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Optimal Shift Coloring of Trees

Giovanni Andreatta, Luigi De Giovanni, Paolo Serafini

Abstract. This paper was motivated by the problem of scheduling the openings of pharmacies during week-ends and
holiday periods (shifts). The problem is NP-hard in general and can be modeled as a coloring problem on a graph.In
this paper we focus on the special case where the underlying graph is a tree, or, more generally, it is endowed with a
tree-metric, and we provide a polynomial-time algorithm. We also provide direct optimal solutions for special trees
like stars and paths.

1 Introduction

This paper was motivated by the problem of scheduling the openings of pharmacies during week-ends and
holiday periods (see [2, 4]). In practice, each pharmacy has to be assigned to one of a given number K of
shifts, meaning that each pharmacy will remain open 24 hours a day during one among K consecutive week-
ends. In other words, one has to partition the set of all pharmacies into K subsets, each corresponding to a
particular shift. This may be viewed as a coloring problem with different colors corresponding to different
shifts. In fact, it is convenient to look at the set of pharmacies as the set V of vertices of an undirected graph
G(V,E). We also assume that the graph G is connected and for every edge {i, j} ∈ E a positive length l(i, j)
is given. Each edge {i, j} may be thought as a direct connection (e.g. a road) between vertices (pharmacies)
i and j, and the length l(i, j) is either the length of this connection or the time required to go over it. We
also denote by dij the shortest distance between i and j, according to E and l.

In the paper, we assume that the number K of shifts is given and without loss of generality 2 ≤ K ≤
|V | − 1. We let [K] be the set of colours {1, 2 . . . ,K}. We define K-Shift Coloring any coloring χ of all
vertices in V using all K colors. Denote by χ(i) the color of the vertex i and let V1, V2, . . . , VK be the subsets
of V having colors 1, 2, . . . ,K.

We are interested in finding an optimal K-Shift Coloring χ, i.e., a K-Shift Coloring such that the total
distance

D(χ) =
∑
i∈V

∑
k∈[K]

min
j∈Vk

dij

is minimized.
Note that any K-Shift Coloring identifies a partition of V into K subsets.
To our knowledge, the only works devoted to this particular graph-vertex coloring problem are [2–4]. In

particular, in [3] it is shown that, in general, the problem is NP-hard for K ≥ 3 (by reduction from the
domatic number problem) and polynomial for K = 2.In this paper we consider the simplest version of such
a problem where we assume that the underlying graph G is a tree, or, more generally, G is endowed with
a tree-metric (see [5] for definition and important properties of tree-metrics). We will show that, in this
case, the problem is polynomial.After introducing the notion of Perfect K-Shift Coloring and presenting a
sufficient optimality condition that holds for arbitrary graphs (Section 2), in Section 3 we directly provide
the optimal K-Shift Coloring of special trees like stars and paths. In Section 4, we describe the algorithm
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for finding an optimal K-Shift Coloring of a tree with unit distances and, in Section 5, we do the same for
trees with arbitrary (positive) distances.

2 Perfect K-Shift Coloring of graphs

Given a generic graph G = (V,E), a vertex v and a set of K vertices Q ⊆ V , let us denote by D(v,Q) the sum
of the distances from vertex v to each of the K vertices in Q. Call K-Core Neighborhood of v, and denote it
by Cv, any set of K vertices in G closest to v (including vertex v itself), i.e., D(v, Cv) = min{D(v,Q) : |Q| =
K,Q ⊆ V }. Let us denote by d∗(v) this minimum, i.e., d∗(v) = D(v, Cv). A generic K-Shift Coloring is full
with respect to v if there exists a K-Core Neighborhood of v such that all its vertices have different colors.
Let us call Full such a K-Core Neighborhood of v and denote it by Fv. Notice that, for any given v, Fv may
or may not exist, and may or may not be unique. If Fv exists, then D(v,Fv) = d∗(v).

We remark that the notion of K-Core Neighborhood is independent from any coloring, while that of Full
K-Core Neighborhood depends on the selected coloring χ.

