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Abstract.
Introduction and objectives: New medical treatments implementation can be associated with improving outcomes but
at a cost. With the rising prices of healthcare, implementation of a fixed budget for different specific diseases would
place pressure on doctors to choose the treatment option which is most cost effective for an individual patient. This
study aims to provide a user-friendly tool to identify the most cost-effective treatment option for different severities
of benign prostatic hyperplasia (BPH).
Methods: A set of health states were identified for BPH and utilities of each state were obtained from the published
literature. These states were used to build a Markov chain with random transitions between states. The transition
probabilities between states for a given intervention (surgery, pharmacotherapy or no intervention) were determined
using mean changes in IPSS scores from the available literature as well as expert opinion. For each state, a utility
value was associated and from these, disutility values were calculated (disutility = 1 - utility). A cost was associated
to each intervention in a particular state. Linear programming was used to compute the average cost at a given
disutility threshold in the Markov decision model. Base-case analyses and simulation testing were performed. Cost
analysis was performed using outcomes and adverse event data from the literature for each of the interventions and
hospital costs from hospital administration.
Results: A cost-effectiveness curve was created by varying the maximum allowed disutility values and determining
the average cost (Fig. 2). In this way, a decision for each health state at a fixed disutility can be determined (see
Table 4 for one particular disutility value).
Conclusions: Our model provides a useful tool for doctors to determine the most cost-effective treatment option for
patients with different severities of BPH. This model can be applied to other disease states within medicine. Further
studies are needed to validate the model for real-life application.

A. Introduction

A cost-effectiveness analysis (CEA) helps identify neglected management strategies by highlighting in-

terventions that are relatively inexpensive, yet have the potential to reduce the disease burden substantially

compared with the standard of care (1). According with the 2016 guidelines for cost effectiveness analyses

(2), a CEA is an analytic tool in which the costs and outcomes of a program/intervention and at least one

alternative is calculated and presented in a ratio of incremental cost to incremental effect. This definition

implies the use of statistical and mathematical methods to compare multiple treatments in order to give

meaningful recommendations to healthcare stakeholders. Currently, there are no models for clinicians to use
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to differentiate the best cost-effective treatments by different initial patient health states. Most of the CEAs

available in the literature compare only two treatments and do not allow the physician to tailor the treatment

plan based on the severity of the patient’s disease state. Additionally, there is a shift towards value based

payment plans, with quality and the trade-off with cost becoming major factors in payment plans (3). This

study proposes a Markov model to determine the most cost-effective algorithms for treating urologic con-

ditions using benign prostatic hyperplasia (BPH) as an example, by comparing multiple treatment options

and differentiating between different patient health states.

B. Material and Methods

1 Markov model for urologic treatments

The natural history of benign prostatic hyperplasia (BPH) of a generic patient was reproduced via a Markov

chain model. The patient travels in the model, switching state every three months, until he ends up in an

“absorbing” state and exits the model. As in Markov models, each state is memoryless: the condition of the

patient depends only on the state, irrespective of the previous medical history. At the end of each three-month

interval, the patient can transition either to the same state or to other states for the next three months, and

so on. Each transition is a random event decided according with a pre-assessed “transition” probability. The

transition probabilities are based on the outcomes of the chosen medical intervention. Eventually the patient

leaves the system through one of the absorbing states. To simplify and show the potential of this model

we picked Benign Prostatic Hypertrophy (BPH) as an example, being characterized by multiple possible

treatments ranging from observation to medical therapy to surgery, with variable outcomes and costs.

2 States for Benign Prostatic Hyperplasia

Listed below are health states used in the model to trace the medical history of a patient with BPH.

– initial state H (for ‘health’). Each patient starts from this healthy state and transitions to one of the

other illness states. These transitions correspond to the first time a patient enters the medical system for

intended treatment and therefore originate outside of the model. Therefore, there is no specific interval of

time associated with these transitions;

– states L01, L02 , L03: refer to a patient who presents with Lower Urinary Tract Symptoms (LUTS) due

to BPH classified as mild, moderate and severe based on the International Prostate Symptoms Score (IPSS)

classification. The patient in this state either just entered the model and didn’t receive any treatment or he

already has received observation as a treatment;

– state A0: corresponds to Acute Urinary Retention without prior medical intervention. Similar to states

L01, L02 , L03, the patient in this state just entered the system with no prior medical treatment.

– states L11, L12 , L13: these refer to a patient that already received a treatment, either surgical or

pharmacological, with possible outcomes of this treatment being mild, moderate or severe LUTS. The patient
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can visit any one of these states multiple times, indicating that observation or medical treatments have to

be repeated;

– state A1: corresponds to Acute Urinary Retention after a medical intervention, with possible repeated

visits.

Absorbing States: states in which no further medical therapy is needed or a different kind of therapy is

needed, thus the patient is discharged and exits the system.

– state C (for ‘cancer’) corresponds to the diagnosis of prostate cancer after a surgical treatment for

BPH.

– state B (for ‘bad’) corresponds to a patient discharged with severe LUTS according with the IPSS score

after a treatment, for whom no medical treatment is considered to be effective.

– state G (for ‘good’) corresponds to a state where the patient is asymptomatic according with their

IPSS score.

3 Actions and Transitions

As previously mentioned, the transitions between states depend on the intervention selected. More specifi-

cally, for a patient in a given state, a set of possible actions is defined (including observation labeled as O) and

the transition probability within the three month time interval into another state depends on the selected

intervention. The possible interventions include four types of different laser surgeries for BPH treatment,

including potassium-titanyl-phosphate-(GL) laser photovaporization, Bipolar Trans Urethral Resection of

Prostate (TURP), Holmium laser enucleation (HL), and Thullium laser enucleation (TL), labeled as S1,

S2, S3 and S4 , and pharmacologic treatment (dual treatment with alpha blocker and inhibitor of Type II

5α-reductase), labeled as P . The Markov chain is shown in graphical form in Fig. 1 . Transition probability

values are detailed in Table 6. For this specific model, transition probabilities have been inferred by a combi-

nation of expert opinion and the available literature (see appendix 11,12 and 13 for full details). Literature

selection was based on the systematic review PRISMA criteria (4-23). The solid lines represent the transi-

tions with a ‘high’ (more than 20%) probability and the dotted lines with low or negligible values. The large

grey bar indicates the set of all possible transitions between the indicated states (including returning to the

same state). In Fig. 1(b) we show the transitions for observation as the intervention. Each chosen action has

an associated cost, which will be described further in our cost analysis.

The goal of our model is to define for each state which action must be chosen such that the average global

cost is minimized and stay within a specified average life quality parameter threshold.

We consider the following actions and transitions: State H is out of control of the medical system and

therefore only one action can be envisioned for this state, that we may denote as observation. From H there is

a transition to each of the states L01, L02, L03, A0. These transitions correspond to the first appearance of a

patient seeking medical care. As such they do not involve costs. The transition probabilities are proportional

to the number of patients that arrive with the corresponding illness degree. In the states L01, L02, L03, and

A0 the actions S1, S2, S3, S4 and P induce transitions to each of the states L11, L12, L13, A1, C, B and

G. The remaining action O induces transitions to each of the states L01, L02, L03, A0, C, and G. Indeed,
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Fig. 1.

even if there is no medical intervention there may be a transition to a state with no symptoms, i.e., state G.

The transition probabilities and the costs of all these transitions depend on the type of action. In the states

L11, L12, L13, and A1 the same actions of the corresponding states L01, L02, L03, A0 and C are possible.

