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Abstract. In this paper we deal with random graphs specified by the degree probabilities. We investigate a special
subset of the giant component, that consists of vertices which can be detached from the giant component by the
removal of one edge. We call this subset the border of the giant component. The study of the border allows a better
understanding of the dynamic properties of the graph and its structure. The investigation provides explicit expressions
for the degree probabilities and the size probabilities in various components of the graph. A simulation on graphs
with 20,000 vertices shows consistency with the theoretical values.
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1 Introduction

Random graphs are useful models to describe social networks. See for instance [11] for a comprehensive

survey. Usually the particular graphs under investigation are not totally random but some graph structure

is predefined. A deep research has been devoted in the literature to random graphs with assigned degree

probabilities. In this paper we deal with this type of graphs.

For these graphs a nice theory [10, 12, 3] has been built starting from the pioneering papers [5, 6] and

[2]. This theory allows to characterize the so called small and giant components of the graph. This theory is

based on the generating functions of the degree probabilities and cleverly exploits the recursive properties of

generating functions together with the fact that small components are trees with high probability. By this

theory we are able to statistically describe the small component sizes and predict under which conditions

the so called giant component is present.

If we think that the graph changes dynamically by continuously adding and removing edges, it is in-

teresting to understand how some small components become part of the giant component and, conversely,

how some parts of the giant component become small components. Clearly these parts have to be loosely

connected to the rest of the giant component.

This investigation has led to the definition of some special parts of the giant component which we have

called the border and the linking set. A better understanding of the small components requires understanding

also the border and the linking set. Loosely speaking the border is made up of those parts of the giant

component which can be detached from the giant component by the simple removal of an edge. The border

consists of trees (like the small components), which are connected to the main body of the giant component

through the so called linking vertices.

In our opinion highlighting the border part of the giant component can shed new light on the dynamic

behavior of the random graph, also with respect to the critical behavior near the transition point. In order
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to investigate the properties of the border, it is necessary to investigate also other parts of the graph, like

the small components. Although facts related to small components are already well known, we have found

necessary to report them for the sake of clarity.

The analytical results have been also tested with many simulations on large random graphs of various

type showing a remarkable accordance of the empirical values with the theoretical ones. We have reported

only two simulations in this paper, namely for a power-law graph and a Poisson graph.

The paper is organized as follows. In Section 2 we provide the necessary mathematical background. Then

in the Sections 3, 4 and 5 we investigate the degree structure in the small components, in the border and

in the linking set respectively. In Section 6 we study the small component sizes and in Section 7 the border

component sizes. In Section 8 we give a different derivation of a fundamental fixed point equation which

explicitly takes care of the different degree probabilities in the various parts of the graph. Given the size

probabilities and the degree probabilities we verify in Section 9 that a particular random change in the graph

does not change its statistical properties. Then in Section 10 the results are particularized to Poisson graphs.

Finally in Section 12 we show the results of the simulations. Some conclusions are drawn in Section 13.

2 Background

Let G = (V,E) be a random graph with assigned degree probabilities pk, k = 0, 1, 2, . . ., i.e., pk is the

probability that a randomly selected vertex has degree k. Let d =
∑
k≥0 k pk be the average degree in the

graph. We are interested in the asymptotic properties of the graph, i.e., when |V | goes to infinity. Let us

resume some basic and known facts. The graph consists of connected components. A giant component is

a connected component whose size asymptotically goes to infinity and a small component is a connected

component whose size asymptotically remains finite. The following quite standard assumptions are met

asymptotically [11]. We do not attempt to justify them theoretically here. Simple experimental simulations

show that they are typically met with very good approximation already for graphs with a few hundreds of

vertices.

Assumption 1. There is at most one giant component.

Let us say that a pair of vertices i and j are strongly linked if any cut separating i from j contains at

least two edges. This relation is symmetric, transitive, as can be easily seen, and reflexive, if we consider a

vertex to be strongly linked with itself. Hence it is an equivalence relation. Asymptotically we have:

Assumption 2. There is at most one equivalence class that is not a singleton. If it exists, it is in the giant

component.

As a consequence of this assumption all small components are trees. If the giant component is present we

define as the core of the graph this equivalence class. The vertices in the giant component not in the core are

defined as the border of the graph. By Assumption 2 the border consists of trees, called border components,
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Fig. 1. Small components, border components and core of a graph

linked to the core by an edge that connects a vertex in the border to a vertex in the core. Let us call such

edge a linking edge. The vertex of a linking edge in the border is the root of the border component which

is therefore a rooted tree. Given an edge in the border let us call its outbound vertex the one more distant

from the root. Let us call the vertex of a linking edge in the core a linking vertex. Note that a linking vertex

can be linked to more than one border component. The set of linking vertices is called the linking set.

See in Figure 1 an example with three small components, six border components and the core. The

vertices of the small components are drawn as triangles. The vertices of the border are drawn as squares

with the border roots in black. The vertices in the core are drawn as circles with the linking vertices in black.

We define the following events:

– S: a randomly selected vertex belongs to a small component;

– B: a randomly selected vertex belongs to the border;

– L: a randomly selected vertex belongs to the linking set.

We also need to define the following event:

– R: given a vertex i, randomly selected among the vertices with degree at least one, and a vertex j,

randomly selected among the vertices adjacent to vertex i, the vertex j belongs to a small component

after removing the edge {i, j}.
Note that the event R can happen not only when the vertex i belongs to a small component but also

when it belongs to the border or to the linking set.

