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Abstract

One of the most active research lines in the area of electoral systems to date deals with the
Biproportional Apportionment Problem, which arises in those proportional systems where seats must
be allocated to parties within territorial constituencies. A matrix of the vote counts of the parties
within the constituencies is given, and one has to convert the vote matrix into an integer matrix of
seats “as proportional as possible” to it - subject to the constraints that each district be granted
its pre-specified number of seats, each party be allotted the total number of seats it is entitled to
on the basis of its national vote count, and a zero-vote zero-seat condition be satisfied. The matrix
of seats must simultaneously meet the integrality and the proportionality requirement and this not
infrequently gives rise to self-contradictory procedures in the electoral laws of some countries. Here we
discuss a class of methods for Biproportional Apportionment characterized by an “error minimization”
approach. If the integrality requirement is relaxed, fractional seat allocations (target shares) can be
obtained so as to achieve proportionality at least in theory. In order to restore integrality, one
then looks for integral apportionments that are as close as possible to the ideal ones in a suitable
metric. This leads to the formulation of constrained optimization problems called “best approximation
problems” which are solvable in polynomial time through the use of network flow techniques. These
error minimization methods can be viewed as an alternative to the classical axiomatic approach
introduced by Balinski and Demange in 1989. We provide an empirical comparison between these
two approaches against a real example from the Italian Elections and a theoretical discussion about
the axioms that are not necessarily satisfied by the error minimization methods.

Keywords: biproportional apportionment, error minimization, metric spaces, network flows.

1 Introduction

The Biproportional Apportionment Problem (BAP) arises in those countries that adopt a proportional
electoral system in which the territory is subdivided into a set of constituencies (or regions). Given a
matrix of votes of the parties (columns) within the regions (rows), the problem consists in computing
the number of seats that each party is entitled to in each constituency on the basis of the number of
votes that it has received in that constituency. The main difficulty in solving this problem relies on the
simultaneous requirements of double proportionality and integrality by the matrix of seats. In order to
obtain a correct biproportional seat distribution the problem must be rigorously formulated and solved
through the use of suitable mathematical models. Mathematical problems with the same structure as
BAP frequently arise in the literature also in other application contexts. For example, this happens in
Statistics for the problem of approximating a table of noninteger counts by an integer one, so as to match
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the prescribed row- and column-sums [9, 10, 2, 3, 16]. For this reason, BAP was widely studied both in
the mathematical and in the statistical literature.

A milestone theoretical setting was given by Balinski and Demange in 1989 [5, 6], but also several
other authors provided different mathematical models and procedures to find correct biproportional seat
allocations (see, [11, 12, 25, 28, 31], the collection of papers in [30] and the recent survey on network flow
techniques for electoral problems [27]). In all these papers both models and solution procedures for BAP
are provided. However, in spite of the abundance of contributions and results, it is quite difficult to find
some references to them in an actual electoral law. An exception occurred when the Zurich Canton in the
2006 elections actually applied the Discrete Alternating Scaling procedure introduced by Pukelsheim [26]
through the use of the public domain software BAZI. The Cantons of Schaffhausen and Aargau followed.
Actually, BAP arises in the electoral procedures of several countries (e.g., Italy, Mexico, Switzerland,
Faroe Islands), but sometimes the problem is not completely understood, with the consequence that the
institutional rules to solve it may turn out to be wrong and lead to inconsistent allocations of seats that
are not coherent with the voters’ will. For instance, the Italian electoral law for the national parliament
(Law n. 270/2005), as well as the great majority of the (recently reformed) laws for the Italian regional
elections, are affected by errors [21, 22, 23], and the problem has not been yet faced by the political
institutions.

Balinski and Demange base their analysis on an axiomatic characterization of proportionality between
integral matrices. They provide a method to find a biproportional allocation satisfying a specified set of
proportionality axioms, namely, i) Exactness, ii) Relevance, iii) Uniformity, iv) Monotonicity, v) Homo-
geneity, and vi) Completeness, which correspond to reasonable properties that an apportionment should
satisfy (see Section 11 for details). Following this axiomatic approach, they propose a divisor based
method to find biproportional apportionments. First a fractional matrix satisfying axioms i)-v) (and
called fair share matrix) is computed. Then, starting from the fair share matrix, a primal-dual iterative
procedure is applied to obtain a rounding of it satisfying i)-vi). In the Balinski and Demange approach
the fair share matrix represents the “ideal” biproportional seat assignment in the above axiomatic sense,
but, since fractional seats are not allowed, it is necessary to suitably round it in order to keep satisfied
the row- and column-sums, maintaining its proportionality feature.

Although the main biproportional allocation procedures known in the literature are based on an
axiomatic approach and follow the rules of divisor methods, a different approach for BAP can be also
considered. A different class of BAP methods was recently developed in the literature following an
error minimization approach [25, 28]. According to these methods, a fractional matrix is taken as a
target (target quotas or ideal shares) and the biproportional seat apportionment is obtained through the
solution of a constrained optimization problem (called best approximation problem) where the objective
corresponds to a suitable error measure between the solution and the matrix of target quotas.

In this paper we review the class of error minimization methods for BAP. Some methods are already
known in the literature, but some others are considered here for the first time for the solution of BAP.
Actually, new linear and quadratic models are suggested to formulate BAP as a best approximation
problem and it is shown that already known optimization techniques can be exploited to solve it efficiently.

As a result, our paper provides a detailed account of a new methodology for the solution of BAP
which can be seen as an alternative to the classical axiomatic approach of Balinski and Demange. It
must be pointed out here that the nature of the two approaches is completely different and, in principle,
there is no reason to prefer one or the other. We believe that, once the characteristics of each method
are clear, it has to be left to the subjective task of the legislators the choice of the method that ‘best’ fits
their country.

In Section 2 a formal description of the BAP is given. In Section 3 the general error minimization
approach for BAP is introduced and an account is given of the different metrics that can be adopted
to measure the error objective function. We start in Section 4 with the description of the Controlled
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Rounding procedure introduced by Cox and Ernst in 1982 [9]. They seem to be the first authors who
suggest an error minimization approach, even if the actual application of their model to BAP was pointed
out by Gassner later in 1988 [13]. In [9] the error is given by the Lp-norm computed w.r.t. the ideal
shares, but the rounding of the entries of the target quotas are constrained to match the up or down
nearest integer. This model corresponds to a polynomially solvable capacitated transportation problem,
but, as we will see, the solution method does not minimize in general the Lp-norm, because there exist
instances where the optimal apportionment is obtained outside the imposed rounding interval. Focusing
on the L1- and L2-norm cases (Sections 5 and 7), we point out a common feature of the corresponding
error minimization models showing that they are solvable in polynomial time via the solution of either a
single linear minimum cost flow problem, or a sequence of them. In Section 8 we describe the L∞–norm
model proposed by Serafini and Simeone [28] which can be solved in strongly polynomial time via the
solution of a sequence of maximum flow problems. In Section 10 we exhibit the matrices of seats obtained
through the different best approximation models for the most recent Italian Elections of the Chamber
of Deputies (2008) and compare them with each other, with the fair share matrix, and with the optimal
allocation provided by the method of Balinski and Demange. In Section 11 we recall the proportionality
axioms of Balinski and Demange [5, 6] and analyze the best approximation methods under this viewpoint.
Finally, in Section 12 we draw some conclusions summarizing the main results of the paper.

2 The Biproportional Seat Apportionment Problem

Let H be the house size of a parliament, i.e., the total number of seats to be assigned and suppose that
they are already apportioned among m electoral constituencies proportionally to their population counts,
so that ri seats are allocated to constituency i ∈M = {1, . . . ,m}. For the Italian case the rule to allocate
the total number of seats in each constituency is stated in the Constitution. Let V be a m × n matrix
such that vij , i ∈M, j ∈ N is the number of votes for party j in region i.

After the voting, the H seats are also apportioned among the n contending parties proportionally to
the number of votes each party has received. Let cj be the corresponding total number of seats received
by party j ∈ N = {1, . . . , n} on the basis of its total (national) number of votes

∑
i∈M vij . Clearly, one

has
∑

i∈M ri =
∑

j∈N cj = H. Thus, apportioning the H seats among the constituencies on one hand and
among the parties on the other one, produces two distributions of seats that we call super-apportionments.

