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Abstract

We introduce an exact algorithm, based on Integer Linear Programming, for the
parsimony haplotyping problem (PHP). The PHP uses molecular data and is aimed at
the determination of a smallest set of haplotypes that explain a given set of genotypes.
Our approach is based on a Set Covering formulation of the problem, solved by branch
and bound with both column- and row- generation. Existing ILP methods for the PHP
suffer from the large size of the solution space, when the genotypes are long and with
many heterozygous sites. Our approach, on the other hand, is based on an effective
implicit representation of the solution space, and allows the solution of both real-data
and simulated instances which are very hard to solve for other ILPs.

1 Introduction

A single nucleotide polymorphism (SNP, pronounced “snip”) is a site of the human genome
(i.e., the position of a specific nucleotide) showing a statistically significant variability within
a population. Besides very rare exceptions, at each SNP site only two nucleotides (out of A,
T, C and G) are observed, and they are called the SNP alleles. The recent completion of the
sequencing phase of the Human Genome Project [19, 28] has shown that the genomes of any
two individuals are more than 99% identical, and that most polymorphisms (i.e., differences
at genomic level) are in fact SNPs, occurring, on average, one every thousand bases. Being
the predominant form of human polymorphism, the importance of SNPs can hardly be
overestimated. Nowadays, SNPs are widely used in therapeutic, diagnostic, and forensic
applications. Several projects are currently devoted to comparing the genetic sequences
of different individuals to identify chromosomal regions where genetic variance are shared.
Among these, we recall the international consortium HapMap [8, 9] and the SeattleSNPs [2].

Humans are diploid organisms, i.e., their DNA is organized in pairs of chromosomes. For
each pair of chromosomes, one chromosome copy is inherited from the father and the other
copy is inherited from the mother. For a given SNP, an individual can be either homozygous
(i.e., possess the same allele on both chromosomes) or heterozygous (i.e., possess two different
alleles). The values of a set of SNPs on a particular chromosome copy define a haplotype.
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Hapl. 1, paternal: taggtccCtatttCccaggcgcCgtatacttcgacgggTctata

Hapl. 1, maternal: taggtccGtatttAccaggcgcGgtatacttcgacgggTctata

Hapl. 2, paternal: taggtccCtatttAccaggcgcGgtatacttcgacgggTctata

Hapl. 2, maternal: taggtccGtatttCccaggcgcGgtatacttcgacgggCctata

Hapl. 3, paternal: taggtccCtatttAccaggcgcGgtatacttcgacgggTctata

Hapl. 3, maternal: taggtccGtatttAccaggcgcCgtatacttcgacgggCctata

Figure 1: The haplotypes of 3 individuals, with 4 SNPs.

In Fig. 1, we illustrate a simplistic example of three individuals and four SNPs. The alleles
for SNP 1, in this example, are C and G. Individual 1, in this example, is heterozygous for
SNPs 1, 2 and 3, and homozygous for SNP 4. His haplotypes are CCCT and GAGT.

Haplotyping an individual consists of determining his two haplotypes, for a given chro-
mosome. With the larger availability in SNP genomic data, recent years have seen the birth
of many new computational problems related to haplotyping (see [14] for a survey on hap-
lotyping). These problems are motivated by the fact that it is economically infeasible to
determine the haplotypes experimentally. On the other hand, there is a cheap experiment
which can determine the (less informative and often ambiguous) genotypes, from which the
haplotypes must then be retrieved computationally.

A genotype provides information about the multiplicity of each SNP allele: i.e., for each
SNP site, the genotype specifies if the individual is heterozygous or homozygous (in the
latter case, it also specifies the allele). The ambiguity comes from heterozygous sites, since,
to retrieve the haplotypes, one has to decide how to distribute the two allele values on the
two chromosome copies. Resolving a genotype requires to determine two haplotypes such
that, if they are assumed to be the two chromosome copies, then the multiplicity of each
SNP allele yields exactly that genotype. Note that, for a genotype with k heterozygous sites,
there are 2k−1 pairs of distinct haplotypes that could resolve the genotype. Given a set of
genotypes, the general haplotyping problem requires to determine a set of haplotypes such
that each genotype is resolved by two haplotypes. For its importance (as we said, haplotyping
from genotype data is nowadays the only viable way) the haplotyping problem has been
extensively studied, under many objective functions, among which: Perfect phylogeny [4, 10],
Clark’s rule [11, 12] and Parsimony [13, 22, 5]. Each model and objective function has
specific biological motivations, which are discussed in the cited references. Furthermore,
there exist several popular statistically-based programs such as PHASE and FastPhase [26,
27], Haplotyper [25] and Gerbil [21].

In this paper we pursue the Parsimony Haplotyping Problem (PHP), i.e., we are inter-
ested in finding a smallest-size set of resolving haplotypes. Among the several objective
functions for haplotyping, parsimony is a model whose importance is now being recognized
as crucial also in the solution of more complex haplotyping problems.

The computational study of the problem has been first investigated by Gusfield [13],
who credited Earl Hubbel for proposing the model and showing its NP-hardness. Gusfield
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adopted an Integer Programming formulation for its practical solution. The problem is also
APX-hard [22], i.e., there exists a constant δ > 1 such that finding a δ-approximate solution
is already NP-hard. On the other hand, there are special cases of the problem that are
polynomially solvable [15, 23]. In the last few years, many optimization approaches have
been tried for the solution of the PHP. In particular, there have been

• Integer programming formulations of worst-case exponential size. The first such formu-
lation was given by Gusfield [13], and has O(2n) variables and O(m2n) constraints in
worst-case. Gusfield managed to employ some preprocessing reduction rules, to get rid
of some variables that can be proved to be non-essential in the formulation. Although
practically useful, the rule still leaves an exponential model, whose size grows quite
quickly with respect to the instance size. In [13] the experimental results show that
this model can be used to tackle problems with up to 50 genotypes, over 30 SNPs, with
relatively small levels of heterozygosity. No column-generation technique is used, and
none seem suitable for the proposed model.

• Integer programming formulations of polynomial size and hybrid formulations. Many
authors (most prominently, Brown and Harrower [5], but see also [16, 22]) have inde-
pendently proposed polynomially-sized integer programming formulations for the PHP.
The Linear Programming relaxation of these formulations is quite weak, i.e., it usually
yields a lower bound much smaller than the optimal solution. The addition of some
valid cuts, as proposed in [5] improves the quality of the bound, but the optimality gap
remains large, especially if compared to that of the exponential formulation. In [6, 7],
Brown and Harrower propose an hybrid model, in which a fixed set of some (but not
all) haplotypes are explicitly present (as in the exponential formulation of Gusfield),
while the others are implicitly represented by a polynomial set of variables and con-
straints. The quality of the bound depends on the choice of the explicit haplotypes, but
still is inferior to that of the exponential model. The polynomial/hybrid formulations
were successfully used for the solution of problems of similar size as the exponential
model. Furthermore, some tests were conducted on slightly larger problems, on which
the exponential formulation could not be applied successfully due to the IP size.

• Quadratic, semi-definite programming approaches, of exponential size. A quadratic
formulation, solved by semi-definite programming, was proposed by Kalpakis and
Namjoshi [20]. Similarly to the exponential IP, the formulation has a variable for
each possible haplotype (i.e., it has O(2n) variables) and hence it cannot be used to
tackle instances for which the set of possible haplotypes is too large. The size of the
problems solved is comparable to the other methods. Based on a similar formulation,
an (exponential-time) approximation algorithm is presented in [17].

• Combinatorial branch-and-bound approaches. In [29], Wang and Xu propose a simple
combinatorial branch-and-bound approach. The solution is built by enumerating all
possible resolutions for each of the genotypes in turn. The lower bound is the number
of haplotypes used so far. Since the search space is exponential, and the bound is weak,
the method is not able to solve instances of size comparable to the other approaches.
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Even the solution for 20 genotypes over 20 SNPs can sometimes take an extremely long
time to be found.

• SAT approaches. In [24], Lynce and Marques-Silva explore the use of a SAT approach
for haplotype resolution. The approach is based on formulating the haplotyping prob-
lem as a polynomial-size set of boolean formulas (somewhat similar to the ILP model
in [5]) which, for a given target value t, is satisfiable if and only if there exists a res-
olution of at most t haplotypes. To find the optimal solution, a MinSAT solver is
called iteratively until the smallest feasible target value is reached. Experimental re-
sults show good performance of this method over instances of size comparable to the
above approaches.