The excess degree of a vertex of degree at least one is defined as its degree minus one. Let us also define

the events:

– Dk: a randomly selected vertex has degree k;

– D′k: a vertex randomly selected between the vertices of a randomly selected edge has degree k;

– D′′k : given a vertex i, randomly selected among the vertices with degree at least one, and a vertex j,

randomly selected among the vertices adjacent to vertex i, the vertex j has degree k;

– D̃′′k : given a vertex i, randomly selected among the vertices with degree at least one, and a vertex j,

randomly selected among the vertices adjacent to vertex i, the vertex j has excess degree k.
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By definition we have pk = Pr{Dk}. We denote qk = Pr{D̃′′k}. Obviously Pr{D′′k} = Pr{D̃′′k−1}. It is easy

to see that

Pr{D′k} =
k pk
d
.

In general Pr{D′k} 6= Pr{D′′k}, but it turns out that the two quantities are asymptotically equal. So we have

Assumption 3.

Pr{D′′k} =
k pk
d

Hence by this assumption

qk =
(k + 1) pk+1

d
.

The generating functions of the probabilities pk and qk are respectively:

G0(x) =
∑
k≥0

pk x
k, G1(x) =

∑
k≥0

qk x
k =

∑
k

(k + 1) pk+1

d
xk =

G′0(x)

d
.

We first want to compute the following probabilities

u := Pr{R}, v̂ := Pr{S}, v̄ := Pr{B}, v̇ = Pr{L},

p̂k := Pr{Dk |S}, p̄k := Pr{Dk |B}, ṗk := Pr{Dk |L}.

The value u can be computed by using the generating function G1(x). Given a vertex i the event R happens

if and only if it happens for all other vertices incident to i. Hence, if vertex i has excess degree k, the

probability of creating a small component is uk. Averaging over all possible excess degrees yields

u =
∑
k≥0

uk qk = G1(u). (1)

The fixed point equation (1) is the fundamental starting point of all subsequent computations [11]. However,

some doubts can arise on the validity of (1) because the event R is not uniformly spread over all graph but

can happen only on some particular parts of the graph, namely the small components, the border and the

linking set. Hence one should condition the degree probability in turn to the events S, B and L. It turns

out that this is unnecessary. We shall find again the same equation (1) in Section 8 by carrying out a more

detailed investigation, which explicitly takes care of the various component probabilities.

Obviously u = 1 is always a root of u = G1(u). If there is another root u < 1 then the giant component

is present. If there are other roots that are all greater than 1, then there are only small components. The

case in which there are two roots at u = 1 is called phase transition. It is easy to derive G′1(1) = 1 at the

phase transition.

The quantities v̂, v̄ and v̇ are the fraction of vertices belonging to the small components, to the border

components and to the linking set respectively. The fraction of vertices in the core is clearly 1− v̂ − v̄.



5

In order to compute p̂k, p̄k, and ṗk we exploit Bayes’ rule. So we have

p̂k =
Pr{S |Dk} pk

Pr{S}
, p̄k =

Pr{B |Dk} pk
Pr{B}

, ṗk =
Pr{L |Dk} pk

Pr{L}
. (2)

Let d̂, d̄ and ḋ be the respective average degrees. Let q̂k = (k + 1) p̂k+1/d̂ be the excess degree probabilities

in the small components.

3 Degree probabilities in the small components

The generating functions of the probabilities p̂k and q̂k are respectively:

Ĝ0(x) =
∑
k

p̂k x
k, Ĝ1(x) =

∑
k

q̂k x
k =

∑
k

(k + 1) p̂k+1

d̂
xk =

Ĝ′0(x)

d̂
.

Clearly Pr{S |D0} = 1 and consequently (recall (2)) p̂0 = p0/v̂. If k > 0, Pr{S |Dk} is the probability that

all adjacent k vertices belong to a small component once we have removed the corresponding arcs. Hence

p̂k :=
Pr{R}k pk

v̂
=
uk

v̂
pk, (3)

valid also for k = 0. Then we have

1 =
∑
k≥0

p̂k =
G0(u)

v̂
,

from which

v̂ = G0(u). (4)

The relation between G0(x) and Ĝ0(x) is given by

Ĝ0(x) =
G0(ux)

v̂
, Ĝ′0(x) =

u

v̂
G′0(ux),

from which

d̂ = Ĝ′0(1) =
u

v̂
G′0(u) =

u

v̂
G1(u) d. (5)

If we take into account the equation u = G1(u) we may write

d̂ =
u2

v̂
d, q̂k =

(k + 1) p̂k+1

d̂
= uk−1 qk.

Since v̂ d̂/d is equal to the fraction of edges belonging to small components, this equation tells that this

fraction decreases quadratically with u. Since d̂ < d we have u2 < v̂ which in turn implies that p̂k < pk for

k ≥ 2. It is not difficult to find the following relations

Ĝ1(x) =
G1(ux)

G1(u)
= Ĝ1(x) =

G1(ux)

u
, (6)

where u = G1(u) has been used for the second equality. Hence we have the following ‘reciprocal’ equations

on the small components:

Ĝ1(u−1) = u−1, Ĝ0(u−1) = v̂−1. (7)
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4 Degree probabilities in the border

Pr{B |Dk} is the probability that all but one adjacent k vertices belong to a small component once we have

removed the corresponding arcs. Hence

p̄k =
k uk−1 (1− u)

v̄
pk. (8)

Then we have

1 =
∑
k

p̄k =
1− u
v̄

G′0(u) =
d (1− u)

v̄
G1(u),

from which

v̄ = d (1− u)G1(u), (9)

so that

p̄k =
k uk−1

G1(u) d
pk.

By using u = G1(u) we may also write

v̄ = (1− u)u d, p̄k =
k uk−2

d
pk.

We see that, as expected, limu→1 v̄ = 0, i.e., the border components vanish together with the giant component

as u approaches unity. The generating functions of the probabilities p̄k and q̄k := (k + 1) p̄k+1/d̄ are

Ḡ0(x) =
∑
k

p̄k x
k, Ḡ1(x) =

∑
k

(k + 1) p̄k+1

d̄
xk =

Ḡ′0(x)

d̄
.

