
SCHEDULING SCHOOL MEETINGS

Franca Rinaldi and Paolo Serafini

University of Udine, Department of Mathematics and Computer Science

Abstract: Prespecified meetings between teachers and parents have to be scheduled. All meetings have
the same duration. The goal is in finding a schedule minimizing the total time and the parents’ idle times.
This NP-hard problem is addressed by solving first a sequence of weighted assignment problems and then
performing a large scale neighborhood search based on finding negative cost cycles and shortest paths in
directed graphs. This approach provides good computational results. Finally a variant of the problem with
two different durations for the meetings is considered.

1. Introduction

We address the following problem arising in Italian high schools: on certain days of the school year,
parents can meet teachers to discuss about their children. Each parent tries to meet some teachers and the
meetings are individual. There is no advance planning for the event and therefore parents wait in lines for
a long time (one line for each teacher), not only wasting time but also preventing the possibility to meet
several teachers.

In this paper we propose a planning method in order to guarantee that each parent meets all required
teachers and the global wasted time of the parents is minimized. A prerequisite for the method to work is
that all meetings last the same amount of time.

The problem we study is NP-hard. We suggest a two phase heuristic approach for its solution. The
first phase computes a schedule of minimum time to allocate all meetings by solving a sequence of weighted
assignment problems. The second phase minimizes the parents’ idle times through a large scale neighborhood
search based on negative cycle detection and shortest path computations in directed graphs. It turns out
that this search is quite effective and strongly reduces the wasted time of the final solutions.

We also briefly consider an extension of the model by allowing double duration to certain specified
meetings that require more discussion.

To the best of our knowledge, this specific timetable problem has not been addressed in the literature.
Nevertheless, a similar problem was considered in Bartholdi and McCroan (1990) to schedule job interviews
for law firms and students at the Southeastern Public Interest Job Fair, a law fair which is held each year
in the U.S. In this paper the timetable problem is modeled as an edge–coloring problem on bipartite graphs
and the minimization of the idle times (considered both for law firms and students) is partially carried out
by maximizing the cumulative number of meetings assigned to each period. Our problem has also some
resemblance with the no–wait open shop problem (Hall and Sriskandarajah (1990)), where it is required
that all the operations of a same job are executed contiguously, i.e., no idle time for the jobs is allowed.
The particular case of unit processing times has been studied in Gonzalez (1982) and, under the additional
condition of no idle time for the machines, in Giaro and Kubale (2004).

As pointed out above, the local search procedure we adopt is based on neighborhoods of exponential size
in which an improving neighbor can be found in polynomial time by dynamic programming. The potential

1

of using optimization methods, and in particular network flow techniques and dynamic programming, to
search neighborhoods of very large size, has been remarked in Ahuja et al. (2002). In the particular field
of timetabling, large–scale neighborhood metaheuristics have been applied, for instance, in Dowsland (1998)
to solve a nurse scheduling problem and in Meyers and Orlin (2006) to solve the examination timetabling
problem.

The paper is organized as follows. In Section 2 we define the problem. In Section 3 an algorithm to
find a schedule of minimum makespan is presented. In Sections 4 and 5 two local search procedures based
on finding sequences of meeting exchanges are described. The first one considers meetings of a fixed teacher,
whereas the second one considers meetings of a fixed parent. The techniques are illustrated with an example
in Section 6. In Section 7 we extend the problem to the case with two different durations of the meetings.
Finally some computational results are given in Section 8.

2. Problem Definition

In the problem we consider, a set J of parents and a set I of teachers are given and each parent j wants
to meet a specified subset Ij of teachers. The subsets Ij are the input data. Let Ji := {j : i ∈ Ij} be the
subset of parents that want to meet the teacher i.