Generally speaking, most of the above mentioned models run into troubles when trying
to solve “large” problems (where the most critical parameter is the number of heterozygous
sites per genotype). The exponential IP models imply the creation of too many variables
and/or constraints for obtaining a solution within a reasonable time (and, sometimes, the
model turns out to be too big to be even input into the solver). The polynomial IP and
combinatorial models, on the other hand, employ quite weak lower bounds, so that closing
the gap and terminating the branch-and-bound search is again impossible within a reason-
able time. Given that the exponential IP formulation turns out to be very tight, ideally we
would like to be able to attain a similarly tight bound while avoiding the presence of the
exponentially many variables and/or constraints. This goal can be achieved via an approach
that relies only a “small” subset of variables and constraints, and that sparingly adds vari-
ables and constraints only when they are in fact needed. In this paper we describe such an
approach.

Here, we propose an Integer Programming formulation for the PHP with an exponential
number of variables and constraints, but in which variables and cuts are added dynamically
when needed. The approach creates haplotypes at run-time, through a standard pricing pro-
cedure, i.e., depending on their reduced costs. These, in turn, depend on the dual variables
of the current LP relaxation.

Our approach is based on formulating the PHP as a particular Set Covering (SC) prob-
lem, in which each possible haplotype corresponds to a set. The Set Covering formulation
has an exponential number of variables and constraints. However, we describe pricing and
separation procedures that generate variables and violated inequalities at run-time. This
way, we are able to tackle instances that cannot even be input to the software based on
the best previous formulations. We were able to solve to proven optimality instances for
which the total number of haplotypes is in the order of billions. The good performance of
the approach is due to two main reasons: on one hand, the LP relaxation bound of the SC
model is quite strong; on the other hand, we use an effective heuristic, based on the LP
solution, to find good PHP feasible solutions.

Paper organization. The paper is organized as follows. In Section 2 we introduce the
basic notation and definitions. In Section 3 we describe the SC formulation and we give a
high-level description of the Branch-and-Price-and-Cut approach. In Section 4 we describe
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Haplotype 1, paternal: 0 1 0 1

2 2 2 1 Genotype 1
Haplotype 1, maternal: 1 0 1 1

Haplotype 2, paternal: 0 0 1 1

2 2 1 2 Genotype 2
Haplotype 2, maternal: 1 1 1 0

Haplotype 3, paternal: 0 0 1 1

2 0 2 2 Genotype 3
Haplotype 3, maternal: 1 0 0 0

Figure 2: Haplotypes and corresponding genotypes.

the data structures needed by our algorithm. In Section 5 we describe the pricing and sep-
aration strategies. In Section 6 we describe the heuristic used to generate feasible solutions.
In Section 7 we report on our computational experiments. Some conclusions are drawn in
Section 8.

2 Notation and definitions

Given a set of n SNPs, fix arbitrarily a binary encoding of the two alleles for each SNP (i.e.,
call one of the two alleles ’0’ and the other ’1’). Once the encoding has been fixed, each
haplotype corresponds to (with a slight abuse of terminology, hereafter, we will say that each
haplotype is) a binary vector of length n.

For a haplotype h, we denote by hi the value of its i-th component, with i = 1, . . . , n.
Given two haplotypes h′ and h′′, their sum is a vector h′ ⊕ h′′, where the binary operator ⊕
is defined, component-wise, as

(h′ ⊕ h′′)i :=











0 if h′
i = h′′

i = 0

1 if h′
i = h′′

i = 1

2 if h′
i 6= h′′

i .

A vector g = h′ ⊕ h′′ is called a genotype. In general, we call genotype any vector
g ∈ {0, 1, 2}n.

Definition 1 (Ambiguity). Let g be a genotype. Each position i such that gi = 2 is called
an ambiguous position. By A(g) we denote the set of ambiguous positions of g. A genotype
is ambiguous if it has more than one resolution, i.e., if |A(g)| ≥ 2.

In the biological interpretation, genotype entries with value 0 or 1 correspond to homozy-
gous SNP sites, while ambiguous positions correspond to heterozygous sites. In Fig. 2, we
illustrate a case of three individuals, showing their haplotypes and genotypes.

Definition 2 (Resolution). For g a genotype, a pair of haplotypes {h′, h′′} such that g =
h′ ⊕ h′′ is a resolution of g. The haplotypes h′ and h′′ are said to resolve g. Let G be a set
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of genotypes and H be a set of haplotypes such that each g has a resolution in H. Then H
resolves G, and is called a resolving set for G.

The parsimony haplotyping problem (PHP) studied in this paper, is formally defined as
follows:

INSTANCE: A set G of m genotypes of length n each.

PROBLEM: Find a resolving set Ĥ for G of minimum cardinality.

Definition 3 (Compatibility). A haplotype h is compatible with a genotype g if gi = hi

whenever gi 6= 2. Two genotypes g and g′ are compatible if gi = g′i whenever both gi 6= 2
and g′i 6= 2. Notice that two genotypes are compatible if and only if they share at least one
compatible haplotype.

Clearly, a genotype can be resolved only by compatible haplotypes. The notion of com-
patibility between genotypes can be extended to a whole set of genotypes.

Definition 4 (Compatibility Graph). Given a set G of genotypes, the compatibility
graph over G is a graph which has vertex set G and an edge between each pair of compatible
genotypes.

Definition 5 (Cliques and stable sets of genotypes). A set K of genotypes is a clique of
genotypes (or, for short, a clique) if its compatibility graph is a clique. A set S of genotypes
is a stable set of genotypes (or, for short, a stable set) if its compatibility graph is a stable
set.

The definition implies that K is a clique if and only if there exists at least one haplotype
compatible with each g in K. If we represent K as a |K| × n matrix A over {0, 1, 2}, where
rows correspond to elements of K, then K is a clique if and only if no column of A has both
a 0 and a 1 on two rows. From the definition it follows that it is impossible to resolve a
stable set S with less than 2 |S| haplotypes. It also follows that twice the stability number
of the compatibility graph is a lower bound for the PHP.

For a genotype g, we denote by H(g) the set of haplotypes that are compatible with g.
Given a set of genotypes G, let HG =

⋃

g∈G H(g). Conversely, for a haplotype h, we denote
by G(h) the set of all genotypes g ∈ G such that g is compatible with h.

Definition 6 (s-cliques). Given a set G of genotypes, a set K ⊆ G is a selectable clique
(or, shortly, an s-clique) if there exists a haplotype h such that K = G(h). Such an h is
called a selector of K. We denote by H(K) := {h |G(h) = K}.

Note that G(h) is a clique, but not all cliques are selectable. Given a set G of genotypes,
we denote by

K := {G(h) |h ∈ HG}

the family of all s-cliques. The family K induces a partition of HG into the following sets:

{H(K) |K ∈ K}
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i.e., HG is partitioned into the sets of selectors of the same s-clique.

Example 1. Let G = {g1, g2, g3, g4, g5, g6} = {22021, 12222, 12211, 20120, 00102, 02120}.
The compatibility graph has edges (g1, g2), (g1, g3), (g2, g3), (g2, g4), (g4, g5), (g4, g6) and
(g5, g6). The previous definitions identify the following sets:

H(g1) = {00001, 00011, 01001, 01011, 10001, 10011, 11001, 11011} = {h1, h2, h3, h4, h5, h6, h7, h8},

H(g2) = {10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111,

11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111}

= {h9, h5, h10, h6, h11, h12, h13, h14, h15, h7, h16, h8, h17, h18, h19, h20},

H(g3) = {10011, 10111, 11011, 11111} = {h6, h14, h8, h20},

H(g4) = {00100, 00110, 10100, 10110} = {h21, h22, h11, h13},

H(g5) = {00100, 00101} = {h21, h23},

H(g6) = {00100, 00110, 01100, 01110} = {h21, h22, h24, h25}.