However, these actions induce transitions back to the same states or to the states C, B or G. The states C, B

and G are absorbing. The patient goes out of the system and therefore only self- transitions are possible for

these two states. The presence of absorbing states makes all other states transient and therefore the average

number of visits to the other states is finite. Since the costs depend on the transition undergone by each

patient from the transient states we have to be able to count the number of transitions in order to assess the

average cost for each patient. Hence we have to convert the machinery of Markov decision processes, that

is usually tailored to irreducible chains and takes into account the stationary probability, to the presence of

absorbing states. This is detailed in Section 9. We just recall that if there are absorbing states the stationary

probability is null on the transient states, or, equivalently, is positive only on the absorbing states, and this

would prevent assessing the cost by using the stationary probability.

4 Cost Analysis

An itemized list of average variable costs for BPH treatment options was created, including KTP laser

photovaporization (GL), Transurethral resection of the prostate (TURP), Holmium laser enucleation (HL),

Thulium laser enucleation (TL) and Pharmacologic treatment (PH). Outcomes and adverse event rates,

including transfusion rates, average inpatient hospital stay, continuous bladder irrigation necessity, outpatient

follow-up, average operative times, laser times, etc., were extracted from meta-analyses, randomized clinical

trials and large retrospective studies (4-23), and were used to determine the variable costs. Costs were

determined from healthcare administration software and the literature (24-29), considering a 3-month time

span and the actual procedure/medication cost. The only included fixed cost for surgical procedures was
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Treatment Cost (US$) average post IPSS

Greenlight PVP 8,312 3.5

TURP 8,698 3.6

Holmium laser enucleation 10,298 2.6

Thulium laser enucleation 8,755 3.8

Pharmacological treatment 980 6.3

Observation 0 0

Table 1. Costs and average post IPSS for the considered medical actions

GL TURP HL TH

OR disposable material 202,45 202,45 202,45 202,45

FIBER/LOOP (and morc blade) 1,000.00 586.00 1,000.00 785.00

TRANSFUSION 2.52 18.48 5.04 7.14

POST OP CBI 0.23 38.94 38.94 38.94

INSTAYS 2,400.00 3,400.00 3,400.00 3,400.00

OR TIME 3,988.00 3,988.00 5,245.00 3,763.00

FOLLOW UP CLINIC VISIT 260.00 260.00 260.00 260.00

READMISSION AD 59.00 85.00 92.00 111.00

READMISSION INSTAYS 400.00 120.00 54.00 188.00

TOTAL 8,312.20 8,698.87 10,298.03 8,755.90

Table 2. Breakdown of costs (US$)

laser rental. Medication cost (Tamsulosin + Finasteride) was based on the average out of pocket price for

90 days (3 months). Table 1 shows the calculated average costs for each treatment and also the average post

treatment IPSS according with the literature (Section 11 for further details). The costs reported on Table 1

are listed as itemized costs in Table 2.

5 Quality of Life Assessment

Each state is assigned a specific utility value between 0 and 1, with 1 being the optimal quality of life for

a specific disease. In this case, the utility values for BPH states have been extracted from the available

literature (30-31) (Table 3). Disutilities, defined as the complement to one of the utility (1-utility), were used

in the model rather than utilities. We measured the quality of life of the patient by summing the disutilities

incurred by the patient during the three months periods that the patient spent in the system, setting a

maximum total disutility as a constraint for the model, so that patients go through the model for reasonable

periods of time.

We opted to use disutility values instead of utility values as the quality of life measure, because of the

following problem associated with utilities: since the wellness measured refers to each three months period,
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Pre-treatment Post-treatment

Mild LUTS 0.993 0.99

Moderate LUTS 0.903 0.89

Severe LUTS 0.79 0.70

AUR 0.25 0.25

Prostate cancer N/A 0.8

Table 3. Utility estimates used in the model

when all periods a patient is within the system are summed together, a paradoxical outcome results in that

that the longer a patient is within the system, the higher the utility, and hence the better is his quality of life.

Clearly, having a certain utility for one period is better than having it for a longer time period, especially if

the utility value is less than 1. As shown in Section 10 (refer in particular to equation (6)) the total disutility

is determined by the time in the system minus the total utility. Therefore, minimizing the total disutility

we actually minimize a composite function that balances the time in the system versus the total utility.

In particular, each additional time unit in the system (i.e., three months) has the same weight as a total

loss of one utility. Section 7 discusses considerations about the choice of a total disutility versus an average

disutility as a measure of the quality of life.

Considering an average value (either utility or disutility), we divide the total value by the time in system.

Therefore, by the previous observation, the average utility and the average disutility complement to one,

not surprisingly. By this observation minimizing the average disutility and maximizing the average utility

are equivalent. Finally, the first time a patient enters the system because of mild, moderate or severe LUTS

(or AUR) his disutility does not depend on his treatment in the past and, being out of the control of the

provider, should not be taken into consideration into the model. However, this initial disutility is the same

for each possible action the doctors can decide and therefore does not change the outcome of the model. It

is just a bias that does not affect the best decision.

6 Objectives

A generic patient, from the time he enters the system (from state H) up to the time he exits the system (into

one of the absorbing states), incurs a total cost, that is determined by the sum of the costs of each state visit

determined by the treatment brought him to that specific state. A policy is defined as the specific medical

treatment required in each state. Different policies have different costs. Moreover, different policies also

involve different disutilities. Our aim in this model is to find an optimal policy, i.e., a policy that minimizes

the total cost of a generic patient whilst keeping the total disutility below a certain threshold. In order to

assess the trade-off between costs and quality of life, in this study we used the model to identify the policy

which minimizes the total cost for varying values of disutility. This provides a Pareto frontier of efficient

policies and will give the provider, the payer and/or the patient a meaningful tool to choose a particular

policy among the efficient ones. In our model, it is also possible to fix a threshold on the percentage of
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Fig. 2. Trade-off curve cost vs disutility (disutility range 0.1626–0.4)

patients exiting the system in the state G (cured). Increasing the percentage of cured patients is correlated

with decreasing the disutility, and may be used as another tool within our model in future investigations.

An optimal policy is determined by a standard Linear Programming Markov Decision Model, explained in

detail in Sections 10 and 9. Assessment of the transition probabilities for the model is described in detail in

Sections 11 and 12.

C. Results

7 The trade-off curve

We have run the Linear Programming model (8) described in Section 10 for various values of the disutility

threshold Kt. We have totally relaxed the constraint on the fraction of patients ending in state G. To this

purpose, referring to model (8), it is enough to fix KG = 0. It turns out that with the data of Table 6 the

minimum possible value of disutility is 0.18548 (=0.186 rounded to three decimal places). Hence we have

solved (8) for all values Kt from 0.186 to 0.4 with a step of 0.001 (so we have solved 214 problems). The

minimum cost in (8) as a function of Kt is shown in Fig. 2.

This trade-off curve exhibits a sharp bend around the disutility value 0.21 and a cost of 1,460 $. A

further cost reduction can be done only at the expense of a large disutility increase, or worsening quality of

life. Since the cost reduction is quite small, it is futile to base the policy decision above a disutility value

of 0.21. Conversely, reducing the disutility from the 0.21 value leads to a sharp rise in cost. The critical

decision-making range therefore in the disutility range 0.186-0.21. Fig. 3 shows the same trade-off curve in

the restricted range 0.186-0.21, and indicates the intervals in which the curve has a constant slope. Although

it is not clearly visible from the picture, the trade-off curve is a piecewise linear function. The figure explicitly

shows the intervals where the function is linear. The disutility values where the slope has an abrupt change
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Fig. 3. Trade-off curve cost vs disutility (disutility range 0.1626–0.21)

are called breakpoints, indicated by the dotted lines in Fig. 3. Table 4 reports the optimal medical treatments

at the breakpoints, together with the corresponding disutility values and the costs (Rows 1,2 and 10-17).