Given a graph G, let us call Perfect K-Shift Coloring of G a coloring χ] such that χ] is full with respect
to every vertex v, i.e., there exists a Full K-Core Neighborhood of v, for any vertex v.

Notice that a Perfect K-Shift Coloring of G may not exist. The circuit with 4 vertices and unit distances
is a simple example of a graph for which there is no Perfect 3-Shift Coloring. We will show in Sections 4 and
5 that every tree possesses a Perfect K-Shift Coloring.

The following theorem provides an optimality sufficient condition, holding for any graph G (and not just
for trees) and for any type of distances.

Theorem 1. Any Perfect K-Shift Coloring χ∗ of a graph G is also an optimal K-Shift Coloring of G.

Proof: Given any K-Shift Coloring χ of G, let V1, V2, ..., VK and D(χ) be defined as in Section 1. We
have: D(χ) =

∑
v∈V

∑
k∈[K] minj∈Vk

dvj ≥
∑

v∈V D(v, Cv) =
∑

v∈V d
∗(v) and D(χ∗) =

∑
v∈V D(v,Fv) =∑

v∈V D(v, Cv) =
∑

v∈V d
∗(v). This proves that D(χ) ≥ D(χ∗).

Furthermore, the proof of Theorem 1 also shows the following result:

Theorem 2. If a graph G possesses a Perfect K-Shift Coloring, then all optimal K-Shift Coloring of G are
perfect.

In the following sections we will show that every tree possesses a Perfect K-Shift Coloring, and how to
build one.

3 K-Shift Coloring of special trees

Let us consider the case where the graph is a tree and, as a special case, assume that T is a star with unit
distances. We have the following
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Proposition 1 Let T be a star with unit distances and vertices numbered 1, 2, . . . , n, where vertex 1 is the
center. Any K-Shift Coloring such that vertex 1 gets color 1 and every pendant vertex gets a color between
2 and K, with at least one vertex per color, is a Perfect K-Shift Coloring of T and thus it is optimal and,
vice-versa, every optimal K-Shift Coloring of T is of this form (up to a permutation of colors).

Proof: Although the proposition is a simple corollary of Theorems 1 and 2, we provide here an alternative
direct proof. Let χ be any K-Shift Coloring of T . We may assume, without loss of generality, that χ(1) = 1.
Let m1,m2, . . . ,mK be the number of pendant vertices of T that are given colors 1, 2, . . . ,K respectively.
Notice that m1 + m2 + . . . + mK = n − 1. Of course mj ≥ 1. The total distance that has to be traveled
during shift 1 is

D1 = 0 · (1 +m1) + 1 ·
∑
k>1

mk = n− 1−m1

and during shift h (2 ≤ h ≤ K)

Dh = 1 + 2 ·
∑

k>1,k 6=h

mk = 1 + 2 (n− 1−mh)

so that the total distance is
n− 1−m1 +

∑
h>1

(1 + 2 (n− 1−mh)) =

= n− 1−m1 +K − 1 + 2 (n− 1) (K − 1)− 2 (n− 1−m1) =

= m1 − 3n+ (2n− 1)K + 2

Evidently the total distance is minimized if and only if m1 = 0, and its optimal value is equal to

(2n− 1) (K − 1)− (n− 1)

no matter what the values m2, . . .mK are, provided that they are all at least 1. This proves that any optimal
K-Shift Coloring has the form described in the statement of the theorem. It is also evident that such a
K-Shift Coloring is perfect.

The hypothesis of unit distances can actually be relaxed, as stated in the following

Proposition 2 If T is a star with arbitrary distances, and the vertices are numbered from 1 to n according
to their increasing distance from the center (vertex 1), then the K-Shift Coloring χ∗ defined as

χ∗(v) = min(v,K) v = 1, . . . , n,

is perfect and thus optimal. Furthermore, every optimal K-Shift Coloring is of this form (up to a permutation
of colors).