The s-cliques are

K1 = {g1}, K2 = {g1, g2}, K3 = {g1, g2, g3}, K4 = {g2}, K5 = {g2, g3},

K6 = {g2, g4}, K7 = {g4, g6}, K8 = {g4, g5, g6}, K9 = {g5}, K10 = {g6}.

The partition of HG induced by the s-cliques is:

H(K1) = {h1, h2, h3, h4}, H(K2) = {h5, h7}, H(K3) = {h6, h8},

H(K4) = {h9, h10, h12, h15, h16, h17, h18, h19}, H(K5) = {h14, h20}, H(K6) = {h11, h13},

H(K7) = {h22}, H(K8) = {h21}, H(K9) = {h23}, H(K10) = {h24, h25}.

An optimal resolving set is {h1, h8, h11, h13, h14, h21, h23, h25}.

In the remainder of the paper, we will assume that all genotypes in G are ambiguous.
This can be done without loss of generality, as shown by the following reasoning. When a
genotype is non-ambiguous, it is itself a haplotype which could resolve other genotypes. If ḡ
is a non-ambiguous genotype, then the haplotyping problem can be reformulated by adding
a (n + 1)-th SNP to each genotype, such that ḡn+1 = 2 and gn+1 = 1 for each g 6= ḡ. It
is easy to see that there is a one-to-one correspondence between a resolving set H of the
original problem and a resolving set H̄ of the reformulated problem such that |H|+1 = |H̄|.
Hence solving PHP for one problem is equivalent to solving it for the other (with difference
one in cardinality). If the non-ambiguous genotypes are more than one, the procedure is
simply iterated.
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3 The Set Covering model

In this section we describe a Set Covering formulation for the PHP problem, and a Branch-
and-Cut-and-Price approach for its solution.

The main idea on which we base our approach relies on the following observation: if H
is a set of haplotypes resolving G, then a strong condition is implied for the haplotypes in
H, namely,

Covering condition: For each genotype g, position i ∈ A(g) and value a ∈
{0, 1}, there is a haplotype h ∈ H ∩ H(g), such that hi = a.

This condition is only necessary, but not sufficient, for H to be a feasible solution of the
PHP. Consider, for example, the following “diagonal” instance,

G =









1222
2122
2212
2221









(1)

for which the set {0111, 1011, 1101, 1110} satisfies the covering condition but does not re-
solve G.

We call this condition a covering condition because we may define a ground set as the
set of all triples (g, i, a) such that g ∈ G, i ∈ A(g) and a ∈ {0, 1}. Then we may identify a
haplotype h with a subset of the ground set, namely

h ↔ {(g, i, a) |h ∈ H ∩ H(g) , hi = a}

and the covering condition requires that H covers the ground set. It then makes sense to
solve this set covering problem optimally, i.e., to minimize the number of haplotypes needed
to satisfy the covering condition. This problem is in fact a relaxation of the PHP. It is
possible that its optimal solution resolves G. If not, we may still obtain a good feasible PHP
solution from the optimal cover by adding only a small number of haplotypes. Furthermore,
we can find a PHP optimal solution by strengthening the covering conditions, as we later
show.

Notice that in a PHP solution two haplotypes are enough to cover all ambiguous positions
of an ambiguous genotype. On the other hand, it is impossible to satisfy the covering
conditions of an ambiguous genotype with less than two haplotypes. Hence, the intuition is
that good set covering solutions tend to be good for the PHP problem as well.

Let g be a genotype and i ∈ A(g) be an ambiguous position of g. For a = 0, 1, we define
the set Ha

i (g) to be the haplotypes compatible with g that have the value a in position i.
Then, the sets H0

i (g) and H1
i (g) are a partition of H(g). If g has k ≥ 1 ambiguous positions,

then |H0
i (g)| = |H1

i (g)| = 2k−1.
For each h ∈ HG we introduce a 0-1 variable xh, where xh = 1 if h is taken in the solution.

Since variables xh and haplotypes h are in 1-to-1 correspondence, we will sometimes refer
to variables as haplotypes and vice-versa. The following is the basic set covering problem
that we will be considering. It calls for finding a minimum set of haplotypes that satisfy the
covering conditions:
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zSC := min
∑

h∈HG

xh (2)

subject to

∑

h∈Ha
i
(g)

xh ≥ 1 ∀g ∈ G, i ∈ A(g), a ∈ {0, 1} (3)

x ∈ {0, 1}HG . (4)

In worst case, the formulation has Θ(2n) variables and O(mn) constraints. In order to
optimize its LP-relaxation, we will describe how to generate variables and constraints at
run-time.

In the datasets that we examined, we saw that the lower bound zSC is strong. However,
there may be cases for which the bound is weaker, such as the instance (1), for which the
optimal set covering solution is {0111, 1011, 1101, 1110}, while an optimal PHP solution is
{1000, 0100, 0010, 0001, 1111}, requiring five haplotypes.

We now discuss how to strengthen the formulation in order to eliminate infeasible integer
solutions of the set covering problem. We use some extra inequalities (cuts) which are
violated by infeasible integer solutions. Notice that this is not customary, as, usually, cuts
are employed to eliminate fractional solutions, while integer solutions are expected to be
feasible.

Let us call a set H ′ of haplotypes insufficient if H ′ does not resolve G. For H ′ an
insufficient set, let U(H ′) be the set of unresolved genotypes, i.e., genotypes which have no
resolution in H ′. Let g ∈ U(H ′) be an unresolved genotype, and let C(g,H ′) := H(g) − H ′.
An insufficient set H ′ and an unresolved genotype g ∈ U(H ′) then give rise to the following
cut:

x(C(g,H ′)) ≥ 1. (5)

Let us call N ′ the set of all pairs (g,H ′) with H ′ an insufficient set of haplotypes and
g ∈ U(H ′). By using the above cuts, the PHP can be formulated as:

SC model
min

∑

h∈HG

xh (6)

subject to

∑

h∈H0
i
(g)

xh ≥ 1 ∀g ∈ G, i ∈ A(g) (7)

∑

h∈H1
i (g)

xh ≥ 1 ∀g ∈ G, i ∈ A(g) (8)

x(C(g,H ′)) ≥ 1 ∀(g,H ′) ∈ N ′. (9)
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x ∈ {0, 1}HG . (10)

In this paper we adopt the formulation (6)-(10) for the solution of the PHP. The for-
mulation has an exponential number of variables and constraints. In order to optimize its
LP-relaxation, we will describe how to generate variables and constraints at run-time. In
particular, we keep one global set X ⊂ HG of generated variables and one global set N ⊂ N ′

of generated cuts (from the family of constraints (9), while constraints (7)-(8) are always
present in the model). Therefore, at run-time, the constraints (9) are replaced by

x(C(g,H ′)) ≥ 1 ∀(g,H ′) ∈ N . (11)

During the solution process, the sets of generated variables and cuts are updated only by
adding, when needed, new variables or new cuts.

To solve the model (6)-(10), we use branch-and-bound, where each branching decision
either forces or forbids the use of a certain haplotype. Therefore, at a generic node P of the
search tree, there will be a set I(P ) ⊂ HG of included haplotypes and a set E(P ) ⊂ HG of
excluded haplotypes (corresponding to haplotypes whose use has been forced or forbidden,
respectively). Then, at P , the following branching constraints must be enforced:

xh = 1 ∀h ∈ I(P ), xh = 0 ∀h ∈ E(P ). (12)

Assume the existence of a “black-box” procedure LP(P ) → (x∗, v∗, H̃) which, at a given
node P of the search tree, returns a solution x∗ ≥ 0, its value, v∗ :=

∑

h x∗
h, and a resolving

set H̃ of haplotypes (whose size provides an upper bound to the PHP). Furthermore, x∗ and
v∗ are such that:

(i) Either x∗ is integer, and it is an optimal solution to (6)–(9), (which implies x∗ is feasible
for the PHP), under the branching constraints (12),

(ii) Or x∗ is fractional, and it is an optimal solution to (6)–(8), under the branching
constraints (12) and the constraints (11),

(iii) Or the problem (6)–(9), under the branching constraints (12), is infeasible and in that
case v∗ := +∞.

Furthermore, LP(P ) has the side-effect of updating the sets X and/or N . In Section 5 we
show how the black box computes x∗ and v∗, while in section 6 we describe how the set H̃ is
obtained. Given the existence of the above black-box, we can set up the branch-and-bound
strategy described in Algorithm 3 for the solution of the PHP.