Assuming that all meetings last the same amount of time, called time slot, the output is a schedule t(i, j)
assigning the time slot t(i, j) to the meeting of parent j with teacher i, with the obvious requirement that
t(i, j) 6= t(i, j′) for all j′ 6= j and all i and also t(i, j) 6= t(i′, j) for all i′ 6= i and all j. We define as makespan
of the schedule the maximum time in which a meeting occurs, i.e., maxi∈I t(i, j) = maxj∈J t(i, j). Moreover,
for any given schedule, we define idle time for parent j any time slot k such that mini t(i, j) < k < maxi t(i, j)
and k 6= t(i, j) for any i. In other words, an idle time is a waiting time slot in between meetings and therefore
counts as a wasted time.

We define as school meeting problem the problem of determining a schedule of minimum makespan that
minimizes the total number of idle times over all parents. This way the two objectives of minimizing the
makespan and the wasted time of the parents are treated in a lexicographic order. The problem of minimizing
the number of idle times within a fixed time is NP-hard, as can be seen by transforming the no-wait open
shop problem with 0-1 processing times O|no-wait, pij ∈ {0, 1} |Cmax, shown to be NP-hard in Gonzalez
(1982). Then the school meeting problem is NP-hard. We approach its solution heuristically.

3. Minimizing the Maximum Time for the Meetings

The problem of minimizing the maximum time needed for the meetings is equivalent to a minimum
makespan open-shop problem by identifying teachers with machines and parents with jobs. Since the pro-
cessing times are equal to one, this particular instance of the open shop problem is polynomial and can
be easily solved by means of the algorithm by Gonzalez and Sahni (1976) for the open-shop problem with
preemption.

The minimum makespan T is given by T = max {maxj |Ij |,maxi |Ji|}, and an optimal schedule can be
computed by solving a sequence of T bipartite matching problems, one for each time slot. In more detail,
let J0

i := Ji and I0
j := Ij . Then recursively the k-th matching problem (k = 1, . . . , T) assigns a teacher i to

a parent j only if i ∈ Ik−1
j . Furthermore, teachers i such that |Jk−1

i | = T − k + 1 must be assigned to some
parent and parents j such that |Ik−1

j | = T − k + 1 must be assigned to some teacher. These teachers and
parents are called critical for time k (and remain critical for any subsequent time). Let Mk ⊂ I × J be the
set of pairs assigned by the k-th matching. Then for all (i, j) ∈ Mk, set t(i, j) := k, Ik

j := Ik−1
j \ {i} and

Jk
i := Jk−1

i \ {j}.

2

The structure of the above algorithm leaves some room to take into account the lexicographically second
objective function of the school meeting problem, that is minimizing the total number of idle times of the
parents. Our first strategy consists in solving, at each step, a max weight matching problem instead of a
feasible matching problem. To this aim let sk(j) ∈ {0, 1, 2} be the state of parent j at time k, where the
meaning is that sk(j) = 0 if no meeting has been assigned to parent j up to time slot (k − 1) (included),
sk(j) = 1 if some, but not all, meetings have been assigned, and sk(j) = 2 if all meetings have been assigned.
Then each pair (i, j) receives the weight

wij :=
{

0 if sk(j) = 0
1 if sk(j) = 1 (1)

in the k-th matching problem (note that if sk(j) = 2 parent j is not considered in the matching problem).
Hence, until a parent has not been assigned, his/her meetings receive a zero weight. As soon as a meeting
for the parent is assigned, the weight rises to one.

With the cost function (1) the procedure tends to schedule the major part of the meetings in the
last slots, when all parents and teachers become critical. This introduces inevitable idle times. In order to
overcome this behavior, we have observed that it is useful to modify the cost function by randomly generating
the meeting costs so that parents still to be assigned might be encouraged to be assigned a meeting. So we
redefine (1) as

wij :=

− 1 with probability p1

0 with probability p2

1 with probability 1− p1 − p2

 if sk(j) = 0

K (1 + Wk(j))2 if sk(j) = 1

(2)

with Wk(j) the number of idle times assigned to parent j during time slots {1, . . . , k − 1}. The probabilities
p1 and p2 and the coefficient K must be properly tuned. Hence, until a parent has not been assigned, his/her
meetings receive a low weight, strictly lower than one. As soon as a meeting for the parent is assigned, the
weight rises to K and then increases quadratically with the number of assigned idle times.

