
I

Combinatorial optimization problems with normal random costs

Paolo Serafini
University of Udine, Department of Mathematics and Computer Science

Abstract. We consider combinatorial optimization problems with random jointly normal costs. Target-probability
efficient solutions are those that grant a given target at a certain probability and no other solution can grant the
same target at a higher probability. Since the costs belong to a location-scale family the efficient solutions have a
simple geometric characterization in terms of mean and variance. Computing efficient solutions can be carried out by
an iteration scheme calling for the solution of a constrained integer programming problem.

1 Introduction

We consider the following general definition of a combinatorial optimization problem: a finite set E and a
family X of subsets of E are given. Subsets x ∈ X are called feasible solutions. For each e ∈ E a cost ce is
given and the cost of a subset x ⊂ E is defined as c(x) =

∑
e∈x ce. The goal is to find a solution x∗ ∈ X

minimizing c(x) over all feasible solutions. A very large number of combinatorial optimization problems can
be framed according to this definition.

In this paper we consider the extension of the previous definition to the case of costs Ce represented by
random variables. Then, for each x, the quantity C(x) =

∑
e∈x Ce is also a random variable with distribution

function Fx(c) := Pr {C(x) ≤ c}.
A classical and simple approach to solve a stochastic optimization problem turns it into a deterministic

one by finding solutions of minimum expected cost. However, relying on minimum expected cost may not be
a satisfactory approach especially if there are large fluctuations of the random variables.

The problem is inherently bi-objective because we want to minimize at the same time the cost and the risk
that the cost will be worse than expected. A standard approach, applied to financial investment problems,
was proposed long ago by Markowitz [4] and earlier by de Finetti [2]. The risk is modeled on the variance of
the random variable C(x) and we are faced with the problem of finding mean-variance efficient solutions.

More recently the concept of Value at Risk (VaR) has been defined to approach financial investment
problems [5, 3]. Two quantities are taken into consideration, a cost threshold and a probability, and we want
to find solutions within the threshold at the given probability. A similar approach has been applied also to
combinatorial optimization problems, like in [1, 6].

In this paper we apply this concept to the stochastic combinatorial optimization problems as defined
above. Therefore, given a probability value p and a target c, we want to find solutions x such that Fx(c) =
Pr {C(x) ≤ c} ≥ p. In particular we are interested in computing efficient solutions according to the following
definitions.

Definition 1. A target-probability pair (c∗, p∗), with p∗ < 1, is target-probability efficient (tp-efficient or
simply efficient) if there exist x∗ ∈ X such that Fx∗(c∗) = p∗ and for no x ∈ X , c ∈ R , p ∈ R

Fx(c) = p ≥ p∗ = Fx∗(c∗), c ≤ c∗

with at least one inequality strict. The solution x∗ ∈ X is is also called target-probability efficient. ut
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Fig. 1. Distribution functions for the travel times of the two paths

In the definition it is assumed that p∗ < 1. This is necessary in case there is a common upper bound
for the ranges of all Ce. In this case, if we take the target c∗ equal to the common upper bound, so that
Fx(c∗) = 1 for all x ∈ X , then all x ∈ X would be trivially efficient.

Note that, if the distribution functions are strictly monotonic, efficiency can be equivalently defined by
saying that x∗ is efficient if there exists a target c∗ such that x∗ maximizes Fx(c∗) w.r.t. x ∈ X . Hence in
this case, we should compute the pointwise maximum of the family of distribution functions Fx(c), x ∈ X ,
i.e. the following function of c

Ψ(c) := max
x∈X

Fx(c)

and the tp-efficient set we want to compute is the set {(c ; Ψ(c) : c ∈ R}.
We illustrate the problem with the following example: suppose there are two paths connecting two towns.

The travel times of the paths are random variables with Erlang density function kk λk tk−1 e−kλt/(k − 1)!.
The first path has the values k = 2 and λ = 1/24 and the second path has k = 8 and λ = 1/24. We can
think that the first path consists of two arcs with travel times exponentially distributed and mean values 12
for each arc and the second path consists of eight arcs with travel times exponentially distributed and mean
values 3 for each arc.

The two distribution functions are shown in Figure 1. They intersect at about the value t = 26. The
steeper function corresponds to the second path. So, if we are interested in reaching the town within the
threshold 30, we see that the second path can guarantee this goal with probability 0.779, whereas the first
path can guarantee it with slightly lower probability 0.712. Therefore we prefer to choose the second path. On
the contrary if we fix a threshold of 20 (say we have to reach the town within this time otherwise the trip is
useless) the first path gives a better probability (0.496) than the second path (0.351). The target-probability
efficient set we are looking for is the pointwise maximum of the two distribution functions.