In the next two sections we discuss how to solve the LP relaxation of SC. First, we
describe a representation of the s-cliques selectors by means of a suitable data structure.
Next, we use this representation in our pricing procedure.
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Algorithm 1 Branch-and-Bound(PHP)

Let x̄ be any feasible solution of the PHP.
Initialize X := {h ∈ HG | x̄h = 1} and N := ∅. Let u := |X |.
Initialize a list of problems L := {P0}, with I(P0), E(P0) := ∅.
while L 6= ∅ do

Extract a problem P from L
Call LP(P ), obtaining (x∗, v∗, H̃) [the call may update X and N ].
if u > |H̃| then u := |H̃| and x̄ := incidence vector of H̃
if v∗ ≥ u [x∗ can be integer or fractional, or P infeasible]

do nothing [fathoms the node]

else if x∗ is integer [found feasible sol for PHP with v∗ < u]

update u := v∗ and x̄ := x∗.
else [x∗ is fractional and v∗ < u]

Let h be such that |x∗
h − 1/2| is minimum.

Create problems P 0 and P 1 s.t.:
E(P 0) = E(P ) ∪ {h}, I(P 0) = I(P )
E(P 1) = E(P ), I(P 1) = I(P ) ∪ {h}.
Add P 0 and P 1 to the list L.

endif
endwhile
return optimal solution x̄ of value u.

4 Identifying the s-cliques

4.1 Finding all s-cliques

In order to find all the s-cliques we use a rooted binary tree, called the s-clique tree. In the
s-clique tree, each vertex is labeled by a “virtual” genotype and is associated to a subset of
genotypes, namely, the genotypes in G compatible with the virtual genotype. Each arc of the
s-clique tree is associated to a SNP. All left arcs are labeled 0, and all right arcs are labeled
1. The tree is built, recursively, as follows. We label the root with the virtual genotype
22 . . . 2 (and, consequently, we associate the root to all genotypes in G), and we elaborate
the root. Elaborating a generic node v means the following.

Let g(v) be the virtual genotype labeling v, and Gv be the set of all genotypes compatible
with g(v). Let Iv be the set of SNPs associated to the arcs of the unique path from the root
to v. If for each j ∈ {1, . . . , n}− Iv all genotypes in Gv show the same symbol at position j,
then we set these positions in the virtual genotype as gj(v) := gj for j ∈ {1, . . . , n}− Iv and
any g ∈ Gv , we declare v a leaf and we stop elaborating v. Otherwise, v is an internal node:
we pick a (branching) position t ∈ {1, . . . , n}− Iv and consider the two genotypes g0 and g1

defined as
g0
i = g1

i = gi(v), i 6= t, g0
t = 0, g1

t = 1.

Let G0 and G1 be the set of genotypes compatible with g0 and g1 respectively. If G0 is not
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22222
{1,2,3,4,5,6}

22022
{1,2,3} 

22122
{2,3,4,5,6}

12020
{2} 

22021
{1,2,3} 

02021
{1} 

12021
{1,2,3} 

12001
{1,2} 

12011
{1,2,3} 

22121
{2,3,5}

12121
{2,3}

00101
{5}

12101
{2}

12111
{2,3}

22120
{2,4,5,6}

02120
{4,5,6}

12120
{2,4}

02100
{4,5,6}

02110
{4,6}

12100
{2,4}

12110
{2,4}

00100
{4,5,6}

01100
{6}

00110
{4,6}

01110
{6}

10100
{2,4}

11100
{2}

10110
{2,4}

11110
{2}

3

5

1

4

2

Figure 3: Tree of all s-cliques.

empty, we create a left son of v, called v0, with g(v0) := g0 and Gv0 := G0, and if G1 is
not empty, we create a right son of v, called v1, with g(v1) := g1 and Gv1 := G1. We then
elaborate v0 and v1. In Fig. 3 we show the s-clique tree obtained from Example 1, where for
all nodes of the same level the same branching position is used. In particular, the tree was
obtained with the following sequence of branching positions: 3, 5, 1, 4, 2. In the figure, the
tree nodes are labeled by their virtual genotype. The set Gv is also shown below each leaf v.

From the above construction a few observations follow:

- By construction, Gv contains all and only those genotypes which are compatible with
at least one haplotype in H(g(v)) (not necessarily the same).

- For any two nodes v and v′ the sets H(g(v)) and H(g(v′)) are disjoint.

- If a node v is a leaf, then all haplotypes in H(g(v)) are compatible with all genotypes
in Gv.

- Different nodes can be associated to the same set of genotypes. In particular, the same
s-clique can appear multiple times in the tree.
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- The leaves can appear at different levels of the tree, and the total number of nodes in
the tree can vary depending on how we choose the SNPs when branching from a node.

The most important property of the s-clique tree is the following:

Lemma 1. A node v is a leaf if and only if it is associated to an s-clique.

Proof: (if) Let v be a leaf. Let h ∈ H(g(v)). Each g ∈ Gv is compatible with h, so that
g ∈ G(h). Furthermore, any g /∈ Gv must be incompatible with g(v). Since incompatible
genotypes cannot share a haplotype, g is not compatible with h, and so g /∈ G(h). (only if)
Let G(h) be an s-clique. Starting at the root, follow h in the tree until a leaf v is found.
By construction, each genotype g compatible with h must be in Gv so that G(h) ⊆ Gv .
Furthermore, g ∈ Gv and g /∈ G(h) would imply that there exists a position t /∈ Iv such that
gt 6= 2 and gt 6= ht. On the other hand, for any g′ ∈ G(h) it is either g′t = 2 or g′t = ht. Since
both g′ and g are in Gv , and g′t 6= gt, by construction, v should not be a leaf. It follows that
there cannot exist g ∈ Gv − G(h). ⋄

4.2 Representing the s-cliques selectors

The relevant information we need is concerned with the selectors of an s-clique. The leaves of
the binary tree previously described give a list of all s-cliques, with possible repetitions, and,
at the same time, of their selectors: for an s-clique K associated to the leaves v1, v2, . . . , vq,
the set of selectors H(K) is given by

H(K) =

q
⋃

i=1

H(g(vi)).

In order to represent the set H(K), we introduce a structure which we call the pattern
table, which can represent any nonempty subset of {0, 1}n.

A pattern p is an n-string over {0, 1, -}. In a natural way, a pattern represents the
hypercube Q(p) := {b ∈ {0, 1}n | bi = pi ∀i : pi 6= -}, i.e., the set of 0-1 vectors that can be
obtained by replacing each “-” of p with 0 or 1 in all possible ways.

We say that a pattern p contains a pattern q if Q(q) ⊆ Q(p). It is easy to see that p
contains q if and only if, for all i = 1, . . . , n, pi ∈ {0, 1} implies pi = qi. For instance, 01-1--
contains 01-10- and 010100, while it does not contain -1-1-0. We say that two patterns
p and q intersect if Q(p) ∩ Q(q) 6= ∅. Notice that two patterns p and q intersect if and
only if there is no position i for which pi, qi ∈ {0, 1} and pi 6= qi. For instance, 01-1-- and
-1-1-0 intersect. We say that two patterns that do not intersect are disjoint. Let p and q
be two intersecting patterns. Then the pattern l such that Q(l) = Q(p)∩Q(q) can be easily
computed, component-wise, as follows:

li :=











0 if (pi = 0) ∨ (qi = 0)

1 if (pi = 1) ∨ (qi = 1)

- if (pi = -) ∧ (qi = -)

When l is computed as above, we write l := p ∩ q.
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Lemma 2. Let p and q be two patterns such that p contains q. Let r be the number of
positions where pi 6= qi. Then there exist disjoint patterns s1, . . . , sr such that Q(p)−Q(q) =
Q(s1) ∪ Q(s2) . . . ∪ Q(sr).

Proof: Without loss of generality, we can assume that pi = qi for 1 ≤ i ≤ n − r, and, for
n − r < i ≤ n, pi = -, pi 6= qi. Then, we define sj (with 1 ≤ j ≤ r), component-wise, as
follows:

sj
i :=











qi for 1 ≤ i ≤ n − r + (j − 1)

1 − qi for i = n − r + j

- for n − r + j < i ≤ n

For instance, if p = --10010--- and q = --10010010 it is s1 = --100101--, s2 =
--1001000-, s3 = --10010011.