4. Minimizing the Idle Times - Local search LST

The solution found by the procedure described in the previous section may have many idle times. In
order to reduce their number, we adopt a large scale neighborhood search approach based on two different
types of neighborhood. The first procedure, denoted LST, modifies the schedule by exchanging meetings of
a single teacher, while the second procedure, denoted LSP, moves meetings of a single parent. In this section
we present the local search LST.

This local search is based on the idea of moving a given meeting to a time slot in which the parent is
free. If in the new time slot the teacher is busy with another meeting, this meeting must be moved as well
creating recursively a chain of moves. For feasibility, this chain of moves must either be cyclic or end in a
free time slot for the teacher. We associate to this chain a cost given by the number of introduced idle times.
Although the number of possible moves is exponential, an improving solution in the neighborhood, if any
exists, can be found in polynomial time as follows.

Given a schedule with makespan T and a particular teacher i, we define a directed graph Gi = (N,Ei)
having T nodes identified with the time slots 1, . . . , T .

Let Bi be the set of nodes corresponding to the time slots when teacher i is busy with some meeting,
i.e. Bi := ∪j∈Ji

t(i, j) and Fi := N \Bi be the complement set of nodes when teacher i is free from meetings.
Moreover, for each parent j, let Hj be the set of nodes corresponding to the time slots when j is not assigned
a meeting, i.e. Hj := N \ ∪i∈Ij t(i, j). Note that Hj does not depend on i.

3

The arcs Ei of the graph Gi are defined as follows. For each k ∈ Bi, let j(k) be the parent meeting i

at time k, i.e. t(i, j(k)) = k. There is an arc (k, h) for each h ∈ Hj(k). This arc corresponds to moving the
meeting of teacher i and parent j(k) from time k = t(i, j(k)) to time h. There is no conflict for the parent
because the parent is free at time h. There is a conflict for the teacher if h ∈ Bi. But this conflict can be
resolved by a subsequent change induced by another arc. Therefore any simple cycle in Gi corresponds to a
sequence of changes which eventually lead to a new feasible schedule. Similarly, any simple path terminating
in a node h ∈ Fi corresponds to a feasible sequence of changes. We may extend paths to cycles by adding
arcs (h, k) for each h ∈ Fi and k ∈ Bi.

We assign the following costs to the arcs: the arcs (h, k), h ∈ Fi, k ∈ Bi receive cost 0; the arcs (k, h),
k ∈ Bi, h ∈ Hj(k) receive a cost given by the difference between the idle time number for parent j(k) in the
current schedule and in the schedule obtained by moving the meeting from k = t(i, j(k)) to time h. Then
simple cycles with negative cost correspond to a sequence of changes leading to a schedule with less idle
times. Detecting negative cost simple cycles is easy and can be carried out for instance by the Floyd-Warshall
algorithm (see Ahuja et al. (1993)). We point out the similarity of this type of search with the one proposed
in Dowsland (1998).

The above considerations suggest the following scheme for a large scale neighborhood search: given a
schedule, for each teacher i build the graph Gi and detect a negative simple cycle Ci. If there is no such a
cycle output a shortest directed cycle. Then select the i’s with the most negative cycles and among them
randomly select a particular i′. If there are no negative cycles, select randomly any i′ with zero cycle cost
if any exists. If there are only positive cost cycles stop the procedure, else perform the meeting exchanges
indicated by the cycle and continue. Stop the procedure if the number of consecutive zero cost exchanges
exceeds a fixed parameter.

5. Minimizing the Idle Times - Local search LSP

In the local search LSP we exchange the roles of teachers and parents. Therefore we move a given
meeting to a time slot in which the teacher is free. If in the new time slot the parent is busy with another
meeting, this meeting must be moved as well. However, since we count idle times for parents and not for
teachers, there is no full symmetry between the two approaches. In order to count the number of idle times
introduced or removed by a chain of moves, note that the number of idle times of a single parent changes if
and only if his/her total time in the school changes.