The relation between G0(x) and Ḡ0(x) is given by

Ḡ0(x) = x
G1(ux)

G1(u)
= x

G1(ux)

u
.

By comparing this expression with (6) we have Ḡ0(x) = x Ĝ1(x), or equivalently

p̄k = q̂k−1. (10)

Simple computations lead to

d̄ = 1 +
uG′1(u)

G1(u)
= 1 +G′1(u) = 1 + Ĝ′1(1). (11)

It is interesting to note that the d̄ tends to the value 2 as the network is approaching the phase transition.
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5 Degree probabilities in the linking set

Pr{L |Dk} is the probability that among the adjacent k vertices there exists a set of three vertices two of

which are in the core and the remaining one is in the border. It does not matter whether the other adjacent

vertices are in the core or in the border. Hence

Pr{L |Dk} = 1− uk − k uk−1 (1− u)− (1− u)k, k ≥ 3, (12)

where the three cases incompatible with the existence of the set are explicitly excluded. This expression is

valid also for k = 2 when it is identically equal to 0. So we have

ṗ0 = 0, ṗ1 = 0, ṗk =
1− uk − k uk−1 (1− u)− (1− u)k

v̇
pk, k ≥ 2, (13)

from which

1 =
∑
k≥0

ṗk =
∑
k≥2

1− uk − k uk−1 (1− u)− (1− u)k

v̇
pk,

i.e.

v̇ =
∑
k≥2

(1− uk − k uk−1 (1− u)− (1− u)k) pk.

This expression can be rewritten as

v̇ = 1− p0 − p1 −G0(u) + p0 + u p1 − (1− u)G′0(u) + (1− u) p1 −G0(1− u) + p0 + (1− u) p1,

i.e.,

v̇ = 1− v̂ − v̄ + (1− u) p1 −G0(1− u) + p0, (14)

where the previous definitions and results have been taken into account. Note that 1− v̂− v̄ is the fraction of

graph in the core. The fraction of vertices in the core that are not linking is therefore G0(1−u)−p0−(1−u) p1

as can be inferred also by reasoning like in the case of the small components. In this case after selecting

a vertex, deleting one of its incident edges never creates a small component. This leads to a probability

expression like (1 − u)k pk with generating function G0(1 − u). Since zero and one degree vertices do not

belong to the core we get indeed G0(1− u)− p0 − (1− u) p1.

The generating functions are

Ġ0(x) =
∑
k

ṗk x
k =

∑
k≥2

1− uk − k uk−1 (1− u)− (1− u)k

v̇
pk x

k =

G0(x)− v̂ Ĝ0(x) + p0 − v̄ Ḡ0(x) + p1 (1− u)x−G0((1− u)x)

v̇
,

from which

ḋ =
d− v̂ d̂− v̄ d̄+ p1 (1− u)− (1− u) G′0(1− u)

v̇
. (15)
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Hence (4), (9) and (14) allow to express v̂, v̄ and v̇ respectively as a function of u whereas (5), (11) and

(15) allow to express d̂, d̄ and ḋ respectively as a function of u.

We need also to know how many edges are linking a linking vertex to the border. Let us call the linking

degree of a linking vertex the number of edges incident to border vertices. If a linking vertex has degree k,

there can be 1 ≤ h ≤ k − 2 edges incident to the border, i.e., the linking degree is h, with probability(
k
h

)
uh (1− u)k−h

1− uk − k uk−1 (1− u)− (1− u)k
= pk

(
k
h

)
uh (1− u)k−h

ṗk v̇
, (16)

where we have used also (13). As apparent from (16) we may have any combination of linking and non linking

edges except the three cases that are not compatible with the constraint of at least one edge linking and at

least two edges not linking as we have done in (12). The denominator in (16) reflects this condition. If the

degree of the linking vertex is k, the average linking degree is

k−2∑
h≥1

h pk

(
k
h

)
uh (1− u)k−h

ṗk v̇
=

pk
ṗk v̇

u (k − k (k − 1)uk−2 (1− u)− k uk−1). (17)

Therefore the average linking degree, which we denote as δ, is

δ =
∑
k≥3

pk
ṗk v̇

u (k − k (k − 1)uk−2 (1− u)− k uk−1) ṗk =
u

v̇
(d− (1− u)G′′0(u)−G′0(u)). (18)

If we use u = G1(u) the expression for the average linking degree simplifies to

δ =
u (1− u)

v̇
(d−G′′0(u)).

We may also compute the probability of having linking degree h ≥ 1 in general as follows

1

v̇

∑
k≥h+2

pk

(
k

h

)
uh (1− u)k−h =

1

v̇

uh

h!

∑
k≥h+2

pk
k!

(k − h)!
(1− u)k−h =

=
uh

v̇
(
G

(h)
0 (1− u)

h!
− ph − (h+ 1) (1− u) ph+1), (19)

where G
(h)
0 (x) is the hth derivative of G0(x).

6 Small component sizes

We define the events:

– Ŝk: a vertex randomly selected among the vertices in the small components belongs to a component of

size k;

– R̂k: given a vertex i, randomly selected among the vertices in the small components with degree at least

one, and a vertex j, randomly selected among the vertices adjacent to vertex i, the vertex j belongs to

a small component of size k after removing the edge (i, j);



9

– T̂k: a randomly selected small component has size k.

Let ŝk = Pr{Ŝk}, r̂k = Pr{R̂k} and t̂k = Pr{T̂k} with corresponding generating functions

Ĥ0(x) =
∑
k

ŝk x
k, Ĥ1(x) =

∑
k

r̂k x
k, K̂(x) =

∑
k

t̂k x
k.