When formulating the problem the ri and the cj are assumed to be known input data so that an
instance of BAP is given by the triplet (V, r, c). The problem is to find a final allocation of the seats that
is consistent with both the super-apportionments, and such that the number of seats that a party obtains
in each constituency is as proportional as possible w.r.t. the number of votes received by the same party
in that constituency.

The above requirements can be formally stated as finding a m × n integer matrix of seats X such
that:

(1) each row-sum (constituency-sum) is equal to the total number of seats of the corresponding con-
stituency;

(2) each column-sum (party-sum) is equal to the total number of seats of the corresponding party;

(3) a party cannot obtain seats in a constituency where it received no votes;

(4) the number of seats assigned to each party in each constituency is as proportional as possible to the
corresponding number of votes.

In BAP conditions (1)–(3) are constraints, while (4) generally corresponds to the objective. In par-
ticular, condition (3) is referred to as “zero vote-zero seat” condition and it means that a party is not
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awarded any seat in a constituency in which it does not receive any vote. This is a relevant condition
especially in those countries - like Italy - were local (regional) political parties exist that present their
lists (and get votes) only in some regions of the country.

From a mathematical viewpoint BAP is not a trivial problem. A variety of models and mathematical
formulations have been suggested in the literature: all provide integer solutions that satisfy conditions
(1)–(3), while the objective (4) is formulated in different ways.

The Balinski and Demange’s algorithm for BAP first computes the fair share matrix that satisfies the
following Rounding Property: one can always obtain an apportionment by rounding either up or down the
entries of the fair share matrix. Starting from the fair shares, the procedure follows a “scale and round”
approach to find a rounding of it. In order to do this, suitable scaling factors are computed through a
primal-dual iterative procedure known as the “Tie and Transfer” (TT) algorithm [6].

In this approach the fair share matrix is regarded as an ideal proportional matrix, but the integrality
of the seat matrix requires the rounding procedure. Maintaining the idea that the fair share is a good
“target matrix”, an alternative error minimization approach can be followed for BAP, leading to the
formulation of a best approximation problem. The rounding procedure can be actually replaced by the
solution of an integer optimization model in which conditions (1)–(3) correspond to constraints and one
searches for an integer matrix X as close as possible to the target matrix w.r.t. a suitable distance
measure.

It must be noted that, in each country, the ideal proportional matrix can be defined in different ways
according to the particular electoral law. Some countries, like Italy and Belgium, adopt regional quotas
which for each region i and party j are defined as

ri
vij∑

h∈N vih
. (1)

Regional quotas correspond to proportionality within constituencies (i.e., row-wise quotas) and they are
also called natural quotas.

Whatever the selected target matrix is, we will illustrate in the next section some best approximation
models for BAP and we will show how all of them can be equivalently formulated as network flow
problems.

3 Optimal biproportional apportionment via best approximation

Let Z = {(i, j) : vij = 0} be the set of the structural zeros of V . Let xij be the seats to be allocated to
party j in region i. Conditions (1)-(3) can be formalized through the following set of linear constraints∑

j∈N

xij = ri, i ∈M (constituency-sum)

∑
i∈M

xij = cj , j ∈ N (party-sum)

xij = 0, (i, j) ∈ Z (zero vote-zero seat).

(2)

For xij ≥ 0, i ∈ M , j ∈ N , the system (2) is easily recognizable as the set of constraints of an unca-
pacitated transportation problem with forbidden routes defined over a bipartite graph G = (M,N ;E),
where the two sets of nodes M and N correspond to the regions and the parties, respectively. The arc
set E is the set of all those pairs (i, j), i ∈M , j ∈ N , such that vij > 0. From each node i ∈M there is
an outgoing flow equal to ri and into each node j ∈ N there is an incoming flow equal to cj .

A best approximation problem can be formulated adding a proper objective function to the above
constraints. In the following we focus on models in which the L1- L2- and L∞-error measures are
considered for BAP and discuss how they can be solved in polynomial time through the application of
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network flow techniques. Before going into details of these models, we recall the “Controlled Rounding
Problem” by Cox and Ernst [9] which can be referred to as the first error minimization method for a
matrix problem of the same structure of BAP.

4 The Controlled Rounding Problem

The Controlled Rounding Problem (CRP) was introduced by Cox and Ernst in 1982 [9]. If Q is a m× n
real matrix and X is a m × n integer matrix, X is a rounding of Q if either xij = bqijc or xij = dqije,
i ∈M , j ∈ N .

For a given input of the BAP and for a given nonnegative m × n real matrix Q of target quotas,
the controlled rounding problem asks for an apportionment X∗ that is a rounding of Q and minimizes a
prescribed Lp-norm ‖X −Q‖p.

Following [9], it is convenient – and natural – to model CRP via the introduction of binary variables yij ,
and to write the desired apportionment X under the form xij = bqijc+ yij , i ∈M , j ∈ N .

In this way, one can write CRP as

min
∑
i∈M

∑
j∈N

| bqijc+ yij − qij |p∑
j∈N

(bqijc+ yij) = ri i ∈M

∑
i∈M

(bqijc+ yij) = cj j ∈ N

yij = 0 (i, j) ∈ Z̄
yij ∈ {0, 1} i ∈M, j ∈ N, (i, j) /∈ Z̄,

(3)

where the set Z̄ is the set Z (entries with zero votes) plus the entries (if any) with integral qij , if one
wants the seats to be a correct rounding of the quotas. In view of the well-known fact that any real-valued
function f(z) of a single binary variable z can be written as a linear function, f(z) = f(0) (1−z)+f(1) z,
the problem (3) can be equivalently written as

min
∑
i∈M

∑
j∈N

dij yij∑
j∈N

yij = r̄i i ∈M

∑
i∈M

yij = c̄j j ∈ N

yij = 0 (i, j) ∈ Z̄
0 ≤ yij ≤ 1 i ∈M, j ∈ N, (i, j) /∈ Z̄,

(4)

where

dij = (1− <qij>)p− <qij>p

r̄i = ri −
∑
j∈N

bqijc

c̄j = cj −
∑
i∈M

bqijc ,

with <qij> = qij−bqijc, i.e., the fractional part of qij . The objective functions in (3) and (4) differ by the
constant term

∑
i∈M,j∈N <qij>

p. Notice that the constraints yij ∈ {0, 1} in (3) have been relaxed into
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the bounds 0 ≤ yij ≤ 1 in (4). Nonetheless, (3) and (4) remain equivalent since the coefficient matrix
of (4) is totally unimodular. Notice also that (4) is a capacitated linear transportation problem, which
can be solved in O(|E| log(m+ n) (|E|+ (m+ n) log(m+ n))) time, where |E| is the number of nonnull
entries in the vote matrix (see [1], Chap.10).

For the L∞-norm a more complex linearization is suggested involving the definition of new variables
(for details, see [9]).

As noticed by Gassner [13], the above model can be applied for the solution of BAP if one starts from
the fair share matrix as the ideal apportionment. Here it is taken for granted that the seats are obtained
only by rounding up or down the fair shares so that in the model by Cox and Ernst this condition can
be set as a constraint.

However, it is important to remark that limiting the seat values to either rounding down or up the
fair share quotas, as in the Cox and Ernst approach, introduces a constraint which may cut off the true
solution minimizing either the L1-norm or the L2-norm over all possible apportionments. To show this
point, we report an example introduced in [27].

Example 1

Consider the (n+ 2)× (n+ 2) matrix Q of fair share quotas

Q =


n−1

n
1
n · · · 1

n
1
n

1
n

n−1
n · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
1
n 0 · · · n−1

n 0
1
n 0 · · · 0 n−1

n

 , r = ( 2 1 · · · 1 ) , c = ( 2 1 · · · 1 ) .

There are essentially three apportionments up to permutation of the indices {2, . . . , n+ 2}, namely

X1 =


2 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
. . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · 1

, X2 =


1 1 0 0 · · · 0
1 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
. . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · 1

, X3 =


0 1 1 0 · · · 0
1 0 0 0 · · · 0
1 0 0 0 · · · 0
0 0 0 1 · · · 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · 1,


for which we have

‖X1 −Q‖1 = 4 +
4
n
, ‖X2 −Q‖1 = 6− 2

n
, ‖X3 −Q‖1 = 10− 10

n
,

and

‖X1 −Q‖22 = 1 +
5
n

+
4
n2
, ‖X2 −Q‖22 = 3− 3

n
+

4
n2
, ‖X3 −Q‖22 = 7− 11

n
+

4
n2
.

