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Abstract

In this paper we study the biproportional apportionment problem, which deals with the assignment
of seats to parties within regions. We consider the minimization of both the maximum absolute error
and the maximum relative error of the apportioned seats with respect to target quotas. We show that
this can be done polynomially through a reduction to a parametric maximum flow problem. Moreover,
the maximum absolute error can be minimized in strongly polynomial time. More generally, our
method can be used for computing `∞ projections onto a flow polytope. We also address the issue
of uniqueness of the solution, proposing a method based on finding unordered lexicographic minima.
Our procedure is compared to other well-known ones available in the literature. Finally we apply our
procedures to the data of the 2008 Italian political elections, for which the procedure stated by the
law produced an inconsistent assignment of seats.

Key words: electoral systems, biproportional apportionment, parametric maximum flow, min-max optimization,

lexicographic optimization.

1 Introduction

In many proportional electoral systems where several parties are in competition and the territory is sub-
divided into constituencies or regions, it is usually not enough to compute the total number of seats that
go to the different parties and to the different regions, but it is important to know how the seats are
allocated to the parties within the regions. For example, the list of candidates of a certain party may
differ from region to region, and thus the above seat allocation may significantly affect the “rostering” of
the Parliament, that is, the very set of elected representatives.

The problem of seat allocation to the parties within the regions arises in several countries, e.g. Germany,
Italy, Mexico, Switzerland, Belgium, Denmark, Iceland, Faroe Islands, etc. It may become of paramount
importance, for obvious reasons, in the European Parliament elections, where the “regions” correspond to
member countries of the EU.

A well-known quantitative formulation of the above seat allocation problem (see, e.g., Balinski [2])
is as follows. The law, before the election takes place, pre-determines the total number of seats to be
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apportioned to each region. In general, this number is roughly proportional to the region’s population, in
agreement with the well-known One Person-One Vote Principle. Then, on the basis of the vote outcome,
each party is granted a certain number of seats, often - but not always - roughly proportional to the total
number of votes obtained by the party. Here is the formulation.

Given:

(a) a matrix of votes obtained by each party in each region;
(b) the total number of seats apportioned to each region;
(c) the total number of seats granted to each party;

find a matrix of seats allocated to each party within in each region. Such matrix must satisfy the following
conditions:

(i) (INTEGRALITY and NONNEGATIVITY) all of its entries must be nonnegative integers;

(ii) (REGION SUMS) the sum of the seats assigned to all parties within a given region must be equal
to the number of seats actually at stake in the region;

(iii) (PARTY SUMS) the sum of the seats awarded to a given party in all regions must be equal to the
total number of seats it was awarded.

(iv) (ZERO VOTE - ZERO SEAT) If a party receives no vote in some region, it cannot receive seats in
that region;

(v) (PROPORTIONALITY) the matrix of seats should be “as proportional as possible” to the matrix
of votes (precise alternative meanings will be given to this statement in Sec. 3)

A matrix satisfying conditions (i)–(iv) is called an apportionment; if the integrality condition is relaxed,
it will be called a fractional apportionment. The problem defined by the above conditions (i)-(v) is called
a biproportional apportionment problem (BAP). Different versions of it differ by the way condition (v) is
formally stated.

The electoral law of some countries includes unsound and self-contradictory procedures for solving
BAP. Balinski and Ramı́rez [7] discovered a bug in the Mexican electoral law. After a while, the law was
changed. A similar bug turns out to occur in the current Italian law, as well as in the previous one, for
the Chamber elections, cf. Pennisi [22], Pennisi et al. [23]. The Italian case deserves some discussion. For
five consecutive political elections (1994, 1996, 2001, 2006, and 2008) the Italians have voted according
to laws including incorrect procedures for BAP. As a result, condition (ii) was not met in 6 regions in
1996, in 2 regions in 2006, in 4 regions in 2008. This resulted in a violation of the very Constitutional
Law, which dictates (art. 56) that the seats apportioned to the regions should be determined from their
populations according to the so-called “Largest Remainders” or Hare proportional formula (cf., e.g., Grilli
di Cortona et al. [15] p. 79). Particularly stunning was the case of the 2006 elections, where the region
of Molise ended up with 2 seats in the Chamber of Deputies instead of the 3 it was entitled to, while the
Trentino–Alto Adige region got 11 seats instead of 10. As a consequence, the Trentino–Alto Adige region
got one seat per 85,400 inhabitants, while the Molise one got one seat per 160,300 inhabitants. So, the
appropriate motto there would have been: One Person - Half Vote !

As mentioned above, these anomalies are caused by an incorrect procedure for BAP. Such procedure
proceeds, in a first stage, region by region. In each region one computes the (generally fractional) exact
quotas of seats to be granted to the individual parties in the region under the assumption of perfect
proportionality between votes and seats1. These quotas are then rounded either down or up according to

1Actually this statement is not quite correct because of the majority bonus embodied in the law. However, if the matrix
of votes is preliminarily scaled so as to suitably inflate the majority votes and deflate the minority ones, then the statement
becomes correct
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the Largest Remainders formula. At the end of the first stage the PARTY SUMS constraints (iii) might
not be met. The lawmaker is aware of this possibility and thus at this point a second stage starts, whereby
seats are transferred one by one from parties with a surplus of seats to ones with a deficit of seats; however,
this rebalancing procedure does not guarantee that eventually (ii) or (iii) are met. The underlying (wrong)
assumption is that one can always obtain an apportionment by rounding either down or up, in a suitable
way, the above region quotas. Realistic counterexamples show that this is not always possible.

The point is that a BAP is a non trivial mathematical problem, and simplistic solution approaches
fall short of reaching their target. On the other hand, mathematically sound procedures do exist. In two
seminal papers, Balinski and Demange [3, 4] characterized proportionality between real or integral matrices
in terms of certain reasonable axioms; furthermore, they showed that, for any given rounding rule, there is
a unique apportionment satisfying the stated proportionality axioms, and that such an apportionment can
be obtained by “Scale and Round”; finally, they described a “Tie and Transfer” (TT) algorithm (a sort
of out-of-kilter one) for actually computing the scaling factors and the required apportionment. The most
common rounding rules are: round to the lower, to the upper, or to the closer integer. Accordingly, in the
single-region case one re-obtains the well-known divisor methods of Jefferson (or D’Hondt), Adams, and
Webster (or Sainte Laguë), respectively. In general, Balinski and Demange’s Scale and Round procedure
may be regarded as a two-dimensional extension of those vector apportionment methods known as Divisor
ones (cf. Grilli di Cortona et al. [15]). Much later, Zachariasen [34] pointed out that in general the
complexity of TT is pseudopolynomial and described an enhanced version of the algorithm that runs
provably fast (technically, in weakly polynomial time).

Subsequently, Pukelsheim and his collaborators at the University of Augsburg on the one hand pro-
posed conceptually simpler Discrete Alternating Scaling (DAS) algorithms, (although some finiteness and
complexity issues are still unsettled); on the other hand they developed BAZI, a public domain software,
written in JAVA, which includes also some sound procedures for BAP (Pukelsheim [25], Maier [19]). This
software was successfully used in the 2006 elections of the Zurich Canton (Pukelsheim [26]) and more
recently (2009) in those of the Aargau and the Schaffhausen Cantons.

Several authors have advocated the use of sound biproportional apportionment algorithms to distribute
seats to parties within districts in countries such as Mexico (Balinski and Ramı́rez [7]), France (Balinski [2]),
Switzerland (Pukelsheim and Schuhmacher [27], Pukelsheim [26], Balinski and Pukelsheim [5, 6]), Italy
(Pennisi et al. [23]), Spain (Ramı́rez et al. [29]), Faroe Islands (Zachariasen [34]). Balinski ([2] p. 215)
discusses also the application of such algorithms to the election of French representatives in the European
Parliament.

Since Balinski and Demange’s algorithm is provably sound, why not to transplant it into the Italian
legislation? This idea looks very appealing, but in practice there is one basic obstacle: the above algorithm
is inherently related to Divisor Methods, whereas throughout the history of the Italian Republic (1946 - to
date) the method traditionally adopted for the Chamber elections has been the Largest Remainders one.

In the present paper, we propose an alternative optimization approach having the following features:

• It always correctly outputs an apportionment, if one exists;
• It is provably fast (that is, it runs in polynomial and even in strongly polynomial time);
• It is adherent to the Italian electoral traditions;
• Although it has been specifically designed for the Italian system, it is very flexible and it may be

adapted to a variety of other contexts;
• Its most basic implementation is very simple and it requires only a max flow routine.
• Although it shares with the other available algorithms for BAP a certain degree of mathematical

sophistication, for any given instance of BAP one can attach to its output a “certificate of optimality”
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that allows anybody to easily check feasibility and optimality.

The last item is discussed at length in [32]. Here we just sketch the basic idea. As remarked above, BAP is
a non trivial mathematical problem, and all the currently available algorithms for its solution exhibit some
mathematically advanced features. Can they be translated into an actual law? Citizens demand simple,
easy to understand, voting systems. One possible way out of this dilemma is: leave to a mathematically
sophisticated algorithm the task of producing an optimal apportionment, but attach to it a “certificate
of optimality”, that is, describe a simple procedure whereby even a layman can check, through certain
elementary operations and without any knowledge of specialized mathematical theorems, that the seat
allocation output by the algorithm indeed satisfies all the requirements for an apportionment, and that it
is “as proportional as possible” to the vote matrix.

