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Abstract

Logical Analysis of Data is a procedure aimed at identifying relevant features in data sets
with both positive and negative samples. The goal is to build boolean formulas, represented
by strings over {0,1,-} called patterns, which can be used to classify new samples as positive or
negative. Since a data set can be explained in alternative ways, many computational problems
arise related to the choice of a particular set of patterns. In this paper we study the compu-
tational complexity of several of these pattern problems (showing that they are, in general,
computationally hard) and we propose some integer programming models that appear to be
effective. We describe an ILP model for finding the minimum-size set of patterns explaining a
given set of samples and another one for the problem of determining whether two sets of pat-
terns are equivalent, i.e., they explain exactly the same samples. We base our first model on a
polynomial procedure that computes all patterns compatible with a given set of samples. Com-
putational experiments substantiate the effectiveness of our models on fairly large instances.
Finally, we conjecture that the existence of an effective ILP model for finding a minimum-
size set of patterns equivalent to a given set of patterns is unlikely, due to the problem being
NP-hard and co-NP-hard at the same time.

1 Introduction

One of the main consequences of the constant progress of technology together with the massive

use of computers in many aspects of our lives has been the creation of large repositories of data

storing information of all sorts. A major problem related to these huge data sets, is the one of

discovering relevant patterns that separate the noise from important information, and of deriving

rules for clustering the data into classes sharing essential common features. To this aim, the fields

of study known as Data Mining [12, 13] and Feature Selection [7, 8, 18] have recently emerged as

among the most relevant applications of modern computer science.

In this paper we focus on some mathematical issues that arise from Data Mining problems.

A very common situation for Data Mining problems is to represent the starting information by a

two-dimensional array, in which the rows correspond to samples (or individuals) while the columns

correspond to their characteristics (also called features).

If the features are boolean, one of the tools that can be used to extract interesting information is

the so-called Logical Analysis of Data (LAD [11, 1, 5]). Consider for instance a data set consisting

of a binary matrix of m rows and n columns, in which some rows are labeled as positive while the

remaining rows are labeled as negative (for instance, in the case of a molecular biology experiment
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using a device called “microarray” which measures the level of gene expression in cells, the values

0 and 1 would be related to the level being, respectively, “normal” or “abnormal”[10, 16, 2]).

The Logical Analysis of Data has the objective of discovering a set of simple boolean formulas

(or “rules”) that can be used to classify new binary vectors (b1, . . . , bn). Each rule describes what

the value of some bits must be for a vector to be classified as positive or negative. For instance, a

“positive rule” could be

(b2 = 1) ∧ (b5 = 0) ∧ (b9 = 0)

meaning that any vector with a 1 in the 2nd component, and a 0 in the 5th and 9th component

is classified as positive. Similarly, there can be some “negative rules” which specify which vectors

should be classified as negative.

A rule such as the above can be conveniently represented by a pattern, which is a string over

the alphabet {0, 1, -}. The characters 0 and 1 in the pattern specify which positions must be

matched exactly by a binary vector to satisfy the rule, while the character - is a wildcard that can

be indifferently matched by either 0 or 1. In particular, if n = 10 the pattern corresponding to the

above rule would be

-1--0---0-

If r is a rule and p is the pattern corresponding to r, then a binary vector b satisfies the rule if and

only if ∧
k:pk∈{0,1}

(bk = pk)

We say that the pattern p covers all vectors b for which the above holds. In view of the equivalence

of rules and patterns, we can talk of positive/negative patterns in place of positive/negative rules.

The objective of LAD is to infer positive and negative patterns from the data in such a way

that (i) each positive row is covered by at least one of the positive patterns, while no negative row

is and (ii) each negative row is covered by at least one of the negative patterns, while no positive

row is. This approach has been successfully applied to many contexts in both bioinformatics an

biomedicine [11].

Since there might be many alternative sets of patterns explaining a given instance of LAD, one

has to introduce a suitable criterion for choosing a specific solution. In particular, an Okkam’s

razor strategy would suggest to seek the simplest possible solutions, i.e., the sets with a minimum

number of patterns. Finding a min-size set of patterns which cover a given set of vectors is called

the Pattern Cover Minimality problem.

Other problems arising from the analysis of patterns are related to understanding whether two

different sets of rules actually explain the same data set, or, in other words, the two pattern sets

are equivalent. In particular we would like also to know whether a given set of rules explains all

possible data, and so is in some sense ‘useless’. On the opposite side we would like to know whether

there are some data that cannot be explained by a particular set of rules.

In addition, given a set of patterns we would like to know whether there exists another smaller

set of patterns that explains the same data set. This problem that we call Pattern Equivalence

Minimality looks similar to Pattern Cover Minimality. The difference is that here we start from

a pattern set and not from a data set. Though patterns can be expanded into strings and we

might solve a Pattern Cover Minimality problem from these strings, it is obviously computationally

2



intractable expanding the patterns. Hence we should be able to find a better set of patterns starting

directly from the given pattern set.

In the following we will review the computational complexity of these pattern problems, which

are, in general, quite complex [15] (see also [14] for a fixed-parameter analysis of some related

pattern problems). We then give an integer linear programming (ILP) formulation for Pattern Cover

Minimality and for Pattern Equivalence and we address the effectiveness of our formulations by

means of extensive computational experiments. An ILP formulation for Pattern Cover Minimality

is also given in Boccia et al. [3]. The formulation we propose in this paper reduces the problem

to a Set Covering with a (low-degree) polynomial number of columns. Pattern Cover models for

non-binary data are, e.g., a branch-and-price procedure described in [17], and heuristic procedures

proposed in [4].

Formulating a solution procedure for Pattern Equivalence Minimality seems quite challenging

since, as we will prove in the paper, this problem is NP-hard and co-NP-hard at the same time.