Rows 3-6 show the total utility, the average utility and the time in the system, measured both as number

of visits and number of actual months. We have already observed that the average disutility is just the

complement to one of the average utility and therefore it has not been displayed. This table demonstrates

the anomalous behavior of the total utility which increases/improves with diminishing costs. This supports

our discussion on the choice of disutility versus utility. Rows 7 through 9 show the percentage of patients

ending up in state G, B and C, respectively, for each optimal policy. Finally, rows 10 through 17 show the

recommended action for the optimal solution to the model.

The optimal medical treatment in a particular state for a disutility value between two adjacent breakpoints

is the same as the one in the two breakpoints, if the same treatment is indicated in the two breakpoints.

However, if the two treatments are different, the resulting optimal treatment is a combination of the two

treatments. More specifically, it turns out that the optimal treatment is a random choice between the two

treatments. The probability value for the random choice is given by linear interpolation.

For example, suppose that we choose a disutility value at 0.17. The two adjacent breakpoints are 0.1666

and 0.1794. The only treatment change concerns state L01 for which there is a change from Holmium Laser

surgery to Pharmacological therapy. Hence, when the patient is in state L01 we will choose Pharmacological

therapy with probability (0.17− 0.1666)/(0.1794− 0.1666) = 0.266.

It is unusual to have a policy which makes a random choice between two alternatives. In order to illustrate

the reasoning behind this, we show in Fig. 4 the same trade-off curve of Fig. 3 with superimposed all points

which can be obtained by the so called ‘pure’ policies, i.e., policies where exactly one alternative is chosen in

each state. Actually, we show in the figure only the non-dominated points. Clearly, some pure strategies lie

on the trade-off curve, corresponding to the breakpoints. All other pure strategies lie “above” the trade-off

curve. In order to reach a value on the trade-off curve there is no option other than to combine together two

different pure policies, as random events. Clinically, the model does not obligate adhering to a random choice.

If the recommended combination is 30% of one policy and 70% of another, the clinician may decide which
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tot disutility 0.1626 0.1656 0.1666 0.1794 0.1973 0.2026 0.2063 0.2100

cost US$ 10,587 9,582 9,290 6,455 2,984 2,059 1,499 1,136

tot utility 1.493 1.523 1.529 1.579 1.645 1.651 1.649 2.642

av utility 0.902 0.902 0.902 0.898 0.893 0.891 0.889 0.926

time (# of visits) 1.655 1.689 1.695 1.759 1.842 1.854 1.855 2.852

time (months) 4.965 5.067 5.085 5.277 5.526 5.562 5.565 8.556

% G 92.1 91.8 91.7 91.0 90.0 89.9 90.1 90.8

% B 6.6 6.9 6.9 7.6 8.4 8.5 8.6 6.8

% C 1.3 1.3 1.4 1.4 1.6 1.6 1.3 2.4

L01 HL HL HL Ph Ph Ph Ph Obs

L02 HL GL GL GL Ph Ph Ph Ph

L03 HL HL GL GL GL Ph Ph Ph

A0 Ph Ph Ph Ph Ph Ph Ph Ph

L11 Obs Obs Obs Obs Obs Obs Obs Obs

L12 Obs Obs Obs Obs Obs Obs Obs Obs

L13 GL GL GL GL GL GL Obs Obs

A1 GL GL GL GL GL GL GL GL

Table 4. Optimal medical treatments in the interesting disutility range

patients will be treated by a particular policy. This decision may be determined by physician preference,

medical history, side effects, and other criteria not embedded in the model.

The cost of combining two pure policies is a linear interpolation of the individual costs of the pure

strategies. Referring to the previous example, fixing a disutility value 0.17 corresponds to combining the

strategies at breakpoints 0.1666 and 0.1794. Since these have costs $ 9,290 and $ 6,455 (Table 4), the cost for

disutility 0.17 is 0.266 ·6, 455+(1−0.266) ·9, 290 = 8, 537. The picture that results from 3 and Table 4 can be

better understood if we compute the optimal cost for various disutility values by allowing only one surgery

at a time to be selected by the model. Repeating this computation four times, four superimposed trade-off

curves are created, graphically represented in Fig. 5. The lowest curve (blue line) is obtained by using only

KTP surgery. It surpasses all the curves above the disutility value of 0.170. However, according with the

data, KTP alone cannot decrease the disutility value below 0.170. In order to achieve a lower disutility,

Holmium Laser is required, and is the only surgery to achieve the absolute minimum disutility at 0.16286.

Furthermore, Table 4 shows that to achieve the best disutility value, Holmium Laser enucleation is

recommended for new patients, i.e., for patients that have not undergone any surgery yet. However, it turns

out that for patients who have already undergone surgery, the same disutility can be reached by using KTP,

a less expensive procedure. As we increase the disutility threshold, KTP continuously replaces Holmium

Laser up to the breakpoint value 0.1794. From that value and onwards Holmium Laser guarantees the same

quality of life as KTP, but at a larger expense, and therefore is not recommended.

One surprising result of the model is the non-monotonic behavior of the percentage of patients ending

in state G. We expect that, as we relax the constraint on the disutility value, less effective therapies will
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Fig. 5. Optimal trade-off curves for one surgery at a time:

become options in the model, and consequently, fewer patients will exit the system healthy. Fig. 6(b) plots

the fraction of patients ending up in state G as a function of the disutility threshold. The sharp bend at the

value 0.21 in Fig. 2 corresponds to the slope change of the graph in Fig. 6(b). The decreasing monotonic

behavior is steadily resumed after value 0.23. The total disutility incurred by a patient also depends on the

time in system. The longer the time in the system, the larger the disutility, and therefore the worse the

quality of life of the patient. The relationship of the disutilities in single states and the time in system is

complex. Fig. 6(a) plots the time in system as a function of the disutility. After value 0.21 there is a sharp

increase of the time in system as observation of a patient becomes an option.

The cost computed by the model is based on the average cost incurred by the hospital during the three

months period. Initially it seems, since this represents the cost of a patient during his time in the system,

the cost should be divided by the time in the system in order to get the cost within the period. This would

be correct if there were only one patient in the system. However, this is not the case. Hence the following

needs to be considered: at each three month period a certain number of patients enters the system. Each
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one of them incurs a cost (the same for all since we consider average costs) and this cost is divided over the

time in the system of this patient. But in each three-month period, the system sees the patients that just

arrived, plus the patients that entered in the previous period and that are still in the system plus patients of

prior periods. Adding these costs, we get exactly the cost of one patient during his time in the system. So,

for instance, choosing an average disutility of 0.17, which corresponds to a cost of $ 8,537, and 100 patients

on average enter the system in each three-month period, this means that the total cost for each three-month

period is $ 8, 537 · 100 = $ 853, 700.

This model can also be utilized to determine the costs by state (see formula (1) in Section 9). Table 5

displays how the total cost of $8,537, as in our example, can be traced back either to the three absorbing

states of the patients or, alternatively, to the single medical treatments performed in the entire system. For

instance, almost 10% ($ 140 in C + $ 632 in B = $ 772) of the costs are in some sense “wasted” because they

do not lead to health improvement. On the other hand, KTP laser absorbs almost all costs in the model. A

possible repetition of KTP PVP (in states L13 and A1, refer to Table 4) has a small incidence on the total

cost ($ 163 + $ 446 = $ 509 out of $ 8,537).