The general idea of the algorithm is the following. As seen above, the current institutional procedure
first computes party quotas row-wise. Rounding them arbitrarily down or up may fail to produce an
apportionment. By the way, for the same reason the “controlled rounding” procedure of Cox and Ernst [10]
starting from the above quotas might not work, as already noticed by Gassner [14] with reference to the
Belgian system. Following the customary approach of “enlarging the solution space when a problem has
no solution”, we shall look for an apportionment that is “as close as possible” – in a well-defined sense –
to the above matrix of quotas. Our approach bears some resemblance with Cox and Ernst’s one, but it
makes use of the `∞ norm rather than the `1 norm. Unlike the other known methods, ours does not rely on
rounding. The techniques we use in order to handle the above least distance problem rely on the solution
of a sequence of maximum network flow ones. These are computationally easier to solve than the minimum
cost network flow problems to which divisor-based biproportional apportionment ones have been reduced
in several papers (M. Zachariasen [34], Rote and M. Zachariasen [30], Gaffke and Pukelsheim [12, 13]). It
is worth pointing out here that also the above quoted “controlled rounding” method, as well as the more
general minimization of the `1 error over all the apportionments, require the solution of minimum cost
flow problems [10, 16, 20, 21].

The paper is organized as follows. In Sec. 2 we set up the notation and state precise mathematical
formulations of the biproportional apportionment problem. In Sec. 3 we define suitable error measures
which may be used in the formulation of the “best approximation” problem. Then in Sec. 4 we describe
parametric maximum flow models to find the minimum error. In Sec. 5 we provide some error bounds
which are also useful in designing algorithms. We present some algorithms in Sec. 6. These algorithms
feature increasingly complex descriptions, but at the same time increasing computational complexity
performances. We show that in general the overall procedure runs in strongly polynomial time based on
the solution of a continuous parametric maximum flow problem. In Sec. 7 we show how to deal with the
crucial issue of the uniqueness of the optimal apportionment. A comparison with other well-known BAP
methods is pursued in Sec. 8. Finally, in the Appendix we apply our procedures to the data of the 2008
Italian political elections.

2 Biproportional apportionments

The data are: a set M of electoral regions, integer numbers ri (seats assigned to region i), with H :=
∑
i ri

(house size), a set N of parties, integer numbers vij (votes to party j in region i), with viN :=
∑
j∈N vij

(votes in region i), vMj :=
∑
i∈M vij (national votes to party j) and vMN :=

∑
ij vij (total votes). Let V

be the matrix [vij ]. Let Z := {(i, j) : vij = 0, i ∈M, j ∈ N}.
We assume that the numbers ri are fixed before elections (as customary). We also assume that we are

given positive integer numbers pj , such that
∑
j∈N pj = H, which have been computed from the vector
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vM = (vM1, . . . , vMn) according to a rule p := π(vM , H) (pj = πj(vM , H)). These are the seats assigned
in the house to each party. In most systems the rule π producing the seats pj is of proportional type, i.e.,
the numbers pj are proportional to the numbers vMj as much as possible. This is not the case if, as it
happens in the current Italian electoral system, the majority coalition (defined on the basis of the votes
vij) is granted at least a certain number of seats. We briefly comment on this at the end of this section.

One well-known rule π(vM , H) is the so called Largest Remainders one, which computes the seats as
follows:

(i) initially, one computes the national quotas qj as

qj :=
vMj

vMN
H;

(ii) then one sets pj := bqjc, j = 1, . . . , n;
(iii) to make the sum of the components of p equal to H, one increases by one unit the components of p

whose fractional parts (or “remainders”) qj − bqjc are largest.

The resulting vector p satisfies the Hare Property

bqjc ≤ pj ≤ dqje , j = 1, . . . , n.

The BAP consists in computing from the above data nonnegative integer numbers xij such that

xMj :=
∑
i∈M

xij = pj , j ∈ N, xiN :=
∑
j∈N

xij = ri, i ∈M, xij = 0, (i, j) ∈ Z. (1)

In this paper we assume the existence of target quotas qij to which the numbers xij should be as close as
possible. The target quotas must satisfy the following requirements

∑
ij qij = H and qij = 0 if (ij) ∈ Z.

In actual electoral systems and in the literature two types of quotas have been mainly considered:
the regional quotas and the fair shares. The underlying idea behind regional quotas (used in the Italian
system) is to enforce as long as possible proportionality, region by region, of the vectors xiN to the vectors
viN . To this purpose the regional quotas are defined as the rational numbers:

q′ij :=
vij
viN

ri, i ∈M, j ∈ N. (2)

By definition,
∑
j q
′
ij = ri and so

∑
ij q
′
ij =

∑
i ri =

∑
j pj = H. Also q′ij = 0 if (i, j) ∈ Z.

The fair shares are defined as the rational numbers

q′′ij := λi vij µj , i ∈M, j ∈ N,

where λi are positive row multipliers and µj are positive column multipliers such that
∑
i λi vij µj = pj

and
∑
j λi vij µj = ri. Clearly

∑
ij q
′′
ij = H and q′′ij = 0 if (i, j) ∈ Z. The multipliers are easily found by

alternately scaling rows and columns to meet the row-sum and the column-sum requirements. This iterative
procedure, known under the name of RAS or Iterative Proportional Fitting (IPF), quickly converges to
the fair shares. In fact, Kalantari et al. [17] analyzed the complexity of RAS, giving a pseudopolynomial
upper bound on the number of iterations needed to achieve any desired precision, see Sec. 8 for details.
Actually, one can compute the fair shares in weakly polynomial time by convex network flow techniques [18],
exploiting the fact that they minimize a certain convex separable entropy function over all the fractional
apportionments.
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Thus we may choose as target quotas either the regional shares or the fair shares, but possibly also
other numbers, provided that the two stated requirements are satisfied. The way the target quotas are
defined does not affect our subsequent results, unless explicitly stated.

A peculiarity of the present Italian legislation consists in a majority bonus to be granted to the majority
coalition. In order to take this fact into account, the votes of the majority may be inflated, and those
of the minority deflated, by preliminarly multiplying them by a suitable majority and minority factor,
respectively (although the actual law follows a more tortuous route).

3 Error measures

In the present section we indicate how to measure the errors w.r.t. the target quotas qij in assigning the
actual seats. We consider two kinds of error measures. The first one is the absolute error, defined by

τij := |xij − qij |.

A measure like τij considers an error both the quantity (qij − xij), if qij > xij , which corresponds to an
assignment perceived as unfair by party j, and the quantity (xij − qij), if xij > qij , which corresponds to
an assignment perceived as unfair by the other parties.

The second measure is the relative error, defined by

σij :=
|xij − qij |

qij
.

In this paper we mostly deal with the minimization of the maximum error. Considering that an assignment
affects many individuals who should be equally treated and therefore a large error for a pair (i, j) cannot
be compensated by many small errors for other pairs, we think that minimizing the maximum error is a
proper way to assign seats. Therefore, if we consider the absolute error, we want to minimize

τ := max
ij
|xij − qij |. (3)

subject to (1). Let τ∗ be the minimum maximum absolute error. If we consider the relative error, we want
to minimize

σ := max
(ij)/∈Z

|xij − qij |
qij

, (4)

subject to (1). Let σ∗ be the minimum maximum relative error. Note that σ can be expressed as

σ := max
{
σ+ − 1 ; 1− σ−

}
, σ+ := max

(ij)/∈Z

xij
qij

, σ− := min
(ij)/∈Z

xij
qij

. (5)

The two error measures σ+ and σ− take care of assignments that give more and less seats, respectively,
than expected. We note that σ ≥ 1 for any assignment such that xij = 0 for at least one pair (i, j).
However, if 0 < qij < 1, xij = 0 is an acceptable assignment that does not deserve such a large penalty
measure. Therefore it is convenient to redefine σ− in (5) as

σ− := min
(ij):qij≥1

xij
qij

.

Divisor rules which assign seats so as to minimize the maximum ratio qij/xij correspond to maximizing
σ−. In the literature of electoral systems, other min-max optimization problems have been investigated,
see e.g. [9], Chap. 5.
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Let us also remark that, while our methods minimize `∞ norms (3) over all the apportionments,
Controlled Rounding ones might not do the same with respect to `1 norms. The latter methods [10]
are known to minimize absolute errors w.r.t the `1 norm under the assumption that the optimum seat
assignments are obtained by rounding either up or down the quotas. However, this assumption may not
be satisfied in general. Consider the following example with q an (n + 2) × (n + 2) matrix of fair share
quotas

q =


n−1
n

1
n

1
n · · · 1

n

1
n

n−1
n 0 · · · 0

1
n 0 n−1

n · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
n 0 0 · · · n−1

n

 , r = ( 2 1 1 · · · 1 ) , p = ( 2 1 1 · · · 1 )

The best `1 apportionment is given by x = diag {2, 1, 1, . . . , 1} with error e1(n) = 4+4/n, with x11 outside
the range {0, 1}. If we restrict the apportionments to {0, 1}, then the best `1 apportionment is given by
x11 = x12 = x21 = 1, xii = 1 for i ≥ 3, otherwise xij = 0. Its error is e2(n) = 6−2/n. Hence e2(n) > e1(n)
for n > 4. Incidentally, the first apportionment is optimal also w.r.t the `2 norm.

4 Minimizing the maximum error

Given a bound τ > 0 on the absolute error or a bound σ > 0 on the relative error, the problem of finding an
apportionment within the stated bound can be modeled as a feasible flow problem on a suitable bipartite
network (M,N ;E): there is a set of source nodes M (regions), a set of sink nodes N (parties). The arcs
E correspond to the pairs (i, j) /∈ Z. From each source i there is an outgoing flow equal to ri and into
each sink j there is an incoming flow equal to pj .