The paper is organized as follows. In Section 2 we provide precise mathematical definitions of the

concept we are dealing with and the related problems. In Section 3 we investigate the computational

complexity of the problems defined in the previous section. In Section 4 we investigate strings and

patterns that are mutually compatible. In particular we provide a polynomial algorithm to list all

patterns that are compatible with a given set of strings (the inverse problem of listing all strings

compatible with a set of patterns is necessarily exponential). In Section 5 we give ILP models both

for the Pattern Cover Minimality and Pattern Equivalence problems. These procedures are tested

in Section 6 devoted to the computational experiments. Some conclusions are drawn in Section 7.

2 Basic definitions

A binary string (or, simply, a string) s is a sequence of symbols where each symbol can be either 0

or 1. With n-binary string we denote a binary string of length n. An n-pattern (or simply a pattern

p is sequence of symbols where each symbol can take the values 0, 1 or -, i.e.,

si ∈ {0, 1} , pi ∈ {0, 1, -} , i = 1, . . . n.

We call the symbol - a gap. With n-pattern we denote a pattern of length n. Notice that a string is

in fact a particular pattern, i.e., a pattern without gaps. A pattern p covers, or generates, a string

s = (s1 · · · sn) if sk = pk for each k such that pk ∈ {0, 1}. The span of p is the set of all binary

strings generated by the pattern p, i.e.,

S(p) = {s ∈ {0, 1}n : si = pi if pi ∈ {0, 1}}

Given a set P of patterns the span S(P ) of P is the set

S(P ) =
⋃
p∈P

S(p)

Two sets P and Q of patterns are equivalent if S(P ) = S(Q). A set of patterns P is a minimum

set if |P | ≤ |Q| for each set of patterns Q equivalent to P .
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We say that a pattern p is compatible with a set of strings S if S(p) ⊆ S. Similarly we say that

a string s is compatible for a pattern p if s ∈ S(p). We denote by P (S) the set of all compatible

patterns for S. Let p be a pattern compatible with a given set S of strings. If there is no compatible

pattern p′ such that S(p) ⊂ S(p′), we say that p is maximal (for S). We denote by P ∗(S) the subset

of maximal patterns in P (S). Given a set S of strings and a set P of patterns we say that P is

compatible for S if each p ∈ P is compatible for S, and so P ⊆ P (S) and S(P ) ⊆ S.

Moreover, a set of patterns P is called a cover of S if S(P ) = S. Notice that all covers of S are

equivalent to each other and S, viewed as a set of patterns, is equivalent to each of its covers.

A set P of patterns is said to be complete if S(P ) = {0, 1}n, i.e., if P generates all possible

n-binary strings. Clearly, {(- - · · · -)} is trivially complete.

We note that S is a set and so it does not contain duplicate strings. We assume this to be true

also when we represent a set of m strings of length n as an m× n array of zeros and ones.

3 Computational complexity results

The previous definitions lead to the following decision problems [15]:

1. PATTERN COVER: given a set S of strings and a set P of patterns, is P a cover of S, i.e.,

S = S(P )?

2. PATTERN COVER MINIMALITY: given a set S of strings and a constant K, does there

exist a cover P of S such that |P | ≤ K?

3. PATTERN EQUIVALENCE: given two sets P , Q of patterns, are they equivalent, i.e., S(P ) =

S(Q)?

4. PATTERN EQUIVALENCE MINIMALITY: given a set P of patterns and a constant K <

|P |, does there exist an equivalent set of patterns Q such that |Q| ≤ K?

5. PATTERN COMPLETENESS: given a set P of patterns, is it complete, i.e., S(P ) = {0, 1}n?

6. PATTERN INCOMPLETENESS: given a set P of patterns, is it not complete, i.e., does there

exist a string s ∈ {0, 1}n such that s /∈ S(P )?

We first note that, given a set P of patterns and a string s ∈ {0, 1}n, determining whether

s ∈ S(P ) or s /∈ S(P ) is polynomial. Indeed, given a pattern p and a string s we may check in time

O(n) whether s can be generated by p or not. Hence, given a set P of patterns we have to repeat

the check for each p ∈ P . If the check is false for each p ∈ P we have s /∈ S(P ), otherwise we have

s ∈ S(P ).

Proposition 1 PATTERN COVER is polynomial.

Proof: For each s ∈ S we check whether s ∈ S(P ) or not. Hence in time O(n |S| |P |) we may

decide whether S ⊆ S(P ) or not. In order to decide whether S(P ) ⊆ S or not, for each pattern

p ∈ P we count the number n(p) of strings in S compatible for p. Let k be the number of gaps in p.
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Then p is compatible for S, i.e., S(p) ⊆ S, if and only if n(p) = 2k. Computing n(p) can be done

in time O(n |S|). Overall, checking whether S(P ) ⊆ S takes O(n |S| |P |) time.

Proposition 2 PATTERN COVER MINIMALITY is NP-complete.

Proof: We observe that PATTERN COVER MINIMALITY is basically the same as MINIMUM

DISJUNCTIVE NORMAL FORM (see [9] p. 261), which we repeat here for the sake of complete-

ness: Given a set U = {u1, u2, . . . , un} of variables, a set A ⊆ {T, F}n of “truth assigments”, and

an integer K > 0, does there exist a disjunctive normal form expression E over U , having no more

than K disjuncts, which is true for precisely the assignments in A and no others?

We show the equivalence of the two problems by the following map which builds a PATTERN

COVER MINIMALITY instance. Each element a ∈ A becomes an input binary string (with 0

representing false, and 1 representing true), while each disjunct d is mapped into a pattern p such

that pi = 1 if ui appears in d, pi = 0 if ¬ui appears in d and a pi = - otherwise.