The problem of computing efficient solutions is very difficult in general. It is a tractable problem if the
random variables C(x) belong to a location-scale family. However, since the cost of a feasible solution is
computed as the sum of the costs of its elements, the randomness of C(x) is induced by the randomness of
Ce and, unless the costs Ce are normal, we do not expect the C(x) to be a location-scale family.

Hence we assume that the random variables Ce, e ∈ E, are jointly normal. This in turn implies that
also C(x) are normal random variables belonging to a location-scale family. We consider both the case
of independent and dependent (jointly distributed) random variables Ce. We note that the assumption of
normal variables is quite realistic since, whenever the feasible sets x have many elements then the random
variables C(x) are very close to normal.

Under these hypotheses the computation of efficient solutions can be carried out algorithmically in a
straightforward fashion. As we shall show, we have to solve iteratively an integer programming problem
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closely related to the combinatorial problem we are dealing with. Hence if the underlying combinatorial
problem is difficult, the whole procedure is also difficult, but this is an unavoidable feature.

The fact that we model the costs by normal variables may have surprising effects. Even if the problem
presents costs which are inherently non negative (like, e.g., travel times of edges in a graph) normal ran-
dom costs may be negative, although with negligible probability. This fact must be taken into account in
interpreting the solutions.

The paper is organized as follows. After having defined target-probability efficiency in this section, in
Section 2 we characterize efficient solutions by exploiting the concept of location-scale family. In Section 3
we show an iterative scheme that produces a set of solutions which includes all tp-efficient solutions, and in
Section 4 we show how we can extract from this set the efficient solutions. In Section 5 we describe a similar
iteration to find only one particular efficient solution for a given target. In Section 6 we hint on how to use
mathematical programming techniques to solve the series of problems of Section 3 and Section 5. In Section
7 we address the problem of the number of iterations needed to find the efficient solutions. An example is
provided in Section 8. Finally some conclusions follow in Section 9.

2 Efficient solutions for jointly normal costs

Let the random variables Ce be jointly normally distributed with mean µe, e ∈ E, and covariance matrix
σ2
e,e′ , e, e

′ ∈ E (denote σ2
e = σ2

e,e). We assume that the means µe are integer numbers. This is equivalent to
assume rational numbers and multiply them by the l.c.m. of the denominators. Clearly the efficient solutions
are not affected by a change of scale.

Then the random variables C(x) =
∑
e∈x Ce are normally distributed with mean µ(x) =

∑
e∈x µe and

variance σ2(x) =
∑
e,e′∈x σ

2
e,e′ .

Let
µ̂ = min

x∈X
µ(x)

i.e., µ̂ is the minimum expected cost. Given the strict monotonicity of the distribution functions we compute
efficient solutions by solving the optimization problem:

max
x∈X

Fx(c) (1)

maximizing the probability that C(x) ≤ c for a fixed target c. We have

Pr {C(x) ≤ c} = Pr {µ(x) + Y σ(x) ≤ c} = Pr
{
Y ≤ c− µ(x)

σ(x)

}
where Y is the standard normal deviate with density function

1√
2π

e−y
2/2

Hence all solutions which share the same value for the expression y := (c − µ(x))/σ(x) have the same
probability that their cost is less than c. So if we consider the pairs (µ(x), σ(x)) as coordinates of points in
the plane, we have that solutions whose (µ(x), σ(x)) values lie on the straight line

c = µ+ y σ
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Fig. 3. Rotating the straight line by keeping fixed c and increasing y

have all the same probability 0.5 + 0.5 erf(y/
√

2) that their cost is less than c.
In Figure 2 the five points correspond to the points (µ(x), σ(x)) for five different solutions. The two lines

correspond to the equations
c = µ+ y1 σ, c = µ+ y2 σ, y2 > y1

The solution whose point lies on the line defined by y2 has higher probability of having value less than c
(and is therefore better than the other two solutions in spite of the fact that its mean is the highest). Hence
problem (1) is equivalent to the following problem

max
x∈X

c− µ(x)
σ(x)

(2)

Geometrically, we have to rotate counterclockwise a straight line with rotation center in the point (c, 0),
starting from y = −∞, and finding the point (µ(x), σ(x)) which is swept last by the line, as shown in Figure
3.