Proof: If v ≤ K then the subset of vertices {1, 2, . . . ,K} is a Cv, that is also a Fv. If v > K then the subset
of vertices {1, 2, . . . ,K − 1, v} is a Cv, that, again, is also a Fv. Hence, the given K-Shift Coloring is perfect
and, by Theorem 1, optimal. It is also evident that any Perfect K-Shift Coloring must have this form (up
to a permutation of colors). By Theorem 2 it follows that all optimal K-Shift Coloring must have this form
(up to a permutation of colors).
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As a corollary of Theorem 1, we also have the following

Proposition 3 If T is a path with arbitrary distances and its vertices are numbered 1, 2, . . . , n in a canonical
way (i.e., vertex 1 is a pendant vertex and the number of edges in the path from vertex 1 to vertex j is j− 1,
for any j = 2, . . . , n), then a Perfect (and optimal) K-Shift Coloring of T is χ∗(j) = j mod K.

One may wonder if every Perfect K-Shift Coloring of a graph has the form described in Proposition 3. The
answer is no, as the following example shows. Let K = 2 and let P be the path with 4 vertices and 3 edges
where l(1, 2) = l(3, 4) = 1 and l(2, 3) = 2. For this path, the following K-Shift Coloring: χ](1) = χ](4) = 1
and χ](2) = χ](3) = 2 is also perfect (and thus optimal), but it is not of the form described in Proposition
3.

4 K-Shift Coloring of trees with unit distances

The previous Propositions 2 and 3 seem to indicate that the order in which vertices are colored is important.
This is confirmed in the general case by the following algorithm. Given a tree T with unit distances, an
optimal K-Shift Coloring of T may be found in polynomial time by the following

Algorithm 1

Given a tree T and a number of colors K, do:

1. Ordering of vertices and initial colored subtree. Choose any vertex of T as root (denote it by r)
and order the vertices from 1 to n according to a breadth first exploration. Color the first K vertices
with the K different colors, obtaining a colored subtree TK . Set m = K.

2. Inductive construction of colored subtrees. Consider vertex w := m+ 1 and let Tm+1 = Tm ∪ {w}
be the subtree containing the vertices from 1 to m + 1. For each k ∈ {1, . . . ,K}, let vk be a vertex of
Tm with color k having minimum distance from w. Let z be a vertex with maximum distance from w,
among v1, v2, . . . , vK . Give w the same color of z, i.e., χ(m+ 1) = χ(z).

3. Stopping criterion. Set m = m+ 1. If m = n+ 1 stop, otherwise go to Step 2.

The algorithm produces a K-Shift Coloring χ and a sequence of subtrees TK ⊂ TK+1 ⊂ . . . ⊂ Tn = T .
In the following – see Proof of correctness of Algorithm 1 – we are going to show that, for each m ∈
{K,K + 1, . . . , n}, the coloring χ, restricted to Tm, is optimal for Tm.

See in Figure 1 a tree colored with 4 colors according to the algorithm (each layer at the same distance
from the root is colored from left to right).

Before proving the correctness of the algorithm, let us introduce the following notations, definitions and
lemmas.

Notations:

– Let P (u, v) denote the (unique) simple path connecting vertices u and v.
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Fig. 1. An optimal 4-Shift Coloring on a sample tree

– For each m ∈ {K,K + 1, . . . , n} and v ∈ Tm, let Cm
v denote any set of K vertices in Tm closest to vertex

v, i.e., a K-Core Neighborhood of v in Tm.
– For each m ∈ {K,K + 1, . . . , n} and v ∈ Tm, let Fm

v denote any Cm
v such that all K vertices of Cm

v have
different colors, i.e., a Full K-Core Neighborhood of v in Tm.

Definition 1 Given vertices u, v and w, let us call projection of w onto P (u, v) the unique vertex belonging
to all three simple paths P (u, v), P (u,w) and P (v, w). ut

Lemma 1 For any set of four vertices u, v, c, g with c ∈ P (u, v), either
(i) – c belongs to P (g, u) or

(ii) – c belongs to P (g, v) but not to P (g, u).