Proposition 3 PATTERN INCOMPLETENESS is NP-complete.

Proof: We reduce SAT to PATTERN INCOMPLETENESS. Given a SAT instance with n literals

and m clauses we derive a set P of m patterns pk, k = 1, . . . ,m, (each pattern associated to each

clause), as follows: for each variable i and each clause k, if the literal xi is present in the clause,

we set pki = 0, if the literal ¬xi is present in the clause, we set pki = 1, and if neither xi nor ¬xi

are present in the clause, we set pki = - (note that the pattern values pki ∈ {0, 1} are set opposite

to the truth values of the literals xi).

Assume SAT is satisfiable and let x be a satisfying truth assignment. Define a string s as si = 1

if xi = TRUE and si = 0 if xi = FALSE. By assumption, at least one literal of each clause must

be true, and so for each pk ∈ P at least one of the symbols si corresponding to 0, 1 positions of pk

must be different from pki , due to the particular construction of pk. It follows that s cannot be in

S(pk) for all k and so s cannot be in S(P ). In a similar way, given a string s not in S(P ) we can

reverse the previous reasoning and obtain a satisfying truth assignment for the SAT instance.

To see that PATTERN INCOMPLETENESS is also in NP it suffices to observe that verifying

that a string s /∈ S(P ) does not belong to S(P ) takes polynomial time, as previously described.

Since PATTERN INCOMPLETENESS and PATTERN COMPLETENESS are complements of

each other, we have:

Corollary 1 PATTERN COMPLETENESS is co-NP-complete.

Proposition 4 PATTERN EQUIVALENCE is co-NP-complete.

Proof: We transform PATTERN COMPLETENESS into PATTERN EQUIVALENCE. Given a set

P of patterns, instance of PATTERN COMPLETENESS, the corresponding instance of PATTERN

EQUIVALENCE consists of the set P plus a set Q containing only the pattern (-- · · · -) (which

generates {0, 1}n). For a no-instance, there exists a string s ∈ S(P ) and s /∈ S(Q), or vice versa,

and this s is a short certificate.
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Proposition 5 PATTERN EQUIVALENCE MINIMALITY is co-NP-hard.

Proof: We describe a transformation from PATTERN COMPLETENESS. Given an instance of

PATTERN COMPLETENESS we define a corresponding instance of PATTERN EQUIVALENCE

MINIMALITY by choosing K = 1. Without loss of generality, we may assume that for each i, the

values pi’s across all p ∈ P are not all identical (since, otherwise, we may discard each position

where all symbols are equal, and reduce the instance to an equivalent one). At this point, the only

pattern that can be equivalent to P is (-- . . . -).

Since PATTERN COVER MINIMALITY is a particular case of PATTERN EQUIVALENCE

MINIMALITY we have by Proposition 2:

Proposition 6 PATTERN EQUIVALENCE MINIMALITY is NP-hard.

By Propositions 5 and 6, PATTERN EQUIVALENCE MINIMALITY is both NP-hard and co-NP-

hard. To date it is not known whether the classes of NP-complete problems and co-NP-complete

problems coincide or are disjoint. The widely believed conjecture is that they are disjoint. Following

this conjecture we conclude that it is unlikely that PATTERN EQUIVALENCE MINIMALITY is

in NP or in co-NP, and so we expect its complexity to be beyond the classes NP and co-NP.

It is obvious that, given a set P of patterns, generating S(P ) takes exponential time in general

for the mere fact that |S(P )| can be of exponential size. It is perhaps surprising that the reverse,

i.e., given a set of strings S, generating P (S) is polynomial. Indeed it turns out that P (S) is of

polynomial size and also the algorithm that generates P (S) is polynomial. We devote the next

section to this issue.

4 Compatible patterns

We describe a procedure to compute P (S), that is the set of all compatible patterns for a set S of

strings. The analysis of this procedure shows that the number of compatible patterns is polynomial

(≤ O(|S|log2 3)).

We define a recursion that produce a set P(S) of patterns and we will show that P(S) = P (S).

We assume there are no duplicates in S. The recursive calls create string sets that satisfy this

property. The length of each string in a generic set R of strings (clearly all of equal length) is

denoted by n(R). For a generic set R and 1 ≤ c ≤ n(R), S(R, c) is the set of strings of length

(n − c + 1) obtained from R by taking, for each s ∈ R, only the elements sc, sc+1, . . . , sn(R).

Furthermore, for s a string and X = {x1, . . . , xk} a set of strings, we denote by

s ◦X = {sx1, . . . , sxk}

the set obtained by appending s as a prefix to all strings in X.

The recursive algorithm to compute P(S) consists of:

• base case: if |S| = 1 then return(S) (the entire S, seen as a single string);

• recursion: given an input set R of strings let c ≤ n(R) be the first index such that there are two

strings in R whose c-th elements are different (if there is no such an index all strings in R would be

identical, contradicting the hypothesis of no duplicates). Hence all prefixes s1, . . . , sc−1 are equal

for each s ∈ R. Let s̄ be this common prefix. Let P0,P1,P∗ be defined as follows:
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1. Let R0 = {s ∈ R : sc = 0} and S0 := S(R0, c + 1). Then P0 := P(S0) (recursive call).

2. Let R1 = {s ∈ R : sc = 1} and S1 := S(R1, c + 1). Then P1 := P(S1) (recursive call).

3. Let R∗ be the set of all strings s ∈ R0 for which there exists s′ ∈ R1 such that si = s′i for all

i > c (note that s and s′ differ only at the c-th element and that the strings s and s′ (if any)

go in pairs due to the hypothesis of no duplicates) and let S∗ := S(R∗, c+ 1) (recursive call).

If R∗ = ∅ then P∗ := ∅ else P∗ := P(S∗).