If c > µ̂, then the best y is positive, i.e., we can guarantee the target c with probability larger than one
half. If c < µ̂, the best y is negative, i.e., we can guarantee the target c with probability smaller than one
half. If c = µ̂, the best y is null and we can guarantee the target c with probability exactly equal to one
half. We may think that choosing a target larger than µ̂ corresponds to a risk-averse attitude while a target
smaller than µ̂ corresponds to a risk-prone attitude.

Note that a target-probability pair (c∗, p∗) is in a one-to-one correspondence with the pair (c∗, y∗), that
we may also call tp-efficient, where p∗ = 0.5 + 0.5 erf(y∗/

√
2), so that we may also say that x∗ ∈ X is

tp-efficient if there exists y∗ such that for no x ∈ X , c ∈ R ,

y =
c− µ(x)
σ(x)

≥ y∗ =
c∗ − µ(x∗)
σ(x∗)

, c ≤ c∗
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with at least one inequality strict.
We want to show that solving (2) by varying the parameter c yields all and only tp-efficient solutions.

Theorem 1. Each tp-efficient solution is optimal in (2) for some c and each optimum in (2) is tp-efficient
for any c.

Proof: Let x∗ be an optimal solution in (2) (with mean µ∗ and standard deviation σ∗) with chosen target
c∗ and optimal value y∗ = (c∗ − µ∗)/σ∗. Suppose there exists a solution x and values c and y such that

c = µ(x) + y σ(x), c ≤ c∗, y ≥ y∗, (c∗, y∗) 6= (c, y)

Then

y∗ =
c∗ − µ∗

σ∗
≥ c∗ − µ(x)

σ(x)
≥ c− µ(x)

σ(x)
= y ≥ y∗

Moreover, since at least one of the two inequalities c ≤ c∗ and y ≥ y∗ must be strict, it follows that at least
one of the last two inequalities in the chain must be strict, which implies y∗ > y∗. From the contradiction
we have that x∗ is tp-efficient.

Conversely, given a tp-efficient (c∗, y∗) associated to a solution x∗ with mean µ∗ and variance σ∗, consider
(2) with c := c∗. Assuming there exists a better solution x would imply y > y∗ contradicting tp-efficiency of
x∗. ut

An obvious property, given the geometrical picture, is provided by the following Lemma which will be
useful in the next sections.

Lemma 1. Given three solutions x1, x2 and x3, such that σ(x1) ≥ σ(x3) ≥ σ(x2), if

µ(x3) (σ(x1)− σ(x2)) + σ(x3) (µ(x2)− µ(x1)) > µ(x2)σ(x1)− µ(x1)σ(x2) (3)

then x3 is not tp-efficient.

Proof: Note that the inequality (3) cannot be verified if σ(x1) = σ(x3) = σ(x2). Hence we may assume
σ(x1) > σ(x2). The points (µ(x1), σ(x1)) and (µ(x2), σ(x2)) lie on the straight line

µ · (σ(x1)− σ(x2)) + σ · (µ(x2)− µ(x1)) = µ(x2)σ(x1)− µ(x1)σ(x2)

Let us consider the target

c̄ =
µ(x2)σ(x1)− µ(x1)σ(x2)

σ(x1)− σ(x2)

given by the intersection of the straight line with the µ-axis. The inequality (3) can be equivalently written
as

c̄− µ(x2)
σ(x2)

=
c̄− µ(x1)
σ(x1)

>
c̄− µ(x3)
σ(x3)

The inequality between the first and the third term is still valid if we replace c̄ with any c ≥ c̄ since
σ(x3) ≥ σ(x2) and the inequality between the second and the third term is still valid for any c ≤ c̄ since
σ(x1) ≥ σ(x3). Hence, for any target c, x3 is dominated by either x1 or x2 and cannot be tp-efficient. ut
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3 An iterative scheme to compute all efficient solutions

In principle we could think of solving (2) for all possible values of c. However, this would entail the con-
siderable difficulty of solving a nonlinear integer programming problem. Furthermore, it would not be clear
how to sample the target values c in order not to miss any efficient solution. Hence, instead of tackling (2)
directly, we solve the following two series of associated constrained problems which yield a set of candidate
solutions containing all tp-optima. Then, in the next section, we see how to extract from these solutions the
tp-optima. Let

µ0 := µ0 := max
x∈X

µ(x)

The first series, for various values µi (i = 0, 1, . . .) to be defined below, is given by

min
x∈X

σ(x)

µ(x) ≤ µi
(4)

and the second series, for various values µj (j = 0, 1, . . .) to be defined below, is given by

max
x∈X

σ(x)

µ(x) ≤ µj
(5)