Hence for n > 4 the optimal apportionment (both for the L1- and the L2-norm) is X1, with x1
11

outside the range {0, 1}. If we restrict the apportionments to {0, 1}, then the optimal apportionment is
X2.

We may therefore wonder whether it is possible to solve efficiently the L1 and L2 minimization without
the restriction of finding seats within {bqijc , dqije}. The answer is affirmative thanks to the properties
of network flows. In the following Section 5 and Section 7 we formalize this approach by introducing new
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Figure 1: Functions fij(xij) and gij(xij) are both convex piecewise linear and coincide at all integral points.

linear and quadratic models for BAP. If, on the one hand, we show that these models can be efficiently
solved by using optimization techniques already known in the literature, on the other hand, we point
out that they are applied for the solution of BAP for the first time here, thus providing new ways of
formalizing BAP as a best approximation problem.

5 A min-cost flow model for finding apportionments with minimum L1-error

In this section we discuss a model for BAP in which the L1-error must be minimized but under no
restrictions on the possible rounding of the elements qij . Such model is, in fact, a minimum cost flow one
and it can be efficiently solved to find a minimum error BAP for a given arbitrary target matrix Q.

To this purpose, consider the L1-error computed w.r.t. Q∑
i∈M

∑
j∈N

|xij − qij |. (5)

Starting from G, a new bipartite graph G = (M,N ; E) can be defined in which the set of vertices is
the same as in G, and each arc (i, j) ∈ E is replaced by three parallel arcs in E . All such arcs have lower
capacity equal to 0; the first arc has upper capacity bqijc and cost −1; the second one has upper capacity
1 and cost 1− 2 <qij>; the third arc has infinite upper capacity and cost 1.

We can consider the number of seats xij to be assigned to party j in constituency i as the sum of
three separate flows from i to j, namely yij , zij and tij , in the above network G, i.e.,

xij = yij + zij + tij , (6)

with 0 ≤ yij ≤ bqijc, 0 ≤ zij ≤ 1, tij ≥ 0.
In this way, the function fij(xij) = |xij−qij |, which is convex piecewise linear but has a breakpoint at

the fractional value qij , is approximated by another convex piecewise linear function gij(xij) with integral
breakpoints, and taking the same values as fij(xij) in all integral points xij (see Fig. 1):

gij(xij) =


qij − xij if xij ≤ bqijc
(1− 2 <qij>) (xij − bqijc)+ <qij> if bqijc ≤ xij ≤ dqije
xij − qij if xij ≥ dqije.

(7)

Since in BAP we are interested only in integral values of x, we may replace f(x) with g(x), with the
consequence that g(x) has breakpoints at integral values and network flow techniques can be applied to
produce integral solutions.

Notice that, since the cost 1 − 2 <qij> always lies in the open interval (−1, 1), the function gij(xij)
is convex piecewise linear, implying that
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yij < bqijc ⇒ zij = tij = 0

0 < zij < 1 ⇒ yij = bqijc , tij = 0

tij > 0 ⇒ yij = bqijc , zij = 1.

(8)

Then BAP can be formulated and solved by means of a standard minimum cost flow problem on G
with at most 4mn variables and linear objective function:∑

(hk)∈E

chk ϕhk,

where ϕhk denotes the generic flow variable on G and chk is the corresponding unit cost.
Let X∗ be the solution of the above problem. Since all capacities are integral, in view of the Integrality

Theorem for minimum linear cost flows, the apportionment X∗ is integral as well. In addition, since g(x)
coincides with the L1-error in all integral X’s, it follows that X∗ minimizes the L1-error over all the
apportionments. We remark here that the L1-error method may lead to multiple optimal solutions. This
aspect will be investigated in Section 6.

6 On the uniqueness of L1 optimal apportionments

Given a vote matrix V , a cycle on V is induced by the corresponding cycle in the bipartite graph G (see,
for example, [27]). Given a feasible apportionment X, let f(X) =

∑
i∈M

∑
j∈N |xij − qij | be its value.

An adjacent solution of X is a solution obtained by adding or subtracting a seat to X along a cycle. In
the following, we investigate under which conditions there may exist adjacent optimal solutions for an
optimal solution of a problem instance (V, r, c).

Given an apportionment X, let us call excess pairs those (i, j) such that xij > qij and defect pairs
those (i, j) such that xij < qij . Furthermore, define strongly excess pairs those (i, j) such that xij > qij +1
and strongly defect pairs those (i, j) such that xij < qij − 1. The other excess and defect pairs are called
weakly excess pairs and weakly defect pairs, respectively. Let us denote by S+ and S− the strongly
excess and defect pairs (i, j), respectively and by W+ and W− the weakly excess and defect pairs (i, j),
respectively. Given a (necessarily even) cycle C of pairs, let us partition C into two sets by putting in
each partition set the pairs in C that are at even distance among themselves and denote the two sets as
C+ and C−, with an arbitrary choice. An adjacent solution of X is obtained by adding one seat to pairs
in C+ and decreasing one seat from pairs in C−. Note that strongly excess or defect pairs remain excess
or defect respectively in any adjacent solution, whereas weakly excess or defect pairs may become weakly
defect or excess pairs, respectively.

The difference in value between X and an adjacent solution Y obtained from the cycle C+ ∪ C− is
given by

f(Y )−f(X) =
∑

(ij)∈S+∩C+

1+
∑

(ij)∈W+∩C+

1+
∑

(ij)∈S−∩C−

1+
∑

(ij)∈W−∩C−

1−
∑

(ij)∈S−∩C+

1−
∑

(ij)∈S+∩C−

1+

∑
(ij)∈W−∩C+

(xij + 1− qij)− (qij − xij) +
∑

(i,j)∈W+∩C−

(qij − xij + 1)− (xij − qij) =

|(S+ ∪W+) ∩ C+|+ |(S− ∪W−) ∩ C−| − |S− ∩ C+| − |S+ ∩ C−|+∑
(i,j)∈W−∩C+

(1− 2 <qij>) +
∑

(ij)∈W+∩C−

(1− 2 <qij>).
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We may assume that sums and/or subtractions of fractional parts of quotas are integral with “very low
probability”. Hence we very likely expect f(Y ) = f(X) only if W− ∩C+ = ∅ and W+ ∩C− = ∅. In this
case f(Y ) = f(X) if and only if

|(S+ ∪W+) ∩ C+|+ |(S− ∪W−) ∩ C−| = |S− ∩ C+|+ |S+ ∩ C−|

In turn this condition can be fulfilled only if there are strongly excess and defect pairs. Consider the
following example.

Example 2

V =

 796 965 352 12 923
883 132 95 61 880
614 972 710 658 433

 , r =

 29
20
16

 , c = ( 18 12 14 12 9 ) ,

with regional quotas Q and an optimal seat assignment X

Q =

 7.574 9.181 3.349 0.114 8.782
8.610 1.288 0.926 0.595 8.581
2.900 4.592 3.354 3.108 2.046

 , X =

 7 7 8 7 0
8 1 2 1 8
3 4 4 4 1

 .

The optimal value of X is 29.3054. The sets S+, S−, W+ and W− are as follows (denoted as S+ → ++,
W+ → +, S− → - -, W− → -) − −− ++ ++ −−

− − ++ + −
+ − + + −−

 ,

and a possible cycle is C+ = {(1, 5), (2, 4)}, C− = {(1, 4), (2, 5)} with adjacent solution and new sets

Y =

 7 7 8 6 1
8 1 2 2 7
3 4 4 4 1

 ,

− −− ++ ++ −−
− − ++ ++ −−
+ − + + −−

 .

Through a sequence of equivalent adjacent solutions it is possible to obtain the following apportionment

Y ′ =

 7 9 9 1 3
8 1 1 4 6
3 2 4 7 0

 ,

with the same optimal value 29.3054.

The astonishing fact in Example 2 is that it is possible to vary in the cell (1, 4) the seats from 7 to 1,
remaining always within optimal solutions!