Note that the average size ĉ = K̂ ′(1) of a small component is linked to the average degree d̂ in the small

components as

ĉ =
2

2− d̂
,

due to the assumption that all small components are trees. It is known [11] that Ĥ0(x) and Ĥ1(x) obey the

recursive equations

Ĥ0(x) = x Ĝ0(Ĥ1(x)), Ĥ1(x) = x Ĝ1(Ĥ1(x)), (20)

and that K̂(x) is linked to Ĥ0(x) and Ĥ1(x) through

K̂(x) = ĉ (Ĥ0(x)− d̂

2
Ĥ2

1 (x)) =
2

2− d̂
(Ĥ0(x)− d̂

2
Ĥ2

1 (x)). (21)

Moreover the following relation holds, as can be easily shown,

ŝk =
k t̂k
ĉ
.

We note that the equations that can be found in the literature [11] are not linked to the degree probabilities

in the small components like in (20) but in the whole graph. There are functions H0(x) and H1(x) defined

by the recursive equations

H0(x) = xG0(H1(x)), H1(x) = xG1(H1(x)),

with sk and rk the coefficients of the power series representation of H0(x) and H1(x) respectively.

By expressing the functions Ĝ1(x) and Ĝ0(x) in terms of G1(x) and G0(x) we obtain

Ĥ1(x) = x Ĝ1(Ĥ1(x)) = x
G1(u Ĥ1(x))

u
,

from which we get

H1(x) = u Ĥ1(x). (22)

We remark that Ĥ(1) = 1 since there are no infinite size components among the small components. Hence

H1(1) = u. Furthermore

Ĥ0(x) = x Ĝ0(Ĥ1(x)) = x
G0(u Ĥ1(x))

v̂
= x

G0(H1(x))

v̂
,

from which

H0(x) = v̂ Ĥ0(x). (23)
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Hence H0(1) = v̂. The average size of a small component obtained by randomly selecting a vertex among

the adjacent vertices of a randomly selected vertex and removing the edge is

Ĥ ′1(1) =
1

1− Ĝ′1(1)
=

1

1−G′1(u)
,

obtained by differentiating (23) and the average size of a small component chosen by selecting a random

vertex in the small components is

Ĥ ′0(1) = 1 +
d̂

1− Ĝ′1(1)
, (24)

obtained again by differentiating (23). Therefore the average size of a small component selected by selecting

a random edge is 2 Ĥ ′1(1).

7 Border component sizes

We may define similar generating functions for the border components. In this case we want to know how

many vertices are detached from the border if we remove a random edge in the border. Hence we define:

– S̄k: a vertex randomly selected among the vertices in the border components belongs to a component of

size k;

– R̄k: given a random vertex i in the border of degree at least two and a randomly selected vertex j among

the outbound vertices adjacent to i, the vertex j belongs to a small component of size k after removing

the edge (i, j).

– T̄k: a randomly selected border component has size k.

Let s̄k = Pr{S̄k}, r̄k = Pr{R̄k} and t̄k = Pr{T̄k} with corresponding generating functions

H̄0(x) =
∑
k

s̄k x
k, H̄1(x) =

∑
k

r̄k x
k, K̄(x) =

∑
k

t̄k x
k.

Note that the average size c̄ = K̄ ′(1) of a border component is linked to the average degree d̄ in the border

components as

c̄ =
1

2− d̄
, (25)

since each border component is a tree plus one edge linked to a linking vertex. As we have observed before, d̄

tends to 2 as the transition phase is approached. The above equation tells that the average border component

size becomes unbounded near the transition phase. Since the number of border vertices tends to vanish near

the transition phase, this means that the core vanishes and the giant component becomes made up just of a

few large border components, because most border components are detached from the core and contribute

to the small components. We shall come back to this point later on investigating Poisson graphs.

The generating functions H̄0(x), H̄1(x) and K̄(x) do not obey recursive equations similar to (23) for

the small components. We face a different situation in the border with respect to a small component. A

border component is a rooted tree and choosing randomly and edge (i, j) in a rooted tree, with j outbound,



11

is equivalent to choosing randomly the vertex j since there is a one-to-one correspondence between edges

and vertices. This means that, choosing with uniform probability the edge (i, j), the probability that the

outbound vertex j has degree k is simply p̄k. By Assumption 3 this probability is also asymptotically equal to

the probability of finding the degree k by choosing a vertex i of degree at least two and a random outbound

vertex j adjacent to i.

Hence, we have (by using also (10))

H̄1(x) = x
∑
k≥1

H̄k−1
1 (x) p̄k = x

∑
k≥1

H̄k−1
1 (x) q̂k−1 = x Ĝ1(H̄1(x)), (26)

from which we get the interesting fact

H̄1(x) = Ĥ1(x).

In other words the outbound part of a border component has the same statistical properties of the small

components. We note that the generating function H̄1(x) is defined irrespective of the starting vertex, which

can therefore be also the root of the border component. Hence r̄k is also the probability that a border

component has size k, i.e., r̄k = t̄k, so that K̄(x) = H̄1(x). Since s̄k = k t̄k/c̄, we derive

H̄0(x) =
x

c̄
K̄ ′(x) =

x

c̄
H̄ ′1(x), H̄ ′0(x) =

1

c̄
(H̄ ′1(x) + x H̄ ′′1 (x)).

By working out (26) we get

H̄ ′1(x) =
Ĝ1(H̄1(x))

1− x Ĝ′1(H̄1(x))

so that

c̄ = H̄ ′1(1) =
1

1− Ĝ′1(1)

that is consistent with the previous relations (11) and (25).