The procedure works as follows. Let Gj a graph having nodes corresponding to time slots 1, . . . , T and
arcs (k, h) whenever j meets a teacher, let us say i, at time k and i is free at time h. Let t′ := mini t(i, j) and
t′′ := maxi t(i, j). By the above comment, a sequence of switching in the meetings of j changes the number
of idle times for j if and only if t′′ − t′ changes.

In order to find a sequence that reduces the number of idle times of parent j, we solve two shortest
path problems in Gj , one from t′ and one from t′′ to the set Hj of nodes at which parent j is free. The
instance with source t′ is defined as follows. Let r ≥ 0 be the number of idle time slots adjacent to t′ and
Bj = ∪it(i, j). We assign to the arcs of Gj the following costs

w(k, h) :=

−(h− t′) if k = t′, h ≤ t′ + r
−(r + 1) if k = t′, h ∈ Hj , t′ + r < h < t′′

−r + s− 1 if k = t′, h = t′′ + s > t′′

−r if k = t′, h ∈ Bj

r − (h− t′) if k ∈ Bj \ {t′}, h ≤ t′ + r
s− 1 if k ∈ Bj \ {t′}, h = t′′ + s > t′′

−1 if k ∈ Bj \ {t′}, h ∈ Hj , t′ + r < h < t′′

0 if k, h ∈ Bj \ {t′}

(3)

4

Then the cost of a directed path from t′ to any node in Hj measures the change in the number of idle times
produced by the correponding sequence of moves. This is clearly the case if the path has only one arc (t′, h)
(first three cases in (3)). If the path has more than one arc, then all arcs different from the first and the last
ones correspond to exchanges in between meetings on the same time slots and do not modify the number of
idle times. Consistently, they have a null cost (last case) and the change in the idle time number depends
only on the first and last arc. The first arc always eliminates r idle times (fourth case). The last arc (k, h)
eliminates one more idle time if h is an idle time, while it may introduce idle times if either h ≤ t′ + r or
h ≥ t′′ + 1 (remaining cases). Note that there are no negative cycles and so a shortest path problem is well
defined. The instance of the shortest path problem with source t′′ can be defined in a similar way.

We define a large scale neighborhood search scheme for LSP as for LST: given a schedule, for each
parent j build the graph Gj and compute a shortest path Pj . Then select the j’s with the most negative
paths and among them randomly select a particular j′. If there are no negative paths, select randomly any
j′ with zero path cost if any exists. If there are only positive cost paths stop the procedure, else perform
the meeting exchanges indicated by the path and continue. Stop the procedure if the number of consecutive
zero cost exchanges exceeds a fixed parameter.

In order to extend the neighborhood size, we have also implemented a mixed local search, denoted
LSTP, in which we build at each stage both Gj , for all parents j, and Gi for all teachers i and select the
best chain of moves among all possibilities.

6. An Example

Let J = {1, 2, 3, 4, 5, 6, 7, 8, 9} and I = {A,B,C, D, E, F} with meeting requests

I1 = {A,F} , I2 = {B,E} , I3 = {A,B, F} , I4 = {A,D,E, F} , I5 = {A,B} ,

I6 = {C,E, F} , I7 = {B,D} , I8 = {C,E, F} , I9 = {C,D,E, F}

Then we derive
JA = {1, 3, 4, 5} , JB = {2, 3, 5, 7} , JC = {6, 8, 9} ,

JD = {4, 7, 9} , JE = {2, 4, 6, 8, 9} , JF = {1, 3, 4, 6, 8, 9}

The minimum makespan of the instance is T = 6, with time slots labeled t1, . . . , t6. By solving the 6
matching problems with a null objective function we obtain the schedule 1 in Fig. 1 (rows refer to parents and
columns to time slots, the table entries are the teachers and the − are the idle times), while the schedule 2
has been obtained by introducing the objective function (2).