Then, return(s ◦ ((0 ◦ P0) ∪ (1 ◦ P1) ∪ (- ◦ P∗)))

Proposition 7 Let S be a string set and let P(S) be the set produced by the recursive algorithm

on S. Then P (S) = P(S).

Proof: We use induction on |S|. Base case: If |S| = 1 the assert is clearly true.

Inductive step: Assume |S| > 1 and the theorem holds for all sets with |S| − 1 strings. With

the notation of the algorithm,

P(S) = s ◦ ((0 ◦ P0) ∪ (1 ◦ P1) ∪ (- ◦ P∗)))

Let p ∈ P (S). Since s (possibly null) is a prefix of each string in S, p must start with s as well.

Assume p = sxq with x ∈ {0, 1, -}. If x = 0 then q is a pattern compatible for S0 and, by induction,

q ∈ P(S0). Therefore, p ∈ s ◦ (0 ◦ P(S0)), so that p ∈ P(S). A similar argument shows that also if

x = 1 it is p ∈ P(S). Now, if x = -, then for each string a generated by q, the pattern p generates

both s0a and s1a. Therefore a had to be a string both in S0 and in S1. This means that q had to

be a pattern compatible for S∗. Since, by induction, all such patterns are in P∗ then p ∈ s◦ (-◦P∗)
so that p ∈ P(A).

Now, assume p ∈ P(S). Let p = sxq, with x ∈ {0, 1, -}. If x ∈ {0, 1}, let sxy be a string

generated by p. Then y ∈ R0 ∪ R1 and therefore sxy ∈ R, so p ∈ P (S). If x = - let s0y be a

string generated by p. Then also s1y is generated by p. Then y ∈ R0 ∩ R1 so that s0y, s1y ∈ R

and p ∈ P (S).

Proposition 8 |P (S)| ≤ |S|log2 3.

Proof: Let T (m) be an upper bound to the cardinality of P (S) for a set S with m = |S|. From

the previous theorem and from the algorithm recursive calls we see that

T (m) = max {T (m− k) + 2T (k) : k = 1, . . . , bm/2c}, T (1) = 1 (1)

By applying the Master Theorem (see p. 66 [6]) we get

T (m) ≤ mlog2 3

These are the first values of T (m) for m = 1, . . . , 16, according to (1):

T (m) = 1, 3, 5, 9, 11, 15, 19, 27, 29, 33, 37, 45, 49, 57, 65, 81 . . . (2)
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This the sequence A006046 as listed in the On-line Encyclopedia of Integer Sequences (OEIS) and

our derivation seems to add a new meaning to that sequence. Note from (2) that in particular for

m = 2k we have T (m) = 3k = mlog2 3. Clearly, if S consists of all strings of length k, so |S| = 2k,

then |P (S)| = 3k. So the bound T (m) for |P (S)| is strict in this particular case. In fact, we can

prove that the bound is strict for every m and not just for m = 2k. Consider the following procedure

that generates a set S of T (m) strings of size m.

procedure f [m]
begin

if m = 1
then return(1)
else begin

h1 = dm/2e;h0 = bm/2c;
S0 = f [h0]; S1 = S0;
if h1 6= h2 then S1 := (0, 0, . . . , 0) ∪ S1

S0 := 0 ◦ S0

S1 := 1 ◦ S1

return(S0 ∪ S1)
end

end

These are the sets produced by the procedure for m = 1, . . . , 6, for which

m = 1→ S = {1} → P (S) = S = {1}
m = 2→ S = {01 , 11} → P (S) = S ∪ {-1} = {01 , 11 , -1}
m = 3→ S = (01 , 10 , 11)→ P (S) = S ∪ (-1 , 1-)

m = 4→ S = (001 , 011 , 101 , 111)→ P (S) = S ∪ (0-1 , -01 , 1-1 , -11 , - -1)

m = 5→ S = (001 , 011 , 100 , 101 , 111)→ P (S) = S ∪ ( 0-1 , 10- , 1-1 , -01 , -11 , - -1 )

m = 6→ S = (001 , 010 , 011 , 101 , 110 , 111)→
P (S) = S ∪ ( 01- , 0-1 , 11- , 1-1 , -01 , -10 , -11 , -1- , - -1 )

It is easy to show that |P (S)| = T (m) for the sets produced by the above procedure, and so

the bound T (m) is strict for all m. However, in most cases, as for covering problems, we may

be interested only in maximal patterns P ∗(S) and we may wonder how the number of maximal

patterns grows with m.

In the particular case of the strings produced by the above procedure, which corresponds to the

worst case in terms of generic patterns, the number of maximal patterns grows very slowly, indeed

as logm.

In the following table we report the value m, |P (S)| = T (m), and the number |P ∗(S)| of maximal

patterns for the above set of strings m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|P (S)| 1 3 5 9 11 15 19 27 29 33 37 45 49 57 65 89
|P ∗(S)| 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1


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It turns out that |P ∗(S)| is equal to the number of ones in the binary expression of m. However, the

number |P ∗(S)| can be much larger for other sets of strings. There are cases such that |P ∗(S)| > m.