Proof: Let g′ be the projection of g onto P (u, v). If the distance from g′ to v is less than or equal to the
distance from c to v, then case (i) follows; otherwise, g′ is closer to u than c and case (ii) follows.

Lemma 2 At any step of the algorithm, if v and w are vertices descendant of a same vertex q, with v already
colored and w not yet colored, then necessarily dqv ≤ dqw.

Proof: This is due to the breadth first exploration rule adopted by the algorithm for coloring the vertices
of T .

Proof of correctness of Algorithm 1: The proof proceeds by induction on m, the cardinality of the
subtree Tm. The coloring of TK is optimal because of Theorem 1. Suppose that all the subtrees created by
the algorithm, up to a given m (m ≥ K), satisfy the hypothesis of Theorem 1. We want to show that also
Tm+1, colored according to the algorithm, satisfies the property that, for each vertex v ∈ Tm+1 there exists a
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Fig. 2. Relevant vertices in the tree: c is the projection of w onto P (u, v).

Full K-Core Neighborhood of v, Fm+1
v ⊂ Tm+1, so that Tm+1 has a Perfect K-Shift Coloring and therefore

is optimal by Theorem 1.
Let v be a generic vertex in Tm+1 and let w be the vertex that belongs to Tm+1 but not to Tm. Let us

distinguish between two cases:

– case 1: v ∈ Tm;
– case 2: v = w.

In case 1, we further distinguish two subcases: either (case 1.1) there exists a Fm
v in Tm that is also a Fm+1

v

in Tm+1, or else (case 1.2) no Fm
v in Tm is a Fm+1

v in Tm+1.
In case 1.1, the induction step is obviously true for that particular v ∈ Tm.
In case 1.2, choose any specific Fm

v and let:

u be the farthest vertex from v in Fm
v ,

y be the vertex in Fm
v having color χ(y) = χ(w), and

z be defined as in Step 2, i.e., the farthest vertex from w among v1, v2, . . . , vK with vi being the closest
vertex to w among those having color i (i = 1, 2, . . . ,K).

Since w ∈ Tm+1 \ Tm and u, y and z ∈ Tm, we must have w 6= u, y, z and, by definition of u, v 6= u. Also, by
construction, χ(w) = χ(y) = χ(z). If dvw ≥ dvu, then Fm

v is also a Fm+1
v , which is not possible in case 1.2.

If χ(u) = χ(w), then Fm
v ∪ {w} \ {u} is a Fm+1

v as required. So, in the following, assume that

dvw < dvu (1)

and that χ(u) 6= χ(w) which, in turn, implies that u 6= z, y. As for v, y and z, it is possible that they are not
all distinct. We will show (Claim 10) that starting from Fm

v and considering F ∗ = (Fm
v ∪{w})\{y} we have

that F ∗ is a Full K-Core Neighborhood of v in Tm+1. The rest of the proof for case 1.2 is rather lengthy so
we break it into several claims.

Let c be the projection of w onto P (v, u) (see Figure 2). Notice that c 6= u, because otherwise dvu ≤ dvw

contradicting (1), and that c 6= w because w is a leaf of Tm+1 and therefore cannot be an internal vertex of
P (u, v). It is possible however that c = v. Finally let c′ be the projection of the root r on the path P (u, v).

Claim 1 The distance from c to u is strictly greater than the distance from c to w.
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Fig. 3. Relevant vertices in the tree: b is the projection of c onto P (r, w).

Proof of Claim 1: Since paths are on a tree we have dvu = dcv + dcu and dvw = dcv + dcw. By subtracting
one equality from the other and from (1) we have

dcu > dcw (2)

Claim 2 The vertex closest to c among those in Tm having color χ(u) must be u itself, or, if such a vertex
is not unique, u must be one of these vertices.

