible. The
partition can be specified manually by taking into account for instance courses
with the same groups of students.

Let R be the set of classrooms. Let us define variables

xchr :=
{

1 if the pair (c, h) is assigned to classroom r
0 otherwise

and variables

yjr :=
{ 1 if a pair in Zj is assigned to classroom r

0 otherwise
Then we may write the following constraints:∑

r

xchr = 1 (c, h) ∈ Z



stating that each pair must be assigned to a classroom,∑
c:(ch)∈Z

xchr ≤ 1 r ∈ R, h ∈ H

stating that for each time slot and each classrooom there can be at most one
course, and

xchr ≤ yjr r ∈ R, (ch) ∈ Zj

to set y variables consistently with x variables. Then we minimize the number of
classroom changes within each set Zj by minimizing either

∑
jr yjr or maxjr yjr.

Due to the symmetry of the problem and also for practical reasons it is advisable
to introduce preferences qjr for the assignments between sets Zj and classroom r
so that we actually minimize

∑
jr qjr yjr.

References

1. de Werra D., “An introduction to timetabling”, European J. of Operational Re-
search, 19 (1985) 151-162.

2. de Werra D., “The combinatorics of timetabling”, European J. of Operational
Research, 96 (1997) 504-513.

3. Schaerf A., “A survey of automated timetabling”, Artificial Intelligence Review,
13 (1999) 87-127.

4. Hultberg T.H. and D.M. Cardoso, “The teacher assignment problem:a specila case
of the fixed charge transportation problem”, European J. of Operational Research,
101 (1997) 463-473.

5. Daskalaki S., T. Birbas and E. Housos, “An integer programming formulation for
a case study in university timetabling”, European J. of Operational Research, 153
(2004) 117-135.

6. Ferland J.A. and C. Fleurent, “SAPHIR : A Decision Support System for Course
Scheduling”, Interfaces, 24 (1994) 105-115 .

7. Aubin J. and J.A. Ferland, “A Large Scale Timetabling Problem”, Computers and
Operations Research, 16 (1989) 67-77 .

8. Barnhart C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh and P. Vance,
“Branch-and-price: Column generation for solving huge integer problems”, Oper-
ations Research, 46 (1998) 316-329.

9. Maculan N., M. de Mendonça Passini, J.A. de Moura Brito and I. Loiseau,
“Column-generation in integer linear programming”, RAIRO Oper. Res., 37
(2003) 67-83.

10. Papoutsis K., C. Valouxis and E. Housos, “A column generation approach for
the timetabling problem of Greek high schools”, J. of the Operational Research
Society, 54 (2003) 230-238.

11. Garey, M.R., D.S. Johnson, Computers and intractability: a guide to the theory of
NP-completeness, W.H. Freeman and Company, San Francisco, CA, USA (1979).