This is clearly a highly undesirable feature of the L1 norm minimization. In this example we have
used regional quotas and, admittedly, the seats values ri and cj preassigned to the regions and to the
parties are anomalous w.r.t. to the matrix of votes. However, from a theoretical point of view we have
to take care of any possible situation. The behavior of the L1 norm is much more comfortable if we use
the fair share quotas, which for Example 2 are given by

Q =

 7.625 8.638 7.886 0.609 4.241
8.946 1.250 2.251 3.277 4.276
1.428 2.113 3.862 8.114 0.483

 .
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The optimal solution is

X =

 8 9 8 0 4
9 1 2 4 4
1 2 4 8 1

 .

All pairs are weakly excess or weakly defect (in other words the solution is within the rounded quotas, like
in the controlled rounding procedure) and therefore the solution is in general unique with high probability.

The conclusion is that the L1 norm minimization is a viable method if the fair shares are used as
quotas. Otherwise the solution may be not unique producing very anomalous seat assignments.

7 A min-cost flow model for finding apportionments with minimum L2-error

The same technique used in Section 5 for the L1-error might be applied to any convex objective function,
by sampling the function at the integral points and building an equivalent (on the integral points) convex
piecewise linear function. However – differently from the L1-error case – for an arbitrary convex function
the number of breakpoints might grow in a non polynomial way.

The L2-error minimization model was already considered by Minoux in 1984 [18] when he studied a
particular quadratic minimum cost flow problem. We show that BAP can be formulated exactly as the
quadratic problem analyzed by Minoux, so that the same solution approach can be exploited to solve
BAP, too.

Consider an arbitrary matrix of target shares Q. Following the approach already used in Section 5,
and according to the objective functions suggested in [9], BAP can be formulated as a minimum cost flow
problem w.r.t. any Lp-error. In particular, when the L2-error must be minimized the problem becomes a
minimum quadratic cost flow problem, that is, a special case of a non linear separable cost network flow
problem with convex and continuously separable objective function [19].

As already noticed by Hochbaum in 2005 [15], a first polynomial algorithm for the quadratic minimum
cost flow problem was introduced in [18] where the idea of the out-of-kilter method for linear minimum
cost flow problems is extended to the case of quadratic separable cost functions. Other polynomial
algorithms for the same problem were suggested in [1]. All these algorithms are polynomial but not
strongly polynomial since their computational complexity depends on the magnitude of some parameters
in the problem instance input, such as the maximum upper capacity of an arc, or the maximum supply
of a node.

The method suggested by Minoux for the quadratic problem [18] essentially follows a methodology
similar to the one used in Section 5, but, instead of discretizing the cost function once according to some
desired accuracy, a scaling approach is used to repeatedly replace the original quadratic cost function by
different (scaled) piecewise linear convex approximations - each with a different number of breakpoints
- until an approximation sufficiently close to the (integral) optimum of the original problem is reached.
Minoux also provides basic results guaranteeing that such an optimum is reached after a polynomial
number of scalings. In the following, we show how the L2-error minimization model for BAP can be
formulated in the form of the model studied by Minoux and provide some details of the corresponding
solution procedure.

The L2-error model for BAP is formulated as the following quadratic cost transportation problem:
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min
∑
i∈M

∑
j∈N

(xij − qij)2

∑
j∈N

xij = ri i ∈M

∑
i∈M

xij = cj j ∈ N

xij = 0 (i, j) ∈ Z
xij ≥ 0 and integral (i, j) /∈ Z.

(9)

Recall the bipartite graph G = (M,N ;E) underlying the set of constraints in (9). It is well known
that the above problem can be equivalently formulated as a minimum cost flow problem with a single
source s and a single sink t on a suitable network M obtained by augmenting G and introducing proper
lower and upper capacities for the outgoing arcs of the source and the incoming arcs of the sink. It can
be also shown that any feasible solution of the resulting minimum cost flow problem can be obtained as
a feasible solution of the corresponding circulation problem on a network N = (V,A) obtained by adding
in M the arc (t, s) with lower capacity equal to 0 (see [1]).

W.l.o.g., in our BAP problem we can introduce lower and upper capacities `ij , uij also for arcs from
a constituency-node i to a party-node j as follows:

`ij := 0 ≤ xij ≤ min{ri , cj} =: uij , i ∈M, j ∈ N,

and an upper capacity on the arc (t, s) is set equal to uts := H.
After the above considerations, the L2-error model for BAP (9) can be rewritten in the following

form:

min
∑

(h,k)∈A

(xhk − qhk)2

Ax = 0

0 ≤ xhk ≤ uhk, (h, k) ∈ A
xhk integral (h, k) ∈ A,

(10)

where A is the node-arc incidence matrix of N . Problem (10) has the form of the quadratic separable
min cost flow problem (QCFP) studied by Minoux in [18].

Since the objective function in (10) is separable, for each xij , the quadratic function fij(xij) =
(xij − qij)2 can be approximated in the corresponding interval [0, uij ] by a piecewise linear function (see
Fig. 2). Any such approximation of problem (10) can be solved in polynomial time by applying the out-
of-kilter method generalized to the case of minimum cost network flow problems with a convex piecewise
linear objective function (see, [8, 14]).

Minoux proves that problem (10) can be solved in polynomial time by the solution of a finite sequence
of “scaled” problems each corresponding to a different piecewise linear approximation of the quadratic
cost function of (10), and that, after a polynomial number of scalings, the optimum of the scaled problem
coincides with the optimum of (10). For a given integer p, consider the p-th order approximation of QCFP
- that we denote by QCFP(p) - which scales the original problem by a factor σ = 2p so that the scaled
problem has a piecewise linear objective function taking the same value of fij(xij) in all the xij that are
integer multiples of σ. The sequence of scaled problems is given by QCFP(p), p := p̄, p̄− 1, . . . , ρ+ 1, ρ,
with p̄ > ρ, and where p̄ = dlog2 ue, with u = maxij uij , and ρ is an integer (non necessarily positive).
The idea is to refine at each step of the sequence the piecewise linear approximations of the cost function
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Figure 2: Piecewise linear approximation of function (xij − qij)2.

of the original problem until a point sufficiently close to the optimal one is obtained and it is shown that
this can be done through a suitable choice of (a small) ρ. In addition, for every p, using as a starting
solution at step p − 1 the optimal flow obtained at step p, the optimal solution of QCFP(p) can be
obtained in polynomial time by the out-of-kilter algorithm. This leads to an overall time complexity of
O(µ ν2 log u), where µ and ν are the number of arcs and vertices of N , respectively.

8 Error minimization apportionments with minimum L∞-error

When the L∞-error is considered, BAP leads to a nonlinear minimum cost flow problem on the bipartite
network G = (M,N ;E), with the objective function representing the maximum absolute error [24, 28]:

min max
i∈M, j∈N

|xij − qij |∑
j∈N

xij = ri i ∈M

∑
i∈M

xij = cj j ∈ N

xij = 0 (i, j) ∈ Z
xij ≥ 0 and integral (i, j) /∈ Z.

The above model can be reformulated as follows:

min τ∑
j∈N

xij = ri i ∈M

∑
i∈M

xij = cj j ∈ N

dqij − τe+ ≤ xij ≤ bqij + τc (i, j) /∈ Z
xij = 0 (i, j) ∈ Z
xij integral (i, j) /∈ Z,

(11)

where, by definition, a+ := max{a, 0}.
For any fixed value of τ > 0 the problem of finding an apportionment with maximum absolute error

at most τ corresponds to finding a feasible flow on G = (M,N ;E) with the above capacities. It is well
known that the existence of a feasible flow can be established in polynomial time through the solution
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of a maximum flow problem [1]. A feasible flow xij satisfies the given capacities and, by the well-known
Integrality Theorem of Network Flows [1], if there is a feasible flow x there is also an integral flow since
the capacities are integers for all (i, j). Hence, the optimal value τ∗ can be obtained by finding the
minimum τ such that a feasible flow with error at most τ exists. Serafini and Simeone [28] note that,
due to the integrality of the xij ’s, in this procedure only a finite set of values must be considered for τ
(relevant errors). In fact, the relevant errors are those values of τ such that either qij − τ or qij + τ is an
integer in the interval [0, ri] for some (i, j) /∈ Z. Thus, the optimal value τ∗ can be obtained by applying
the following algorithm:

1. Perform a binary search on the set of relevant values for τ .

2. At each iteration, for the current value of τ check whether a feasible flow exists through the solution
of a maximum flow problem.

Since the relevant errors are at most n (H + m), O(log(n (H + m))) maximum flow problems must
be solved, so that the overall time complexity is polynomial. Serafini and Simeone also present a more
complex algorithm with a strongly polynomial complexity (see, [28]).