For instance consider the following case for which |S| = 12, |P (S)| = 25 < T (12) = 45 and

|P ∗(S)| = 13:

S = (00000, 00001, 00101, 01000, 01010, 10000, 10010, 10101, 10110, 10111, 11010, 11101)

P (S) =

 00000 00001 0000- 00101 00-01 01000 01010 010-0 0-000

10000 10010 100-0 10101 10110 10111 1011- 101-1

10-10 11010 11101 1-010 1-101 -0000 -0101 -1010


P ∗(S) = (0000-, 00-01, 010-0, 0-000, 100-0, 1011-, 101-1, 10-10, 1-010, 1-101, -0000, -0101, -1010)

Although it may happen that |P ∗(S)| > m in general, we may show that a cover can always

be obtained by less than m patterns if for each string there is a compatible pattern with at least

one gap that covers it. Let us call a one-pattern a pattern with exactly one gap. Consider the

set of all compatible one-patterns for a given set of m strings of n symbols. By assumption, each

string is covered by a one-pattern (if it is covered by a pattern with gaps it is also covered by a

one-pattern). Build a graph G = (V,E) with V the set of strings and E the set of string pairs

spanned by a one-pattern. This graph is bipartite because we may partition the strings into ’even’

and ’odd’ strings according to the number of ones in the string. A one-pattern necessarily spans

an even string and an odd one. Moreover, there are no isolated vertices by assumption. A cover

consisting of one-patterns corresponds to an edge cover of G. The cardinality of an edge cover is

given by m− |M | with M the cardinality of a maximum matching. Since |M | ≥ 1 we need at most

m− 1 one-patterns to cover all strings. For the above example these are two alternative minimum

covers with 6 < 12 patterns.

(00-01, 010-0, 1011-, 1-010, 1-101, -0000), (00-01, 0-000, 100-0, 1011-, 1-101, -1010)

Therefore, if more than m patterns are needed to cover a set of m strings, this means that there

are some special strings that, loosely speaking, cannot be explained by some rule and require a

particular pattern that coincided with the string. Furthermore, the m − 1 bound is obtained by

considering only one-patterns. If, as we presume, the data sets is explained by more interesting

patterns with many gaps, the size of a minimum cover can be significantly less than m.

5 ILP models

In this section we provide ILP models for two of the problems defined in Section 3, namely PAT-

TERN COVER MINIMALITY and PATTERN EQUIVALENCE. The first problem is NP-complete

and the second one is co-NP-complete. So it is not inappropriate to use ILP models for their so-

lution. On the contrary, we believe that PATTERN EQUIVALENCE MINIMALITY cannot be

expressed as an ILP model. We have already stressed the fact that this problem is both NP-hard

and co-NP-hard and we have also observed that, given the current state of the art in computa-

tional complexity, we believe that it does not belong to NP or co-NP. Since ILP problems belong to

these classes, we have strong reasons to doubt about the possibility of solving PATTERN EQUIV-

ALENCE MINIMALITY by ILP models.
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ILP for PATTERN COVER MINIMALITY. We approach the problem of finding a pattern

set P of minimum cardinality that spans a given set of strings S as a 01LP set cover problem,

in which each row is associated to each string of the string set, each column is associated to each

compatible pattern for S, and the entry aij of the 01 LP matrix is 1 if and only if the pattern j covers

the string i. In view of Theorem 8 the matrix has a polynomial number of columns and therefore

it can be explicitly written. We note that it is not strictly necessary to generate the full matrix.

We may use a column generation approach by adapting the algorithm that generates all pattern to

the pricing problem given dual variables associated to the strings. However, in our computational

experiments we have seen that generating the full matrix and then solving the problem outperforms

the column generation approach, which requires running the recursive algorithm for each column

generation, while only one run is necessary for generating the full matrix.

ILP for PATTERN EQUIVALENCE. We assume that two sets P and Q of patterns are

given. We introduce the following models

v = min
∑
q∈Q

zq∑
i:qi=0

xi +
∑

i:qi=1

(1− xi) ≥ 1− zq q ∈ Q

yp ≤ 1− xi i : pi = 0, p ∈ P

yp ≤ xi i : pi = 1, p ∈ P∑
p∈P

yp ≥ 1

xi ∈ {0, 1} , yp ∈ {0, 1} , zq ≥ 0 integer

(3)

w = min
∑
p∈P

yp∑
i:pi=0

xi +
∑

i:pi=1

(1− xi) ≥ 1− yp p ∈ P

zq ≤ 1− xi i : qi = 0, q ∈ Q

zq ≤ xi i : qi = 1, q ∈ Q∑
q∈Q

zq ≥ 1

xi ∈ {0, 1} , zq ∈ {0, 1} , yp ≥ 0 integer

(4)

We have the following result:

Proposition 9

– S(P ) ⊂ S(Q) if and only if v > 0 and w = 0;

– S(Q) ⊂ S(P ) if and only if w > 0 and v = 0;

– S(Q) = S(P ) if and only if v > 0 and w > 0.

Proof: We remind that ⊂ means strict inclusion. It is sufficient to prove that S(P ) ⊆ S(Q) if and

only if v > 0. If yp = 1 then x is generated by p ∈ P . The constraint
∑

p∈P yp ≥ 1 implies that x is

10



generated by at least one pattern in P . Hence feasible x are in S(P ). Consider now any x ∈ {0, 1}n.

If x is generated by q ∈ Q then zq = 1, while if x is not generated by q ∈ Q then zq = 0 is feasible

(along with possible integer values zq ≥ 1). The objective function forces zq to be zero in this case.

Therefore, v = 0 if and only if x ∈ S(P ) and x /∈ S(Q). If v > 0, for any pattern x ∈ S(P ) we

have that x ∈ S(Q), i.e., S(P ) ⊆ S(Q).

Note that, if S(P ) 6⊆ S(Q), i.e., when v = 0, the model (3) yields also a string x in S(P ) but

not in S(Q), whereas if S(P ) ⊆ S(Q), i.e., when v > 0, model (3) yields also a string x in both

S(P ) and S(Q). Similarly if S(Q) 6⊆ S(P ), i.e., when w = 0, model (4) yields also a string x in

S(Q) but not in S(P ), whereas if S(Q) ⊆ S(P ), i.e., when w > 0, model (4) yields also a string x

in both S(Q) and S(P ).