8 The equation u = G1(u) revisited

As stated before, u may be computed by the fixed point equation u = G1(u). Now we find out the same

equation by using the previous results (without of course using any result coming from the same equation

u = G1(u)), that are based on the conditional probabilities of the event R with respect to the events S, B

and L. We may reason as follows.

The number of border components is related to the number of linking vertices and their linking degrees. If

δ is the average number of border components incident to a linking vertex, the number of border components

is equal to the number of linking vertices times δ. Let n be the number of vertices in the graph. Then the

number of linking vertices is

n v̇ = n (1− v̂ − v̄ + (1− u) p1 −G0(1− u) + p0)

and the number of border components is

δ n v̇.
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Hence the total number of vertices in the border components is (by using (25))

δ n v̇

2− d̄
,

that must be equal to

n v̄ = n (1− u)G′0(u).

So we have the equation

δ v̇ = (1− u)G′0(u) (2− d̄),

that, by applying (11) rewritten as

d̄ = 1 +
uG′1(u)

G1(u)
= 1 +

uG′′0(u)

G′0(u)
,

becomes

δ v̇ = (1− u) (G′0(u)− uG′′0(u)), (27)

and, by applying the formula (18)

u (d− (1− u)G′′0(u)−G′0(u)) = (1− u) (G′0(u)− uG′′0(u)),

which turns out to be u d = G′0(u), i.e., u = G1(u).

9 Dynamic graph change and stationary probability

In this section we consider a change in the random graph obtained by taking two random edges, removing

them and reconnecting the four vertices in one of the other two possible ways. This move corresponds to a

Markov chain transition in the state space of all graphs with fixed vertex degrees [13]. See also Section 12.

The important fact about this Markov chain is that its stationary probability is uniform over all graphs

with fixed degrees. If we have sampled a graph with uniform probability, then the Markov chain transition

must produce another graph with the same statistical properties, although clearly with different connected

components.

We can check that the average number of vertices in the small components is invariant. We can carry

out this analysis at least for the small components where it is quite clear the type of change involved in

the graph. What happens for the core and the border is much more complex and we do not carry out this

analysis.

Let us consider in detail all possible ways we may pick up the two edges and the changes in the component

sizes resulting from the choice. Let ∆S be the average overall size change of the small components.

1) S–S: both edges belong to small components. We may assume that the probability of picking the two

edges in the same small component is asymptotically zero given the infinite number of small components (as

long as v̂ > 0). Hence the two edges belong to two different small components. The move destroys the small

components and creates two new small components. See Fig. 2-(1) where the relevant edges are highlighted.

Hence we have on the average ∆S = 0.
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(1) S–S move (2) S–B move

(3) S–C move (4) B–B move

(5) B–C move

Fig. 2.

2) S–B: one edge is in a small component and the other one is in the border (including possibly the

linking edge). The move destroys the small and the border components and creates a new small component

and a new border component. See Fig. 2-(2). Here and in all other figures the linking vertices are in black

and the core is highlighted with a gray background. We have on the average ∆S = −Ĥ ′1(1) + H̄ ′1(1) = 0.

3) S–C: one edge is in a small component and the other one is in the core. The move destroys the small

component and creates two new border components. If the edge in the core is fully within the core the new

border components are made up of just the vertices of the destroyed small component. In this case the core

size is not changed. However, if the edge vertices in the core have degree two (like the one shown in Fig.

2-(3)) there may be extra vertices in the core that become part of the border. In this case the core size is

decreased. We have on the average ∆S = −2 Ĥ ′1(1).

4) B–B: both edges are in the border (including possibly linking edges). Again we may assume that

they do not belong to the same border component. The two border components are destroyed. According to

the way we select the new edges, we may end up either with two new border components or with a small

component and an increased core. See Fig. 2-(4). We have on the average ∆S = 0, ∆S = 2 H̄ ′1(1), in the first

and in the second case respectively.

5) B–C: one edge is in the border (including linking edges) and the other one is in the core. If the edge in

the core is fully within the core the border component is destroyed and new border components are formed,

the core is increased. However if the edge vertices in the core have degree two it can happen that the core is

decreased and there are two new border components. See Fig. 2-(5). In any case we have ∆S = 0.

6) C–C: both edges are in the core. Clearly ∆S = 0.
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Note that the core decreases only in the special cases when edges are selected in the core with degree

two. Hence we see that small components are formed from border components and these in turn are formed,

not only from small components, but also from loosely connected parts of the core, namely, from vertices

with degree two.

Now we have to compute the probabilities of these moves and the change in size due to these moves. An

edge is selected in the small components with probability proportional to the fraction of edges in the small

components, which is

v̂ d̂

d
= u2.

An edge is selected in the border components with probability proportional to the fraction of edges in the

border components plus the linking edges. The number of edges we have to count is exactly equal to the

number of vertices in the border components. Hence the fraction of edges is

n v̄

n d/2
=

2 v̄

d
= 2u (1− u).

Consequently the fraction of edges in the core is

1− u2 − 2u (1− u) = (1− u)2.

Hence the moves have the following probabilities

Pr{S-S} = u4, Pr{S-B} = 4u3 (1− u), Pr{S-C} = 2u2 (1− u)2,

Pr{B-B} = 4u2 (1− u)2, Pr{B-C} = 4u (1− u)3, Pr{C-C} = (1− u)4.

Therefore we have

∆S = −2 Ĥ ′1(1) 2u2 (1− u)2 +
1

2
2 H̄ ′1(1) 4u2 (1− u)2 = 0.

10 Analysis of Poisson graphs

In this section we particularize the previous general results to Poisson graphs. We recall that in a Poisson

graph, for every pair of vertices, an arc is generated with probability d/(n−1), where d is the average degree.