Let us first consider the iteration (4). During the iteration we reference to a solution x̂ such that µ(x̂) = µ̂
(i.e., a solution of minimum mean) and the variance σ(x̂) is minimum. Denote σ̂ := σ(x̂). Let xi denote an
optimum in (4). Initially we set µ̄ := µ0 and σ̄ := σ(x0). For all i we will have σ̄ ≤ σ(xi) ≤ σ̂. Initially this
is true for i = 0. Then the values µi, i > 0, are defined as follows. If

µ(xi) (σ̂ − σ̄) + σ(xi) (µ̄− µ̂) > σ̂ µ̄− σ̄ µ̂

then we disregard xi as a candidate for tp-optimality due to Lemma 1, leave µ̄ and σ̄ unchanged and define

µi+1 :=
σ̂ µ̄− σ̄ µ̂− σ(xi) (µ̄− µ̂)

σ̂ − σ̄
(6)

Note that µ̂ < µi+1 < µ(xi) ≤ µi. If, on the contrary (this case always occurs with equality for i = 0),

µ(xi) (σ̂ − σ̄) + σ(xi) (µ̄− µ̂) ≤ σ̂ µ̄− σ̄ µ̂

we keep xi as a candidate for tp-optimality, and update

µ̄ := µ(xi), σ̄ := σ(xi), µi := µ(xi−1)− ε

where ε is sufficiently small, in the sense that there is no feasible x such that µ(xi) − ε < µ(x) < µ(xi). In
both cases xi is not feasible in the next problem i + 1, whereas, if µi+1 ≥ µ̂, x̂ is feasible and therefore the
condition σ̄ ≤ σ(xi) ≤ σ̂ is valid also in the next iteration.

We briefly comment on the choice of ε. In case the µe values are integer, as we have assumed, then
ε = 1 suffices. If the means are just rational numbers, we have already observed that we may scale the
random variables by multiplying them by the l.c.m. of the denominators of the means, thereby obtaining
integer values. However, instead of rescaling the random variables we may keep the rational means and take
ε to be equal to the inverse of the l.c.m. The size of ε does not affect the computational complexity of the
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problem. The number of iterations is related to the number of different mean-variance efficient solutions of
the problem.

For the iteration (5) let x̂ such that µ(x̂) = µ̂ (i.e., again a solution of minimum mean) and the variance
σ(x̂) is maximum. Denote σ̂ := σ(x̂). Let xj denote an optimum in (5). Initially we set µ̄ = µ0 and σ̄ = σ(x0).
For all j we will have σ̄ ≥ σ(xj) ≥ σ̂. Initially this is true for j = 0. Then the values µj , j > 0 are defined
as follows: If

µ(xj) (σ̄ − σ̂) + σ(xj) (µ̂− µ̄) > σ̄ µ̂− σ̂ µ̄
then we disregard xj as a candidate for tp-optimality due to Lemma 1, leave µ̄ and σ̄ unchanged and define

µj+1 :=
σ̄ µ̂− σ̂ µ̄− σ(xj) (µ̂− µ̄)

σ̄ − σ̂

Note that µ̂ < µj+1 < µ(xj) ≤ µj . If, on the contrary,

µ(xj) (σ̄ − σ̂) + σ(xj) (µ̂− µ̄) ≤ σ̄ µ̂− σ̂ µ̄

we keep xj as a candidate for tp-optimality, and update

µ̄ := µ(xj), σ̄ := σ(xj), µi := µ(xj−1)− ε

where again ε is sufficiently small, in the sense that there is no feasible x such that µ(xj)−ε < µ(x) < µ(xj).
Since xj is infeasible problem j + 1 the condition σ̄ ≥ σ(xj) ≥ σ̂ is valid also in the next iteration.

The two series are finite because the set X is finite. Let r be the last index such that problem (4) is
feasible and necessarily µ(xr) = µ̂. Let q be the last index such that problem (5) is feasible and necessarily
µ(xq) = µ̂. Let us call equivalent two solutions x and x′ such that µ(x) = µ(x′) and σ(x) = σ(x′).

Theorem 2. Given an efficient solution x∗, such that µ(x∗) > µ̂, associated to the efficient target pair (c, p),
this solution or an equivalent one is among the accepted optima xi in (4) if c > µ̂ and among the accepted
optima xj in (5) if c < µ̂.

Proof: We prove the statement by contradiction. Suppose that x∗ is efficient for a target c > µ̂ and assume
that x∗ 6= xi for all i and for any equivalent optimum x∗. Since c > µ̂ we have c > µ(x∗) otherwise x∗ could
not be optimum in (2).