t1 t2 t3 t4 t5 t6

1
2
3
4
5
6
7
8
9

A F
B E
F B A
D A − − F E

B A
E C − F

D − B
E C − F

C − F D E

schedule 1

t1 t2 t3 t4 t5 t6

1
2
3
4
5
6
7
8
9

F A
E B
F A B

E F D A
A B

F C E
B D

E C F
C D F E

schedule 2

Figure 1

5

As can be seen, the 6 idle times introduced in the first case are eliminated by taking care of them in
the objective function. However, idle times do occur with larger instances even if we use (2) and so we need
the local search procedures of Sections 4 and 5. We describe in detail the graph GE for schedule 1 and
teacher E, whose meeting sequence is (6, 2, 8,−, 9, 4). Let us denote the six nodes of GE as t1, . . . , t6. Then
BE = {t1, t2, t3, t5, t6} and FE = {t4}. At time t1 teacher E meets parent 6. This meeting can be moved
to time t3 with the effect of reducing one idle time, therefore the graph GE has the arc (t1, t3) with cost -1.
The meeting can be also moved to t5 at cost 0 or to t6 at cost 1. At time t2 teacher E meets parent 2. The
meeting can be moved to t3, t4, t5 or t6 at cost 1, 2, 3, 4, respectively. Continuing this way, we build the
arcs of graph GE whose costs are reported in the following table.

t1 t2 t3 t4 t5 t6

t1 − − -1 − 0 1

t2 − − 1 2 3 4

t3 2 1 − − -1 −
t4 0 0 0 − 0 0

t5 − -1 − − − 1

t6 − − -1 -1 − −

There are some negative cycles in this graph, for instance t1 → t3 → t5 → t6 → t4 → t1 with cost -2.
Performing the corresponding exchanges leads to the schedule 3 in Fig. 2. Continuing with teacher F , we
find the cycle t3 → t5 → t3 of cost -1 and reduce one more idle time. Then we consider teacher C and by
moving the meeting at t1 to t3 we reduce two more idle times. Finally, we consider teacher D and move the
meeting at t2 to t3 obtaining the schedule 4 with no idle times.

t1 t2 t3 t4 t5 t6

1
2
3
4
5
6
7
8
9

A F
B E
F B A
D A − E F

B A
C E F
D − B

C E F
C − F D − E

schedule 3

t1 t2 t3 t4 t5 t6

1
2
3
4
5
6
7
8
9

A F
B E
F B A
D A F E

B A
C E F

D B
C E F

C D F E

schedule 4

Figure 2

As an example of LSP reconsider schedule 1 in Fig. 1. The graph G9 related to parent 9 contains two
paths of cost -1, precisely t1 → t6 and t1 → t5 → t4 → t6. The corresponding sequences of exchanges
produce respectively the schedules (−,−, F, D, E,C) and (−,−, F, E, C,D), both having no idle time.

7. A Variant of the Problem

In this section we explain how the previous procedure can be adapted to solve an extension of the school
meeting problem in which we allow longer meetings for some previously defined parent-teacher pairs. More
precisely, we assume that these meetings last twice as much as the normal ones. We do not allow preemption
of the meetings, i.e., a meeting of double length cannot be interrupted and resumed later.

6

Under the above conditions, even the problem of finding a schedule of minimum makespan becomes
NP-hard. Therefore we do not pursue the objective of finding the minimum makespan, rather we consider
more important to obtain an initial schedule with no preemption so that the local search procedure can be
designed without worrying about the preemption.

Denote by pij ∈ {1, 2} the length of the meeting of teacher i with parent j and by ai :=
∑

j pij , i ∈ I,
and bj :=

∑
i pij , j ∈ J , the total time required by the meetings of teacher i and parent j, respectively.

Moreover, set Tmax := 2 max {maxi |Ji|,maxj |Ij |} and Tmin := max {maxi ai,maxj bj}. As one can easily
verify, the minimum makespan T ∗ of a schedule that assigns all the required meetings without preemption
is bounded by

Tmin ≤ T ∗ ≤ Tmax ,

and a schedule with makespan bounded the same way can be easily obtained (just put pij = 2 for all meetings
to obtain a schedule with makespan Tmax).