8 Model reliability

It is important to recognize that all reported values in the various tables are averages. This means that

in an actual realization of the Markov chain, the data may differ from the ones in the tables. Testing the

limitations of the model is essential to determine the allowed range in differences of the data and how reliable

the model is in the real world.

If there were just one patient we can compute the probability of each possible history in the system of the

patient. For instance, taking again the disutility value 0.17, we may compute that the sequence of transitions

H → L02 → L11 → G occurs with probability 0.238, the sequence H → L02 → G with probability 0.173, the

sequence H → L01 → G with probability 0.133, the sequence H → L01 → L11 → G with probability 0.123,

the sequence H → L03 → L12 → G with probability 0.056, and so on with diminishing probability values.
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states C B G totals

L01 34 155 2,306 2,495

L02 55 295 3,889 4,239

L03 15 106 1,043 1,164

A0 1 3 26 30

L11 0 0 0 0

L12 0 0 0 0

L13 9 18 136 163

A1 26 55 365 446

Totals 140 632 7,765 8,537

Table 5. Breakdown of costs

The first and second sequences share the same cost because in state L11 only observation is recommended

which we assume has no costs. Since in state L02 KTP PVP is recommended for this disutility value, $ 8,312

is spent each time L02 occurs in a sequence of transitions. Hence the probability of passing through the state

L02 is the sum of all sequence probabilities which include state L02, resulting in a probability value of 0.5099.

Multiplying this by $ 8,312 accounts for the value $ 4,239 that appears in Table 5 for state L02.

In general, all these sequences may have quite different costs if they involve different treatments and the

outcome of an actual realization can yield largely different results. However, by the law of large numbers if

there are enough patients their different outcomes balance each other and decrease the dispersion around the

mean. With a large number of patients, the actual global cost approximates a Gaussian distribution. This

was determined by simulating a cohort of 100 patients, 10,000 times, at many values of the trade-off curve.

Displayed in Figure 7 are the results for the disutility value of 0.17. The cost histogram of the 10,000 runs is

shown in 7(a), whereas in Fig. 7(b) and (c) we see the histograms for the disutility and the time in system

respectively. The standard deviations are $ 352.058 for cost, 0.0255458 for the disutility and 0.0569729 for

the time in system and the correlation matrix for the three random variables cost, disutility and time is: 1. 0.533 0.250
0.533 1. 0.359
0.250 0.359 1.


There is a surprising positive correlation between cost and disutility. As shown by the trade-off curve, if

the desired quality of life is lowered by increasing the disutility threshold, the cost is lower. Here the situation

is somewhat different. We have already decided the health level we want to offer to the patients and our

treatment is consistent with this decision. What happens is that sometimes a patient improves rapidly is

health and there is no need of further treatments. As a consequence, both the cost and the disutility are

less than the average. On the opposite side, it may happen that a patient does not improve his health as

expected. We have to keep him longer in the system with more treatments. In this case costs and disutility

increase both. Finally, almost all cost values of the simulation fall in the interval $ 8000-$ 9000 with an

average of $ 8,532, consistent with the theoretical value $ 8,537.
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Fig. 7.

D. Mathematical issues

In the next sections we describe in detail the mathematical analysis on which our model is based. In

particular we introduce in Section 10 the Linear Programming model that has to be solved to get the results

outlined in the previous sections. In Section 9 we explain how we can count the average number of visits of

the various states and hence get an estimate of the costs. This analysis gives the necessary mathematical

background for the model (8). In Section 11 we describe the mathematical problem we have to solve in order

to infer the transition probabilities, and in Section 12 we show how to solve this mathematical programming

problem. Finally in Section 13 we explicitly provide all data we have used in the Markov Decision model.

9 Counting the visits of the transient states of a Markov chain

Let the states S of a Markov chain be partitioned into a transient set S0 and a set S1 of absorbing states. In

more detail, each state in S1 has a transition only to itself and is meant as a different ‘exit’ from the system.

Let P be the transition matrix, whose generic entry is denoted as pij . Let us partition P as

P =

(
Q R
0 I1

)
where Q is over S0 × S0, R over S0 × S1 and I1 is the identity matrix over S1.

Let V be a matrix over S0 × S0 where the element vij denotes the average number of visits of state j

starting from state i. The element vii includes also the initial visit of state i. The following recursion holds

vii =
∑
k∈S0

pik vik + 1 i ∈ S0

vij =
∑
k∈S0

pik vkj i ∈ S0, j ∈ S0 \ i

that can be written in matrix form as

V = QV + I0 =⇒ V = (I0 −Q)−1
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where I0 is the identity matrix over S0. Consider a particular source state s ∈ S0 and assume that there is

a chain of transitions from state s to every other state. Let the state s be associated to the first row and

column of P . We are interested in the average number vsi of visits from state s to a state i ∈ S0.

If there is a cost ci associated to each visit of state i ∈ S0, the average cost c̄ incurred by the Markov

chain is

c̄ =
∑
i∈S0

vsi ci

We may also compute the average number of visits of the transient states conditioned to end into a

specific absorbing state j ∈ S1. To this purpose we have to compute the limit probability limk→∞ P k = P ∗

that is given by

P ∗ =

(
0 F
0 I1

)
The first row of F represents the probability of ending in one of the absorbing states starting from s. Since,

by definition of limiting probability,

P P ∗ = P ∗ =⇒
(
Q R
0 I1

) (
0 F
0 I1

)
=

(
0 F
0 I1

)
we have

QF +R = F ⇐⇒ F = (I0 −Q)−1R = V R

Since j ∈ S1 is absorbing, the entry P ksj is the probability that the chain is in the absorbing state j within

the first k transitions. Hence the probability that the transition to the state j ∈ S1 from some other state

happens at the k-th transition is P ksj − P
k−1
sj . In order to compute this difference we have to compute the

first row of

P k =

(
Qk

∑k−1
h=0Q

hR
0 I1

)
and in particular we are interested in the difference

k−1∑
h=0

QhR−
k−2∑
h=0

QhR = Qk−1R

The average number of visits before ending in a specific absorbing state starting from s is given by the first

row of

W =
∑
k≥1

k Qk−1R

So we have

W = R+
∑
k≥2

k Qk−1R = R+Q
∑
k≥1

(k + 1)Qk−1R =

R+Q
∑
k≥1

k Qk−1R+Q
∑
k≥1

Qk−1R = R+QW +QF = R+QW + F −R = QW + F



15

so that

W = (I0 −Q)−1F = V F

Note that (where 1 is a column vector of ones)

W 1 = V F 1 = V 1

As expected the total number of visits to the transient states, partitioned according to the transient states, is

equal to the total number of visits, partitioned according to the absorbing states (first rows of both matrices).

We can actually tell more. The entries in the matrix

Hij = vsi Fij , i ∈ S0, j ∈ S1

represent the average number of visits of state i starting from s conditioned to end in state j. If we sum

along the columns this matrix we obtain the first row of W and if we sum along the rows we obtain the first

row of V . We can break down the total average cost c̄ according to the absorbing states and to the transient

states, as

c̄ij = Hij ci (1)

This quantity is the total cost of visiting the transient state i (counting possible multiple visits) conditioned

to end into the absorbing state j. Then
∑
i∈S0

Hij ci is the total average cost conditioned to end into the

absorbing state j and
∑
j∈S1

Hij ci = vsi ci is the total average cost in state i ∈ S0. Table 5 reports the

values c̄ij for a specific set of transition probabilities and costs.