We may further distinguish the case w = 0, v = 0, via the following model

ŵ = min wp + wq

yp ≤ 1− xi i : pi = 0, p ∈ P

yp ≤ xi i : pi = 1, p ∈ P∑
p∈P

yp ≥ 1− wp

zq ≤ 1− xi i : qi = 0, q ∈ Q

zq ≤ xi i : qi = 1, q ∈ Q∑
q∈Q

zq ≥ 1− wq

(5)

The following proposition follows easily from Proposition 9.

Proposition 10 S(P ) and S(Q) are disjoint if and only if ŵ > 0.

When S(P ) and S(Q) are not disjoint, the model yields a string x shared by both sets.

If we consider model (4) and take Q = {(- - · · · -)} we are actually solving the problem FULL

PATTERN COVERAGE together with its complement PARTIAL PATTERN COVERAGE. Hence

(4) becomes

u = min
∑
p∈P

yp∑
i:pi=0

xi +
∑

i:pi=1

(1− xi) ≥ 1− yp p ∈ P

xi ∈ {0, 1} , yp ≥ 0 integer

(6)

and we may conclude, as a Corollary of Proposition 9, that

Proposition 11 S(P ) = {0, 1}n if and only if u > 0.

As a simple example of the previous results suppose we are given the two following sets of

patterns P and Q.

11



P =


- - 1 1

1 0 0 -

0 0 - -

- 1 - 1

 Q =

 0 0 - 0

0 - 1 1

- 0 - 1


We run in sequence (3) and (4) and obtain v = 0 and w > 0, that implies S(Q) ⊂ S(P ),

according to Proposition 9. In this case there is no need of running (5). As a byproduct we obtain

from (3) and (4) respectively the strings

x1 = (1111) x2 = (0010)

One can easily check that x1 ∈ S(P ) and x1 /∈ S(Q) and also that x2 ∈ S(Q) ⊂ S(P ). Moreover,

if we run (6) for P we obtain u > 0, that implies S(P ) 6= S((----)) and also the string (1110) as a

certificate that S(P ) does not contain all strings.

If we are given the two sets of patterns

P =


- 1 1 1

1 0 0 -

0 0 0 -

- 1 - 1

 Q =

 0 0 - 0

0 - 1 1

- 0 - 1


and run in sequence (3) and (4) we obtain v = 0 and w = 0. Hence we have to run also (5) and

obtain ŵ = 0. This means that S(P ) and S(Q) are not disjoint. We may exhibit also the string

x3 ∈ S(P ) ∩ S(Q) that belongs to their intersection. Moreover, from the previous (3) and (4) we

also have the two strings x1 ∈ S(P ), x1 /∈ S(Q) and x2 ∈ S(Q), x2 /∈ S(P ). As a final output we

may run (6) for P ∪Q and obtain u = 0 and x4 /∈ S(P ) ∪ S(Q) :

x1 = (1111) x2 = (0010) x3 = (0001) x4 = (1110)

6 Computational experiments

We have carried out computational experiments for PATTERN COVER MINIMALITY and PAT-

TERN EQUIVALENCE. The problem PATTERN COVER is polynomial and we felt no need to

perform computational experiments for this problem. On the opposite side problem PATTERN

EQUIVALENCE MINIMALITY seems to be intractable and we have not even devised ideas how

to solve it. Problems PATTERN COMPLETENESS and PATTERN INCOMPLETENESS are

particular cases of PATTERN EQUIVALENCE.

Our tests were run on an Intel Core i5 machine 2.3 GHz with 8 GB Ram. The program were

implemented in C++ and we used Cplex 12.4 as the ILP solver.

Pattern Cover Minimality. We approach the problem of finding a pattern set P of minimum

cardinality that spans a given set S of strings as a 01LP set cover problem, in which each row is

associated to each string of the string set, each column is associated to each compatible pattern for
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S, and the entry aij of the 01 LP matrix is 1 if and only if the pattern j covers the string i. In view

of Theorem 8 the matrix has a polynomial number of columns and therefore it can be explicitly

written. We note that it is not strictly necessary to generate the full matrix. We may use a column

generation approach by adapting the algorithm that generates all patterns to the pricing problem

given dual variables associated to the strings. However, we have seen that generating the full matrix

and then solving the problem outperforms the column generation approach, which requires running

the recursive algorithm for each column generation, while only one run is necessary for generating

the full matrix.

We fix the size of a string to n = 15. Each string is randomly generated by independently setting

each bit to 1 with probability p (and to 0 with probability 1− p). A random instance consists of a

set S of m randomly generated strings without duplicate strings. We consider the following values:

p ∈ {0.1, 0.25, 0.5} and m ∈ {100, 1000, 5000, 10000}. For each combination of values of p and m

we generate ten instances.
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p = 0.1 p = 0.25 p = 0.5
m |P (S)| opt time #nod |P (S)| opt time #nod #pat opt time #nod

300 60 0.038 0 136 83 0.002 0 102 98 0.001 0
341 57 0.023 0 137 84 0.002 0 104 96 0.001 0
322 58 0.009 0 119 88 0.002 0 103 97 0.001 0
314 56 0.011 0 117 91 0.003 0 103 97 0.004 0

100 302 66 0.008 0 123 85 0.002 0 104 96 0.002 0
298 58 0.007 0 139 80 0.003 0 102 98 0.002 0
317 55 0.014 0 112 92 0.002 0 102 98 0.001 0
298 58 0.008 0 126 82 0.008 0 103 97 0.002 0
292 63 0.008 0 128 85 0.002 0 101 99 0.002 0
282 66 0.011 0 129 87 0.002 0 100 100 0.002 0

9118 380 0.220 0 3729 546 0.103 0 1234 843 0.031 0
9131 381 0.219 0 3770 544 0.097 0 1197 853 0.031 0
8567 400 0.215 0 3912 550 0.092 0 1245 825 0.032 0
8963 384 0.205 0 3704 557 0.093 0 1213 845 0.034 0