Proof of Claim 2: Suppose that a vertex t exists having color χ(u) and having distance dct < dcu. Then,
exploiting the triangular inequality, dvt ≤ dvc + dct < dvc + dcu = dvu meaning that t is closer to v than u,
against the fact that u ∈ Fm

v and t /∈ Fm
v , since, by the inductive hypothesis, only one vertex of color χ(u)

belongs to Fm
v .

Claim 3 Vertex c belongs to the path P (r, w), that is, w is a descendant of c.

Proof of Claim 3: Recall c′ is the projection of the root r on the path P (u, v). Either c′ = c or c′ 6= c. If
c′ = c, let b be the projection of c onto P (r, w) (see Figure 3). By Lemma 2, we have dbu ≤ dbw. This implies
dcu ≤ dbu ≤ dbw ≤ dcw, contradicting inequality (2). Therefore c′ 6= c and the path P (w, c)∪P (c, c′)∪P (c′, r)
is the (unique) path connecting w with r. This proves that c ∈ P (r, w).

Notice also that c′ ∈ P (c, u) (see Figure 4), as otherwise c′ ∈ P (c, v). In the latter case, c ∈ P (r, u)
and both u and w will be descendant of the same vertex c. By Lemma 2, we have dcu ≤ dcw, contradicting
inequality (2).

Claim 4 Vertex u has shortest distance from w among all vertices in Tm having color χ(u).
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Fig. 4. Relevant vertices in the tree: c′ is the projection of r onto P (u, v).

Proof of Claim 4: Let x be a vertex in Tm having the shortest distance from w among all vertices in Tm

having color χ(u). We will show that dwx = dwu.
By Lemma 1, applied to the four vertices r, w, c, x, either c belongs to the path connecting x with r or

else c belongs to the path connecting w with x.
However, c cannot belong to the path connecting x with r, because otherwise both w and x would be

descendant of c and dcx ≤ dcw, by Lemma 2. Then, it follows from Claim 1 that dcx ≤ dcw < dcu, which
contradicts Claim 2, i.e., the fact that u is the closest vertex to c among those having color χ(u).

Therefore c must be in the path connecting w with x and recalling that u is the vertex closest to c among
those having color χ(u), we have: dwx = dwc + dcx ≥ dwc + dcu = dwu. Since dwx ≤ dwu, by definition of x,
this proves that dwu = dwx, i.e., u is the vertex (or one of the vertices) in Tm having the shortest distance
from w, among all vertices in Tm having color χ(u).

From Claim 4, it follows that
dwu ≤ dwz. (3)

Claim 5 Vertex c belongs to P (w, z).

Proof of Claim 5: Let us first prove that c /∈ P (z, r). In fact, if c ∈ P (z, r), we would have dcz ≤ dcw, due
to Lemma 2, and this in turn will imply by Claim 1 that dcz ≤ dcw < dcu and therefore dwz ≤ dwc + dcz <

dwc + dcu = dwu contradicting (3). Recall that, by Claim 3, c ∈ P (r, w). Since c /∈ P (z, r), then, by virtue of
Lemma 1 applied to the four vertices r, w, c, z, we have c ∈ P (w, z).

Claim 6 The vertex closest to c among those in Tm having color χ(w) = χ(z) is z itself, or, if such a vertex
is not unique, z is one of these vertices.

Proof of Claim 6: Suppose that a vertex s exists having color χ(s) = χ(z) and having distance dcs < dcz,
and let s′ be the projection of s onto P (w, z). Since we have just proved that c belongs to P (w, z), either,
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Fig. 5. Relevant vertices in the tree: s′ is the projection of s onto P (w, z).

(i) s′ belongs to P (c, z) (Figure 5i), or, (ii) s′ does not belong to P (c, z) (Figure 5ii). In case (i), dws =
dwc + dcs < dwc + dcz = dwz, contradicting the fact that z is the closest vertex to w among those having
color χ(w). In case (ii), dws = dws′ + ds′s ≤ dwc + dcs < dwc + dcz = dwz, again contradicting the fact that
z is the closest vertex to w among those having color χ(w).