They also provide a refinement of the above algorithm based on finding unordered lexicographic
minima aimed to minimize also the errors which are less than the maximum error. Under the mild
condition that the fractional parts of the target quotas qij are all different, this guarantees the uniqueness
of the solution which is a crucial issue in real electoral applications. In the following, when analyzing the
L∞-error approach, we will always refer to this version of the procedure as “MinMaxLexBest”.

At the end of this section, we want to emphasize that, while best approximation through the mini-
mization of the L1- or L2-error objectives is handled via the solution of minimum cost flow problems, the
L∞-error model requires the solution of maximum flow problems: although both type of problems are
solvable in polynomial time, the latter ones are conceptually simpler than the former and can be solved
by more efficient algorithms.

There is another feature of this particular L∞-error model which makes it an interesting and viable
model. Since solving an optimization problem requires an ad-hoc mathematical knowledge, the layman
could legitimately doubt that the given solution satisfies the claimed requirement, namely, that it mini-
mizes the stated norm. In principle, all the described methods exhibit some sort of strong duality property
which could enable a checking method based on dual variables. However, a procedure of this type would
in general require again a non trivial mathematical knowledge. On the contrary, it turns out that the
L∞-error model, being based on the max flow–min cut theorem, allows for a checking method which is
amenable to the layman, so that this method can be considered as ‘transparent’ to the voter. For details
about how this kind of ‘certificate’ can be provided to and handled by the layman see [29].

9 Relative error minimization

All methods described so far are concerned with absolute errors |qij − xij |. Since a difference of one seat
has a stronger impact on a cell with a little number of votes than on a cell with many votes, it makes sense
to consider the relative error |1−xij/qij | instead of the absolute error. Indeed Balinski and Young ([7] p.
129) observe that “it can be argued that staying within the quota is not really compatible with the idea of
proportionality at all, since it allows a much greater variance in the per capita representation of smaller
states than it does for larger states”(by “staying within the quotas” the authors mean bqijc ≤ xij ≤ dqije).
We may note that divisor methods by their nature are more affine to measuring relative distances rather
than absolute distances.

However, little attention has been devoted in the literature to the minimization of the relative error.
In [28] this case is considered at length for the L∞ norm and a weakly polynomial algorithm is described
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based on the same ideas as for the absolute error minimization. Indeed the same flow model can be used
with the difference that the flow capacity bounds in (11) become

dqij (1− τ)e+ ≤ xij ≤ bqij (1 + τ)c ,

and the minimum value of τ (relative error in this case) has to be found such that (11) (with the new
bounds) is feasible. Since the number of relevant errors is not so nicely bounded as for the absolute error
only a weakly polynomial algorithm has been proposed in [28].

Concerning the norms L1 and L2 we may extend the previous results by noting that the function
|1 − xij/qij | coincides, on the integral points, with the function gij(xij)/qij , where gij(xij) has been
defined in (7). Similarly the function (1 − xij/qij)2 can be also approximated by a piecewise linear
function with equal values on the integral points. Therefore the previous observations can be extended
to the relative error case without altering the algorithmic ideas of the absolute error minimization.

It is possible to show that also for the relative error the optimal solution can be outside the quota
roundings, a fact that is quite plausible for the relative error. The same Example 1 can be used to show
this fact. The apportionment X1 is optimal for all three norms L1, L2 and L∞, if n ≥ 3.

10 Comparing the apportionments of the different best approximation models

In this section we provide a comparative analysis between the seat apportionments produced by the
best approximation models and methods discussed in the previous sections, and also w.r.t. the solution
provided by the Balinski and Demange’s Tie and Transfer algorithm. In particular, we shall analyze the
data of the Italian Elections of the Chamber of Deputies of 2008. First of all, Table 1 shows the seat
apportionments obtained as optimal solutions of the best approximation models minimizing the L∞-,
L1-, and L2- error objective functions – and we denote these models by MinMax (or MinMaxLexBest),
MinL1, and MinL2, respectively – together with the fair share quotas and seat allocation obtained by
applying the TT algorithm (first and second column for every party, respectively).

For these experiments we use the fair shares as target quotas to get a uniform comparison among the
methods. In Table 1 the rows refer to the 26 Italian constituencies for the Election of the Chamber of
Deputies, while the columns refer to the parties. We did not report the allocation for the “Südtiroler
Volkspartei”, a local party competing only in the constituency “Trentino Alto-Adige” (TA, row 6). Ac-
tually, once the total number of seats has been established for this party at the national level, under
the zero vote-zero seat condition, every apportionment method assigns Südtiroler Volkspartei the same
number of seats (equal to the national one). Since in 2008 Südtiroler Volkspartei got 3 seats in TA, in
Table 1 we avoided reporting the Südtiroler Volkspartei column and, consequently, we updated both the
house size and the total number of seats in TA by subtracting these three seats. There are also other
two local parties, namely, “Lega Nord” (LN) and “Movimento Per le Autonomie” (MPA), which compete
only in the northern and in the southern constituencies, respectively. More precisely, LN presents its
lists only in the first 14 constituencies of Table 1, while MPA competes only in the 12 remaining ones.
To make the table more compact, we therefore decided to report the results of these two parties in a
single column, using the hyphen “−” to separate the names and the national seats of these two parties.
Consequently, the second column of Table 1 reports the seats for LN in rows 1-14, and those for MPA in
rows 15-26.

Still referring to the Italian Elections of 2008, in Table 2 we report a comparative analysis among
the different apportionments similar to the one already provided in [28]; here we add the apportionment
obtained with the methods minimizing the norms L1, L2. The corresponding outputs are compared both
between themselves and with the fair shares1. For each region-party pair (i, j) we have taken the value

1The small differences that the reader may notice between these numbers and the corresponding ones in [28] are due to
slight differences between the data sets used in the two studies.
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PDL LN – MPA PD IDV UDC ri

P1 8.66 9 9 9 9 2.53 3 2 2 2 9.85 9 10 10 10 1.62 2 2 2 2 1.32 1 1 1 1 24

P2 8.62 9 9 9 9 4.33 4 4 4 4 6.84 7 7 7 7 0.95 1 1 1 1 1.24 1 1 1 1 22

L1 15.4 15 15 15 15 7.55 8 8 8 8 13.52 13 14 13 13 1.99 2 2 2 2 1.48 2 1 2 2 40

L2 14.1 14 14 14 14 13.75 14 14 14 14 11.20 11 11 11 11 1.75 2 2 2 2 2.14 2 2 2 2 43

L3 5.44 5 6 5 5 3.24 3 3 3 3 5.06 5 5 5 5 0.52 1 0 1 1 0.71 1 1 1 1 15

TA 2.30 2 2 2 2 1.13 1 1 1 1 2.73 3 3 3 3 0.37 0 0 0 0 0.45 1 1 1 1 7

V1 8.38 8 8 8 8 9.53 10 10 10 10 8.02 8 8 8 8 1.23 1 1 1 1 1.81 2 2 2 2 29

V2 5.92 6 6 6 6 5.93 6 6 6 6 6.03 6 6 6 6 1.06 1 1 1 1 1.04 1 1 1 1 20

FV 4.95 5 5 5 5 2.03 2 2 2 2 4.53 4 4 4 4 0.62 1 1 1 1 0.84 1 1 1 1 13

LI 6.85 7 7 7 7 1.39 1 1 1 1 7.11 7 7 7 7 0.93 1 1 1 1 0.69 1 1 1 1 17

ER 13.37 13 13 13 13 3.97 4 4 4 4 21.67 22 22 22 22 2.01 2 2 2 2 1.96 2 2 2 2 43

TO 13.49 14 14 14 14 0.95 1 1 1 1 20.28 20 20 20 20 1.52 1 1 1 1 1.74 2 2 2 2 38

UM 3.49 4 3 4 4 0.18 0 0 0 0 4.55 5 5 5 5 0.31 0 0 0 0 0.45 0 1 0 0 9

MA 6.22 6 6 6 6 0.42 0 1 1 1 7.46 8 7 7 7 0.81 1 1 1 1 1.06 1 1 1 1 16

La1 18.28 18 18 18 18 0.11 0 0 0 0 17.65 18 18 18 18 2.07 2 2 2 2 1.87 2 2 2 2 40