In case we measure the absolute error, each arc (i, j) has a capacity interval

[c−ij , c
+
ij ] := [dqij − τe+ , bqij + τc], (6)

where, by definition a+ := max {a, 0}. In case we measure the relative error, each arc (i, j) has a capacity
interval

[c−ij , c
+
ij ] :=

{
[d(1− σ) qije+ , b(1 + σ) qijc] if qij ≥ 1

[0, b(1 + σ) qijc] if qij < 1.
(7)

A feasible flow xij satisfies c−ij ≤ xij ≤ c+ij and, by the well-known Integrality Theorem for Flows [1],
if there is a feasible flow x there is also an integral flow since the capacity values are integers. Hence τ∗

and σ∗ are the minimum bounds, in the respective cases, such that a feasible flow exists.
The existence of a feasible flow can be established through the solution of the following max-flow

problem [1]: a source node s and a sink node t are added to the bipartite graph; each arc (i, j) is given
the capacity interval [0, c+ij − c

−
ij ]; then, for each i, if bi :=

∑
j c
−
ij < ri the arc (s, i) is added with capacity

interval [0, ri − bi] (if bi > ri there is no feasible flow) and, for each j, if dj :=
∑
i c
−
ij < pj the arc (j, t)

is added with capacity interval [0, pj − dj ] (if dj > pj there is no feasible flow). Let x̂ be the maximum
flow on this network. There exists a feasible flow if and only if all arcs (s, i) are saturated. If they are
saturated the flow on each arc (i, j) is x̂ij + c−ij (indeed

∑
j x̂ij + c−ij = ri − bi + bi = ri and similarly for

each node j).
Note that, due to the integrality of the xij ’s, the error of the seat assignment xij may assume values

only in a finite set. In more detail, we call relevant (for the absolute error minimization) those values for τ
such that either qij − τ or qij + τ is an integer in the interval [0, ri] for some (i, j) /∈ Z. Note that, for any
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two consecutive relevant τ1 < τ2, the capacity values (6) are unchanged for any τ such that τ1 ≤ τ < τ2
and this explains why we may simply consider relevant values.

Similarly, we call relevant (for the relative error minimization) those values for σ such that either
(1 − σ) qij or (1 + σ) qij is an integer in the interval [0, ri] for some (i, j) /∈ Z. Similarly, for any two
consecutive relevant σ1 < σ2, the capacity values (7) are unchanged for any σ such that σ1 ≤ σ < σ2.

By definition, the relevant values are at most ri + 1 for each pair (i, j), both for τ and σ. By summing
over all regions for a fixed j we get at most H + m relevant values and so the total number of relevant
errors is at most n (H +m).

There are several strategies to find the optimum error among the relevant values. For the minimization
of both the absolute and the relative error there are natural MILP formulations [23], namely

min τ∑
i

xij = pj j ∈ N∑
j

xij = ri i ∈M

qij − τ ≤ xij ≤ qij + τ (i, j) /∈ Z
xij ≥ 0 and integral (i, j) /∈ Z
xij = 0 (i, j) ∈ Z

for the absolute error minimization and
min σ∑

i

xij = pj j ∈ N∑
j

xij = ri i ∈M

qij − σ qij ≤ xij ≤ qij + σ qij (i, j) /∈ Z, qij ≥ 1

0 ≤ xij ≤ qij + σ qij (i, j) /∈ Z, qij < 1

xij ≥ 0 and integral (i, j) /∈ Z
xij = 0 (i, j) ∈ Z

for the relative error minimization.
However, the special structure of the problems allows for their solution in polynomial time via paramet-

ric network flow techniques. We postpone the presentation of the algorithms to Sec. 6 after the definitions
of some useful error bounds.

5 Error bounds

Before stating the bounds, we recall that the fractional BAP consists in finding nonnegative rational
numbers x̄ij such that (1) is satisfied and either τ or σ is minimized. Let τ̄ and σ̄ be the respective
minima. We also consider, only for the absolute error, the value t∗, defined as the minimum nonnegative
integer such that there is an apportionment x̂ with

(bqijc − t∗)+ ≤ x̂ij ≤ dqije+ t∗.

This corresponds to rounding down and up the quotas and then possibly extending the interval in both
directions by the least integer such that an apportionment exists. If the target shares are the fair shares,
then τ̄ = 0, σ̄ = 0 and t∗ = 0.
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– Rounding bound. Note that for each pair (i, j) the error cannot be less than

min {dqije − qij , qij − bqijc} .

Therefore, since we consider the maximum error, we must have

τ∗ ≥ τmin := max
ij

min {dqije − qij , qij − bqijc} .

If τ < τmin at least one capacity interval is empty. Similarly,

σ∗ ≥ σmin := max
ij:qij≥1

min
{
qij − bqijc

qij
;
dqije − qij

qij

}
.

– Proximity bound. Let x̄ij be the best (fractional) apportionment of the fractional BAP. So, in case
we look for the minimum absolute error,

(qij − τ̄)+ ≤ x̄ij ≤ qij + τ̄

and the fractional BAP with bounds reset as

bqij − τ̄c+ ≤ xij ≤ dqij + τ̄e (8)

is feasible. By integrality of the capacity bounds there exists an integral apportionment satisfying (8).
Therefore,

qij + τ∗ ≤ dqij + τ̄e ≤ qij + τ̄ + 1, (qij − τ̄ − 1)+ ≤ bqij − τ̄c+ ≤ qij − τ∗,

from which
τ̄ ≤ τ∗ ≤ τ̄ + 1.

– Fractional bound. Let tj :=
∑
i qij and ∆j := pj − tj . Note that

∑
j ∆j = 0. From

−τ ≤ xij − qij ≤ τ

for any fractional apportionment x with error τ , we get, by summing over i for each index j,

−τ m ≤ pj − tj ≤ τ m =⇒ τ ≥ |∆j |
m

,

which implies

τ̄ ≥ |∆j |
m

.

The inequality turns into an equality if all quotas are positive and not “too small” for parties with ∆j < 0.
Indeed, if

qij > 0, m qij + ∆j ≥ 0,
∑
j

qij = ri (9)

(the last assumption is satisfied for regional quotas), then the apportionment

xij := qij +
∆j

m

9



is feasible and has error τ = maxj |∆j |/m. Therefore it is optimal and, in this case,

τ̄ =
|∆j |
m

.

Therefore, if (9) is satisfied, we have, by using the proximity and the rounding bound

max
{
τmin ; max

j

|∆j |
m

}
≤ τ∗ ≤ max

j

|∆j |
m

+ 1.

– Floor bound. We now relate the optimal values t∗ and τ∗ as shown in the following theorem.

Theorem 7. t∗ = bτ∗c.

Proof. Let x∗ be any optimal apportionment, i.e., the maximum absolute error of x∗ is equal to τ∗. For
any (i, j), one has

dqij − τ∗e+ ≤ x∗ij ≤ bqij + τ∗c , (10)

whence
(bqijc − bτ∗c)+ ≤ dqij − τ∗e+ ≤ x∗ij ≤ bqij + τ∗c ≤ dqije+ bτ∗c ,

so that
t∗ ≤ bτ∗c ≤ τ∗. (11)

On the other hand, if x̂ is an apportionment such that

bqijc − t∗ ≤ x̂ij ≤ dqije+ t∗, (12)

then one has
qij − t∗ − 1 < bqijc − t∗ ≤ x̂ij ≤ dqije) + t∗ < qij + t∗ + 1. (13)

Hence
τ∗ < t∗ + 1. (14)

Inequalities (11) and (14) imply the thesis.

Hence the theorem states the following bounds

t∗ ≤ τ∗ < t∗ + 1

and implies the following corollary, where < qij > is the fractional part of qij .

Corollary 1. τ∗ is among the relevant errors of the form either t∗+ < qij > or t∗ + 1− < qij >.

Corollary 2. If qij are the fair shares then τ∗ must be smaller than 1 and it must be among the relevant
errors of the form either < qij > or 1− < qij >.
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– Absolute bound. We have shown that if the qij are the fair shares then there exists an absolute bound
equal to 1 on τ∗. Now we show that, under other assumptions, there exists an absolute bound on τ∗ and
that this bound is between 1 and 2. Let pN be the vector of seats assigned by the Largest Remainders Rule
starting from the vector vM of national votes, and let pR be the vector of seats assigned by the Largest
Remainders Rule starting from the vector qM of column-sums qMj of the regional quotas.

We introduce now the following property which may hold between target quotas and seats pj . It is like
the Hare property, which however is relative to national quotas.

Definition 1. The Rounding property is satisfied if, for quotas qij, the seats pj are such that

pj ∈
{⌊∑

i

qij

⌋
,
⌈∑

i

qij

⌉}

Note that the rounding property is equivalent to assume |pj −
∑
i qij | < 1. Clearly the rounding property

implies
∑
i bqijc ≤ pj ≤

∑
i dqije.

Theorem 8. If the Rounding property holds and the quotas qij are positive and satisfy
∑
j qij = ri for

each i, then τ∗ ≤ 2.