Now we add actions in each state in S0. Each action determines the transition probabilities and, in

general, determines also the cost of the action in a given state. The addition of possible actions leads to

Markov Decision models where the goal is to find a set of actions that minimizes the total cost. This is called

an optimal policy. Formally for each state i ∈ S0, let Ai be the set of actions that can be taken in state i.

Let cia be the cost associated to the action a taken in state i and pija be the probability associated to the

transition from state i to j when the action a is taken.

In order to apply the machinery of Markov Decision models, we want to convert the non irreducible

Markov chain (there are absorbing states) into an irreducible one by replacing the self-transitions of the

absorbing states to transitions (with probability 1) to the source state. Since we have assumed that, no

matter the policy taken, there are transitions from s to every other state, the new chain is irreducible and

admits a positive stationary probability. Therefore let P ′ be a new matrix obtained from P by replacing I1

with a zero matrix and putting the value 1 on the entries of the first column corresponding to states in S1.

This operation can be written in matrix form as

P ′ =

(
I0 0
0 0

) (
Q R
0 I1

)
+

(
0
1

)
( es 0 )

where es is a row vector with all zeros except a 1 for state s. The positive stationary probability of P ′ (we

recall that the new chain is irreducible) is

π P ′ = π (2)
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If we partition π as (π0, π1) we may rewrite (2) as

(π0 π1 )

(
I0 0
0 0

) (
Q R
0 I1

)
+ (π0 π1 )

(
0
1

)
( es 0 ) = (π0 π1 )

from which

π0Q+ π11 es = π0, π0R = π1

so that

π0 = (π11) es (I0 −Q)−1 = (π11) es V, π1 = (π11) es V R = (π11) es F (3)

Hence the number of visits es V (first row of V ) is given by π0 divided by (π11). If, in particular, there are

no transitions to state s (in the original chain) then the first column of P is null and we have

πs = π11

Hence the average number of visits of the transient states is simply given in this case by π0/πs. The vector

π1/(π11) tells the fraction of times the chain ends in one of the absorbing states. From now on we consider

only the case of no transitions to s. Note that the first row of F is π1/πs as apparent from (3).

10 A Linear Programming Markov Decision model

We are now in the position of building a Linear Programming model that computes the optimal policy.

A standard Linear Programming model that minimizes the average cost for an infinite time horizon is the

following

min
∑
i∈S

∑
a∈Ai

cia xia∑
i∈S

∑
a∈Ai

xia = 1

∑
i∈S

∑
a∈Ai

pija xia =
∑
a∈Aj

xja j ∈ S

xia ≥ 0 a ∈ Ai, i ∈ S.

(4)

where xia is the probability of being in state i and taking the action a. The first constraint imposes unity

sum over all probability values and the second set of constraint is a balance constraint: the probability of

being in state j must be equal to the probability of arriving in state j from all other states under all actions

taken in the other states.

However, in our model we compute the cost by summing a finite set of costs and not by averaging an

infinite set of costs. As we have shown in Section 9 only a simple modification of (4) is needed. It is just

matter of normalizing the x values by putting
∑
a∈As

xsa = 1 instead of
∑
i∈S
∑
a∈Ai

xia = 1. Actually,
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since only one action is available in the source state H0 we have:

min
∑
i∈S

∑
a∈Ai

cia xia∑
i∈S

∑
a∈Ai

pija xia =
∑
a∈Aj

xja j ∈ S

xs = 1

xia ≥ 0 a ∈ Ai, i ∈ S.

(5)

In (5) the values xia are not probabilities. They correspond to the average number of visits of state i

and taking action a for a transient state i. They do represent probabilities for the absorbing states. In

particular they represent the fraction of patients ending in one of the absorbing states. Consequently the

sum
∑
i∈S
∑
a∈Ai

xia is the average number of transitions before exiting the system, which, multiplied by

the three month time step, gives the average time in the system for a generic patient.

Furthermore, if we associate to each state i a disutility 0 ≤ di ≤ 1 we can measure the average total

disutility incurred by a generic patient by the expression

∑
i

di
∑
a∈Ai

xia

We comment again on the choice of a disutility expression versus an utility expression, which is perhaps

more common. If we try to maximize a total utility we have to sum each utility for each three month step.

The longer the medical treatments are the higher the utility is, so that we would have the paradoxical result

that a patient is better off if he stays in the system for a long time. Indeed if we consider the utility ui of

patient i just the complement to one of the disutility, i.e., ui = 1− di we see that

∑
i

di
∑
a∈Ai

xia =
∑
i

(1− ui)
∑
a∈Ai

xia =
∑
i

∑
a∈Ai

xia −
∑
i

ui
∑
a∈Ai

xia (6)

i.e., the total disutility is given by the difference of the time in the system minus the total utility. Hence the

total disutility takes also care of the time spent in the system. We may decide that the global disutility has

to be not larger than a chosen parameter Kt and therefore we impose the constraint

∑
i

di
∑
a∈Ai

xia ≤ Kt (7)

Since the values xia for the absorbing states are the probability of ending in the state i, we may also have

control on the fraction of people that end into the state G and we may establish a minimum threshold KG

for this state. Therefore we may extend the model (5) by adding this inequality and the inequality (7):
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min
∑
i

∑
a∈Ai

cia xia∑
i

∑
a∈Ai

pija xia =
∑
a∈Aj

xja j ∈ S

∑
i

∑
a∈Ai

di xia ≤ Kt

xG ≥ KG

xs = 1

xia ≥ 0

(8)

Introducing these two inequalities has a disrupting effect on the mathematical structure of the Linear

Programming model. While in (5) we are guaranteed that for each state i only one variable xia is positive

and this indicates without ambiguity which action has to be taken in state i, this property is lost in (8). The

fact that there may be two or more variables xia associated to the possible actions in state i means that we

have to make a random choice choose among a set of actions. The probabilities for this random choice are

clearly
xia∑
b∈Ai

xib
a ∈ Ai i ∈ S

11 Assessing the transition probabilities from aggregate IPSS score

In order to assess the transition probabilities it would be helpful to have available historical data reporting

the percentage of patients that, after a definite medical treatment, end up with a specific healthy status.

Unfortunately these data are not available and very likely they do not exist. It has to be said that usually

data are tailored to specific needs. Since Markov models are quite new, no data explicitly fit to Markov

models have been gathered yet.

The largely available medical data are the so called IPSS, which report the medical status of a patient

from the answers given to a specific questionnaire. Mean post treatment IPSS score decrease value have been

recorded from a systematic review of the literature. These values have been adjusted to be proportional to

the pretreatment IPSS score of our population based on epidemiological studies and mean post treatment

IPSS scores have been calculated accordingly. Finally, these values have been used to adjust expert opinion

probabilities (previously equal for every treatment) via a Lagrangian approach (Section 12).

From a mathematical point of view we are faced with the following situation: we know the numbers

a1, . . . , am where ai is the percentage of people belonging to state i prior to some medical treatment. There

are n posterior states to which each person will end up after treatment at the end of the three month period.

The yet unknown transition probabilities pij turn the percentages a1, . . . , am into percentages b1, . . . , bn as

bj =
∑
i pij ai, (clearly

∑
i ai =

∑
j bj). The percentages bj are unknown. What is known is the IPSS score

of the patients after treatment, but not for all n posterior states. Data have been gathered only for a subset

J ⊂ [1..n]. For each posterior state j ∈ J a score wj , derived from the IPSS score, is defined and the overall
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score is

K1 =
∑
j∈J

wj bj (9)

The number K1 is the available data and we want to estimate transition probabilities pij , i ∈ [1..m], j ∈ J ,

such that they are consistent with the value K1.