In order to solve this variant of the school meeting problem, we modify some aspects of the procedures
of Sections 3, 4 and 5. Let us first consider the algorithm of Section 3, which solves a weighted matching
problem for each time slot. Since now the makespan T of a feasible solution is not known in advance, even
T has to be treated as an output of the solution.

Using the same notation as in Section 3, at the beginning of each step k, three sets Jk−1
i , Ik−1

j and
Rk−1 are given, where the set Rk−1 contains all the pairs (i, j) with pij = 2 whose meeting has started at
time k − 1. Let ak−1

i and bk−1
j be the residual times of teacher i and parent j at the end of step k − 1 and

define T k−1 := k− 1+max
{
maxi |ak−1

i |,maxj |bk−1
j |

}
. Apparently, T k−1 is a lower bound on the makespan

of any solution coincident with the current partial schedule on the first k− 1 time slots. We still call critical
any parent and teacher having a residual time equal to T k−1 − (k − 1).

Since preemption is not allowed, all the pairs in Rk−1 have to be contained in the matching Mk to
be determined at the current stage. In order to guarantee that the matching problem admits a feasible
solution, no other rigid constraint on the assignment of selected parents and teachers can be imposed. As a
consequence, we have to relax the constraints on the critical teachers and/or parents and take care of them
in the objective function. Therefore we assign to each pair (i, j) a weight of the form

wij :=

K1 if i or j critical
K2 else and if sk(j) = 1
− 1 with probability p1

0 with probability p2

1 with probability 1− p1 − p2

 else
(4)

where K1 � K2 to take into account in lexicographic order the two objectives of minimizing the makespan
and the number of idle times. At the end of the iteration, the sets Jk

i , Ik
j and Rk and the values ak

i , bk
j

and T k have to be suitably updated. Note that if at least one critical teacher or parent is not assigned then
T k = T k−1 + 1. The procedure stops when ak

i = 0 for all i (or equivalently bk
j = 0 for all j). The final

makespan is given by the last value T k.
Also the local search procedures described in Sections 4 and 5 have to be slightly modified to avoid

the introduction of any preemption in the meetings requiring two time slots. To this aim, it is sufficient to
change the definition of the arc set of the graph Gi related to each teacher i and the graph Gj related to
each parent j described in those sections. In the case of Gi, assume that teacher i meets parent j at time t.
If the meeting lasts one time slot, then the set of arcs exiting from node t is defined as before. Otherwise, if
the meeting takes two time slots, let say t and t + 1, we add at most two arcs: the arc (t, t + 2) if parent j

is free at time t + 2 and the arc (t + 1, t− 1) if parent j is free at time t− 1. The construction of the arc set
of graph Gj is the same, once the roles of teacher i and parent j are exchanged. The cost of the arcs of the

7

two graphs are defined as the number of idle times of the parents that the corresponding move either adds
or eliminates from the schedule. We point out that such a move does not introduce any preemption in the
meeting. Obviously, the number of paths in the graph, and consequently the number of moves, is reduced
with respect to the case of meetings of equal duration.

8. Computational Results

Let us first consider the main problem with equal time slots. We have tested our procedure on a
particular instance given by a local school and also on real size randomly generated data.

Real data to test our procedure are not actually available, because the proposed advance planning of
the meetings has never been thought of. However, we have asked some teachers of a local school to provide
reasonable data consistent with their past experience. Today each parent cannot meet more than three or
four teachers during a meeting session. It is perceived that asking parents to provide a list of prospected
teachers to meet would likely produce long lists requiring too much time to carry out all meetings. Therefore
it seems more sensible, in a real implementation, to assign an upper bound on the number of teachers a
parent can ask to meet.