Proof. An apportionment has maximum absolute error τ∗ ≤ 2 if and only if there exists a feasible flow
in the capacitated network (N,M ;N ×M) with N set of source nodes with outgoing flow pj , M set of
sink nodes with incoming flow ri and capacity intervals [(bqijc − 1)+, dqije + 1] for each (i, j). By Gale’s
theorem ([11] and [1] p. 196) there is a feasible flow if, for each M∗ ⊂M and N∗ ⊂ N , we have∑

j∈N∗
pj −

∑
i∈M∗

ri ≤
∑
i/∈M∗

∑
j∈N∗

(dqije+ 1)−
∑
i∈M∗

∑
j /∈N∗

(bqijc − 1)+ (15)

Let αj := pj −
∑
i qij . By hypothesis |αj | < 1 and

∑
j αj = 0. If M∗ = M , (15) is∑

j∈N∗
pj −

∑
i∈M

ri = −
∑
j /∈N∗

pj ≤ −
∑
i∈M∗

∑
j /∈N∗

(bqijc − 1)+

i.e. ∑
j /∈N∗

(pj −
∑
i∈M∗

(bqijc − 1)+) ≥ 0

implied by the Rounding property. If M∗ 6= M , we derive∑
j∈N∗

pj −
∑
i∈M∗

ri =
∑
j∈N∗

(αj +
∑
i/∈M∗

qij)−
∑
i∈M∗

∑
j /∈N∗

qij ≤

∑
j∈N∗

(1 +
∑
i/∈M∗

qij)−
∑
i∈M∗

∑
j /∈N∗

qij ≤
∑
j∈N∗

∑
i/∈M∗

(qij + 1)−
∑
i∈M∗

∑
j /∈N∗

qij ≤

∑
i/∈M∗

∑
j∈N∗

(dqije+ 1)−
∑
i∈M∗

∑
j /∈N∗

(bqijc − 1)+

were the first equality is obtained by simple substitutions, the first inequality is implied by |αj | < 1, the
second inequality is implied by |N∗| |M \M∗| ≥ |N∗| and the third inequality is trivial.
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Corollary 3. If p = pR and qij are positive regional quotas, then τ∗ ≤ 2

Proof. The Rounding property is satisfied and
∑
j qij = ri for the regional quotas and pR.

Definition 2. A vector p has the weak Hare property if

bqjc − 1 ≤ pj ≤ dqje+ 1, j = 1, . . . , n.

Then Corollary 3 can be restated as

Corollary 4. If p = pR and qij are positive regional quotas, then every optimal apportionment x∗ has the
row-wise weak Hare Property, that is,

bqijc − 1 ≤ x∗ij ≤ dqije+ 1, for all i, j.

The above Corollary 4 should be contrasted with the negative result (Pennisi et al. [23]) that, when
the vector of total seats granted to the parties is pN , there might be no apportionment at all satisfying the
row-wise Hare Property. In view of these considerations, an attractive suggestion for lawmakers would be
to define the vector of total seats granted to the parties to be pR rather than pN .

Are there cases when the Rounding property holds with p = pN? The next result provides an interesting
sufficient condition for this to happen.

Corollary 5. If ri/viN = H/vMN for all i, p = pN and qij are positive regional quotas, then τ∗ ≤ 2 and
thus every optimal apportionment has the weak Hare property.

Proof. It follows from the hypothesis that qij = H vij/vMN and so
∑
i qij = H vMj/vMN . By the rule of

Largest Remainders the Rounding property is satisfied. Now the thesis follows from Theorem 8.

Since the number of seats ri at stake in region i is roughly proportional to the population of the region,
the meaning of the condition ri/viN = H/vMN , for all i, in Corollary 5, is that the rate of absenteeism is
roughly the same in all the regions.

Now we show that there are instances with τ∗ > 1 even if the Rounding property is satisfied. Consider
the following instance with parties A–F, regions 1–5,

r = ( 5 5 1 1 1 ) , p = ( 1 1 1 4 3 3 ) ,

and q as in the table

A B C D E F

1 0.992 0.870 0.170 0.994 0.988 0.986

2 0.460 0.580 0.991 0.993 0.989 0.987

3 0.001 0.001 0.001 0.986 0.001 0.010

4 0.001 0.001 0.001 0.440 0.001 0.556

5 0.001 0.001 0.001 0.140 0.856 0.001

with ∑
i

qij = ( 1.455 1.453 1.164 3.553 2.835 2.540 ) .

12



Rounding down the regional quotas in the above matrix, one always gets 0 and rounding them up one
always gets 1. One can check that there is no way to assign 0 or 1 seats to each pair (i, j). Indeed the
parties D, E and F would receive at most 6 seats altogether in the regions 1 and 2. Hence the parties A,
B and C would receive at least 10-6=4 seats in the same regions 1 and 2. But these parties are allotted 3
seats in total! Hence at least one party among D, E and F should receive two seats either in region 1 or
2. For a minimax solution this has to be for party D in region 1 with optimal error equal to 1.006. One
of these minimax solutions is given by the seat assignment:

A B C D E F

1 0 0 1 2 1 1

2 1 1 0 1 1 1

3 0 0 0 1 0 0

4 0 0 0 0 0 1

5 0 0 0 0 1 0

6 Algorithms for optimal apportionment

Now we address the issue of designing algorithms to find the minimum error, both absolute and relative.
There are two aspects to be considered. Clearly the computational complexity of an algorithm must be
taken into account. On the other hand, the size of the problems to be solved is never very large. On
the contrary, given the power of modern computers, these instances can be considered small and even a
naive algorithm can run in a satisfactory amount of time. Hence we think that it is also important that
an algorithm be sufficiently simple to be implemented easily and described in a law.

For these reasons we present three algorithms for the absolute error minimization. The first one is
simple but runs in pseudopolynomial time. The second one is slightly more complex since it requires
binary search and runs in weakly polynomial time. Finally, the third algorithm is definitely more complex
but runs in strongly polynomial time. We also describe a fourth weakly polynomial algorithm for relative
error minimization.

Algorithm 1 – The first algorithm works in two phases: first we compute t∗, by simply trying all values
t∗ = 0, 1, . . . in ascending order until there is an apportionment x̂ feasible for the bounds

(bqijc − t∗)+ ≤ x̂ij ≤ dqije+ t∗.

Once t∗ is known we apply the result of Cor. 1 and we try all 2mn relevant errors τ = t∗+ < qij > and
τ = t∗ + 1− < qij > , keeping the minimum τ such that a feasible apportionment xij exists with

dqij − τe+ ≤ xij ≤ bqij + τc .

As stated in Sec. 4, the existence of a feasible apportionment is checked through the solution of a maximum
flow problem. Let MF(h, k) be the complexity of a max flow routine on a graph with h nodes and k arcs.
For generic target quotas qij the optimal t∗ can be as large as r̂ := maxi ri−1 and therefore the two phases
have complexity O(r̂MF(n + m,nm)) and O(nmMF(n + m,nm)) respectively. Clearly the first phase
is pseudopolynomial depending on the number r̂. In practice t∗ almost never exceeds 2 and therefore in
almost all cases at most 3 calls to the max flow routine are enough in the first phase. The second phase
can be somewhat longer since the number 2mn can be larger than one thousand in some cases and a few
seconds may be necessary to run all these max flow routines. Yet for practical purposes a few seconds is
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an acceptable amount of time and the running time trades off favorably with the ease of implementation
(provided that a max flow routine is available).

We note that in case the target quotas are the fair shares this algorithm is strongly polynomial, since
t∗ = 0. The algorithm is also strongly polynomial if the assumptions stated in Theorem 8 are met, since
in this case t∗ ≤ 2.
Algorithm 2 – In order to overcome the pseudopolynomial complexity of the previous algorithm we
design a second algorithm which uses binary search over the range [0, r̂] to find the optimal t∗. Then we
can compute and sort all relevant values τ = t∗+ < qij > and τ = t∗ + 1− < qij > with complexity
O(mn log(mn)) and use binary search again on these relevant values. This way the complexity becomes
O((log(r̂) + log(mn)) MF(n + m,nm)) (assuming O(mn) ⊂ O(MF(n + m,nm))) and is polynomial -
although only weakly polynomial due to the dependancy on log r̂. Since the network is bipartite and
generally one has n < m, one can achieve an overall complexity O(n2m log(mn r̂)) ([1] p. 255).

Algorithm 3 – Now we develop a strongly polynomial algorithm for minimizing the maximum absolute
error in the general case. The algorithm consists of three phases. In the first phase we locate by binary
search an interval including the optimal value of the fractional BAP. In the second phase we compute this
solution exploiting a result by Radzik [28]. Finally, on the basis of the proximity bound of Sec. 5, we apply
binary search again to find an integer solution of the BAP. Each phase is strongly polynomial.

In the following we are concerned with the fractional BAP. In order to solve this problem, the arc
capacity intervals must be set as

[(qij − τ)+ , qij + τ ].

Let F(τ) be the feasible set of all feasible flows with the value τ defining the capacities. Alternatively τ̄

is the smallest value such that F(τ) 6= ∅.
First phase: For the sake of notation let us denote

q(i,j)0 := 0, q(i,j)|E|+1
:= +∞.

Let us assume that the qij values are all different. This assumption can be normally met in practice.
Hence we may sort these values as

q(i,j)0 < q(i,j)1 < q(i,j)2 < . . . < q(i,j)|E| < q(i,j)|E|+1
.

By binary search on these |E| + 2 values we find that τ = q(i,j)h such that no feasible flow exists for
τ = q(i,j)h and feasible for τ = q(i,j)h+1 . This can be accomplished by log |E| calls to a max flow routine,
hence in strongly polynomial time. Then we know that q(i,j)h < τ̄ ≤ q(i,j)h+1 .

Second phase: let us partition the arcs in E as E0 :=
{

(ij) ∈ E : qij ≤ q(i,j)h
}

and E1 := E \E0. Note
that for all values q(i,j)h < τ ≤ q(i,j)h+1 the arc capacities are set as

[0 , qij + τ ], (ij) ∈ E0, [qij − τ , qij + τ ], (ij) ∈ E1 .