Notice that each sj is disjoint from q and is contained in p. Therefore, Q(s1)∪. . .∪Q(sr) ⊆
Q(p)−Q(q). Conversely, assume b ∈ Q(p)−Q(q). Since b is disjoint from q there must exist
at least a position i > n − r such that bi 6= qi. Let i∗ be the smallest such position. Then
b ∈ Q(si∗) and so Q(s1) ∪ . . . ∪ Q(sr) ⊇ Q(p) − Q(q). ⋄

A pattern table is a list of patterns p1, p2, . . . , pr, which represents the set Q(p1)∪Q(p2)∪
. . . ∪ Q(pr). The set H(K) can possibly be represented by more than one pattern table.
One representation is induced by the tree generating all s-cliques. If K is associated to the
leaves v1, v2, . . . , vq, then the induced pattern table consists of patterns p1, . . . , pq, where
each pattern pi is obtained from the virtual genotype g(vi) by replacing each 2 with a “-”,
i.e.,

pi
j =

{

gj(v
i) if gj(v

i) 6= 2

− otherwise
i = 1, . . . q, j = 1, . . . , n.

For instance, the pattern tables induced by the tree in Figure 3 for the s-cliques K4 = {g2}
and K6 = {g2, g4} of Example 1 are

K4 → 1-0-0 K6 → 10100

11100 10110

11110

1-101

The size of the pattern table thus obtained can be large with respect to n. The size can
be greatly reduced by putting the table into standard form. A pattern table is in standard
form, or irreducible, if the following conditions hold:

1. (Non-containment:) For each pair pi and pj , neither pi contains pj nor pj contains pi.

2. (Irreducibility:) For each pair pi and pj, there are at least two positions a, b such that
pi

a 6= pj
a and pi

b 6= pj
b.
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Our interest in pattern tables lies in the fact that they can give compact representations
of (possibly large) subsets of {0, 1}n. A compact representation is one using a small number
of patterns. If a table is not in standard form it is immediate to reduce its size and still
represent the same set. For instance, if property 1 is not satisfied, we can get rid of a pattern
contained in another. Moreover, if property 1 is satisfied but property 2 is not, then there
must exist two patterns which are identical in all positions but one, where one of them is 0
while the other is 1. Then they can be replaced by their merging, i.e., a new pattern with
a - in that position. By applying the above rules, a pattern table which is not in standard
form can be put in standard form. Two different orders of application of the rules may yield
different final tables.

The above tables, once put into standard form, become

K4 → 1-0-0 K6 → 101-0

111-0

1-101

From our computational experiments, we have observed that, even for instances where
the number of possible haplotypes (O(2n)) and the number of subsets of genotypes (O(2m))
are both large, the the number of patterns (and, a fortiori, the number of s-cliques) is usually
orders of magnitude smaller. In particular, as reported in Table 4 and Table 5 of Section 7,
the ratio between the total number of haplotypes and of patterns ranges from 10 to 106.

5 Solving the LP relaxation of SC

In this section we discuss the implementation of the “black-box” LP(P ), i.e., we describe how
to solve the LP relaxation of the SC model at a node P of the branch-and-bound tree.

We will use both column-generation and row-generation. LP(P ) requires the solution
of a sequence of LPs, where each LP solved is defined only over a subset of the variables
and a subset of the constraints. At each iteration, either new variables are added, or new
constraints are added, or a termination condition is met and the optimization stops.

5.1 The pricing problem

The generic LP relaxation to be solved at node P requires to minimize
∑

h xh under the
constraints (7), (8), (11), (12), and the non-negativity x ≥ 0.

In our pricing procedure, we keep an implicit representation of haplotypes that have not
been generated yet. By using this representation when we price-in new haplotypes, we are
guaranteed that it is impossible to generate the same haplotype twice. The representation
is also used to ensure that the pricing scheme is not affected by the presence of branching
constraints (those fixing haplotypes to either 0 or 1).

Let αgi ≥ 0 and βgi ≥ 0 be the dual variables corresponding to constraints (7) and (8)
respectively, and γgH ≥ 0 be the dual variables corresponding to constraints (11).

The dual constraint corresponding to a haplotype h ∈ HG is
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∑

g∈G(h)

∑

i∈A(g)

((1 − hi)αgi + hi βgi) +
∑

(g,H)∈N :
g∈G(h)

γgH ≤ 1. (13)

The pricing problem corresponds to finding an inequality (13) violated by the current dual
optimal variables (α∗, β∗, γ∗). This task can be carried out by maximizing the expression

∑

g∈G(h)

∑

i∈A(g)

(

(1 − hi)α∗
gi + hi β∗

gi

)

+
∑

(g,H)∈N :
g∈G(h)

γ∗
gH (14)

over all h, and checking if the maximum thus found is larger than 1.
In order to compute the maximum of (14), we first rewrite (14) as follows (where, for p

a proposition, [p] = 0 if p is false, and [p] = 1 if p is true):

∑

i

(

(1 − hi)
∑

g∈G(h)

[i ∈ A(g)]α∗
gi + hi

∑

g∈G(h)

[i ∈ A(g)]β∗
gi

)

+
∑

(g,H)∈N :
g∈G(h)

γ∗
gH . (15)

We want to compute the maximum of (15) over all h without explicitly enumerating them.
Towards this goal, we consider a partition of the haplotypes into subsets for which the inner
sums for α∗ and β∗, and the sum for γ∗, do not depend on h. Notice that the partition
of HG into the s-cliques selectors, i.e., {H(K) |K ∈ K}, is such that G(h) is invariant for
h ∈ H(K).

For an s-clique K ∈ K, define

α(K, i) :=
∑

g∈K [i ∈ A(g)]α∗
gi i = 1, . . . , n

β(K, i) :=
∑

g∈K [i ∈ A(g)]β∗
gi i = 1, . . . , n

γ(K) :=
∑

(g,H)∈N :g∈K γ∗
gH .

By using the above definitions, we can rewrite (15) as

λ(K,h) :=
∑

i

(

(1 − hi)α(K, i) + hi β(K, i)
)

+ γ(K).

Furthermore, denote by λ(K) the value

λ(K) = max
h∈H(K)−X

λ(K,h). (16)

With this notation, the pricing problem can be rephrased as: find ĥ /∈ X such that
λ(G(ĥ)) is maximum. If λ(G(ĥ)) > 1, then ĥ is a variable with negative reduced cost, that
should be added to the current LP. Otherwise, there are no variables that should be added
to the current LP.

The haplotype ĥ can be found by computing max{λ(K) |K ∈ K}, which can be accom-
plished by going through all s-cliques one at a time. In Section 4.1 we have described a
method for determining all s-cliques of G.
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For each s-clique K we consider the pattern table representing the set of selectors H(K)
derived from the s-clique tree and put into standard form (see Section 4.2). Assume this
pattern table consists of patterns p1, . . . , pq. Then, H(K) = Q(p1) ∪ . . . ∪ Q(pq). For each
j = 1, . . . , q, we maximize λ(K,h) over h ∈ Q(pj) and we compute the corresponding optimal
haplotype h̃j as follows:

h̃j
i :=























0 if (pj
i = 0)

1 if (pj
i = 1)

0 if (pj
i = -) ∧ (α(K, i) ≥ β(K, i))

1 if (pj
i = -) ∧ (α(K, i) < β(K, i))

i = 1, . . . , n. (17)

The first two cases correspond to components of the haplotype whose value is forced by
the pattern. On the other hand, if the component of the pattern is -, it is possible to set
the haplotype component to either 0 or 1. In the former case, the contribution to the sum is
α(K, i) while in the latter case it is β(K, i). Therefore, the best choice is the one for which
the contribution is maximum.

Let h̃(K) = h̃k, with k = argmax{λ(K, h̃j) | j = 1, . . . , q}. Then, ĥ = h̃(K̂), with
K̂ = argmax{λ(K, h̃(K)) |K ∈ K}.