As a consequence the degree probabilities and their generating functions are asymptotically

pk =
dk

k!
e−d, G0(x) = ed (x−1) = G1(x).

In a Poisson graph u is the solution of the equation u = ed (u−1), from which d = lnu/(u− 1). If d > 1 there

is a giant component and u < 1. For d > 1 the previous results particularize to

v̂ = G0(u) = ed (u−1) = u, d̂ =
uG′0(u)

G0(u)
= u d,

p̂k =
uk

v̂
pk =

uk

ed (u−1)

dk

k!
e−d =

(u d)k

k!
e−u d =

d̂k

k!
e−d̂.
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Hence the small components are still Poisson, but with a smaller average degree, and clearly

Ĝ0(x) = Ĝ1(x) = ed̂ (x−1).

For the border we have

p̄k =
k uk−1

G′0(u)
pk =

k uk−1

d ed (u−1)
e−d

dk

k!
=

(u d)k−1

(k − 1)!
e−u d =

d̂k−1

(k − 1)!
e−d̂.

It is interesting that the degrees in the border are distributed like in the small components, but with a shift

of one degree. Clearly

d̄ = 1 + d̂ = 1 + u d.

Moreover

Ḡ0(x) = x eu d (x−1) = x ed̂ (x−1), Ḡ1(x) =
1 + x d̂

1 + d̂
ed̂ (x−1).

The fraction of graph in the border is

v̄ = (1− u)G′0(u) = (1− u) d ed (u−1) = (1− u)u d = −u lnu,

The maximum of v̄ is obtained at the value u = e−1, i.e., at the average degree

d =
1

1− e−1
= 1.58198,

for which v̄ = e−1 = v̂ = 0.367879. For the linking vertices we have

v̇ = 1− e−u d − (1 + d (1− u)) (ed (u−1) − e−d) = (1− u) (1− u d) (1− e−u d).

Also v̇ exhibits a maximum. An analytic expression for the maximum is not immediately available. Numeri-

cally we find that the maximum of v̇ is achieved at u = 0.16062239, i.e, d = 2.17864, for which v̇ = 0.161112.

The average linking degree is

δ =
u

v̇
(d− (1− u)G′′0(u)−G′0(u)) =

u (d− (1− u) d2 ed(u−1) − d ed(u−1))

(1− u) (1− u d) (1− e−u d)
=

u d

1− e−u d
.

The limit of δ as d tends to ∞ (and consequently u tends to 0) is 1. This is consistent with the fact that the

border component vanishes as the average degree increases, and so, if there are linking vertices, they have

just one border component attached. In case of a Poisson graph the expression (19) can be easily worked out

to produce the following values for the probabilities of having linking degree h ≥ 1

uh dh

h!

e−u d

1− e−u d
.
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11 A critical window for the border

It is interesting to analyze the behavior of the border components of a Poisson graph near the transition

phase. We parametrize the solution of u = G1(u), as u = 1 − ε. Hence G1(1 − ε) = e−d ε and we have to

solve 1− ε = e−d ε, from which, by taking a first order approximation we may express d as a function of ε,

d = − ln(1− ε)
ε

=
∑
k≥0

εk

k + 1
≈ 1 +

ε

2
.

Similarly we may express ε as a function of d as

(1− ε) ≈ 1− d ε+
d2 ε2

2
=⇒ ε ≈ 2 (d− 1)

d2
≈ 2 (d− 1) =⇒ u ≈ 1− 2 (d− 1) = 3− 2 d.

Now the fraction of vertices in the border is

v̄ = u (1− u) d = ε (1− ε) d = ε (1− ε)
∑
k≥0

εk

k + 1
≈ ε (1− ε

2
),

or, expressed as a function of d.

v̄ = ε (1− ε) d ≈ 2 (d− 1) (1− 2 (d− 1)) d = 2 (d− 1) (3− 2 d) d

and the average border degree is

d̄ = 1 + u d ≈ 2− ε

2
,

with average border component size

c̄ =
1

2− d̄
=

2

ε
=

1

d− 1
. (28)

Therefore, as in the general case, whilst the border vertices vanish, the average size of a border component

becomes unbounded. The fraction of vertices in the core is

1− v̂ − v̄ ≈ 1− (1− ε)− ε (1− ε

2
) =

ε2

2
,

Hence the core size decreases quadratically with ε, or, viewed from the opposite side, the core size has a

sharp rise when the average degree increases after the transition point.

To better understand the critical behavior near the transition point, let us assume now that the number

of vertices is a large finite number n. The previous relations are still valid with a good approximation. The

number of border components, expressed as a function of ε, is therefore given by

n v̄

c̄
=

1

2
n ε2 (1− ε

2
) ≈ 1

2
n ε2.

Note that this number is equal to the core size. This means that each vertex in the core is root of a border

component. The birth of the giant component passes through this step when several trees are joined together

via a small set of nodes that is about to become the core of the graph.
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So we have that, as ε tends to zero, the number of border vertices is going to zero, the number of border

components decreases quadratically as the core size, whilst the average size of a border component increases

without bounds. However, since n is finite, c̄ cannot grow unbounded. The formulas have been derived under

Assumption 2. So when the formulas give an inconsistent result, this means that the very structure of a

giant component with its border components is collapsing or, viewed from the opposite side, the structure of

the giant component is still in formation. We may mark this moment by noting that the number of border

components has to be greater than one, or, asymptotically, has to be greater than O(1). Hence

1

2
n ε2 ≥ O(1) =⇒ ε ≥ λ√

n

where λ is a O(1) function with respect to n. In other words the interval

1 < d < 1 +
λ√
n

is a critical window with respect to the border components. It is interesting to compare this critical time

window with the one for the giant component. It is known that the critical time window for the giant

component is [8, 14]

1 < d < 1 +
λ
3
√
n

which is larger than the previous one. Hence when the giant component is born, it is already equipped

with core and border components. In Fig. 3 we report the results of a simulation on a graph with n =

50, 000 vertices. The arcs have been randomly added one by one using a Union-Find structure to track the

components, until an average degree d = 1.2 has been reached. Then the arcs have been removed in the

reverse order and the data relative to the border and the core have been computed on steps of 100 arcs. In

Fig. 3 (a) we report, as a function of d, the size of the largest component (in black), the size of the second

largest component (in blue) and the size of the core (in red). We may see that around d = 1.045 ≈ 1.65n−1/3

the giant component is formed. In Fig. 3 (b) we report the empirical average border size as a function of d

(in black) plotted against the theoretical value given by (28) (in blue). We may see that the two functions

agree with good approximation out of the critical window.