With this proviso, we have set up the following data, with 29 teachers and 60 parents and a number of
required meetings for each parent between 3 and 6. The instance thus obtained has a makespan of 25 time
slots. We have run the assignment phase 5 times with parameters K = 1, p1 = 0.04, p2 = 0.94, obtaining
solutions with 162, 146, 109, 177 and 122 idle times, respectively. Then for each of these solutions we have
separately started LST, LSP and LSTP with 20 as the maximum number of consecutive zero improvement
cycles. The local search computations are shown in Figs. 3, 4 and 5, where the current idle time number is
displayed as a function of the iteration number. We recall that in each iteration a minimum cycle for each
teacher has to be computed for LST, a shortest path for each parent for LSP, and both computations have
to be carried out for LSTP. The 5 runs for LST, the 5 runs for LSP and the 5 runs for LSTP are shown in
Figs. 3, 4 and 5, respectively. The ending idle time numbers for the 5 LST runs are: 4, 0, 3, 3, 2; for the 5
LSP runs are: 22, 15, 10, 21, 23 and for the 5 LSTP runs are: 1, 4, 2, 1, 1. The last of these solutions is
shown in Fig. 6.

25 50 75 100 125 150 175

25

50

75

100

125

150

175

Figure 3 - LST runs

25 50 75 100 125 150

25

50

75

100

125

150

175

Figure 4 - LSP runs

25 50 75 100 125 150

25

50

75

100

125

150

175

Figure 5 - LSTP runs

As expected, the LST performs much better than the LSP, due to the smaller search space of LSP.
On the contrary, the increased neighborhood size offered by the two searches in LSTP does not seem to
outperform LST. It is only slightly better on the average.

An interesting feature is that the improvement per iteration is almost constant in all cases, so that we
may roughly say that the number of iterations is almost equal to the initial value of the idle times provided
by the assignment phase. In this sense the local search performs well independently of the starting solution.
However, the number of iterations is affected by the initial solution and therefore it makes sense to tune the
parameters of the assignment procedure in order to start with a good solution.

8

In the random instances we have fixed the number of teachers and parents to 30 and 80 respectively.
For each parent the number of required meetings is a random number r ∈ [r1, r2]. Then r teachers are
randomly selected to meet that parent. We have generated 6 instances. For the instances 1 and 2 we have
used r ∈ [2, 4] (sparse instances); for the instances 3 and 4 we have used r ∈ [4, 6] (normal instances) and
for the instances 5 and 6 we have used r ∈ [4, 8] (dense instances). For each instance we have run the
assignment phase 4 times (with parameters as before) and for each solution of the assignment problem we
have separately started LST, LSP and LSTP. The computational results are shown in Tables 1, 2 and 3,
where the columns (1) report the instance number (in boldface) and its makespan, the columns (2) report
the idle time number at the end of the assignment phase, and, for each local search, the columns (3) and (4)
report the final idle time numbers and the iteration numbers respectively. The four rows for each instance
refer to the 4 computations.

Table 1 – Sparse instances

LST LSP LSTP

(1) (2) (3) (4) (3) (4) (3) (4)

25 1 39 3 102 2 37

1 13 2 32 5 29 2 31

14 25 2 55 6 67 0 40

16 2 69 6 59 0 41

LST LSP LSTP

(1) (2) (3) (4) (3) (4) (3) (4)

18 1 58 2 50 1 37

2 18 2 46 7 40 0 25

12 27 1 57 7 65 0 29

25 3 39 9 34 6 35

Table 2 – Normal instances

LST LSP LSTP

(1) (2) (3) (4) (3) (4) (3) (4)

71 6 71 9 114 8 69

3 58 1 75 23 71 3 63

18 51 8 73 26 58 9 81

41 1 78 9 101 2 66

LST LSP LSTP

(1) (2) (3) (4) (3) (4) (3) (4)

68 3 118 12 95 2 111

4 54 2 95 10 99 3 98

21 70 1 116 15 130 2 86

63 1 95 15 86 2 89

Table 3 – Dense instances

LST LSP LSTP

(1) (2) (3) (4) (3) (4) (3) (4)

112 8 136 40 133 5 158

5 131 8 166 38 186 13 110

27 75 7 116 29 89 7 101

133 8 141 25 186 7 163

LST LSP LSTP

(1) (2) (3) (4) (3) (4) (3) (4)

73 6 140 16 172 12 92

6 110 6 170 4 251 6 167

22 93 10 88 14 184 5 175

164 14 143 23 254 5 213

As in the previous case the tests show that LST performs much better than LSP. Again, there is no
clear winner between LST and LSTP. As a strategy to obtain good solutions, we suggest to run several times
both procedures. We have no evident explanation why LSTP is not definitely better than LST.