The solution x∗ is feasible in (4) for i = 0. By using an inductive argument let us assume that x∗ is
feasible for a generic i. Then we have by optimality of xi in (4)

σ(x∗) ≥ σ(xi) (7)

Since x∗ is efficient it is optimal in (2). We have two cases,

either i)
c− µ(x∗)
σ(x∗)

=
c− µ(xi)
σ(xi)

or ii)
c− µ(x∗)
σ(x∗)

>
c− µ(xi)
σ(xi)

Note that the case c− µ(x∗) = c− µ(xi) and σ(x∗) = σ(xi) is excluded by the hypothesis that xi is not an
equivalent optimum of x∗. In case i) we have from (7) and from c > µ(x∗) that c − µ(x∗) > c − µ(xi), i.e.,
µ(x∗) < µ(xi). Note that, by Lemma 1, case i) cannot happen if xi is not accepted because it would imply
that also x∗ is dominated for any target. Hence, due to the choice of ε, x∗ is feasible for problem (i+ 1). In
case ii), if xi is accepted, we have

σ(xi) (c− µ(x∗)) > σ(x∗) (c− µ(xi))
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By (7) and from c > µ(x∗) we have

σ(x∗) (c− µ(x∗)) ≥ σ(xi) (c− µ(x∗)) > σ(x∗) (c− µ(xi))

so that, since σ(x∗) > 0 we get again µ(xi) > µ(x∗), i.e., feasibility of x∗ for problem (i + 1). If xi is not
accepted then, by Lemma 1

µ(x∗) (σ̂ − σ̄) + σ(x∗) (µ̄− µ̂) ≤ σ̂ µ̄− σ̄ µ̂
otherwise x∗ could not be efficient. Hence x∗ is feasible in the next problem (i + 1). Feasibility of x∗ for
problem (i+ 1) and hence for all i contradicts the fact that problem (r + 1) is infeasible.

The proof for the iteration (5) is similar and is omitted. ut
Note that the converse of the theorem does not hold, that is, there are accepted optima of (4) and (5)

that are not efficient. To detect the efficient solutions among the accepted optima we need the procedure
that we present in the next section. The important fact pointed out by the theorem is that we do not miss
efficient solutions by solving the sequence of problems (4) and (5) if µ(x∗) > µ̂.

The case µ(x∗) = µ̂ is critical. Besides the solutions xr and xq which are necessarily efficient there might
be other efficient x̄, optima in (2) for a target c = µ̂ such that σ(xr) < σ(x̄) < σ(xq). These efficient solutions
cannot appear as optima neither in (4) nor in (5). In case xq 6= xr and they are not equivalent we may scan
all efficient solutions by minimizing µ(x) and constraining σ(x). Note that all these solution have the same
mean equal to the minimum expected cost and different variance. They all grant the same target µ̂ with
probability 1/2 but having different variance they have different fluctuations. The larger the fluctuations the
higher the probability of reaching good values but also bad values.

4 Recovering efficient solutions

It is useful to relabel all accepted optima found in problems (4) and (5) in order of decreasing values of
σ(xj) and σ(xi). Hence the new indices h are such that first the accepted solutions from (5) are listed in
that order and then follow the accepted solutions from (4) in the reverse order. From now on xi will denote
an accepted optimum in either (4) or (5) with the new index. Let us also denote µi := µ(xi), σi := σ(xi).

In order to detect efficiency of the optima and recover the associated target let us recall that by definition
xi is efficient if there exists a target c such that

c− µi
σi

≥ c− µ(x)
σ(x)

for all x ∈ X

However, we may restrict the check to the subset of efficient solutions, i.e., xi is efficient if if there exists a
target c such that

c− µi
σi

≥ c− µ(x)
σ(x)

for all efficient x ∈ X

Indeed if it were not so, there would exist another solution x̄ and in particular an efficient one such that

c− µi
σi

<
c− µ(x̄)
σ(x̄)