12 Simulations

We have carried out computational simulations to check the validity of the theoretical formulas found in the

previous sections against experimental outcomes. We have carried out several simulations on different graph

classes. They are all consistent with the theoretical results. In this paper we limit ourselves to report on the

simulation carried out for a power law graph and a Poisson graph.

For the power law graph we have generated a graph with n = 20,000 vertices. We recall that in a power-

law graph the degree k ≥ 1 is present with probability pk = k−α/ζ(α), with α > 1 a given parameter and

ζ(α) the Riemann-zeta function. The average degree is d = ζ(1−α)/ζ(α). In this simulation we have chosen
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(a)
largest component (black), second largest
component (blue) and core (red) sizes
as a function of d.

(b)
average border size as a function of d:
empirical (black), theoretical (blue).

Fig. 3.

α = 2.5 which yields d = 1.94737. See [1] for a alternative definition where pk is proportional to k−α and

0 < α < 1 is allowed but the maximum degree is fixed.

For the Poisson graph we have generated a graph with n = 50,000 vertices and average degree d = 1.3.

The graph has not been created by generating an arc for each pair of vertices with probability p = d/(n− 1)

because this procedure is too much time consuming.

Both graphs have been generated by using the well known Markov chain model over the state space of all

graphs with known and fixed degree for each vertex [13]. A transition from a graph to another graph is carried

out by selecting two random edges (i, j) and (h, k). If the edges do not share a vertex, they are deleted and

either the pair of edges (i, h), (j, k) or the pair (i, k), (j, h) is generated with probability 1/2. The probability

of this transition is independent of the particular edges and has value 1/(|E| (|E| − 1)). If the edges share

a vertex the graph remains unchanged and in the Markov chain model this corresponds to a self-transition.

The important fact is that the stationary probability of this Markov chain is uniform. Therefore, selecting

the graph obtained after a sufficiently high number of transitions is equivalent to uniformly sampling a graph

with given degrees.

A starting graph is generated as follows. Knowing the degree probabilities, the maximum degree value k̄

is computed such that n pk̄ > 0.5. We have found k̄ = 61 for the power law graph and k̄ = 8 for the Poisson

graph. Then the fraction of vertices of degree k is given by rounding to the nearest integer n pk, k = 1, . . . , k̄.

If there is no graph with the given degrees there is a slight adjustment to allow for a graph. In the simulation

for the power law graph, the number of vertices with degree 1, . . . , 28 is 14924, 2639, 956, 466, 267, 169, 115,

82, 61, 47, 37, 30, 24, 20, 17, 15, 13, 11, 9, 8, 7, 7, 6, 5, 5, 4, 4, 4; then there are 3 vertices for each of the

degrees 29–32, 2 vertices for each of the degrees 33–39 and one vertex for each of the degrees 40–61. For the

Poisson graph the number of vertices with degree 0, . . . , 8 is 13627, 17715, 11515, 4990, 1622, 422, 91, 17, 3.

The probabilities pk are then recomputed on the basis of the actual fractions of vertices.

Then, from the starting graph 300,000 Markov chain transitions have been carried out. The resulting

graph is the one on which the experimental values have been computed. All experimental values have been

computed by simple counting operations. For instance, the value u has been computed, according to its
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definition, by summing the number of vertices in the small components, adding the value (di−1)/di for each

vertex i in the border (with di its degree), and adding the value δi/di for each vertex in the linking set (with

di its degree and δi its linking degree). The resulting sum is divided by the total number of vertices yielding

the experimental value for u.

In Table 1 we report both the theoretical (in italics) and the experimental (in roman) data for the power

law graph and in Table 2 we report the data for the Poisson graph. As can be seen, the experimental values

are in accordance with the theoretical values.

13 Conclusions

In this paper a detailed investigation on some special components of the giant component of a random

graph has been carried out. The random graphs we have considered are those specified by assigning the

degree probabilities to the vertices. The special components are components that can be easily detached

from the giant component and can provide a better understanding of the dynamic behavior of a graph when

edges are added and removed. We have called these components the border of the giant component. The

investigation has provided explicit expressions for the degree probabilities and the size probabilities in the

various components of the graph, including the small components.