The problem of finding the smallest value τ̄ ∈ [q(i,j)h , q(i,j)h+1 ] such that there exists a feasible flow
is a parametric flow problem which can be solved by using the the same approach as in Radzik [28]
particularized to our case. Let S ⊂ N ∪M be a subset of nodes and S̄ its complement. For each S let

δ(S)+ :=
{

(i, j) : i ∈ S ∩M , j ∈ S̄ ∩N
}

,

δ(S)− :=
{

(i, j) : i ∈ S̄ ∩M , j ∈ S ∩N
}

and
δ(S) = δ(S)+ ∪ δ(S)−.
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The capacity of the cut induced by S is defined as

c(S, τ) =
∑

(i,j)∈δ(S)+

(qij + τ)−
∑

(i,j)∈δ(S)−

(qij − τ)+ =
∑

(i,j)∈δ(S)+

(qij + τ)−
∑

(i,j)∈δ(S)−∩E1

(qij − τ) =

∑
(i,j)∈δ(S)+

qij −
∑

(i,j)∈δ(S)−∩E1

qij + (|δ(S)+|+ |δ(S)− ∩ E1| τ =: c0(S) + c1(S) τ.

Note that c1(S) is integer-valued and that c1(S) = |δ(S)| − |δ(S)− ∩ E0| ≤ mn. Let

b(S) =
∑

i∈S∩M
ri −

∑
j∈S∩N

pj

be the net flow out of the nodes in S. Define

f(S, τ) := b(S)− c(S, τ) = b(S)− c0(S)− c1(S) τ.

If f(S, τ) ≤ 0 for all S, then by Gale’s Theorem [1, 11] there exists a feasible flow. Hence we define the
function

h(τ) := max
S

f(S, τ) = max
S

(b(S)− c0(S)− c1(S) τ)

and are interested in finding τ̄ such that h(τ̄) = 0. Let

Sk := {S : c1(S) = k} .

Then

h(τ) = max
k

{
−k τ + max

S∈Sk
(b(S)− c0(S))

}
.

Let hk := maxS∈Sk(b(S)− c0(S)). So

h(τ) = max
k
{−k τ + hk} .

A geometrical interpretation is as follows. The function h(τ) is the pointwise maximum of a finite number
of linear functions b(S)− c0(S)− c1(S) τ with slope −c1(S) and intercept b(S)− c0(S). As seen above, the
slope can take at most mn values. For each of them, say k, the straight line with slope k and maximum
intercept lies above the other lines with the same slope: hence in the pointwise maximum expression we
need to retain only such highest lines. Hence the function h(τ) is convex and piecewise linear with at most
mn breakpoints.

Consider the following iteration (Newton’s method in Radzik [28]): given τ , compute S such that
h(τ) = f(S, τ) (via max flow-min cut); then, given S, compute τ such that f(S, τ) = 0, i.e.

τ =
b(S)− c0(S)

c1(S)

and repeat until h(τ) = 0. The number of iterations is bounded above by the number of breakpoins of
h(τ), hence by mn.

Third phase: once we have determined τ̄ we make use of the proximity bound and find by binary
search τ∗ within the interval [τ̄ , τ̄ + 1]. There are at most 2 |E| relevant values in this interval, hence the
binary search over the relevant values requires at most log(2 |E|) steps, i.e. a strongly polynomial number
of iterations.
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The argument used in phase two can be employed in other more general settings. This fact deserves
to be outlined as follows. Consider a Linear Fractional Combinatorial Optimization Problem (LFCO)

max
x∈X

{a(x)− b(x) τ} (16)

in which X is a finite set of combinatorial objects (e.g. cuts, spanning trees, etc.), a and b are additive
functions, b(x) integer, 0 < b(x) < P (n), x ∈ X, where n is a size parameter (e.g. number of nodes of
the underlying graph) and P (n) is a polynomial in n. Then the optimal value h(τ) of (16) is a convex
piecewise linear function of τ with at most P (n) breakpoints. It follows that, if one can compute h(τ) in
strongly polynomial time for each given τ , then one can solve h(τ) = 0 in strongly polynomial time.

It is also worth pointing out that both the weakly polynomial algorithm and the strongly polynomial
one work with a similar complexity analysis for the following general problem. Consider a network with n
nodes and m arcs with lower capacities and upper capacities bounded above by H. Let F be the polytope
of all feasible flows. Let q be any point of the simplex S(m) =

{
q ≥ 0 :

∑
ij qij ≤ H

}
. Find an integral

point of F at minimum `∞ distance from q.

Algorithm 4 – In order to find the minimum relative error we present a (weakly) polynomial-time
algorithm. We recall that the relevant errors for the relative error minimization are either of the form
(1 − z/qij) for 0 ≤ z ≤ bqijc or of the form (z/qij − 1) for dqije ≤ z ≤ ri. It would be tempting to
compute and sort all relevant values and then apply binary search. However, the time needed for the sheer
calculation of the n (H+m) relevant values is linearly dependant on H and therefore is pseudopolynomial.
We still want to carry out a binary search, but we have to do it without computing and sorting all relevant
errors.

The idea is to apply the binary search over a real interval and to compute the two relevant errors that
are closest (one from the left and one from the right) to the middle value of the interval. Once the interval
is sufficiently small we may start a second binary search over a small number of relevant values. The
crucial observation is that within any interval of length 1/qij there are at most two relevant errors for the
pair (i, j). Hence within any interval of length 1/(maxij qij) there are at most two relevant errors for any
pair (i, j). Then the first binary search stops as soon as the interval length is less than 1/(maxij qij).

The maximum relevant error is bound by maxi ri/minij qij . The binary search starts with the left
bound ˆ̀ := 0 and right bound r̂ := maxi ri/minij qij . At each iteration it computes the middle value
µ := (ˆ̀+ r̂)/2 and the closest relevant error to µ from the left σ−, and the closest one from the right σ+.
To compute σ+ we need to compute

argmin
0≤z≤bqijc

qij−z−µ qij≥0

qij − z − µ qij
qij

= bqij − µ qijc ,

argmin
dqije≤z≤ri

z−qij−µ qij≥0

z − qij − µ qij
qij

= dqij + µ qije ,

by tacitly assuming that the argument is empty (or equivalently the minimum is +∞) if bqij − µ qijc < 0
in the first case and dqij + µ qije > ri in the second case. The expressions yield

σ+ := min
ij

{
min

{
1− bqij − µ qijc

qij
;
dqij + µ qije

qij
− 1
}}

.

For the closest error σ− from the left we have to compute

argmax
0≤z≤bqijc

qij−z−µ qij≤0

qij − z − µ qij
qij

= max {dqij − µ qije , 0} ,
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argmax
dqije≤z≤ri

z−qij−µ qij≤0

z − qij − µ qij
qij

= min {bqij + µ qijc , ri} ,

by assuming again that the argument is empty (or equivalently the maximum is −∞) if dqij − µ qije > bqijc
in the first case and bqij − µ qijc < dqije in the second case. The expressions yield

σ− := max
ij

{
max

{
1− max {dqij − µ qije , 0}

qij
;

min {bqij + µ qijc , ri}
qij

− 1
}}

.

The existence of a feasible flow is checked for both σ− and σ+. If the problem is infeasible for σ− and
feasible for σ+ then the binary search can be stopped because the optimal error has been detected as
σ∗ = σ+. If the problem is infeasible for σ+ then the left interval bound is reset as ˆ̀ := σ+. If the problem
is feasible for σ− then the right interval bound is reset as r̂ := σ−. In both cases the interval is at least
halved.

This binary search is carried out until r̂− ˆ̀< 1/(maxij qij) (and clearly the optimum value has not been
found yet). Hence this phase requires at most log(maxi ri)− log(minij qij) + log(maxij qij) computations
of two max flow routines and is therefore weakly polynomial.

The next phase is based on the previous observation that for each pair (i, j) there are at most two
relevant errors within any interval of length 1/(maxij qij). Hence the two relevant errors closest to ˆ̀ and
greater than ˆ̀ are

1− bqij −
ˆ̀qijc

qij
and

dqij + ˆ̀qije
qij

− 1.

The computation of these values for all pairs (i, j) requires O(nm) time, and the subsequent sorting
requires O(nm log(nm)). The next step is the binary search over these values which has complexity
O(MF(n+m,nm) log(nm)).

In conclusion the computational complexity of finding the min-max relative error is

O(MF(n+m,nm) (log(max
i
ri)− log(min

ij
qij) + log(max

ij
qij) + log(nm))).

7 Uniqueness of solutions

Any sound seat assignment method, taking as input the votes, must output a unique assignment. On the
other hand, optimization problems usually admit multiple optimal solutions. Therefore, if one wishes to
follow an optimization approach for producing a seat assignment, it is crucial to develop a method that
outputs a unique assignment.

In the previous sections we have pursued the search of seat assignments minimizing the maximum
error. However, minimax solutions are insensitive to errors which are less than the maximum error and
therefore often exhibit many alternative optima. Therefore we need to define a stronger form of optimality
to refine the choice among the optima.

For a given apportionment x∗ let τ∗hk := |qhk − x∗hk| be the error for the pair (h, k). Let

L(h, k) :=
{

(i, j) 6= (h, k) : τ∗ij ≤ τ∗hk
}
, U(h, k) :=

{
(i, j) : τ∗ij > τ∗hk

}
.

L(h, k) is the set of pairs with error not larger than τ∗hk and U(h, k) is the complement set, excluding
(h, k) itself. Then we say that the apportionment x∗ is strongly optimal if, for any pair (h, k), there is no
apportionment with error τhk < τ∗hk, τij ≤ τ∗hk for (i, j) ∈ L(h, k) and τij ≤ τ∗ij for (i, j) ∈ U(h, k). Clearly
strong optimality implies optimality.
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The definition takes care of the fact that, while trying to improve the error for some pair (h, k), it is
not allowed to worsen those pairs which have a larger error than (h, k). On the contrary it is allowed to
worsen those pairs whose error is less than or equal to (h, k) up to the ‘threshold’ τ∗hk. Note also that if
another pair exhibits the same error as (h, k), one is allowed to try to decrease the error for (h, k) without
being compelled to decrease also the error for the other pair.