Hence to detect efficiency of xi we may check among the solutions of (4) and (5) which include all tp-efficient
solutions possibly enlarged with all tp-efficient solutions associated to c = µ̂. Therefore we simply check
whether there exist target values c such that

c− µi
σi

≥ c− µh
σh

for all h



IX

i.e.
c (σi − σh) ≤ σi µh − σh µi for all h

Let us define
αij :=

σi µj − σj µi
σi − σj

Note that αij = αji. The matrix αij (undefined on the diagonal) is therefore symmetric. Moreover, due to
the index ordering, all values on the upper triangular part have indices i and j (i < j) such that σi > σj ,
whereas all values on the lower triangular part (i > j) have indices i and j such that σi < σj . Let us define

c−i := max {αij : i > j} , c+i := min {αij : i < j}

Hence xi is efficient if and only if c−i ≤ c+i and its associated target is any c such that c−i ≤ c ≤ c+i with
probability

pi =
1
2

+
1
2

erf
(c− µi
σi
√

2

)
To compute the feasible interval extremes c−i and c+i (note that c+i is equal to c−j if j corresponds to the
next feasible interval) we carry out the following iteration:

i := 1; c− := −∞;
while i < n do
k := argmin

j>i
αij ; c+ := αik;

output (c−, c+);
i := k; c− := c+;

end;
output (c−,+∞);

In words, the iteration works as follows: starting from the index i = 1 the minimum value α1k =
minj>1 α1j is computed. This is the first interval extreme. Then we go to row k. By construction it turns out
that αk1 = maxj<k αkj . Then we compute the minimum αkh = minj>k αkj , record this value as a second
interval extreme and move to row h. Again it turns out that αhk is the maximum for αhj , j < h. The
procedure goes on until the last row is reached.

We note an interesting relation between the tp-efficient solutions, and the mean-variance efficient solu-
tions. The tp-efficient x∗ computed in the case c > µ̂ are also mean-variance efficient. In the case c < µ̂
all tp-efficient solutions are strictly dominated in the mean-variance approach. Moreover, there are mean-
variance efficient solutions that are not tp-efficient, since all tp-efficient solutions are on the boundary of
the convex hull of {(µ(x), σ(x) : x ∈ X}, whereas there may be in general mean-variance efficient solutions
within the convex hull.

5 Computing one efficient solution for a given target

In this section we consider the problem of finding just one tp-efficient solution for a fixed target c, i.e., solving
problem (2), which we repeat

max
x∈X

c− µ(x)
σ(x)

(8)

As already observed, it is difficult to tackle this integer nonlinear programming problem directly. We propose
again an iterative procedure to find the tp-efficient x∗. The iteration mimics the previous one designed to
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find all efficient solutions, but it exploits the fact that c is fixed and hence the iteration is faster and the
parameters are updated differently.

Again we have to consider two separate cases: either c > µ̂ or c < µ̂ (the case c = µ̂ is easy, see the
previous discussion). As before, for the case c > µ̂, we iteratively solve the problem

min
x∈X

σ(x)

µ(x) ≤ µi
(9)

for various values µi, i = 0, . . . , r, under the inductive hypothesis that at stage i there is available an
incumbent solution x̄ and that, if x̄ 6= x∗, then µ(x∗) ≤ µi, i.e., x∗ is feasible for problem i.

At the first iteration of (9) we set µ0 := c. Let x̂ be the solution that has minimum mean µ(x̂) = µ̂
and that, among the solutions with minimum mean, has minimum variance σ(x̂). We initially set σ̂ := σ(x̂).
Moreover, we set x̄ := x̂ as a first incumbent. Hence the inductive hypothesis is verified at the first stage.

Let x′ be the optimum in (9) and denote µ′ = µ(x′), σ′ = σ(x′). Hence there are no (µ(x), σ(x)) pairs such
that σ(x) < σ′ and µ(x) ≤ µi and by the inductive hypothesis, if x̄ 6= x∗, then (µ(x∗), σ(x∗)) must belong
to the set C1 = {(µ, σ) : µ ≤ µi, σ ≥ σ′}. Moreover due to the existence of the incumbent x̄, (µ(x∗), σ(x∗))
must belong to the intersection of C1 with the set

C2 =
{

(µ, σ) :
c− µ̂
σ̂
≤ c− µ

σ

}
If (case 1, refer to Figure 4 above at left, where the sets to which (µ(x∗), σ(x∗)) cannot belong are denoted
in grey)

c− µ′

σ′
<
c− µ̂
σ̂

then x′ is dominated by the incumbent x̄ and we set µi+1 for the next problem as (Figure 4 above at right)

µi+1 := c− σ′

σ̂
(c− µ̂)

and the inductive hypothesis is satisfied. If (case 2, refer to Figure 4 below at left)

c− µ′

σ′
≥ c− µ̂

σ̂

then the incumbent x̄ is dominated by x′ if the inequality is strict. In any case we reset x̄ := x′ and the set
C2 may be strengthened, thanks to the new incumbent x̄, to

C2 =
{

(µ, σ) :
c− µ′

σ′
<
c− µ
σ

}
so that we may reset (Figure 4 below at right)