For an example, let us consider the s-cliques K4 = {g2} and K6 = {g2, g4} of Example 1.
Assume we are at the root node and N = ∅, so that γ∗ = 0, while the dual variables for the
genotypes g2 = 12222 and g4 = 20120 and their ambiguous positions are as follows:

α∗
gi β∗

gi

g2 .2 0 .2 .1 .3 .1 .1 .2
g4 .1 .1 .2 .4

Let us consider K4, whose pattern table consists of patterns p1 = 1-0-0, p2 = 111-0 and
p3 = 1-101. Then the computation (17) applied to p1 goes as follows:

- Since p1
1 = 1, we set h̃1

1 = 1.

- Since p1
2 = - and α(K4, 2) = .2 < β(K4, 2) = .3, we set h̃1

2 = 1.

- Since p1
3 = 0, we set h̃1

3 = 0.

- Since p1
4 = - and α(K4, 4) = .2 > β(K4, 4) = .1, we set h̃1

4 = 0.

- Since p1
5 = 0, we set h̃1

5 = 0.

Therefore, it is h̃1 = 11000 and λ(K4, h̃
1) = 0 + .3 + 0 + .2 + .1 = .6. Similarly, one

obtains h̃2 = 11100 with λ(K4, h̃
2) = 0 + .3 + .1 + .2 + .1 = .7, and h̃3 = 11101 with

λ(K4, h̃
3) = 0 + .3 + .1 + .2 + .2 = .8. From these values we get h̃(K4) = h̃3 and λ(K4) = .8.

Let us now consider the s-clique K6 = {g2, g4}, with pattern table consisting of the single
patterns p1 = 101-0. Then the computation (17) applied to p1 goes as follows:

- Since p1
1 = 1, we set h̃1

1 = 1.
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- Since p1
2 = 0, we set h̃1

2 = 0.

- Since p1
3 = 1, we set h̃1

3 = 1.

- Since p1
4 = - and α(K6, 4) = .2 + .1 = .3 < β(K6, 4) = .1 + .4 = .5, we set h̃1

4 = 1.

- Since p1
5 = 0, we set h̃1

5 = 0.

Therefore, it is h̃(K6) = 10110 =: h̃ and λ(K6, h̃) = λ(K6) = .2+.2+.1+(.1+.4)+.1 = 1.1.
Note that, since λ(K6, h̃) > 1, the haplotype h̃ can be profitably generated and inserted

in the current LP.
In a similar way, one obtains h̃(Ki) and λ(Ki) for the remaining s-cliques, from which

the haplotype ĥ maximizing λ(Ki) can be derived.

The computational cost of solving the pricing problem for one s-clique K whose pattern
table has q patterns is O(

∑

g∈K |A(g)| + q n + |N |). The first term accounts for the time
needed to compute α(K, i) and β(K, i) over all i. This computation is done only once at
the beginning of each pricing phase. The second term is due to the fact that there are q
patterns, and for each pattern the time needed to find the best haplotype by (17) is O(n).
The last term is the cost of computing γ(K).

5.2 Excluding haplotypes in the pricing scheme

In order to explicitly exclude haplotypes from pricing, we describe a procedure which, given
a pattern p and a haplotype h ∈ Q(p), computes a set of patterns p1, . . . , pr such that
Q(p1) ∪ . . . ∪ Q(pr) = Q(p) − {h}.

Lemma 3. Let p be a pattern and h be a haplotype such that h ∈ Q(p). Let r be the
number of positions where pi = -. Then there exist disjoint patterns p1, . . . , pr such that
Q(p) − {h} = Q(p1) ∪ Q(p2) . . . ∪ Q(pr).

Proof: Without loss of generality, we can assume that pi 6= - for i = 1, . . . , n − r. Then, we
define pj (with 1 ≤ j ≤ r), component-wise, as follows:

pj
i :=











hi for 1 ≤ i ≤ n − r + (j − 1)

1 − hi for i = n − r + j

- for n − r + j < i ≤ n.

For instance, if p = 10010--- and h = 10010010 it is p1 = 100101--, p2 = 1001000-,
p3 = 10010011.

Notice that each Q(pj) does not contain h and is contained in Q(p). Therefore, Q(p1) ∪
. . . ∪ Q(pr) ⊆ Q(p) − {h}. Conversely, assume b ∈ Q(p) − {h}. Since b 6= h there must exist
at least a position i > n − r such that bi 6= hi. Let i∗ be the smallest such position. Then
b ∈ Q(pi∗) and so Q(p1) ∪ . . . ∪ Q(pr) ⊇ Q(p) − {h}. ⋄

The above procedure can be used to explicitly forbid a haplotype ĥ from being generated
again. Since the pattern table is kept in standard form, there exists exactly one pattern p

18



such that ĥ ∈ Q(p). We then replace p with the patterns p1, . . . , pr as in Lemma 3 (and
reduce the new pattern table so that it is still in standard form) and we iterate the pricing
procedure.

The forbidding of a haplotype should occur immediately after it has been generated by the
pricing procedure. Alternatively, one could chose not to forbid the haplotype immediately,
but to wait until, if ever, the haplotype is generated again by the pricing procedure. In our
computational experiments, we have found the latter alternative to be preferable.

6 Computing good feasible solutions

In this section we describe how the solutions of the SC model are exploited to obtain “good”
resolving sets H̃ of haplotypes. These in turn are used to provide a tight upper bound to
the optimum, and henceforth to speed-up the branch-and-bound search.

We obtain such a set H̃ from each solution HSC which is feasible for the SC model but not
feasible for the PHP. The basic idea is to add the minimum number of haplotypes to HSC ,
so as to obtain a PHP solution. In order to describe our strategy, we need some definitions.
Let H ′ be a set of haplotypes. We define

- OPT(H ′) a set H∗ ⊂ H ′ such that H∗ resolves G and the size of H∗ is minimum.

Notice that the computation of OPT(H ′) is itself a PHP problem, under the restriction
that only haplotypes in H ′ can be used in any solution. Furthermore, we define

- UNS to be the set of genotypes in G which do not have a resolution within HSC

and, for G′ a set of genotypes, we define

- CO(G′) := ∪g∈G′{h : ∃h′ ∈ HSC : g = h ⊕ h′}.

The set CO(G′) is built by taking, for each h ∈ HSC and each genotype g ∈ G′ compatible
with h, the complement of h with respect to g.

Given HSC , a trivial way to obtain a feasible solution H̃ for the PHP is to add to HSC at
most one haplotype for each unresolved genotype. This is because each genotype g ∈ UNS
has at least one haplotype h ∈ HSC compatible with it and hence g can be solved by adding
the complement of h with respect to g. This yields an upper bound to the PHP equal to
|H̃| ≤ |HSC | + |UNS|. To improve over this trivial upper bound, we can consider

H̃ = OPT
(

HSC ∪ CO
(

UNS
))

. (18)

In the above expression we first introduce, for each unresolved genotype g, all haplotypes
that are the complement with respect to g of some haplotype in HSC . This way, each
genotype has at least one resolution in HSC ∪ CO(UNS). Within this set, we find the
optimal resolving subset H̃ of haplotypes.

As already remarked, each time we compute H̃ as in (18) we need to solve a PHP problem
over a restricted set of haplotypes. Since the number of resolutions of each genotype within
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the restricted set of allowed haplotypes is rather small (as observed in our computational
experiments), we are able to quickly solve this problem by means of a combinatorial branch-
and-bound technique.

The combinatorial branch-and-bound which we use for the solution of each OPT(H ′)
problem works as follows. A global incumbent is provided by the smallest H̃ among those
computed thus far. To each node v of the search tree a pair (Gv ,Hv) is associated, where
Gv ⊂ G is the set of genotypes already solved, Hv ⊂ H ′ is a resolving set for Gv and each
genotype in G − Gv has more than one resolution in H ′ but no resolution in Hv. A lower
bound to the solution value at the node is given by |Hv| plus the size of an independent set
in the compatibility graph of G−Gv (as the compatibility graph is fairly small, we are in fact
able to quickly find the largest independent set). If the lower bound exceeds the incumbent,
the node is pruned. Otherwise, we consider a genotype g in G − Gv which has the smallest
number of resolutions in H ′. Notice that each resolution uses at least one haplotype not in
Hv. For each resolution of g, say g = h1 ⊕ h2, we branch from node v to a new node w,
setting Gw := Gv ∪ {g} and Hw := Hv ∪ {h1, h2}.