La2 8.24 8 8 8 8 0.06 0 0 0 0 5.19 5 5 5 5 0.50 1 1 1 1 0.99 1 1 1 1 15

AB 6.46 7 7 7 7 0.24 0 0 0 0 5.28 5 5 5 5 1.11 1 1 1 1 0.89 1 1 1 1 14

MO 1.16 1 1 1 1 0.16 0 0 0 0 0.58 1 1 1 1 0.90 1 1 1 1 0.18 0 0 0 0 3

C1 17.40 17 17 17 17 0.92 1 1 1 1 10.89 11 11 11 11 1.83 2 2 2 2 1.94 2 2 2 2 33

C2 15.59 16 16 16 16 0.62 1 0 1 1 9.02 9 9 9 9 1.42 1 2 1 1 2.33 2 2 2 2 29

PU 22.01 22 22 22 22 0.81 1 1 1 1 15.15 15 15 15 15 2.23 2 2 2 2 3.77 4 4 4 4 44

BA 2.46 3 3 3 3 0.04 0 0 0 0 2.62 3 3 3 3 0.40 0 0 0 0 0.45 0 0 0 0 6

CA 10.24 10 10 10 10 0.61 1 1 1 1 8.20 8 8 8 8 0.91 1 1 1 1 2.01 2 2 2 2 22

S1 12.88 13 13 13 13 1.49 1 2 1 1 7.35 8 7 8 8 1.11 1 1 1 1 3.15 3 3 3 3 26

S2 14.33 14 14 14 14 2.76 3 3 3 3 7.71 8 8 8 8 0.91 1 1 1 1 2.26 2 2 2 2 28

SA 8.55 9 9 9 9 0.12 0 0 0 0 7.39 7 7 7 7 0.81 1 1 1 1 1.10 1 1 1 1 18

ci 255 57 – 8 226 30 38 614

Table 1: Seat allocations obtained with different models (Electoral data: Italy 2008). For each party, the first
column refers to the Fair Shares; columns from the second to the fourth correspond to the solution provided by
Tie and Transfer, MinMaxLexBest, MinL1, and MinL2 methods, respectively. Column 2 reports seats for LN
party in rows 1-14 and seats for MPA party in rows 15-26.

|aij − bij |, with a the seat apportionment given by one method and b the one given by another method
(a fractional apportionment for FS); we have considered both the maximum difference maxij |aij − bij |
(upper-right entries in bold face) and the average difference

∑
ij |aij−bij |/|E| (lower-left entries in normal

face), with |E| the number of region-party pairs not in Z (or, equivalently, the number of arcs in the
associated bipartite network).

From the analysis of the tables one can see that the seat allocations obtained by the best approximation
methods do not differ too much from each other and they are also very close to the fair shares and the
allocation provided by TT. In particular, we observe that for the 2008 data the MinL1 and the MinL2
models provide the same apportionment. We notice here that this is not a general result since it was not
observed for all the other electoral data sets. It is also noteworthy that all the apportionments obtained
via best approximation methods are closer to the ideal fair share matrix than the TT one according to
the maximum and the average error measure shown in Table 2.

11 Balinski and Demange’s axioms of proportionality

In this section we perform an evaluation of the best approximation methods within the theoretical frame-
work for dealing with BAP provided by Balinski and Demange [5]. We recall that in this framework a
seat assignment is considered “right” if it satisfies a specific set of axioms. In particular, Balinski and
Demange [5] introduce six axioms for integral proportionality and show that they are always satisfied by
the divisor based methods for BAP such as the TT algorithm.

A different and legitimate overall criterion is to consider “right” a seat assignment minimizing some
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ITALY 2008 FS MinMaxLexBest MinL1 MinL2 TT

FS 0.6221 0.6472 0.6472 0.8502

MinMaxLexBest 0.2512 1 1 1

MinL1 0.2492 0.0763 0 1

MinL2 0.2492 0.0763 0 1

TT 0.2535 0.1069 0.0305 0.0305

Table 2: Maximum (bold) and average (normal) errors for each pair of methods.

measure of the deviations of the seats from given quotas. In principle there is no meta-criterion specifying
which methodology should be chosen in designing a BAP method, whether the axiom satisfaction criterion
or the norm minimization one. We believe that the choice between these different approaches is a matter
of subjective preference of the legislator

It is therefore important to realize how much a seat assignment computed by minimizing the deviations
fails to satisfy the axioms, and, conversely, how much, methods designed to satisfy the axioms fail to
minimize the deviations.

We have already shown in the previous section (see in particular Table 2) the kind of error displayed by
the TT algorithm (i.e., an algorithm satisfying the axioms) compared with methods designed to minimize
the error, by using data from the Italian political elections 2008. Of course the analysis could be carried
out with many other data sets, but we think that this comparison is sufficient to give an idea of the
performance of the TT algorithm with respect to the goal of minimizing the error.

Now we discuss which axioms are satisfied by the best approximation methods presented in this paper.
In the following we state each axiom and briefly discuss the results w.r.t. the best approximation methods
for BAP. We notice that the axiom of Relevance is related to a more general BAP problem considered
by Balinski and Demange in which row- and column- sums must lie in an interval of values; thus, it is
not meaningful in our formulations of BAP in which row- and column- sums are fixed. The axioms of
Exactness and of Homogeneity, stated w.r.t. the fair share quotas, can be easily analyzed.

Axiom of Exactness: If the fair share matrix is integer in all components then it must be the unique
apportionment.

It is easy to check that Exactness holds for all the best approximation models.

Axiom of Homogeneity: If some row i or column j of V is scaled by a factor s, and the corresponding
sum of the seats ri or cj remains unchanged, then the allocation X in that row or column must not change.

Since the fair share matrix is invariant for arbitrary row and column scaling by positive factors, the
Homogeneity axiom is satisfied if the target quotas are the fair shares. For regional quotas homogeneity
is limited to row scalings.

The remaining axioms of Uniformity, Monotonicity and Completeness are analyzed in detail in the
following. Uniformity, also referred to as Consistency, requires that any part of an apportionment must
be itself an apportionment. It was originally introduced in [6] through two statements, the second of
which refers to the particular case of multiple apportionments. Here we focus only on the first statement
which encompasses the main idea of the axiom.
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Model 2008 2006 2001 1996 1994

MinMaxLexBest 0.9695 0.9779 0.9807 0.9806 0.9623

MinMax 0.9651 0.9774 0.9783 0.9749 0.9608

MinL1 0.3157 0.3861 0.3179 0.4351 0.4729

MinL2 0.3171 0.3822 0.3179 0.3591 0.4729

Table 3: Uniformity index computed over five data sets of Italian elections.

Axiom of Uniformity or Consistency: Let X be a m × n apportionment for the BAP instance
(V, r, c), I and J two subsets of M and N , respectively. The apportionment method that produced X is
uniform if for any apportionment Y of (VI×J , rI , cJ) one has Y = XI×J .

There is no guarantee that Uniformity holds for best approximation methods. In fact, extracting rows
and columns from the vote matrix produces new quotas and the best error w.r.t. to the new quotas can
be obtained with a different seat assignment. Consider for instance the following counterexample where
fair share quotas have been used. It easy to verify that for this example one gets the same and unique
optimal assignment for all norms L1, L2 and L∞. Similar counterexamples w.r.t. regional quotas could
be also provided.

Example 3

V =
(

65 30 82
43 32 98

)
, r =

(
15
15

)
, c = ( 9 5 16 ) ,

which gives the fair share matrix

Q =
(

5.38007 2.39821 7.22171
3.61993 2.60179 8.77829

)
.

The optimal assignment for the L1, L2 and L∞ norms is

X =
(

5 3 7
4 2 9

)
.

If we restrict the problem to the second and third column, we have the new data

V ′ =
(

30 82
32 98

)
, r′ =

(
10
11

)
, c′ = ( 5 16 ) ,

with fair share matrix

Q′ =
(

2.4891 7.5109
2.5109 8.4891

)
,

and optimal assignment for the L1, L2 and L∞ norms

X ′ =
(

2 8
3 8

)
.
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We introduced a uniformity index in order to understand “how much” uniformity is satisfied by best
approximation methods in real cases. We have used as data set the last five Italian elections of the
Chamber of Deputies (1994, 1996, 2001, 2006, 2008) with the fair shares as target quotas. Clearly testing
Uniformity on all possible sub-matrices is out of question. So we have decided to test the method only
on all 2× 2 sub-matrices, with the idea in mind that small sub-matrices are more prone to exhibit a non
uniform behavior.