Claim 7 Vertices z and y have the same distance from v, and c ∈ P (v, z).

Proof of Claim 7: Recall that y is the vertex in Fm
v having color χ(y) = χ(w) = χ(z). Let us first prove

that y 6= v. Recall that dwv < dwu, by inequality (1); dwu ≤ dwz, by (3); dwz ≤ dwy, by definition of z. Thus
we have dwv < dwy. This proves that y 6= v. We want to prove that dvy = dvz. Let y′ be the projection of
y onto P (w, r). Since, by Claim 3, also c ∈ P (w, r), then either (case 1.2.1) y′ belongs to P (c, w) (Figure
6a), else (case 1.2.2) y′ belongs to P (c, r) but not to P (c, w) (Figures 6b or 6c). If y′ belongs to P (c, w), we
have dcy ≤ dcw, by Lemma 2, and since dcw < dcu by (2), we obtain dcy < dcu which in turn implies that
dwy ≤ dwc + dcy < dwc + dcu = dwu ≤ dwz (by (3)), contradicting the hypothesis that z is the closest vertex
to w among those having color χ(w). Thus case (1.2.2) holds, that is, y′ ∈ P (c, r). Now, let us consider
again c′, the projection of r onto P (u, v): as we have seen (refer again to Figures 6b and 6c), c′ ∈ P (c, u),
which implies that c ∈ P (v, r) and, since y′ ∈ P (c, r), we have c ∈ P (v, y) and, hence, dvy = dvc + dcy. Since
dvz ≤ dvc + dcz ≤ dvc + dcy, thanks to Claim 6, and dvc + dcy = dvy ≤ dvz, we conclude that dvy = dvz and,
from dvy = dvc + dcy, it follows that c ∈ P (v, z).

Claim 8 The set F ′ = (Fm
v ∪ {z}) \ {y} is also a Full K-Core Neighborhood of v in Tm.

Proof of Claim 8: This is obviously true since χ(y) = χ(z) and dvy = dvz as proved in Claim 7. Notice
that, as shown in the proof of Claim 7, y 6= v.

Claim 9 Vertex z is one of the farthest vertices from v in F ′.

Proof of Claim 9: Since dvz = dvy by Claim 7 and dvy ≤ dvu, by definition of u, we have

dvz ≤ dvu. (4)
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Recalling the definition of z and Claim 4, we have: dwz ≥ dwu. Notice that c ∈ P (v, u) and c ∈ P (w, u) by
definition of c; c ∈ P (w, z) by Claim 5, and c ∈ P (v, z) by Claim 7. Therefore, from dwz ≥ dwu, by adding
dvc − dwc to both members we obtain: dvz ≥ dvu that, together with inequality (4) implies: dvz = dvu.

Recalling that u is the farthest vertex from v in Fm
v and the definition of F ′, we have Claim 9.

Claim 10 The set F ∗ = (Fm
v ∪ {w}) \ {y} is a Full K-Core Neighborhood of v in Tm+1.

Proof of Claim 10: Notice that F ∗ = (Fm
v ∪ {w}) \ {y} = (F ′ ∪ {w}) \ {z}. The set F ∗ is a K-Core

Neighborhood of v in Tm+1, because dvw < dvu, by (1), and dvu = dvz, by Claim 9. Since all K vertices in
F ∗ have now different colors, we have that F ∗ is a Full K-Core Neighborhood of v in Tm+1.

This concludes the proof of correctness of the Algorithm in Case 1.2.
To complete the proof we have to consider Case 2, i.e., we have to show that there exists in Tm+1 a Full

K-Core Neighborhood of w, the only vertex belonging to Tm+1, but not to Tm. Let f be the father of w in
Tm+1. Since f ∈ Tm, then by the previous proof of Case 1, there exists a Full K-Core Neighborhood Fm+1

f

in Tm+1. Since d(f, w) = 1 it follows that Fm+1
f contains w, or at least there exists one Fm+1

f that contains
w. If vk is the vertex of color k (k 6= χ(w)) belonging to Fm+1

f , it means that vk is the closest vertex to f
among those having color k. Noticing that d(w, v) = d(f, v) + 1, for any v in Tm, it follows that vk is also
the closest vertex to w among those having color k. Therefore Fm+1

f is also a Full K-Core Neighborhood of
w.