A strongly optimal solution is robust with respect to any criticism and complaint parties might raise
in order to gain more seats for themselves or to reduce seats for the other parties. However, even strongly
optimal solutions are not unique. In order to find a unique strongly optimal solution we resort to the
concept of unordered lexico minima.

An unordered lexico minimum is defined in the following way: given a vector a ∈ Rn let θ(a) ∈ Rn
be the vector obtained from a by permuting its entries so that the entries in θ(a) are arranged in non-
increasing order (in case of equal entries break the tie in any fixed way). Then given two vectors a, b ∈ Rn
we say that a is Unordered Lexico better than b if θ(a) is lexicographically smaller than θ(b), i.e. there
exists an integer k such that θi(a) = θi(b) for i < k and θk(a) < θk(b). This definition is taken from [31]
where it has been applied in a similar context. A vector a ∈ A ⊂ Rn is an Unordered Lexico Optimum in
A if there is no b ∈ A which is Unordered Lexico better than a. Like the Lexicographic ordering also the
Unordered Lexicographic ordering is a total order and thus it has a unique minimum within a finite set.

In our case the vectors consist of the relevant errors for all pairs (i, j). In order to find unordered lexico
minima, once a minimax solution has been found with relevant error τk for the blocking pair (i, j)k (k is
the index of the relevant τ in an ascending ordering of the relevant errors), we want to find a solution
minimizing

max
(ij)6=(i,j)k

|xij − qij |.

This can be done as before with the only difference that the capacity for the pair (i, j)k is no longer changed.
Once we have found a second solution with error τh (h < k) and blocking pair (i, j)h, we proceed recursively
by fixing the capacities of the blocking pairs one at a time. In this procedure we have to use relevant error
that are less than τmin or σmin. If for the current relevant τ we have τ < min {qij − bqijc ; dqije − qij} ≤ 1/2
we simply fix the capacity for the arc (i, j) to [q̄ij , q̄ij ] with q̄ij equal to qij rounded to the nearest integer
and the computation is finished because there cannot be any better error. Hence it turns out that the
blocking pairs are those for which the absolute error is larger than one half.

It is immediate to see that unordered lexico minimal errors are also strongly optimal. If the relevant τ
values are all different (which is very likely) the procedure is straightforward. If some τ ’s are equal then
we have to choose the blocking pairs among those achieving the maximum error. This can be done by
finding all arcs belonging to minimal cuts in a max flow problem and this can be carried out according to
a result by Picard and Queyranne [24]. We proceed similarly for σ.

By applying this technique to the instance in Sec. 5, we first identify the blocking pair (1, D) that, by
receiving two seats for a target quota 0.994, exhibits the error 1.006. It is impossible to reduce this error
for all pairs. According to our procedure, we try to decrease the errors for all pairs except for the blocking
pair (1, D). Hence the capacity of this pair remains fixed at the interval [0, 2]. Now we decrease τ until we
find the blocking pair (1, B) with error 0.87 (0 seats for a target quota 0.87). Now we fix the capacity for
the pair (1, B) at [0, 1]. At this point there are no more pairs with error larger than 1/2 and the procedure
stops. This is the final seat assignment, which is much more satisfactory than the previous one:
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A B C D E F

1 1 0 0 2 1 1

2 0 1 1 1 1 1

3 0 0 0 1 0 0

4 0 0 0 0 0 1

5 0 0 0 0 1 0

Remark. In the single-region case (vector apportionment) both the min-max and the Unordered
lexico-min apportionments coincide with the Largest Remainders one. As a matter of fact, in this case
one has τ∗ < 1; hence any min-max apportionment satisfies the Hare Property. Therefore, any party j

gets bqjc seats, plus possibly an extra one. An exchange argument shows that, in order to minimize the
maximum error, the extra seats must be given to the parties whose fractional parts qj − bqjc are largest.

8 Comparison with other methods

The aim of the present section is to compare our method with other well-known procedures for bipro-
portional apportionment available in the literature. We shall pursue this comparison from a threefold
perspective. First, we discuss which of the Balinski and Demange’s six proportionality axioms are satisfied
by our method. Second, some empirical indications of the “distance” between our apportionment and oth-
ers are provided for three real-life elections. Third, the performances of the methods under consideration
are discussed with respect to some general – theoretical and practical – criteria.

As mentioned in the Introduction, the fundamental work of Balinski and Demange provided both a
theoretical and computational framework for dealing with BAP. The reader is referred to [3] for an actual
list – omitted here for lack of space – of their six axioms for integral proportionality.

Since scaling all entries of the vote matrix by a common positive factor leaves both the regional quotas
and the fair shares unchanged, the Exactness axiom holds. More generally, the fair share matrix is invariant
for arbitrary row and column scaling by positive factors, while for regional quotas this is true only for row
scalings. Hence the Homogeneity axiom is satisfied if the target quotas are fair shares, and half-satisfied
if they are regional quotas. The Relevance Axiom is meaningful only in the case of inequality constraints,
so it is irrelevant in our context.

The Monotonicity Axiom is seen to hold both in the 1 × n case (for arbitrary positive n) and in the
2×2 one. We conjecture that it holds also for general matrices at least for strongly optimal solutions w.r.t
regional quotas.

There is no guarantee that the Uniformity (or Consistency) Axiom holds: in fact, we have remarked at
the end of the previous section that in the single-region case the (generally unique) min-max apportionment
coincides with the Largest Remainders one; and the latter is well known [8] to be not consistent in general.

We recall that the Completeness Axiom deals with a sequence of (real-valued) vote matrices V k → V̂

such that the apportionment x(V k) =: x̄ is invariant for all k and there exists x̂ := x(V̂ ). The Completeness
Axiom requires x̂ = x̄. For the Axiom to hold continuity of the target quotas w.r.t. the vote matrix is an
essential requirement. However, it may happen in general that there are quotas qkij → 0 with x̄ij = 1. In
this case x̄ is not feasible for V̂ and the Axiom cannot hold. Even the continuity of the target quotas can
be affected by this circumstance.

The possibility of quotas qkij → 0 with x̄ij = 1 is linked to the possibility of having the set Z of zero
votes varying w.r.t. the vote matrices. However, it may be safely assumed that the presence of zeroes is due
to structural reasons (a party does not present any list of candidates in a region) rather than to accidental
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ones (a party does not get any vote in a region in spite of its list in that region being nonempty). For
these reasons we introduce the following Restricted Completeness Axiom which makes sense in a practical
context.

Let V be the set of all real-valued nonnegative matrices whose smallest positive entry is at least 1
and whose set of null entries is a given subset Z ⊂ M × N . Notice that the set V is closed. Then the
Restricted Completeness Axiom considers only matrices Vk in V.

Then the apportionment minimizing the maximum absolute error satisfies the Restricted Completeness
Axiom if the target quotas q(V ) are continuous w.r.t. the vote matrix V . Indeed, by taking the limit in
the finite system of inequalities

|x̄ij − qij(Vk)| ≤ |yij − qij(Vk)|, for each apportionment y,

one gets the required inequalities

|x̄ij − qij(V̂ )| ≤ |yij − qij(V̂ )|, for each apportionment y.

Continuity certainly holds true without any additional assumption when the qij(V )’s are regional
quotas. It remains true also for fair shares under the assumptions of the Restricted Completeness Axiom.
We recall that the continuity of the fair share matrix in case the set Z is empty has been proven in [4].
Next we extend this result to the case of a non empty set Z invariant for all matrices in the sequence
whose limit is the vote matrix. To prove the result we make use of the upper bound given in Theorem 5.2
of [17] on the number Kε of iterations required by RAS to achieve an `2-error smaller than a given ε:

Kε ≤ C
ρH2

ε2
ln
ρ

ν
(17)

where C is a fixed constant, ρ := max {maxi ri; maxj pj}, ν := min(ij)/∈Z vij and H is the house size.

Theorem 9. Let (V, r, p) be a vote matrix together with given vectors r and p for which the fair share
matrix exists. Let Vj be its RAS iterates with F = limj Vj. Let (V k, rk, pk)→ (V, r, p) be any sequence and
let V kj be the RAS iterates of (V k, rk, pk) with F k = limj V

k
j . Suppose Zk = Z for all k. Then F k → F ,

i.e., the fair share matrix is continuously dependent on the data.

Proof. Since (V k, rk, pk)→ (V, r, p) we may redefine in (17)

ρ := max{max
i
{ri; sup

k
rki }; max

j
{pj ; sup

k
pkj }},

ν := min{ min
(ij)/∈Z

vij ; inf
k

min
(ij)/∈Z

vkij}, H := max{
∑
i

ri; sup
k

∑
i

rki },

having ρ <∞, H <∞ and ν > 0. In particular ν > 0 is guaranteed by the invariance of the set Z. Hence,
there exists a fixed constant C, such that for any ε > 0, there exists an index j = C/ε2 such that

‖V kj − F k‖ ≤ ε, ∀k, ‖Vj − F‖ ≤ ε.

Now
‖F k − F‖ = ‖F k − V kj + V kj − Vj + Vj − F‖ ≤ 2 ε+ ‖V kj − Vj‖.

Since each RAS iteration is continuous, V kj → Vj , i.e., for the same ε, there exists K, possibly dependent
on j, such that for k > K

‖V kj − Vj‖ < ε.