The uniformity index is computed as the percentage of cases in which a success was observed. A value
equal to 1 for the uniformity index indicates a uniform behavior of the method (at least for that vote
matrix). In Table 3 we report the values obtained for such an index.

For the MinL1 and MinL2 models the value of the uniformity index is quite poor, while MinMax and
MinMaxLexBest methods show a much better performance. Although none of the best approximation
methods guarantees uniformity, the MinMax approach provide uniformity index values very close to 1,
so that they can be considered “quasi-uniform” methods.

This result should be no surprise. The error for L1 and L2 is computed by summing over all entries of
the matrix and a discrepancy between quota and seats in one entry can be compensated by a discrepancy
in another entry. In other words, there is a strong interaction among the matrix entries. By reducing the
matrix, the interaction decreases and different solutions may be produced.

Axiom of Monotonicity: Let X be a m×n apportionment for the BAP instance (V, r, c) and X ′ be an
apportionment of (V ′, r, c), with v′hk > vhk and v′ij = vij for (i, j) 6= (h, k). The apportionment method
that produced X and X ′ satisfies monotonicity if x′hk ≥ xhk.

We observed a different performance of the best approximation methods w.r.t. Monotonicity. Chang-
ing only one entry in the vote matrix affects all entries of the fair share matrix and it is not so evident
that Monotonicity should hold in any case by minimizing the error. Indeed we have found the follow-
ing counterexample showing a non monotonic behavior (it uses the same vote matrix of Example 2 in
Section 6).

Example 4

V =

 796 965 352 12 923
883 132 95 61 880
614 972 710 658 433

 , r =

 29
20
16

 , c = ( 18 12 14 12 9 ) ,

which gives the fair share matrix

Q =

 7.62544 8.63784 7.88650 0.60945 4.24074
8.94641 1.24965 2.25114 3.27658 4.27622
1.42815 2.11251 3.86237 8.11398 0.48304

 .

The apportionment X minimizing ‖X−Q‖∞ (and incidentally minimizing also ‖X−Q‖1, see Section 6)
is  8 9 8 0 4

9 1 2 4 4
1 2 4 8 1

 ,

with error τ = 0.72342 achieved at the entry (2, 4). Let V ′ be obtained from V by changing only v11.

V ′ =

 797 965 352 12 923
883 132 95 61 880
614 972 710 658 433

 .
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The new fair shares are

Q′ =

 7.62890 8.63694 7.88521 0.60924 4.23968
8.94365 1.25013 2.25188 3.27707 4.27725
1.42744 2.11293 3.86292 8.11369 0.48306

 .

The apportionment X ′ minimizing ‖X ′ −Q′‖∞ (but not ‖X −Q‖1) is 7 9 8 1 4
9 1 2 3 5
2 2 4 8 0

 ,

with error τ ′ = 0.72275 achieved at the entry (2, 5). Note that

τ ′ < ‖X −Q′‖∞ = |x24 − q′24| = 0.72293, τ < ‖X ′ −Q‖∞ = |x′25 − q25| = 0.72378.

For v11 ≤ 821 one always obtains x11 = 7. Only for v11 = 822 one obtains again x11 = 8.

We tested Monotonicity on the previous five data sets of Italian elections by systematically modifying
the votes in any given cell of V , and checking the corresponding apportionment. The test has been carried
out by considering as target both the fair shares and the regional quotas.

In all cases our experiments report a monotonic behavior. We may conclude that all best-approximation
methods are ‘quasi-monotonic’. In particular, we conjecture that Monotonicity does hold for the MinMax
method w.r.t. regional quotas (whilst the previous Example 4 shows that this is not true w.r.t. fair share
quotas).

Axiom of Completeness: Let (V̂ , r̂, ĉ) be a given instance of BAP, and let (V k, rk, ck) be a sequence
of (real) matrices and vectors such that:

- for every k, X̄ is an apportionment of (V k, rk, ck)

- (V k, rk, ck)→ (V̂ , r̂, ĉ), when k →∞.

Completeness holds if X̄ is also an apportionment of (V̂ , r̂, ĉ).

Let Q(V, r, c) be the target quotas for (V, r, c). In particular let Qk := Q(V k, rk, ck) and Q̂ :=
Q(V̂ , r̂, ĉ). Let X(V, r, c) be the apportionment obtained from (V, r, c). Let

τk = ‖X̄ −Qk‖, τ̂ = ‖X̂ − Q̂‖.

We investigate under which conditions the Axiom holds. Since X(V, r, c) is obtained by composing
Q(V, r, c) and X(q, r, c), these conditions involve the quotas as well. Let Zk be the set of pairs with zero
votes for V k and Ẑ for V̂ .

Clearly continuity of the target quotas w.r.t. the vote matrix is an essential requirement in having
the Completeness Axion satisfied. The regional quotas are obviously continuous. The fair share quotas
are continuous under additional assumptions. It has been proved in [5] that continuity holds if there are
no zero entries in the vote matrix. This assumption can be restricted to the invariance of the zero set
for all possible vote matrices as proved in [28]. The non invariance of the zero set can lead to anomalous
results as shown in the following two examples, where quotas and votes can be identified and therefore
continuity of the quotas w.r.t. the votes is granted.
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Example 5

Consider the following matrix of regional quotas (parties A–G and regions 1–5). In this example the
L∞ norm is used.

A B C D E F G

1 0.992 0.870 0.170 0.994 0.988 0.986−ε ε

2 0.460 0.580 0.991 0.993 0.989 0.987 0

3 0 0 0 0.990 0 0.010 0

4 0 0 0 0.441 0 0.559 0

5 0 0 0 0.140 0.860−ε 0 1+ε

with r = ( 5 5 1 1 2 ), c = ( 1 1 1 4 3 3 1 ) (invariant w.r.t. ε). For 0 < ε < 0.006 the
solution X̄ is

A B C D E F G

1 1 0 0 1 1 1 1

2 0 1 1 1 1 1 0

3 0 0 0 1 0 0 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

with L∞-error τε = 1 + ε, for the pair (5,G). But for ε = 0 the solution X̂ is

A B C D E F G

1 1 0 0 2 1 1 0

2 0 1 1 1 1 1 0

3 0 0 0 1 0 0 0

4 0 0 0 0 0 1 0

5 0 0 0 0 1 0 1

with L∞-error τ̂ = 1.006 for the pair (1,D). Note that X̂ is optimal also for 0.006 < ε < 0.86.

Example 6

Let Q be the following (n+ 1)× (n+ 1) matrix of fair share quotas

Q =



ε 1
n

1
n · · · 1

n
1
n − ε

1
n

n−1
n 0 · · · 0 0

1
n 0 n−1

n · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
n 0 0 · · · n−1

n 0
1
n − ε 0 0 · · · 0 n−1

n + ε


, r = ( 1 1 · · · 1 ) , c = ( 1 1 · · · 1 ) .

There are essentially three apportionments up to permutation of the indices {2, . . . , n} for the second
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one, namely

X1 =


1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1 0
0 0 0 · · · 0 1

 , X2 =


0 1 0 · · · 0 0
1 0 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1 0
0 0 0 · · · 0 1

 , X3 =


0 0 0 · · · 0 1
0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1 0
1 0 0 · · · 0 0

 ,

for which we have

‖X1 −Q‖1 = 4− 4 ε, ‖X2 −Q‖1 = 6− 6
n
− 2 ε, ‖X3 −Q‖1 = 6− 6

n
+ 4 ε.

For n ≥ 3 and ε > 0 the optimum is X̄ = X1. But for ε = 0, X1 is not feasible and the optima are X2

and X3. The same result holds also for the L2-norm for which we have

‖X1 −Q‖22 = (1− ε)2 + 3 (ε− 1
n

)2 + 3
n− 1
n2

‖X2 −Q‖22 = 3 (1− 1
n

)2 + ε2 + 3 (ε− 1
n

)2 + 3
n− 2
n2

‖X3 −Q‖22 = 3 (1 + ε− 1
n

)2 + ε2 + 3
n− 1
n2

,

but not for the L∞-norm for which X2 is always the optimal apportionment (provided ε < 1/n).