There are infinitely many transition probability matrices that satisfy this consistency requirement. Hence

we must refine our choice. The way we have chosen is to first define some prior transition probabilities p̄ij

based on expert opinion and then to find the least square deviation from these prior probabilities that is also

consistent with the value K1. In the Appendix B we report the mathematical analysis and the algorithm we

have to run in order to find the transition probabilities. Note that we cannot infer the transition probabilities

for posterior states not in J , and therefore we directly fix these values as pij = p̄ij , for j /∈ J .

12 A Lagrangian approach to estimate the transition probabilities

According to the notation already introduced in Section 11 we have to solve the following mathematical

programming problem:

min

m∑
i=1

∑
j∈J

(pij − p̄ij)2

∑
j∈J

pij =
∑
j∈J

p̄ij i = 1, . . . ,m

m∑
i=1

∑
j∈J

ai pij wj = K1

pij ≥ 0 i = 1, . . . ,m, j ∈ J

(10)

where the objective function is the sum of the squares of the deviations from the prior values p̄ij , the

constraints
∑
j∈J pij =

∑
j∈J p̄ij and pij ≥ 0 simply impose that the values pij have to be transition

probabilities (note that the constraint pij ≤ 1 is already implied by the other constraints and can be

omitted) and the constraint
∑
ij ai pij wj = K1 is the consistency requirement with respect to the global

IPSS score K1.

This is a quadratic programming problem with linear constraints that can be solved via a Lagrangian

approach. The Lagrangian function is

L(µ, λ) := min
p≥0

1

2

m∑
i=1

∑
j∈J

(pij − p̄ij)2 +

m∑
i=1

µi
∑
j∈J

(p̄ij − pij) + λ (K1 −
m∑
i=1

∑
j∈J

ai pij wj)

The Karush-Kuhn-Tucker conditions for optimality say that pij is an optimal solution of (10) if and only if

∂L(µ, λ)

∂pij
≥ 0 if pij = 0,

∂L(µ, λ)

∂pij
= 0 if 0 < pij ≤ 1
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Let Zi := {j ∈ J : pij = 0}, i.e., the set of states for which a transition from the state i has zero probability

at optimality. Let Z̄i be its complement in J . Clearly, we do not know in advance the set Zi. The way we

approach the optimality conditions is by first guessing an empty set Zi and then resetting this set if the

formulas will give a negative answer.

From the condition
∂L(µ, λ)

∂pij
= 0 if j ∈ Z̄i

we get

pij = p̄ij + µi + λ ai wj j ∈ Z̄i (11)

By imposing the constraint
∑
j∈J pij =

∑
j∈J p̄ij we have∑

j∈Z̄i

(p̄ij + µi + λ ai wj) =
∑
j∈J

p̄ij

i.e.,

|Z̄i|µi =
∑
j∈Zi

p̄ij − λ ai
∑
j∈Z̄i

wj

from which we get the values for µi

µi =

∑
j∈Zi

p̄ij − λ ai
∑
j∈Z̄i

wj

|Z̄i|

For notational purposes it is convenient to define

πi =

∑
j∈Zi

p̄ij

|Z̄i|
, w̄i =

∑
j∈Z̄i

wj

|Z̄i|

so that

µi = πi − λ ai w̄i

and (11) can be written as

pij = p̄ij + πi + λ ai (wj − w̄i) j ∈ Z̄i, pij = 0 j ∈ Zi

Now we have to impose the constraint
∑m
i=1

∑
j∈J ai pij wj = K1 which leads to

m∑
i=1

∑
j∈Z̄i

ai (p̄ij + πi)wj + λ a2
i (w2

j − w̄i wj) = K1

from which we can get the value for λ. For notational purposes it is convenient to define

K0 :=

m∑
i=1

∑
j∈Z̄i

ai (p̄ij + πi)wj



21

so that we have

λ =
K1 −K0∑m

i=1 a
2
i (
∑
j∈Z̄i

w2
j − |Z̄i| w̄2

i )

Summing up, the computations we have to carry out are:

πi =

∑
j∈Zi

p̄ij

|Z̄i|
, w̄i =

∑
j∈Z̄i

wj

|Z̄i|

K0 :=
∑
i

∑
j∈Z̄i

ai (p̄ij + πi)wj , λ =
K1 −K0∑

i a
2
i (
∑
j∈Z̄i

w2
j − |Z̄i| w̄2

i )

pij = p̄ij + πi + λ ai (wj − w̄i) j ∈ Z̄i, pij = 0 j ∈ Zi

Clearly the pij thus computed must be all nonnegative. Furthermore, we must also have ∂L(µ,λ)
∂pij

≥ 0 for all

j ∈ Zi, i.e.,

pij ≥ p̄ij + µi + λ ai wj =⇒ p̄ij + µi + λ ai wj ≤ 0 (12)

If this last condition is verified and the pij are all nonnegative, the computation is over and we have found

the optimal solution. Otherwise if pij < 0 from some pair (i, j) with j ∈ Z̄i, then we revise the set Zi by

adding this index j, and if (12) is violated we revise the set Zi by dropping this index j. This is only a

heuristic procedure, since we are not guaranteed that the procedure may be looping by repeatedly adding

and dropping the same indices, but it does work well in our case and we get the solution in a few steps.

13 Data of the model

We have first assessed the tables of prior transition probabilities. The transitions from state H to states

L01, L02, L03 and A0 have probabilities that correspond to the percentages of people that first arrive to the

hospital with the corresponding disease. We have estimated these values as

pHL01
= 0.32, pHL02

= 0.51, pHL03
= 0.14, pHA0

= 0.03

In case a patient is in one of the states L01, L02, L03 or A0 and a medical action is undertaken, by

definition there are no transitions to the states L01, L02, L03 and A0. The probabilities of the transitions

from the states L01, L02, L03, A0 (rows) to the states L11, L12, L13, A1, C and G (columns) have been

estimated by an expert as:

P̄01 =


0.40 0.20 0.05 0.05 0.01 0.29
0.49 0.20 0.05 0.05 0.01 0.20
0.24 0.50 0.10 0.05 0.01 0.10
0.14 0.40 0.30 0.05 0.01 0.10


We note that these values are the same for each possible medical treatment. We have considered that it

is difficult even for an expert to discriminate in detail between different medical actions. The transition

probabilities will be later diversified by revised them according to the IPSS score.
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In case of no medical action the transition probabilities from the states L01, L02, L03, A0 (rows) to the

states L01, L02, L03, A0, C and G (columns) have been estimated as (no other transition is possible):

P̄00 =


0.80 0.01 0.01 0.01 0.01 0.16
0.01 0.80 0.15 0.01 0.01 0.02
0.01 0.01 0.80 0.15 0.01 0.02
0.01 0.01 0.01 0.15 0.01 0.02


In case a patient is in one of the states L11, L12, L13 or A1, no transition back to L01, L02, L03 or A0 is

possible. In case a surgical action is undertaken the probability transitions from L11, L12, L13 or A1 (rows)

to the states L11, L12, L13, A1, C, B or G have been estimated as:

P̄11 =


0.10 0.05 0 0 0.05 0.10 0.70
0.10 0.05 0 0 0.05 0.10 0.70

0 0.10 0.05 0.05 0.05 0.10 0.65
0 0.05 0.10 0.05 0.05 0.10 0.65


and in case of a pharmacological action the transition probabilities have been estimated as:

P̄12 =


0.20 0.05 0 0 0 0.10 0.65
0.05 0.20 0 0 0 0.10 0.65

0 0.30 0.30 0.05 0 0.10 0.25
0 0 0.10 0.50 0 0.10 0.30


Finally if no medical action is undertaken the transition probabilities from the states L11, L12, L13 or A1

(rows) to the states L11, L12, L13, A1, C, G or B have been estimated as:

P̄10 =


0.05 0 0 0 0 0.10 0.85
0.05 0.05 0 0 0 0.10 0.80

0 0 0.10 0.10 0 0.10 0.70
0.01 0.01 0.16 0.62 0 0.10 0.10


Now we have to refine these values by matching them against the IPSS scores. IPSS scores are applied only

to LUTS patients. An IPSS score is a number between 0 and 35. The ranges 0-7, 8-19, 20-35 identify mild,

moderate and severe LUTS respectively. Some patients may be discharged because they are found healthy.