Summing up, for any ε > 0 there exists K such that, for k > K

‖F k − F‖ ≤ 3 ε.

Therefore Fk → F and this implies the continuity of the fair share matrix.
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ITALY FS PMF0 PMF CR TT

FS 0.660928 0.660928 0.660928 0.833503

PMF0 0.256604 1 1 1

PMF 0.256816 0.0763359 1 1

CR 0.253796 0.0305344 0.0458015 1

TT 0.263785 0.1068700 0.0610687 0.0763359

SPAIN FS PMF0 PMF CR TT

FS 0.898518 0.898518 0.955904 1.08074

PMF0 0.232432 1 1 1

PMF 0.162368 0.201754 1 1

CR 0.159719 0.228070 0.0438596 1

TT 0.169750 0.210526 0.0526316 0.0526316

FAROE FS PMF0 PMF CR TT

FS 0.687644 0.687644 0.687644 0.733836

PMF0 0.281439 1 1 1

PMF 0.267512 0.250000 0 1

CR 0.267512 0.250000 0 1

TT 0.275533 0.166667 0.125000 0.125000

Table 1: Maximum (bold) and average (normal) errors for each pair of methods

Next, we have compared the seat apportionments given by different methods applied to the real polls
of three countries, namely, Italy 2008, Spain 2008, and Faroe Islands 2004. For all methods we have used
the fair share quotas to get a uniform comparison among the methods, even in the case of Italy, differently
from Appendix A where the target quotas were those provided by the Ministry. The methods we have
considered are: the parametric maximum flow method for minimizing the maximum absolute error (PMF0)
described in this paper, the lexico-min refinement (PMF) described in Sec. 7, the Controlled Rounding
(CR) procedure by Ernst and Cox [10] and the Tie and Transfer (TT) procedure of Balinski and Demange
[4]. We have compared the corresponding output apportionments with the fair shares (FS) and also
between themselves. For each region-party pair (i, j) we have taken the value |aij − bij |, with a the seat
apportionment given by one method and b the one given by another method (a fractional apportionment
for FS); we have considered both the maximum difference maxij |aij − bij | and the average difference∑
ij |aij − bij |/|E| with |E| the number of region-party pairs not in Z (or the number of arcs in the

associated bipartite network). The values of |E| are 131 for Italy, 228 for Spain and 48 for the Faroe
Islands.

The maximum difference and the average difference are reported in Table 1 which consists of three
tables, one for each country. In each table the upper triangular entries (bold face) refer to the maximum
differences and the lower triangular entries (normal face) to the average absolute errors between the
respective methods, respectively.

Note that the seat assignments produced by the various methods differ at most by one for each region-
party pair. Clearly the best maximum error is achieved by PMF0 which has been designed toward this
goal. It is interesting to notice that TT may give a maximum error larger than 1 even w.r.t fair share
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quotas. Considering the average error, PMF performs much better than PMF0 for obvious reasons. A
comparison of the various entries in Table 1 shows that PMF and CR have the best results and produce
very close seat assignments (for the Faroe Islands it is indeed the same). The 0.0438596 average error
between the seats given by PMF and CR for Spain, multiplied by 228 (|E| for Spain) gives 10. Hence only
10 seats differ (by 1) out of 228 seats.

Admittedly, our sample of 3 countries is too small to draw definitive conclusions. Nevertheless, the
above experimental results provide some clues about the mutual closeness of the different integral or
fractional apportionments under consideration.

Finally, we have summarized the comparative advantages and disadvantages of our method (PMF)
versus the main other available algorithms, namely, (i) Balinski and Demange’s Tie-and-Transfer with
rounding to the closest integer (TT), (ii) Pukelsheim’s Discrete Alternating Scaling (DAS), (iii) Gaffke and
Pukelsheim’s algorithm, in the Rote and Zachariasen’s minimum cost flow implementation, (GFRZ), and
(iv) the Cox and Ernst’s Controlled Rounding (CR). The first three algorithms yield, for a given rounding
method, the same apportionment, namely, the unique one that satisfies all the six proportionality axioms.
We took into account the following criteria:

1. Finiteness: the algorithm stops after a finite number of steps;
2. Feasibility: the output seat assignment always yields an apportionment;
3. Soundness: satisfaction of Balinski and Demange’s six integral proportionality axioms;
4. Uniqueness: uniqueness of the seat assignment output by the method;
5. Theoretical Complexity: worst-case rate of growth of the number of elementary operations as the

instance size increases;
6. Generality: range of applications besides Biproportional Apportionment;
7. Flexibility: dependance on other parameters besides input data;
8. Ease of implementation: no need to write sophisticated ad hoc computer codes;
9. Writability: possibility of translating the procedure into a simple, easy to understand, electoral law;

In the following table, +, ∼, and − mean that PMF is deemed to exhibit “a better performance than”,
“the same performance as”, and “a worse performance than”, respectively, the given alternative method
w.r.t. to the given criterion

Criteria\ Method TT DAS GPRZ CR
Finiteness ∼ +(1) ∼ ∼
Feasibility ∼ ∼ ∼ +(2)

Soundness − − − ∼
Uniqueness ∼ ∼ ∼ +
Theoretical complexity +(3) +(4) +(5) ∼
Generality + + + +
Flexibility ∼(6) ∼(6) ∼(6) ∼(6)

Ease of implementation + − ∼ ∼
Writability (7) + − + ∼

Notes:

(1) Rare pathological instances where the method does not converge;
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(2) Feasibility not guaranteed when the target quotas are the regional ones; guaranteed when the target
quotas are given by any fractional apportionment, e.g., the fair share matrix;

(3) Pseudopolynomial in general; weakly polynomial in Zachariasen’s [34] implementation;
(4) Complexity unknown;
(5) Weakly polynomial;
(6) The freedom of choice of the rounding method in TT, DAS, and PGRZ is counter-balanced by the

freedom of choice of the target quotas in CR and PMF;
(7) We refer here to the simplest implementation of PMF0 given as Algorithm 1 in Sec.6 .

The above table suggests that the main weakness of PMF is the lack of satisfaction of all the six
Balinski and Demange’s axioms for integral proportionality, notably, the consistency one. Choosing the
fair shares as target quotas mitigates this weakness. The fair share matrix is the unique real matrix that
satisfies the five axioms given by the above authors in order to characterize proportionality between real
matrices. In other words, fair shares would constitute the ideal apportionment in a “virtual Parliament”
where fractional apportionments were allowed. In view of the Integrality Theorem for Network Flows,
the apportionment provided by PMF satisfies the Rounding Property w.r.t. the fair shares, which means
that such apportionment is close to the ideal one. Table 1 further corroborates this statement. Actually,
we recommend the choice of fair shares in conjunction with PMF. The main strengths of PMF lie in
its generality (it may be used to solve the general problem of `∞-projection onto a flow polytope), the
availability of an optimality certificate, which enhances its good writability; and its strongly polynomial
complexity – provided that the target quotas can be computed in strongly polynomial time.

It is worth emphasizing that the theoretical complexity of any BAP algorithm is not very significant
in practice. As it was pointed out in [15], the world of electoral systems is a small one, where the number
of parties never exceeds few tens, the number of constituencies few hundreds, and the house size few
thousands. As a consequence, all the above algorithms require a very modest running time (few seconds
are usually enough). So, a numerical comparison on a real-life benchmark does not make much sense.
A satisfactory theoretical complexity may become an asset, though, in other applications where larger
instances may occur.

Our method may provide a viable alternative when the acceptance of divisor-based methods, such
as TT, DAS, and PGRZ, is problematic because of electoral traditions; and Cox and Ernst’s controlled
rounding method may fail to yield an apportionment, e.g. when one starts from regional quotas computed
by Largest Remainders. Both circumstances occur in the Italian case – actually, this was the initial
motivation for our work.

Appendix A - The Italian 2008 Elections

In the latest Italian political elections (April 13-14, 2008) there were 7 parties and 28 regions. One region
is the so-called Estero region (for Italians resident in foreign countries) for which there is a separate seat
assignment. The region Valle d’Aosta has only one seat whose assignment is done directly. Hence we
do not take into account these regions in our analysis and consider the following 26 regions, listed in the
tables with the abbreviations:

Piemonte 1 (P1), Piemonte 2 (P2), Lombardia 1 (L1), Lombardia 2 (L2), Lombardia 3 (L3), Trentino-
Alto Adige (TA), Veneto 1 (V1), Veneto 2 (V2), Friuli-Venezia Giulia (FV), Liguria (LI), Emilia Romagna
(ER), Toscana (TO), Umbria (UM), Marche (MA), Lazio 1 (La1), Lazio 2 (La2), Abruzzo (AB), Molise
(MO), Campania 1 (C1), Campania 2 (C2), Puglie (PU), Basilicata (BA), Calabria (CA), Sicilia 1 (S1),
Sicilia 2 (S2), Sardegna (SA).
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The seven parties and their acronyms are: Popolo delle libertà (PDL), Lega nord (LN), Movimento
per le autonomie (MPA), Partito democratico (PD), Italia dei valori (IDV), Unione di centro (UDC),
Südtiroler Volkspartei (SVP).

However, the SVP party is present only in the TA region and therefore it is not listed in the tables to
simplify the presentation. Furthermore the LN party is present in the regions from P1 up to MA and not
in the others while for the party MPA it is just the opposite. Therefore, in order to spare space in the
tables, these two parties are reported in the same column.