Apparently, the critical issue in both examples is the presence of quotas qk
ij → 0 whilst xij = 1. In

this case the apportionment X̄ is not feasible for the limit vote matrix and the Completeness Axiom
cannot hold. Let us first state a useful simple lemma.

Lemma 1 For sufficiently large k, Zk ⊂ Ẑ and every apportionment that is feasible for V̂ is also feasible
for V k.

The next lemma shows that the Completeness Axiom holds for any type of norm if the quota matrix
is continuous w.r.t. the vote matrix and the limiting seat matrix is feasible for the limiting vote matrix.

Lemma 2 Assume that X̄ is a feasible apportionment for V̂ , X̂ is optimal for V̂ w.r.t. a given norm,
and Q(V ) is continuous. Then X̄ = X̂ and τk → τ̂ .

Proof: By the continuity of Q(V ) and the continuity of the norm we have that

lim
k
τk = lim

k
‖Qk − X̄‖ = ‖Q̂− X̄‖ =: τ ′.

We claim that τ ′ = τ̂ . Note that τ ′ < τ̂ cannot hold because X̄ is assumed feasible for V̂ and therefore
X̂ could not be optimal w.r.t. Q̂ (in Counterexamples 5 and 6 it is indeed τ ′ < τ̂ because the feasibility
assumption for X̄ is not satisfied). Hence let us assume τ̂ < τ ′. Let ε = τ ′ − τ̂ . Then

‖Q̂− X̂‖ = ‖Q̂− X̄‖ − ε = τ ′ − ε.

There exists K such that ‖Q̂−Qk‖ < ε/2 and |τk − τ ′| < ε/2 for k > K. For any k > K we have

‖Qk − X̂‖ = ‖Qk − Q̂+ Q̂− X̂‖ ≤ ‖Qk − Q̂‖+ ‖Q̂− X̂‖ < ε

2
+ τ ′ − ε =

ε

2
+ τ ′ − τk + τk − ε < ε

2
+
ε

2
+ τk − ε = τk = ‖Qk − X̄‖.

Since, by Lemma 1, X̂ is feasible for V k, the stated inequality contradicts optimality of X̄ w.r.t. Qk for
k > K. Hence τ ′ = τ̂ and X̄ is optimal for V̂ .
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The critical assumption in Lemma 2 is the feasibility of X̄ also for the limit vote matrix. This in turn
is linked to the existence of quotas qk

ij → 0 with x̄ij = 1, i.e., to the possibility of having the set Z of zero
votes varying w.r.t. the vote matrices. However, as pointed out in [28], it may be safely assumed that
the presence of zeroes is due to structural reasons (a party does not present any list of candidates in a
region) rather than to accidental ones (a party does not get any vote in a region in spite of its list in that
region being nonempty). For these reasons we consider the Restricted Completeness Axiom as defined in
[28], which makes sense in a practical context. For the sake of clarity we restate here the conditions of
the Restricted Completeness Axiom.

Let V be the set of all real-valued nonnegative matrices whose smallest positive entry is at least 1
and whose set of null entries is a given subset Z ⊂ M × N . Notice that the set V is closed. Then the
Restricted Completeness Axiom considers only matrices V k in V.

Then the following Lemma is clearly true.

Lemma 3 The apportionment X̄ is feasible for V̂ under the conditions of the Restricted Completeness
Axiom.

The following lemma is Theorem 9 in [28].

Lemma 4 The fair share quotas Q(V ) are continuous w.r.t. V under the conditions of the Restricted
Completeness Axiom.

Hence, by putting together the previous lemmas we may state the following result.

Theorem 1 If the target quotas are the fair shares, then the Restricted Axiom of Completeness holds
for any type of norm.

Moreover, since the regional quotas are clearly continuous, we also have

Theorem 2 If the target quotas are the regional quotas, then the Restricted Axiom of Completeness holds
for any type of norm.

For the L∞-norm minimization and the fair share quotas we may relax the conditions of the Restricted
Axiom of Completeness and ask only for continuity of the fair shares (see Example 6).

Theorem 3 If the target quotas are the fair shares and are continuous and the error is measured by the
L∞-norm, then the Axiom of Completeness holds.

Proof: By Lemma 2, it remains to prove that X̄ is feasible also for V̂ . For X̂, the optimal apportionment
for V̂ , we have

q̂ij − τ̂ ≤ x̂ij ≤ q̂ij + τ̂ ,

with τ̂ < 1 by the properties of fair shares. Let ε > 0 s.t. τ̂ + ε < 1. Then there is K such that
|qk

ij − q̂ij | < ε for all (i, j) and all k > K, so that

qk
ij − (τ̂ + ε) < q̂ij + ε− (τ̂ + ε) ≤ x̂ij ≤ q̂ij − ε+ (τ̂ + ε) < qk

ij + (τ̂ + ε),

and X̂ is an apportionment with error not worse than τ̂ + ε for V k. By Lemma 1, X̂ is feasible for V k

for sufficiently large k. If X̄ is not feasible for V̂ then there is a pair (i, j) with qk
ij → 0 and x̄ij = 1. This

implies τk → 1 and X̄ cannot be optimal for V k.
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12 Conclusions

A consistent line of research has addressed the biproportional apportionment problem as an optimization
problem with the goal of minimizing some measure of deviation from given quotas, i.e., rational numbers
representing an ideal fractional apportionment. The focus of this research is not on the quota definition,
but on the idea of rounding the quotas via mathematical programming techniques.

In this paper we have surveyed the most important results concerning this approach. The choice of
the norm to be used in measuring the deviation from the quotas leads to different methods. The unifying
feature of all methods stems from the underlying structure of the problem, which can be formulated as a
transportation problem on a bipartite graph. This allows for polynomial algorithms in spite of the fact
that the solution must be integer. Hence the algorithms can yield a solution very quickly. In addition,
being mostly based on linear programming, they can be easily implemented and could represent viable
methods to compute parliament seats.

These important features make the error minimization methods a valuable alternative to the tra-
ditional axiomatic approach proposed by Balinski and Demange in [6]. Actually, the two approaches
are completely different in nature and they are characterized by different properties. For example, the
Controlled Rounding method is able to guarantee the quota satisfaction, and this may be a key element
in the decision process for the choice of the “best method” for a country. In addition, while, on the one
hand, the Tie and Transfer is designed to satisfy a specific set of axioms, on the other hand, the error
minimization methods follow the paradigm of simplicity, a widely accepted tenet in science2.

In any case, models MinL1, MinL2, and MinMax must be addressed if one wishes to obtain the
smallest possible error between the apportionment and the (ideal) fractional quotas. As discussed in
Section 3, a critical point is the possible occurrence of multiple optima for MinL1 and for MinMax.
MinL2 is not expected to have multiple optima. As clear from the Example 2 in Section 6 the possibility
of multiple optima cannot be accepted at all for BAP.

This serious problem is overcome if the fair share quotas are used for MinL1 and if MinMax is refined
by MinMaxLexBest which always provides a unique optimal solution. Actually, in the light of the results
presented in this paper, from a theoretical viewpoint MinMaxLexBest could be considered the “best”
among the error minimization methods. Several reasons support this conclusion: besides the uniqueness
of the solution, it has the best theoretical complexity; it satisfies three out of the five axioms of Balinski
and Demange that we analyzed (even if this depends on the specific choice of the target quotas); it also
showed good values for our uniformity index and, according to our conjecture, when the regional quotas
are considered the possibility that also Monotonicity is satisfied is still an open issue. An additional
advantage of MinMaxLexBest is the existence of a simple certificate of optimality which can be used by
the layman - both the legislator and the voter - to verify the actual quality of the apportionment.

Besides the theoretical evaluation of models and methods discussed in this paper, it must be always
taken into account that in the political context of BAP decisions about the apportionment method to
choose strictly depends on specific institutional requirements and considerations related to the history
and political tradition of each country. According to the aim of the present paper, the new class of error
minimization methods is intended as an alternative to the already existent methods for BAP. The idea is
to provide the legislator a variety of methods for BAP, each inspired by its own principle, but all equally
rigorous and mathematically correct. We believe that the final decision of choosing the method that best
fits a country goes beyond the task of the mathematician.

2We recall here that simplicity is one of the main issues to design fair electoral systems, as stated in the “The Erice
Decalogue”, a document that collects the main conclusions of the International Workshop on Mathematics and Democracy:
Voting Systems and Collective Choice, Erice, September, 18-23, 2005 [30].
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