The general formulas have been particularized to Poisson graphs, where a critical window related to the

birth of the border components can be identified. Then a simulation has been carried out on large power-law

and Poisson graphs respectively to check the theoretical expressions against the experimental data. These

simulations have shown a remarkable accordance between the theoretical and the experimental data.
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u v̂ d̂ v̄ d̄ v̇ ḋ δ

theor 0.5403 0.4522 1.1414 0.4391 1.3322 0.0748 7.9012 3.9217

exp 0.5416 0.4547 1.1397 0.4346 1.3284 0.0754 7.8633 3.8733

p̂0 p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7

theor 0 0.8916 0.0852 0.0167 0.0044 0.0014 0.0005 0.0002

exp 0 0.8926 0.0853 0.0168 0.0031 0.0009 0.0005 0.0004

p̄0 p̄1 p̄2 p̄3 p̄4 p̄5 p̄6 p̄7

theor 0 0.7812 0.1493 0.0438 0.0154 0.0060 0.0024 0.0010

exp 0 0.7832 0.1488 0.0414 0.0161 0.0067 0.0017 0.0015

ṗ2 ṗ3 ṗ4 ṗ5 ṗ6 ṗ7 ṗ8 ṗ9

theor 0 0.2190 0.1808 0.1317 0.0948 0.0694 0.0516 0.0394

exp 0 0.2216 0.1825 0.1307 0.0982 0.0650 0.0504 0.0398

ŝ1 ŝ2 ŝ3 ŝ4 ŝ5 ŝ6 ŝ7 ŝ8

theor 0 0.6965 0.1560 0.0628 0.0318 0.0181 0.0111 0.0071

exp 0 0.7042 0.1478 0.0638 0.0280 0.0165 0.0115 0.0079

r̂1 r̂2 r̂3 r̂4 r̂5 r̂6 r̂7 r̂8

theor 0.7812 0.1166 0.0442 0.0219 0.0124 0.0076 0.0049 0.0032

exp 0.7862 0.1119 0.0442 0.0195 0.0112 0.0078 0.0050 0.0033

t̂1 t̂2 t̂3 t̂4 t̂5 t̂6 t̂7 t̂8

theor 0 0.8096 0.1209 0.0365 0.0148 0.0070 0.0037 0.0021

exp 0 0.8185 0.1145 0.0371 0.0130 0.0064 0.0038 0.0023

s̄1 s̄2 s̄3 s̄4 s̄5 s̄6 s̄7 s̄8

theor 0.5247 0.1566 0.0890 0.0589 0.0416 0.0305 0.0229 0.0174

exp 0.5273 0.1576 0.0828 0.0575 0.0403 0.0276 0.0185 0.0212

r̄1 r̄2 r̄3 r̄4 r̄5 r̄6 r̄7 r̄8

theor 0.7812 0.1166 0.0442 0.0219 0.0124 0.0076 0.0049 0.0032

exp 0.7890 0.1153 0.0363 0.0220 0.0126 0.0085 0.0054 0.0030

t̄1 t̄2 t̄3 t̄4 t̄5 t̄6 t̄7 t̄8

theor 0.7812 0.1166 0.0442 0.0219 0.0124 0.0076 0.0049 0.0032

exp 0.7852 0.1174 0.0411 0.0214 0.0120 0.0069 0.0039 0.0039

Table 1. Theoretical and experimental values for a power-law graph with α = 2.5 and n=20,000
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u v̂ d̂ v̄ d̄ v̇ ḋ δ

theor 0.5770 0.5770 0.7501 0.3173 1.7501 0.0558 3.6222 1.4215

exp 0.5809 0.5791 0.7550 0.3185 1.7574 0.0539 3.6324 1.4345

p̂0 p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7

theor 0.4723 0.3543 0.1329 0.0332 0.0062 0.0009 0.0001 0

exp 0.4706 0.3554 0.1315 0.0347 0.0065 0.0012 0.0001 0

p̄0 p̄1 p̄2 p̄3 p̄4 p̄5 p̄6 p̄7

theor 0 0.4723 0.3543 0.1329 0.0332 0.0062 0.0009 0.0001

exp 0 0.4662 0.3593 0.1340 0.0333 0.0058 0.0010 0.0001

ṗ2 ṗ3 ṗ4 ṗ5 ṗ6 ṗ7 ṗ8 ṗ9

theor 0 0.5542 0.3094 0.1040 0.0260 0.0053 0.0009 0.0001

exp 0 0.5444 0.3167 0.1069 0.0260 0.0059 0 0

ŝ1 ŝ2 ŝ3 ŝ4 ŝ5 ŝ6 ŝ7 ŝ8

theor 0.4723 0.1673 0.0889 0.0560 0.0388 0.0285 0.0218 0.0172

exp 0.4706 0.1636 0.0929 0.0571 0.0359 0.0247 0.0201 0.0185

r̂1 r̂2 r̂3 r̂4 r̂5 r̂6 r̂7 r̂8

theor 0.4723 0.1673 0.0889 0.0560 0.0388 0.0285 0.0218 0.0172

exp 0.4668 0.1696 0.0886 0.0537 0.0358 0.0277 0.0245 0.0199

t̂1 t̂2 t̂3 t̂4 t̂5 t̂6 t̂7 t̂8

theor 0.7587 0.1344 0.0476 0.0225 0.0125 0.0076 0.0050 0.0035

exp 0.7560 0.1314 0.0498 0.0229 0.0115 0.0066 0.0046 0.0037

s̄1 s̄2 s̄3 s̄4 s̄5 s̄6 s̄7 s̄8

theor 0.1146 0.0812 0.0647 0.0543 0.0470 0.0414 0.0370 0.0334

exp 0.1125 0.0823 0.0669 0.0507 0.0553 0.0381 0.0343 0.0362

r̄1 r̄2 r̄3 r̄4 r̄5 r̄6 r̄7 r̄8

theor 0.4723 0.1673 0.0889 0.0560 0.0388 0.0285 0.0218 0.0172

exp 0.4675 0.1670 0.0870 0.0562 0.0425 0.0284 0.0230 0.0173

t̄1 t̄2 t̄3 t̄4 t̄5 t̄6 t̄7 t̄8

theor 0.4723 0.1673 0.0889 0.0560 0.0388 0.0285 0.0218 0.0172

exp 0.4636 0.1696 0.0919 0.0523 0.0456 0.0261 0.0202 0.0186

Table 2. Theoretical and experimental values for a Poisson graph with d = 1.3 and n=50,000