In this case we may assume that these patients have zero score. It is important to note that we do not have

available data for single patients. What we know is an aggregate value for a group of patients that have

undergone a particular medical treatment. Necessarily, we have to reason on average values and this implies

replacing each range by its average value. Hence we have fixed the following IPSS scores for all patients as:

w(L11) = 3.5, w(L12) = 13.5, w(L13) = 27.5, w(G) = 0

We note that scores take into account patients after a medical intervention. Hence they refer to states L11,

L12, L13 or G either after a transition from the states L01, L02, L03 (the only states for which a patient is

measured via an IPSS core) or after a transition from the states L11, L12, L013. In the former case the patient

is interviewed after the first medical treatment. In the latter case after a subsequent medical intervention.
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Again the information we have is an aggregate one and we do not know whether the score refers to the

first or to a subsequent intervention. Consequently we take the same IPSS score no matter whether patients

have undergone a medical treatment or not. Mean post treatment IPSS score decrease value have been

recorded from a systematic review of the literature. These values have been adjusted to be proportional to

the pretreatment IPSS score of our population based on epidemiological studies and mean post treatment

IPSS scores have been calculated accordingly obtaining the values reported in the second column of Table

1. They correspond to the numbers K1 in (9). These numbers depend only on the medical actions.

By applying the method described in Appendix B we get the table of transition probabilities displayed in

Table 6. In the table we list on rows the starting states and on column the arriving states. For each starting

state we have a row for the corresponding medical action.

The remaining data are the costs for each possible medical action and the disutilities for each possible

state. They have been reported in the first column of Table 1. Costs are invariant for each of the states L01,

L02, L03, A0, L11, L12, L13, A1. For the starting state H and the absorbing states C, B and G the cost is

zero, because no medical action is expected in these states.

Disutilities values have been borrowed from previous studies as

dL01 = dL11 = 0.01, dL02 = dL12 = 0.11, dL03 = dL13 = 0.3, dA0 = dA1 = 0.75, dC = 0.2

E. Discussion

The problem that this paper is addressing is a need for a more comprehensive cost effectiveness model for

health care decision making that can be used by any of the major stakeholders (patient, provider or payer).

In our opinion, this need has been met changing the mathematical approach to the problem. Our model is in

this regard very innovative in his concept in respect of the classic cost-effectiveness studies which typically

compare only two treatments not giving any specific case by case treatment indication. This model instead

predicts the average cost necessary to obtain a given effectiveness including every available treatment in the

decision-making process. Specifically, our goal to find an optimal policy to minimize the cost whilst keeping

the total disutility below a given threshold choosing among multiple treatments has been accomplished.

The general trade-off curve (Fig. 2) represents an invaluable, user friendly tool that can be utilized

for different purposes. A hospital or a provider will find it useful for clinically guided budget planning.

In example in a bundle payment system, given an acceptable clinical effectiveness threshold (through the

disutility value) the curve will predict the average per patient cost. On the other hand, a payer, in a fee

for value environment, given a certain cost can expect a specific clinical outcome. Finally, a patient given

a certain clinical outcome can predict a fair charge. Despite a large amount of literature showing little or

any association between overall spending and improved outcomes (32-35) our model is projecting a clear

association between increasing expenditure (more surgery) and better outcomes (lower disutility).

The optimal policy for each clinical state (Table 4) is the most important output of the model because

it gives specific indications to the user (whether a provider, a payer or a patient) on what treatment to

pick according with the chosen disutility and the patient pretreatment state. Essentially, it is a roadmap to
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H L01 L02 L03 A0 L11 L12 L13 A1 C B G
H 0 0.32 0.51 0.14 0.03 0 0 0 0 0 0 0

S1 0 0 0 0 0 0.45 0.11 0.00 0.05 0.01 0.00 0.38
S2 0 0 0 0 0 0.44 0.12 0.00 0.05 0.01 0.00 0.38

L01 S3 0 0 0 0 0 0.47 0.01 0.00 0.05 0.01 0.00 0.46
S4 0 0 0 0 0 0.44 0.13 0.00 0.05 0.01 0.00 0.37
P 0 0 0 0 0 0.40 0.20 0.05 0.05 0.01 0.00 0.29
O 0 0.80 0.01 0.01 0.01 0 0 0 0 0.01 0.00 0.16
S1 0 0 0 0 0 0.55 0.05 0.00 0.05 0.01 0.00 0.34
S2 0 0 0 0 0 0.55 0.06 0.00 0.05 0.01 0.00 0.33

L02 S3 0 0 0 0 0 0.54 0.00 0.00 0.05 0.01 0.00 0.40
S4 0 0 0 0 0 0.54 0.08 0.00 0.05 0.01 0.00 0.32
P 0 0 0 0 0 0.49 0.20 0.05 0.05 0.01 0.00 0.20
O 0 0.01 0.80 0.15 0.01 0 0 0 0 0.01 0.00 0.02
S1 0 0 0 0 0 0.28 0.50 0.00 0.05 0.01 0.00 0.16
S2 0 0 0 0 0 0.28 0.49 0.01 0.05 0.01 0.00 0.16

L03 S3 0 0 0 0 0 0.30 0.44 0.00 0.05 0.01 0.00 0.20
S4 0 0 0 0 0 0.28 0.49 0.02 0.05 0.01 0.00 0.15
P 0 0 0 0 0 0.24 0.50 0.10 0.05 0.01 0.00 0.10
O 0 0.01 0.01 0.80 0.15 0 0 0 0 0.01 0.00 0.02
S1 0 0 0 0 0 0.14 0.40 0.30 0.05 0.01 0.00 0.10
S2 0 0 0 0 0 0.14 0.40 0.30 0.05 0.01 0.00 0.10

A0 S3 0 0 0 0 0 0.14 0.40 0.30 0.05 0.01 0.00 0.10
S4 0 0 0 0 0 0.14 0.40 0.30 0.05 0.01 0.00 0.10
P 0 0 0 0 0 0.14 0.40 0.30 0.05 0.01 0.00 0.10
O 0 0.01 0.01 0.15 0.80 0 0 0 0 0.01 0.00 0.02
S1 0 0 0 0 0 0.09 0.05 0.01 0.00 0.06 0.08 0.71
S2 0 0 0 0 0 0.09 0.05 0.02 0.00 0.07 0.08 0.69