σ̂ := σ′
c− µ̂
c− µ′

and we need to set µi+1 as µi+1 := µ′ − ε as we did before. The iteration terminates when µi < µ̂. Then
x∗ := x̄.
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Fig. 4. Iteration update: case 1, above; case 2, below

A similar iteration works if c < µ̂. In this case we have to solve

max
x∈X

σ(x)

µ(x) ≤ µj
(10)

for various values µj . The initial value µ0 is the maximum mean among all feasible solutions and the first
incumbent x̄ is the solution x̂ that has minimum mean µ(x̂) = µ̂ and that, among the solutions with minimum
mean, has maximum variance σ(x̂). The iteration works exactly as in the previous case. We leave to the
reader the easy verification of this fact. It is also not difficult to extend these ideas to the case of computing
a single efficient solution granting the best target for a given probability threshold.

6 Solving the associated constrained problems

In both series we can equivalently replace the objective function with σ2(x). If the random variables Ce are
independent then

σ2(x) =
∑
e∈x

σ2
e

so that (4), (5), (9) and (10) become

min (max)
∑
e∈x

σ2
e∑

e∈x
µe ≤ µ̄

x ∈ X

(11)
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Even if the combinatorial problem minx∈X (maxx∈X )
∑
e∈x σ

2
e is an easy one, usually adding the constraints∑

e∈x µe ≤ µ̄ turns the problem into a NP-hard one. If the combinatorial problem can be modeled as 0-1
linear programming problem, then the constraint can be easily added to the model.

If the random variables are not independent, we have

σ2(x) =
∑
e,e′∈x

σ2
e,e′

In this case the corresponding 0-1 programming problem has a quadratic objective function, and this is
notoriously difficult. If there is a limited number of correlated variables, the problem can be linearized with
little added complexity.

7 Computational complexity issues

Besides the inherent difficulty of solving (11) (especially when the variables are correlated) another crucial
issue with regard to the overall computation time is related to the number of iterations needed to solve the
series of problems (4) and (5) in case we want to compute all tp-efficient solutions or the series of problems
(9) and (10) in case we want to compute only one tp-efficient solution for a given target.

Apparently, we need to solve (4) as many times as there are mean-variance different efficient solutions.
The only trivial bound on the number of iterations is given by the number of feasible solutions itself. Indeed
we can build instances such that this bound is reached. For instance (let E = {1, . . . , n} and X = 2E)
assume that µi = −2i−1, i = 1, . . . , n, and σ2

i,j = µi µj , i 6= j and σ2
i,i = µ2

i (1 + η), with η like a very small
‘noise’. This is an extreme example with all variables very strongly correlated (the correlation coefficients
are close to 1 − η). Then two different feasible solutions have different pairs (µ(x), σ(x)) and all of them
are mean-variance efficient (all (µ(x), σ(x)) pairs lie close to the straight line σ + µ = 0 where they belong
in the limit as η approaches 0). Hence we have to enumerate all feasible solutions. However, there are only
two tp-efficient solutions corresponding to the ones with minimum and maximum mean respectively, i.e., the
whole set and the empty set.

If we want to compute just one efficient solution for this example, the number of iterations is smaller and
it decreases as the target decreases.

We may argue that, for real data, means and variances are not so strongly correlated and so the number
of iterations should be much lower. Indeed the computational experiments show that the number of iterations
is usually not very high. The computational bottleneck is more due to the problems (11) themselves rather
than to the number of times they must be solved.

8 An example

We illustrate the procedure with an example. Suppose the combinatorial optimization problem is a knapsack
problem with n = 12 items. This example could refer to a portfolio problem with no possibility of investing
fractional amounts of stock options. The data we provide for this example are just random fictitious data.
The knapsack capacity, i.e., the available budget, is K = 13. The weights, i.e., the amounts that can be
invested, are the following deterministic values:

w = ( 3 2 3 4 4 5 5 3 4 3 3 5 )
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Fig. 5. All knapsack solutions of the example

whereas the costs, which are negative profits in this case, are jointly normal with means