We have also tested the variant of Section 7 on instances with 15 teachers and 60 parents and a random
number of meeting for each parent in [3, 6]. The only difference is that each meeting is randomly assigned
duration 1 or 2 with probability 0.8 and 0.2, respectively. The matching phase has been carried out with
weights given by (4) (K1 = 104, K2 = 10, p1 = 0.04, p2 = 0.94). The makespan, the number of idle times at
the end of the matching phase and at the end of the modified local search procedure are for the 5 runs 30,
71 and 11; 29, 73 and 21; 30, 76 and 16; 30, 73 and 20; 30, 71 and 11. As anticipated, the local search is not
as effective as in the normal case.

9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

16 26 11 1 21 28
11 21 1

28 21 16 11 26
16 21 28 26

11 1 28 16 21 26
28 21 11 1

21 16 11 26 28
20 22 11 27 29

22 20 27 29 2
27 20 22

11 20 22 2 27 29
2 20 27 22

22 2 27 29
12 26 17

12 17 3 24 28 26
26 28 17 3 12 24

24 12 17
3 17 12 26 28 24

3 17 24 28 12
13 4 19

27 13 19 28
4 27 13 23 28 19

4 28 27 23
4 13 19 23 28 27

14 26 29
23 14 18

29 5 23 14
5 14 26 18 23 29

29 5 18 26 23 14
18 5 26 29

14 18 5 23 26 29
6 29 26

29 24 13 6 19 26
13 19 29

19 13 26 29 6 24
19 29 24 6

6 13 29 19 24
24 6 13 29
22 7 16 27 29

27 7 14 16 22
16 22 7 29 14 27

27 7 14
14 22 29 27

27 16 29 22 14
15 21 20 8 26

21 20 15 26 8 28
20 8 28 15

15 8 20 21
21 20 15 26 8 28

9 − 12 27 28 25
17 25 27 28

9 12 25 17 28 27
12 17 25

25 17 9 28 12 27
17 25 9 12 28 27

10 18 25 15 29 27
18 10 29

15 25 18 10 29
25 15 10

18 15 29 27

Figure 6 – Solution with one idle time

10

9. References

Ahuja, R.K., Ergun,Ö., Orlin, J.B., Punnen, A.P. (2002), “ A survey of very large-scale neigh-
borhood search techniques”, Discrete Applied Mathematics, 123, 75-102.

Ahuja, R.K., Magnanti, T.L., Orlin, J.B. (1993), Network flows: theory, algorithms, and appli-
cations, Prentice-Hall, Englewood Cliffs, NJ, USA.

Bartholdi, J.J, McCroan, K.L. (1990), “ Scheduling Interviews for a Job Fair”, Operations Re-
search, 38, 951-960.

Dowsland, K.A. (1998), “Nurse scheduling with tabu search and strategic oscillation”, European
Journal of Operational Research, 106, 393-407.

Giaro, K., Kubale, M. (2004), “Compact Scheduling of zero-one time operations in multi-stage
system”, Discrete and Applied Mathematics, 145, 95-103.

Gonzalez, T. (1982), “Unit Execution Time Shop Problems”, Math. Oper. Res., 7, 57–66.

Gonzalez, T., Sahni, S. (1976), “Open Shop Scheduling to Minimize Finish Time”, Journal of the
ACM, 23, 665-679.

Hall, N.G., Sriskandarajah, C. (1996), “A Survey of Machine Scheduling Problems with Blocking
and No-wait in Process”, Operations Research, 44, 510-525.

Meyers, C., Orlin, J.B. (2006) , “Very Large–Scale Neighborhood Search Techniques in Timetabling
Problems”, in Proceedings of the PATAT 2006 Conference, Brno, Czech Republic, E. Burke and H. Rudova
eds., 36–52.

11