The solution given by (18) can be improved as follows:

H̃ = OPT
(

HSC ∪ CO(G)
)

. (19)

The time required to solve the above OPT() problem depends on the quality of the
available incumbent. Moreover, solving (19) is computationally more demanding than (18)
because it involves a larger set of allowed haplotypes. Hence, we have adopted the following
strategy. We have introduced a parameter p, and, for the first p times that the procedure is
called, H̃ is computed from (18) (the first p calls are intended to quickly lower the incumbent,
so that the next calls can take advantage of a tight upper bound). Starting from call number
p + 1, H̃ is computed from (19). From our computational experiments, we have found that
p = 3 is a suitable value for the parameter p.

An overview of LP(P )

Having described how the column-generation problem is solved, and how to find good feasible
solutions, we can now give an overall description of the procedure LP(P ), whose behavior
was anticipated in Section 3.

1. First, an LP over X ,N is solved, where X and N are the global sets of variables and
cuts generated up to now. If the LP is infeasible, return v∗ = +∞.

2. Column-generation phase. Given the optimal solution to the last LP, the pricing prob-
lem is solved. Possibly, new variables are added to X and a new LP is solved. This
process is iterated until the pricing problem does not find any variable to add to X .
Let x∗ be the optimal solution of the last LP solved, and v∗ its value.

3. Termination. At the end of the column-generation phase, the optimal solution x∗ may
be integer or fractional. In both cases, let x̄ denote the rounding-up of x∗. If x̄ is
feasible for the PHP then return x∗ and v∗.
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Gene name Description n. SNPs

ABCE1 ATP-binding cassette 117
BDKRB2 Bradykinin receptor 76
IGF1 Insulin-like growth factor 155
IL22 Interleukin 53
LIPE Lipase, hormone-sensitive 120
MGP Matrix Gla protein 28
NFKBIA Nuclear factor of kappa light polypeptide 49
PROC Protein C 58
RELA V-rel reticuloendotheliosis viral oncogene 22
SELE Selectin 99
THBD Thrombomodulin 30
TNFRSF1A Tumor necrosis factor receptor 64
TYK2 Tyrosine kinase 183
USF1 Upstream transcription factor 46
ZNF202 Zinc finger protein 46

Table 1: The 15 genes from SeattleSNPs

4. Feasibility cuts. Otherwise, the heuristic procedure for generating feasible solutions
is called, starting from x̄, and yields a set H̃. Furthermore, the following cuts are
generated. Let H1 := {h : x̄h = 1}. Then H1 is an insufficient set, and the inequalities
(9) for all unresolved genotypes g ∈ U(H1) are added to N . After the addition of the
cuts, goto step 2.

7 Computational Experiments

The program was implemented in C, and run on a 1.2 GHz Centrino PC, with 512MB of
RAM. The LP solver used was GLPK [3]. In order to compare our approach with some of the
existing methods, we have implemented the ILP formulations proposed in [5] and [13]. The
former formulation turned out to be too weak for our test-instances (none of the generated
instances could be solved within the time threshold that we set). As far as the latter
formulation is concerned, the (conceptual) model in [13] has a variable for each h ∈ H(G)
and for each resolution of a genotype, while the number of constraints is proportional to the
total number of resolutions. In [13], Gusfield describes also an improvement of the conceptual
model, called RTIP, in which many variables are not present as they are not needed by some
optimal solution. Hence, we have used RTIP for our tests.

In our experiments, we have set a time timit of two hours per instance. Furthermore,
these are the memory limits which most affect our tests: the maximum size of any LP
which can be solved in our memory (roughly, 200, 000 variables by 200, 000 constraints); the
maximum number of nodes of the s-clique tree (which we set to 150, 000).

Real-data instances. In a first set of computational experiments, we have tested our
approach on some real-data datasets, taken from the SeattleSNPs database [2]. The Seat-
tleSNPs database is focused on identifying, genotyping, and modeling the associations be-
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Gene m
′

n
′ avg2 max2 tot h time opt

ABCE1.row 3 117 5.33 9 576 1 5
ABCE1.col 47 41 3.09 11 3272 1 29

BDKRB2.row 9 76 7.22 12 8144 1 12
BDKRB2.col 47 33 5.15 8 1787 111 30

IGF1.row 8 155 8 15 33816 1 10
IGF1.col 47 45 4.96 11 7775 1 31

IL22.row 22 53 9.38 14 45111 12 22
IL22.col 47 27 4.93 9 1248 157 28

LIPE.row 6 120 2.5 5 48 1 7
LIPE.col 47 49 5.03 13 21810 2 27

MGP.row 14 28 3.42 6 148 1 10
MGP.col 47 10 3.42 6 46 1 13

NFKBIA.row 4 49 6 10 2054 1 7
NFKBIA.col 47 15 2.75 6 122 1 15

PROC.row 6 58 16.4 18 401152 1 7
PROC.col 47 15 3.2 6 137 1 20

RELA.row 27 22 3.94 7 319 1 13
RELA.col 47 14 2.93 6 130 1 12

SELE.row 5 99 2.8 7 138 1 8
SELE.col 47 33 5.86 13 28244 196 27

THBD.row 26 30 3.5 7 258 1 17
THBD.col 47 6 1 1 7 1 7

TNFRSF1A.row 7 64 5.2 14 16900 1 9
TNFRSF1A.col 47 30 5.65 8 1913 70 28

TYK2.row 4 183 13.2 28 2.68 × 108 1 5
TYK2.col 47 77 8.13 22 9.28 × 106 81 37

USF1.row 34 46 8.6 18 302386 43 23
USF1.col 47 10 4.6 11 2654 1 20

ZNF202.row 16 46 4.42 11 2111 1 11
ZNF202.col 47 10 3.2 5 72 1 8

Table 2: Results for real-data instances

tween SNPs in candidate genes and pathways underlying inflammatory responses in humans.
The database contains data for 47 individuals (24 African-American and 23 European sub-
jects) and about 100 genes. For each gene, 47 genotypes are reported. The genotypes
are incomplete, i.e., a genotype may cover only a subset of the SNPs, due to missing data
and/or experimental errors. Each instance can thus be represented by a 47 × n matrix over
{0, 1, 2, 3}. Each row is a genotype over n SNPs. Entries 0,1,2 have the usual meaning, while
each entry “3” means that the alleles are not known at the specific site. We have selected
15 genes at random. They are described in Table 1.

In order to remove uncertainty from the data and recover “normal” instances of the PHP
we have proceeded as follows. From each instance X, of size 47 × n we have obtained two
instances X.row and X.col. X.row has size m′ × n, and is obtained from X by removing all
rows (genotypes) that contain an entry “3”. Similarly, X.col, of size 47 × n′, is obtained
from X by removing all columns (SNPs) that contain an entry “3”. In table 2 we report the
computational results of our algorithms for the 30 instances obtained from the 15 selected
genes. Each row corresponds to an instance. The columns labeled m′ and n′ report the size
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Gene time Gene time

BDKRB2.col 0.12 s PROC.row 1 h 50 m
IL22.col 0.15 s TYK2.row exceeds available memory
SELE.col 4.96 s TYK2.col 217 s
TNFRSF1A.col 0.29 s USF1.row 1 h 40 m

Table 3: Results on a more powerful computer

of the instance. The columns labeled “avg2” and “max2” report the average and maximum
number of 2s in the instance. The column labeled “tot h” reports the total number of
haplotypes compatible with some genotype in the instance (i.e., |HG|). The column labeled
“time” reports the running time, in CPU seconds (rounded-up to the closest integer). Finally,
the column labeled “opt” reports the value of the optimal solution.

From the table it can be seen that all instances were solved, within a maximum running
time of 196 seconds. The number of branch-and-bound nodes (not reported) ranged from a
minimum of 1 to a maximum of 126, with an average of 10.

With some exceptions, these instances are relatively small, and so RTIP was able to tackle
them effectively. However, the following instances were too large and could not be solved by
RTIP: PROC.row, USF1.row, TYK2.col, and TYK2.row. All the remaining instances were
solved, with running times ranging from 1 second to a maximum of 202 seconds.