5 K-Shift Coloring of trees with arbitrary distances and graphs endowed with a tree metric

Given a tree T with arbitrary (positive) distances, an optimal K-Shift Coloring of T can be found by the
following

Algorithm 2

Given a weighted tree T and a number of colors K, do:
Step 1:

1. Ordering of vertices and initial colored subtree. Choose any vertex of T as root (denote it by
r) and order the vertices from 1 to n according to their increasing distance from the root r; break ties
arbitrarily. Color the first K vertices with the K different colors, obtaining a colored subtree TK . Set
m = K.

2. Inductive construction of colored subtrees. Consider vertex w := m+ 1 and let Tm+1 = Tm ∪ {w}
be the subtree containing the vertices from 1 to m + 1. For each k ∈ {1, . . . ,K}, let vk be a vertex of
Tm with color k having minimum distance from w. Let z be a vertex with maximum distance from w,
among v1, v2, . . . , vK . Give w the same color of z, i.e., χ(m+ 1) = χ(z).



11

3. Stopping criterion. Set m = m+ 1. If m = n+ 1 stop, otherwise go to Step 2.

The proof of correctness is analogous to the one of the previous algorithm and thus omitted. The main
difference is the reason why, given a vertex q in the path between w and r, any vertex a in Tm that is a
descendant of vertex q has distance from q that satisfies the inequality dqa ≤ dqw: this is guaranteed by the
search criterion adopted by the algorithm. This property is the analogous of Lemma 2 in Section 4.

A second important difference in each iteration concerns the vertex w that belongs to Tm+1 but not
to Tm. In the case of arbitrary positive distances it is no longer necessarily true that Fm+1

w coincides with
one Fm+1

f , where f is the father of vertex w. This happens when f and w are very far apart. In this case,
consider a Full K-Core Neighborhood of f : Fm

f = v1, v2, . . . , vK . This means that v1, v2, . . . , vK have all
different colors. Since d(w, vk) = d(w, f) + d(f, vk) for all k = 1, 2, . . . ,K, it follows that v1, v2, . . . , vK are
the closest vertices to w, besides w itself. Defining z as the farthest vertex from w among v1, v2, . . . , vK

it follows that ({v1, v2, . . . , vK} ∪ {w}) \ {z} is a K-Core Neighborhood of w that is also a Full K-Core
Neighborhood of w, since all vertices v1, v2, . . . , vK have different colors and the color of w is the same as
that of z.

Proposition 4 For any tree T with positive distances, there is an optimal K-Shift Coloring where χ(i) 6=
χ(j) for all edges {i, j} ∈ E.

Proof: The optimal coloring generated by the algorithm does satisfy the stated property.

Notice that this property, valid for trees, is not true for a general graph as shown by the following
simple counter-example. Given any 2-Shift Coloring of a cycle of length 3, there is an edge with its extremes
having the same color. The following corollary, that could also be derived from Algorithm 2, is an immediate
consequence of Proposition 4.

Corollary 1 Given an arbitrary tree T , the classic 2-Coloring of T also provides an optimal 2-Shift Coloring
of T .

Consider now a graph G = (V G, EG) endowed with a tree metric dG. This means that there exists a tree
T = (V T , ET ) with V T = V G = V having a metric dT such that dG

ij = dT
ij for any couple of vertices i, j ∈ V .

Given an arbitrary graph G endowed with a tree metric, an optimal K-Shift Coloring of G may be
obtained by coloring its vertices according to an optimal K-Shift Coloring of the associated tree T . The
proof is trivial and thus omitted.
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Fig. 6. Relevant vertices in the tree: y′ is the projection of y onto P (w, r).