µ = − ( 17 86 30 28 49 20 67 40 70 94 29 11 )

and covariance matrix

σ2 =



3786 1874 −375 −1538 −281 −1437 −2163 328 1744 231 319 −83

1874 7516 1173 −4653 116 −3458 −4799 −5276 −2417 −3942 2666 −2369

−375 1173 2840 −1822 −920 −984 −325 −1394 −485 −202 1080 −938

−1538 −4653 −1822 4862 924 3050 2943 3099 444 1995 −172 2828

−281 116 −920 924 2371 150 −135 −537 −2337 −1397 1540 −504

−1437 −3458 −984 3050 150 3580 1996 1811 978 978 −840 1960

−2163 −4799 −325 2943 −135 1996 3940 2711 1192 2370 −1743 2065

328 −5276 −1394 3099 −537 1811 2711 7299 2694 6300 −1413 2685

1744 −2417 −485 444 −2337 978 1192 2694 5986 3053 −3429 2684

231 −3942 −202 1995 −1397 978 2370 6300 3053 6584 −1338 3331

319 2666 1080 −172 1540 −840 −1743 −1413 −3429 −1338 5447 −271

−83 −2369 −938 2828 −504 1960 2065 2685 2684 3331 −271 5152


For illustration purposes we show in Figure 5 how the 409 feasible solutions are mapped in the plane

(µ, σ). The optima accepted by the iterative procedure are the largest dots (one of them turns out to be non
efficient), whereas the optima discarded by the iterative procedure are the dots of intermediate size.

The minimum and maximum mean values are µ̂ = −299 and µ0 = µ0 = 0. Problems (4) and (5) have
been solved by using binary quadratic programming. Due to the small size of the instance, the solutions have
been found very quickly. Solving the series of problems (4) yields the following 8 optima, with the optima
discarded by the procedure shown in italics:

{} , {2, 7} , {2 , 6 , 7} , {2 , 4 , 7} , {2 , 5 , 7} , {2, 7, 10} , {2 , 4 , 5 , 10} , {2, 5, 9, 10}

with corresponding (µi, σi) pairs (σi figures rounded to integers)

(0, 0), (–153, 43), (–173 , 50 ), (–181 , 57 ), (–202 , 65 ), (–247, 73), (–257 , 86 ), (–299, 93)

and solving the series of problems (5) yields the following 4 optima (the last one is the same as the last one
of the previous series) all of which are accepted

{1, 8, 9, 10} , {3, 8, 9, 10} , {2, 8, 9, 10} , {2, 5, 9, 10}
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Fig. 6. Distribution functions of four tp-efficient solutions

with corresponding (µj , σj) pairs:

(–221, 229), (–234, 206), (–290, 168), (–299, 93)

From these data we compute the αij matrix as (all figures rounded to integers)

α =

0BBBBBBB@

−354 −480 −352 −259 −137 0
−354 −534 −352 −254 −132 0
−480 −534 −310 −214 −106 0
−352 −352 −310 −58 −26 0
−259 −254 −214 −58 −17 0
−137 −132 −106 −26 −17 0

0 0 0 0 0 0

1CCCCCCCA
from which we get the following 5 values for the target intervals

{−480.429,−310.109,−57.7276,−16.496, 0.}

which yield the following 6 efficient solutions together with the target and probability efficient values:

x1 = {1, 8, 9, 10} −∞ < c ≤ −480.429 0 < p ≤ 0.128437

x2 = {2, 8, 9, 10} −480.429 ≤ c ≤ −310.109 0.128437 ≤ p ≤ 0.452349

x3 = {2, 5, 9, 10} −310.109 ≤ c ≤ −57.7276 0.452349 ≤ p ≤ 0.995344

x4 = {2, 7, 10} −57.7276 ≤ c ≤ −16.496 0.995344 ≤ p ≤ 0.999229

x5 = {2, 7} −16.496 ≤ c ≤ 0 0.999229 ≤ p ≤ 0.999807

x6 = {} 0 ≤ c <∞ 0.999807 ≤ p ≤ 1

Clearly, for practical purposes, we may disregard x4, x5 and x6 since they have probability values almost
indistinguishable from x3, which can grant better targets. The (c, p) efficient set for x1, x2, x3 and x4 is shown
in Figure 6. It is the upper envelope of the four distribution functions Fxi(c), i = 1, . . . , 4. The breakpoints
between the efficient solutions are also shown.
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9 Conclusions

We have considered random combinatorial optimization problems with the randomness only in the cost
coefficients. In particular the random variables representing the costs are assumed to be jointly normal,
so that the cost of a combinatorial object, expressed as the sum of the cost random variables, is also
normal. Target-probability efficient solutions are those solutions which grant a given target at a certain
probability and no other solution can grant the same target at better probability. Normality of the costs
allows for iterative computational schemes to find either all target-probability efficient solutions or just one.
The computational scheme is based on a variance minimization/maximization with a constraint on the mean.
If the costs are not correlated this is a linear objective function together with a linear constraint which has
to be added to the contraints defining the particular combinatorial problem at hand.
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