We recall that the RTIP model requires an exponential number of rows and columns.
Hence, using a machine with larger memory and faster CPU than ours can only marginally
increase the maximum size of the solvable instances. This is confirmed by the empirical
results kindly provided by one of the referees. He/she considered the four instances for
which our program took the largest computing time (BDKRB3.col, IL22.col, SELE.col, TN-
FRSF1A.col) and the four instances which RTIP could not solve on our machine (PROC.row,
TYK2.row, TYK2.col, USF1.row). RTIP was then tried on these instances on a computer
with 2GHz CPU, 4GB RAM and using CPLEX 10. Table 3 reports the obtained results.

Simulated instances. In a second set of experiments, we have tested our approach on
instances generated by ms, a program developed by R. Hudson [1, 18]. This program has
become the standard code for simulating haplotype populations and has been used in [13, 5, 6]
for testing the proposed approaches. The haplotypes are generated according to coalescent
theory, i.e., representing the evolution of the sampled haplotypes. A population generated
by ms contains several repetitions of the same haplotype. This is consistent with what we
observe in nature.

We have generated two sets of 6 classes of instances. In each set, each class is characterized
by the number of SNPs, set to either 30 or 50, and by a target number of genotypes, set
to either 30, 40 or 50. We generated 10 instances for each class. Each single instance
was generated as follows. Let m be the target number of genotypes and n be the number
of SNPs. We have created a population of 3m haplotypes (as previously remarked, not
necessarily distinct) of length n each, by using ms with recombination parameter ρ = 0 for
the first set, and ρ = 16 for the second. Then, we have randomly paired each haplotype
with exactly another haplotype thereby obtaining 3/2m random genotypes. After removing
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m 30 40 50

n 30 50 30 50 30 50

unsolved 0 (1) 4 (10) 0 (1) 3 (6) 0 (0) 0 (10)

min 27 29 35 39 45 45
genotypes avg 29.5 31 36.9 42 47.1 50.3

max 33 33 44 44 51 55

min 1 1 1 1 1 1
amb sites avg 5.99 9.48 5.31 7.87 5.02 9.79

max 12.4 22.6 10.1 16 11 20.9

min 514 7.76 × 104 428 892 1390 3.48× 105

tot hap avg 8× 104 7.94 × 108 2.27× 104 3.81× 106 1.18 × 104 3.5× 107

max 6.7 × 105 3.89 × 109 2.04× 105 2.55× 107 5.85 × 104 1.76× 108

min 78 262 102 144 105 443
patterns avg 373 2174 167 5957 183 3192

max 2301 7805 243 36.9× 104 215 16.4× 104

min 31 (783) 236 (-) 30 (672) 41 (38098) 40 (1625) 63 (-)
LP cols avg 111 (20276) 1731 (-) 64.3 (8338) 1185 (113683) 117 (16238) 316 (-)

max 536 (47346) 4416 (-) 172 (44338) 7513 (157063) 584 (85257) 1270 (-)

min 234 (799) 264 (-) 232 (691) 390 (33893) 330 (1674) 533 (-)
LP rows avg 355 (19561) 593 (-) 405 (8333) 658 (105720) 493 (16522) 990 (-)

max 468 (42782) 908 (-) 624 (44655) 843 (151738) 757 (86370) 1264 (-)

min 0 (0) 1 (-) 0 (1) 0 (230) 0 (2) 1 (-)
tot time avg 0.9 (152) 19.4 (-) 0.63 (53.55) 17.4 (3672.2) 1.88 (233.6) 10.4 (-)

max 5 (575) 6.8 (-) 3 (436) 100 (7106) 13 (1925) 28 (-)

min 0 1 0 0 0 1
time to opt avg 0.8 5.4 0.63 9.57 1.77 10

max 5 16 3 46 13 28

Table 4: Results for simulated instances, ρ = 0

the non-ambiguos and the duplicated genotyopes, we have accepted the instance if the final
number of genotypes obtained was in the interval [m − 5,m + 4].

The results for ρ = 0 are reported in Table 4, and those for ρ = 16 are in Table 5. Each
column refers to a class of 10 instances. Some instances could not be solved within our time
and memory constraints. The number of unsolved instances within each class is reported in
the row labeled “unsolved”.

Next, each block of rows with the same label reports the minimum, average and maximum
value of some parameter over all solved instances in the class. The rows labeled “genotypes”
refer to the number of genotypes. The rows labeled “amb sites” refer to the average number
of ambiguous positions per instance. The rows labeled “tot hap” refer to the number of
compatible haplotypes. The rows labeled “patterns” refer to the number of patterns for the
starting pattern table. The rows labeled “LP cols” (respectively, “LP rows”), refer to the
number of variables (respectively, constraints) generated during the computation. The rows
labeled “tot time” refer to the total running time of the algorithm in CPU seconds. The
rows labeled “time to opt” refer to the time to compute the optimal solution (while the rest
of the running time is spent for proving optimality).

In the blocks named “unsolved”, “LP cols”, “LP rows” and “tot time” we report, in
parentheses, also the values relative to the performance of RTIP. As it can be observed, the
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m 30 40 50

n 30 50 30 50 30 50

unsolved 0 (2) 4 (6) 0 (1) 5 (9) 0 (4) 5 (10)

min 28 31 35 40 45 45
genotypes avg 32 33 39.4 42 48.3 51

max 34 34 42 44 53 54

min 1.1 1.33 1.1 1.2 1 1
amb sites avg 6.44 8.29 6.9 8.4 6.34 8.04

max 13.2 16.5 13.6 17.6 13 18.8

min 1.95 × 103 2.71 × 104 2.7× 103 1.62 × 105 1.9× 103 1.42 × 105

tot hap avg 7.26 × 104 1.07 × 106 8.22× 104 6.14 × 105 4.14× 104 9.68 × 106

max 2.83 × 105 4.2× 106 5.09× 105 1.1× 106 1.85× 105 4.61 × 107

min 134 302 203 470 263 546
patterns avg 1142 4862 846 6214 1955 11110

max 3930 21522 2905 10871 13028 17878

min 87 (1268) 124 (3098) 88 (3066) 79 (43480) 76 (3069) 65 (-)
LP cols avg 368 (19490) 2030 (15825) 437 (24497) 855 (43480) 323 (16497) 1318 (-)

max 1443 (64060) 6670 (36937) 1144 (48924) 2750 (43480) 1140 (41740) 3500 (-)

min 248 (1144) 413 (2965) 409 (2970) 512 (37223) 532 (3180) 628 (-)
LP rows avg 436 (17820) 576 (14363) 584 (22723) 738 (37223) 665 (16100) 852 (-)

max 566 (60139) 793 (33230) 805 (44525) 944 (37223) 971 (39279) 1138 (-)

min 0 (1) 1 (7) 0 (3) 4 (280) 0 (3) 3 (-)
tot time avg 4.5 (225.5) 34.66 (102.7) 49.2 (187) 56 (280) 25.4 (96.6) 61.2 (-)

max 14 (963) 125 (314) 159 (487) 198 (280) 152 (278) 189 (-)

min 0 1 0 3 0 2
time to opt avg 2.3 9.16 22.4 17.8 1.8 17.2

max 11 18 83 11 3 23

Table 5: Results for simulated instances, ρ = 16

number of compatible haplotypes is fairly large for some instances, and the RTIP model
suffers from the large size of the corresponding IP. The size of the LP models at the root
node for our approach can be up to two orders of magnitude smaller than for RTIP. This
translates into running times that are up to two orders of magnitude smaller as well.

8 Conclusions

In this paper we have presented a new IP formulation for the pure parsimony haplotyping
problem. Our formulation, relying on an implicit representation of the set of all haplotypes,
and using both column- and row- generation, can be used to solve larger instances (with
respect to the total size of H(G)) than other ILP approaches in the literature.

One of the key data structures we use is the pattern table, and the performance of our
algorithm can benefit from a reduction of the size of the pattern table. This yields an
interesting theoretical new problem: given a set H of haplotypes, represented by a pattern
table T in standard form, what is the smallest (with respect to the number of patterns)
pattern table which still represents H? This problem deserves further study in the future.
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