L11 S3 0 0 0 0 0 0.10 0.05 0.00 0.00 0.05 0.10 0.70
S4 0 0 0 0 0 0.08 0.05 0.02 0.00 0.07 0.08 0.70
P 0 0 0 0 0 0.16 0.05 0.04 0.00 0.04 0.05 0.66
O 0 0 0 0 0 0.05 0 0 0 0 0.10 0.85
S1 0 0 0 0 0 0.08 0.05 0.02 0.00 0.07 0.08 0.70
S2 0 0 0 0 0 0.08 0.05 0.02 0.00 0.07 0.07 0.71

L12 S3 0 0 0 0 0 0.10 0.05 0.00 0.00 0.05 0.10 0.70
S4 0 0 0 0 0 0.08 0.05 0.03 0.00 0.08 0.07 0.69
P 0 0 0 0 0 0.00 0.19 0.07 0.00 0.07 0.02 0.65
O 0 0 0 0 0 0.05 0.05 0 0 0 0.10 0.80
S1 0 0 0 0 0 0.00 0.10 0.05 0.05 0.05 0.09 0.66
S2 0 0 0 0 0 0.00 0.10 0.06 0.05 0.06 0.09 0.64

L13 S3 0 0 0 0 0 0.00 0.10 0.05 0.05 0.05 0.10 0.65
S4 0 0 0 0 0 0.00 0.10 0.06 0.05 0.05 0.10 0.64
P 0 0 0 0 0 0.00 0.29 0.32 0.05 0.01 0.08 0.25
O 0 0 0 0 0 0 0 0.10 0.10 0.00 0.10 0.70
S1 0 0 0 0 0 0.00 0.05 0.10 0.05 0.05 0.10 0.65
S2 0 0 0 0 0 0.00 0.05 0.10 0.05 0.05 0.10 0.65

A1 S3 0 0 0 0 0 0.00 0.05 0.10 0.05 0.05 0.10 0.65
S4 0 0 0 0 0 0.00 0.05 0.10 0.05 0.05 0.10 0.65
P 0 0 0 0 0 0.00 0.00 0.10 0.50 0.00 0.10 0.30
O 0 0 0 0 0 0.01 0.01 0.16 0.62 0.00 0.10 0.10

C 1 0 0 0 0 0 0 0 0 0 0 0
B 1 0 0 0 0 0 0 0 0 0 0 0
G 1 0 0 0 0 0 0 0 0 0 0 0

Table 6. Transition probabilities
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mathematically guide the decision making toward a guaranteed average outcome for an average cost. It is

interesting to notice that the model never chooses two of the four available surgical treatments. Looking at

the single treatment trade-off curves (Fig 5) we better understand the reason. Some surgical treatment such

as HL have a very effective but more expensive trade-off, some other such as GL have a good cost-effectiveness

trade-off but they cannot guarantee the minimal possible disutility, the other two surgical treatments (TURP

and TL) don’t have the same effectiveness and they are not sensibly less costly than the other two. The

pharmacologic treatment (PH) is the cheapest but is less effective than any other surgical treatment. The

model will therefore tend to choose HL in the left part, GL in the central part and PH in the right part of the

general trade-off curve. TURP and TL are not chosen simply because they don’t offer a good effectiveness-

cost trade in comparison with the other treatments. These results are obviously based and rather “biased”

by the transition probabilities calculated from an average of the available literature and not from a real series

of patients. The ideal use of the model would be through cost and outcomes from previous procedure of the

same provider whose we are trying to guide in the decision making.

The percentage of G state for any given disutility (Table 4 and Fig. 6(b)) provides a precise tool to

project what’s percentage of patients will be considered cured and therefore will exit from the model for any

given disutility. Clinically this is an information more valuable and more comprehensible that the sum of the

disutility by any of the stakeholder. Using this information will allow for example the provider to choose an

acceptable disutility threshold or the patient to better understand the amount of money that will be spent

in order to give him that specific chance to be cured.

The time spent in the system for any given disutility (Table 4 and Fig. 6(a)) is a unique feature of this

model. Time is not enough considered in classic cost effectiveness models but we think it has an enormous

weight on the medical decision-making process. An important assumption underlying these studies is that

costs and effects are constant but they don?t consider that variations in costs and effects are likely to occur

over time (36).For this reason, we decided to fix our horizon and transition time at 3 months, which also

coincides with the global period of insurance coverage after most procedures. The ideal treatment needs to

have a good cost effectiveness trade-off in a reasonable time. In other words, if a specific treatment can offer

a very high effectiveness for a very low cost but it requires the patient to stay in the system for a very long

time, it has not to be considered the best treatment. Our model is able to give the average time spent in

the system for every disutility chosen which will allow the user to consider the time factor in the decision

making.

The breakdown of the costs gives the decision maker specific expenditure for each non-absorbing and

absorbing states (Table 5)) for any given disutility. This information will provide a precise picture on how

the resources will be allocated state by state. This tool essentially will let us know for any given disutility

how much of the average cost is spent in order to exit from the model through the three absorbing states (C,

B or G). This information needs to be paired with the percentage of patients exiting the model through the

G state for any given disutility (e.g., for disutility of 0.2, the percentage of G is 91% and the cost for G is

$ 6,317 out of a total cost of $ 6,990). The user can therefore compare these numbers with other disutilities

choosing the disutility with highest G percentage for a lower specific G cost.
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Finally, the simulation (Fig. 7) as an alternative to the sensitivity tests is extremely important for any

user because it describes the range within our projection could actually fall. This range is determined through

a computer simulation which calculate the possible extreme variability of patient populations in terms of

different pretreatment states. Interestingly enough the simulation with 100 patients for 10,000 cycles didn’t

show a wide range of variance both for costs and disutility showing the model to be solid from a mathematical

standpoint. Clinically speaking this is an invaluable tool to produce a solid budget and a reliable prediction

of clinical outcomes.

The Authors were unable to find any similar model in the medical literature to compare and discuss,

showing as this approach, maybe more popular in other fields is definitely innovative in health care.

The Authors acknowledge that this model has several limitations. The main one is probably coming from

the transition probabilities calculation which are inferred with a Lagrangian method from a combination of

expert opinion and data from the medical literature. Essentially the expert would give a plausible transition

probability which will be equal for all the treatments and eventually these values will be diversified according

with the average IPSS score decrease taken from the literature. This method has been necessary due to

the impossibility of getting access to the entirety of data from the published papers and we think is an

acceptable approximation of the real, average transition probabilities. Additionally, this model should really

be used with specific transition probabilities of the provider whose performance we want to project. Analogue

limitation and same comment on the ideal use of the model comes with the cost analysis based on hospital

administration databases and complication rates from the literature.

Another limitation is the use of the IPSS score as the only clinical parameter on which the population is

classified by different states. IPSS does not capture any information about complication which might influence

the quality of life such as stress or urge incontinence. In light of this, some treatment might look very effective

based on IPSS only but they might be doomed by high incontinence rate. This limitation can be overcome

adding more states to the model. Finally, a general limitation of this kind of models involves the necessity

of total collaboration by the clinical provider to make the projection realizes. The provider is supposed to

totally embrace the concept of having his clinical decision making guided by a model. Noncompliance with

the model indications will mean non-accuracy of the projection.

F. Conclusion

Markov model has been available for a long time but never really penetrated the medical decision-making

process. Our model offers a user-friendly approach which gives specific indications about what procedure

perform in specific patients. Additionally, it can be tailored to the specific provider using his own transition

probabilities and costs. This model needs validation on real patient populations but it represents an innovative

and more practical approach to apply cost effectiveness in day to day practice.
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