1000 8757 392 0.215 0 3540 565 0.085 0 1214 838 0.035 0
8651 396 0.203 0 3722 543 0.098 0 1218 837 0.047 0
8735 369 0.207 0 3813 553 0.095 0 1226 838 0.031 0
8888 389 0.225 0 3520 556 0.094 0 1219 846 0.030 0
8709 389 0.220 0 3636 572 0.101 0 1232 838 0.034 0
8874 381 0.349 0 3677 566 0.098 0 1224 828 0.056 0

117558 1323 7.282 0 70726 1614 5.421 0 11211 2767 0.758 0
118365 1277 7.080 0 69997 1614 4.771 0 11206 2752 0.801 0
116936 1282 6.668 0 68989 1623 3.882 0 11232 2770 0.746 0
118087 1281 6.592 0 69964 1608 9.634 0 11144 2757 0.708 0

5000 118435 1282 9.959 0 68920 1618 4.576 0 11042 2787 0.737 0
115737 1293 6.254 0 68609 1631 5.847 0 11284 2755 0.746 0
117605 1301 6.473 0 68655 1626 5.419 0 11226 2753 0.711 0
116015 1301 6.539 0 68483 1631 4.817 0 11136 2786 0.685 0
116910 1252 6.996 0 68242 1598 9.475 0 11213 2744 0.708 0
116534 1301 7.444 0 69466 1613 7.985 0 11317 2749 0.747 0

431876 1944 52.0 0 295360 2197 397.0 0 40574 3740 281.4 1302
430941 1989 47.8 0 295703 2250 435.9 0 40647 3728 513.8 1020
433162 1997 39.3 0 294783 2236 388.0 0 40664 3738 485.2 847
426007 1992 60.8 0 304432 2199 397.3 0 40438 3759 333.1 914

10000 431029 1996 66.7 0 293031 2255 404.6 0 40467 3728 1004.4 2254
434909 1935 40.8 0 295167 2238 442.9 0 40686 3751 1141.8 6319
431853 1943 40.6 0 293073 2221 418.7 0 40134 3765 307.8 729
430508 1951 70.7 0 297234 2242 386.9 0 40253 3750 381.1 1163
431020 1958 58.7 0 292270 2230 399.4 0 40793 3696 2608.6 4682
432664 1957 44.1 0 293697 2233 442.3 0 40538 3703 1802.4 3784

Table 1: Results for Pattern Cover Minimality

The strings generated with a value of p close to 0 (or equivalently close to 1) tend to be similar

whereas they are much less similar for p = 0.5. Similar instances are expected to be covered with a

few patterns with many gaps, whereas non similar instances are expected to be covered with many

patterns with few gaps.

By the recursive procedure described in Section 4 we compute for each S all compatible patterns

P (S) and solve with cplex the corresponding set cover problem.

The computational results are reported in Table 1. For each combination of p and m we report

for each one of the ten instances the resulting number of compatible patterns (|P (S)|), the optimal

value of the minimal cover problem (opt), the total cpu time in seconds consisting of the pattern

generation procedure plus the cplex run (time), and the number of nodes (root excluded) of the

branch-and-bound process (#nodes). A value of #nodes equal to zero means that the solution of
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the LP relaxation was already integer.

As can be seen from Table 1 all instances are solved at the branch-and-bound root node except

the case p = 0.5 and m = 10, 000.

Pattern equivalence. One of the main difficulties for testing the models for PATTERN EQUIV-

ALENCE is creating sensible instances which show that the ILP model is indeed effective.

In fact, a major objection that one might have versus the use of ILP is that – when the maximum

number of gaps in the patterns is not “large enough”– a simple enumerative approach might prove

quite effective, and much better than ILP, even if there are a lot of patterns and n is quite big.

Assume, for example, to compare two sets of patterns of about 1,000 patterns each with n = 100,

and each pattern has at most ten ‘-’ in it. Ten gaps can be expanded in 1024 ways, and so each set

of patterns yields at most about 1,000,000 strings, which most computers can generate in a second.

Then, we just need to check whether these two sets of strings have the same size (if not, we stop)

and, if they do, we compare each element of the first to each one of the second and stop as soon as

one element of the first is not in the second (perhaps by first sorting the two sets and then scanning

the sorted lists). Some data structures might be more effective than others for these operations,

but, bottom line, it is a very fast process that ILP has a hard time beating.

Therefore, we want to show that ILP is the way to go when the näıve approach cannot work,

namely, when the patterns have so many gaps in them that a complete expansion (which exponen-

tially increases the data size) is out of question. This poses the problem of how to create non-trivial,

interesting instances of equivalent pattern sets which have a large number of gaps.

Diagonal instances. A simple way of creating instances with equivalent pattern sets is as follows.

For every n, we consider two equivalent sets of patterns, which generate all strings with the exception

of the string 11 · · · 11. We call these diagonal instances.

The first set has n patterns, with a maximum number of gaps n − 1, and is the following

(exemplified for n = 6):
0-----

-0----

--0---

---0--

----0-

-----0
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The second set has 2n− 1 patterns, with a maximum number of gaps n− 2, and is

01----

0-1---

0--1--

0---1-

0----1

10----

1-0---

1--0--

1---0-

1----0

000000

We perform a sequence of tests to compare the ILP approach with the complete enumeration

algorithm, for increasing values of n. These diagonal instances turn out to be very easy for the

ILP model. They are all solved in less than 0.1s, for n ≤ 30 as can be seen from Table 2. The

enumerative approach, however, becomes very soon impractical. For n = 28 the algorithm takes

already more than 15 minutes, while for n = 30 the algorithm has not finished after one hour

(which we set as a maximum time limit). It is interesting to notice how the ILP approach solves

this instance in less than a second also for n = 100, while the enumerative approach would have to

generate 2100 − 1 strings.

n ILP enum

18 0.03s 0.34s
20 0.05s 1.38s
22 0.07s 6.43s
24 0.08s 29.89s
26 0.08s 138s
28 0.05s 1005s
30 0.08s did not finish

Table 2: Computational results for Pattern Equivalence – Diagonal instances

Generating equivalent pattern sets in general. We can adopt the following strategy to create

two sets of equivalent patterns:

1. We generate a small starting set P (e.g., |P | = 3, 4) of random patterns. Each pattern

is obtained by setting each bit to “-” with some probability q, to 0 with some probability

p < 1− q, and to 1 with probability 1− p− q. Since we are interested in patterns with many

gaps, we set q to a large value (e.g., 0.8). Let g be the minimum number of gaps appearing

in some pattern of P .

2. The patterns in P are expanded in all possible ways yielding a set S of strings.

3. We compute with the recursive procedure described in Section 4 (slightly modified) the set

P of all patterns compatible with S which have at least g gaps each (this ensures that it is

always possible to cover S with patterns in P).
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4. We compute two random solutions of the set covering problem. Namely, from P we select

(picking patterns at random until we have a cover) two subsets P1, P2 that are covers of S.

5. P1, P2 are equivalent by construction, and have a fairly large number of gaps in each pattern.

In our implementation, because of memory problems, the above procedure works for n ≤ 20.

Thus, to build larger instances we use a trick. Namely, we create instances starting from instances

built as above and then combining them into larger and larger ones as explained below.

How to boost instances of pattern equivalence. One way to increase the number of gaps in

the instances would be to take two set of equivalent patterns A and B and suffix each pattern with

a list of k gaps. This however yields very particular, uninteresting, instances. In order to obtain

more elaborate, hard pattern equivalence instances, we have developed the following scheme.

Given a set of patterns X, denote by

- n(X) the number of columns (i.e., string length),

- m(X) be the number of rows (i.e., of patterns),

- G(X) the maximum number of gaps in some pattern.

Furthermore, given sets of patterns A and B, denote by C = A×B the set of patterns

C = {(a, b) : a ∈ A, b ∈ B}

Note that n(C) = n(A) + n(B), m(C) = m(A) ·m(B) and G(C) = G(A) + G(B). We have

Claim 1 . Let A1, A2, B1, B2 be sets of patterns such that A1 is equivalent to A2 and B1 is

equivalent to B2. Then A1 ×B1 is equivalent to A2 ×B2.

Proof: Let Ci := Ai×Bi. We want to show that S(C1) = S(C2). We show S(C1) ⊂ S(C2) since the

other direction is symmetrical. Let (x, y) ∈ S(C1). In particular, x ∈ S(A1) and y ∈ S(B1). Since

A1 is equivalent to A2 also x ∈ S(A2) and similarly y ∈ S(B2). Hence (x, y) ∈ S(A1) × S(B2) =

S(C2).

By using this trick repeatedly, we can snowball from small instances, e.g., 4 or 5 patterns with

5 or 6 gaps each, to instances with a few hundred patterns with more than 20 gaps each.

Experiments. We have created 10 instances of size n = 30 each. Each instance is built by

combining two equivalent instances of size n = 15 each, which were built with our procedure with

parameters q = 0.8, p = 0.1 and |P | ∈ {3, 4}. The results are reported in Table 3. These instances

turned out to be too difficult to be solved by the enumerative approach in less than half hour each.

For each set of input patterns (i = 1, 2) we have:

1. mi is the number of input patterns

2. gi is the minimum number of gaps per pattern

3. Gi is the maximum number of gaps per pattern

4. ai is the average number of gaps per pattern
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m1 g1 G1 a1 m2 g2 G2 a2 time(s) BB nodes1 BB nodes 2

264 22 23 22.18 266 22 24 22.19 0.43 0 23
270 24 25 24.03 150 24 25 24.04 0.55 10 21
273 22 22 22.00 220 22 23 22.13 0.70 0 327
266 23 24 23.10 279 23 26 23.20 2.21 48 275
735 22 24 22.15 1089 22 25 22.18 4.02 30 264
342 23 25 23.32 667 23 25 23.07 4.28 684 0
456 22 24 22.30 453 22 25 22.29 15.16 2125 1512
735 22 25 22.35 540 22 25 22.23 50.52 927 3095
688 20 21 20.09 360 20 21 20.16 76.24 1694 1940
784 21 22 21.18 261 21 24 21.64 172.28 13504 1811

Table 3: Computational results for Pattern Equivalence – Boosted instances

The ten instances are reported in Table 3 sorted by running times (9-th column). The 10-th

and 11-th columns report the number of branch-and-bound nodes required for solving models (3)

and (4), respectively.

The results show that the ILP approach is effective also for instances which are large and enough

and cannot be tackled by enumerative approaches.

In order to test the same ILP models in case the pattern sets are not equivalent we have randomly

perturbed the previous data. The running times remained practically the same.

7 Conclusions

In order to use feature selection and LAD in the analysis of binary data consisting of positive

and negative samples, one has to identify which computational problems might arise and how to

overcome them. One of the issues that we have addressed in this paper is in fact the computational

complexity of the problems, which we have shown to be, in general, very hard. As a viable approach

to the effective solution of some of these problems, we have described integer linear programming

formulations. In particular, we have given ILP models for the problem of determining if two sets

of patterns are equivalent and for finding a min-size set of patterns which explain a given data set.

A striking consequence of our complexity results is that there could be no simple ILP model for

finding a minimal set of patterns explaining the same data set explained by a given pattern set.

Developing some procedures for this last problem could be a line of future research.
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