The seats assigned by the law to the regions, according to the population, before the elections are
listed in the last column of both Table 2 and Table 3. The seats granted to the parties at the national
level (according to the Largest Remainders Rule) are

p = pN = {272, 60, 8, 211, 28, 36, 2}

(listed also in the tables with the exception of the two seats of the SVP party). The Table 2 refers to
the minimization of the maximum absolute error and the Table 3 to the minimization of the maximum
relative error. The regions are listed by rows and the parties by columns. In both tables for each region-
party entry there are four numbers. The first number (the same in both table) is the regional quota,
as computed by the Ministry, already modified to take into account the majority bonus to the winning
coalition PDL-LN-MPA. In the tables the quotas have been rounded to two decimals. The quota for the
SVP party in the TA region is 2.64389.

The second number (the same in both tables) is the number of seats assigned by the law (the two seats
of SVP in TA are not shown). A closer look at these values reveals a stunning discrepancy. In four regions
(P2, TA, V1, S1) the seats eventually assigned by the law after the elections are not the ones assigned by
the law before the election. P2 and V1 have received one seat more and TA and S1 one seat less. This fact,
a serious flaw in the Italian electoral law, has been mentioned in the introduction and has been explained
in detail in the quoted papers. Furthermore, the regional quotas do not sum up to the ri values. This is
not an effect of rounding the quotas to two decimals. Instead it is another flaw caused by the unnecessarily
laborious recomputation of the seat assignment in order to take the majority bonus into account.

In our computation we have used the original r values and the quotas computed by the Ministry (in
spite of the fact that they differ a little from the regional quotas).

The Algorithm 2 of Sec. 6 applied to this instance has produced a minimum maximum absolute error
of 0.75372 for the pair (V1, UDC) (1 seat against a regional quota of 1.75372). All the other pairs have a
smaller error. The corresponding seat assignment is reported in Table 2 as the third figure in each entry.
Then we have applied the procedure of Sec. 7 to find the lexicomin solution. This has been obtained by
first fixing the capacity of the pair (V1, UDC) to [1, 2] (in order to reduce the error the capacity should be
reduced to [2, 2] but we keep it constant to [1, 2]) and then lowering the error for all other pairs until we
find a blocking pair. Then we fix the corresponding capacities and continue. We have found the following
sequence of 12 blocking pairs. Note that all other 118 pairs have error less than one half, i.e. the best
possible error.

(TA, SVP): 0.64389; (S1, MPA): 0.626076; (S1, PDL): 0.625834;
(P2, PDL): 0.595629; (P2, LN): 0.595589; (LI, PDL): 0.58776;
(LI, LN): 0.587678; (MA, PDL): 0.58536; (MA, LN): 0.585341;
(L1, PDL): 0.579506; (L1, LN): 0.579074; (TA, UDC): 0.540086.

The final unique lexicomin apportionment is the fourth figure in each entry of the Table 2. The figures
in bold are those differing from the actual apportionment. For a better reading of the tables we resume
below the meaning of the four entries for each region-party cell (for both Table 2 and 3).
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party label
region label target quota actual seats PMF0 seats PMF seats

We have also computed the seat assignment by using the relative error. See the third figure in each
entry of the Table 3. This solution has a maximum relative error of 0.646726 achieved for the pair (MO,
IDV). Since the relative error corresponds to larger fluctuations around the quotas if the quotas are
high, the result of minimizing the maximum relative error may produce seat assignments which can be
hardly accepted. However, if we refine this assignment by finding the unordered lexico minimum, a new
assignment is produced which is much better. See the fourth figure in each entry of the Table 3. In this
case we have found a sequence of 34 blocking pairs with last relative error 0.0317565. In this case there are
many region-party pairs with a different number of seats than the actual apportionment (in bold). This
shows that the Italian system, based on the Largest Remainders Rule with some adjustments, is closer to
the idea of minimizing the maximum absolute error.
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PDL LN – MPA PD IDV UDC ri
P1 9.47 9 9 9 2.53 3 3 3 9.45 9 9 9 1.55 2 1 2 1.28 1 2 1 24

P2 9.60 10 9 9 4.40 5 5 5 6.15 6 6 6 0.85 1 1 1 1.19 1 1 1 22

L1 16.58 16 16 16 7.42 8 8 8 13.08 13 13 13 1.92 2 2 2 1.43 1 1 1 40

L2 15.35 15 15 15 13.65 14 14 14 10.39 10 11 10 1.61 2 1 2 2.06 2 2 2 43

L3 5.83 6 6 6 3.17 3 3 3 4.53 5 4 5 0.47 0 1 0 0.69 1 1 1 15

TA 2.76 3 3 3 1.24 1 1 1 2.64 3 3 3 0.36 0 1 0 0.46 0 0 1 10

V1 9.31 9 9 9 9.69 10 10 10 7.81 8 8 8 1.19 1 1 1 1.75 2 1 1 29

V2 6.26 6 6 6 5.74 6 6 6 5.95 6 6 6 1.05 1 1 1 1.01 1 1 1 20

FV 5.09 5 5 5 1.91 2 2 2 4.40 4 5 4 0.60 1 0 1 0.81 1 1 1 13

LI 7.59 7 7 7 1.41 2 2 2 6.19 6 6 6 0.81 1 1 1 0.67 1 1 1 17

ER 15.03 15 15 15 4.06 4 4 4 20.14 20 20 20 1.86 2 2 2 1.92 2 2 2 43

TO 15.03 15 15 15 0.97 1 1 1 18.61 19 19 19 1.39 1 2 1 1.70 2 1 2 38

UM 3.82 4 4 4 0.18 0 0 0 4.68 5 5 5 0.32 0 0 0 0.44 0 0 0 9

MA 6.58 6 6 6 0.41 1 1 1 7.22 7 7 7 0.78 1 1 1 1.03 1 1 1 16

La1 19.87 20 20 20 0.13 0 0 0 16.12 16 16 16 1.88 2 2 2 1.80 2 2 2 40

La2 8.93 9 9 9 0.07 0 0 0 4.56 5 5 5 0.44 0 0 0 0.94 1 1 1 15

AB 6.74 7 6 7 0.26 0 1 0 4.96 5 5 5 1.04 1 1 1 0.86 1 1 1 14

MO 1.74 2 1 2 0.26 0 1 0 0.39 0 0 0 0.61 1 1 1 0.18 0 0 0 3

C1 18.00 18 18 18 1.00 1 1 1 10.28 10 10 10 1.72 2 2 2 1.84 2 2 2 33

C2 16.32 16 17 16 0.68 1 0 1 8.65 9 9 9 1.35 1 1 1 2.20 2 2 2 29

PU 23.10 23 23 23 0.90 1 1 1 13.95 14 14 14 2.05 2 2 2 3.58 4 4 4 44

BA 2.94 3 3 3 0.06 0 0 0 2.60 3 2 3 0.40 0 0 0 0.44 0 1 0 6

CA 11.29 11 12 11 0.71 1 0 1 7.20 7 7 7 0.80 1 1 1 1.92 2 2 2 22

S1 13.37 13 14 14 1.63 1 1 1 6.95 7 7 7 1.05 1 1 1 2.97 3 3 3 26

S2 14.98 15 15 15 3.02 3 3 3 7.16 7 7 7 0.84 1 1 1 2.11 2 2 2 28

SA 8.87 9 9 9 0.13 0 0 0 7.21 7 7 7 0.79 1 1 1 1.06 1 1 1 18

pi 272 60 – 8 211 28 36 617

Table 2: Italian elections 2008: absolute error minimization

PDL LN – MPA PD IDV UDC ri
P1 9.47 9 4 9 2.53 3 4 3 9.45 9 14 9 1.55 2 1 2 1.28 1 1 1 24

P2 9.60 10 8 9 4.40 5 6 5 6.15 6 6 6 0.85 1 1 1 1.19 1 1 1 22

L1 16.58 16 24 16 7.42 8 6 8 13.08 13 5 13 1.92 2 3 2 1.43 1 2 1 40

L2 15.35 15 23 14 13.65 14 12 15 10.39 10 4 10 1.61 2 2 2 2.06 2 2 2 43

L3 5.83 6 9 7 3.17 3 4 3 4.53 5 2 5 0.47 0 0 0 0.69 1 0 0 15

TA 2.76 3 3 4 1.24 1 2 1 2.64 3 3 3 0.36 0 0 0 0.46 0 0 0 10

V1 9.31 9 15 8 9.69 10 9 11 7.81 8 3 7 1.19 1 1 1 1.75 2 1 2 29

V2 6.26 6 10 6 5.74 6 5 6 5.95 6 3 6 1.05 1 1 1 1.01 1 1 1 20

FV 5.09 5 8 5 1.91 2 3 2 4.40 4 2 5 0.60 1 0 0 0.81 1 0 1 13

LI 7.59 7 11 8 1.41 2 2 1 6.19 6 3 7 0.81 1 1 1 0.67 1 0 0 17

ER 15.03 15 22 15 4.06 4 6 4 20.14 20 11 20 1.86 2 3 2 1.92 2 1 2 43

TO 15.03 15 24 15 0.97 1 1 1 18.61 19 11 18 1.39 1 1 2 1.70 2 1 2 38

UM 3.82 4 6 4 0.18 0 0 0 4.68 5 3 5 0.32 0 0 0 0.44 0 0 0 9

MA 6.58 6 10 7 0.41 1 0 0 7.22 7 5 7 0.78 1 0 1 1.03 1 1 1 16

La1 19.87 20 17 20 0.13 0 0 0 16.12 16 21 16 1.88 2 1 2 1.80 2 1 2 40

La2 8.93 9 7 9 0.07 0 0 0 4.56 5 7 5 0.44 0 0 0 0.94 1 1 1 15

AB 6.74 7 4 7 0.26 0 0 0 4.96 5 8 5 1.04 1 1 1 0.86 1 1 1 14

MO 1.74 2 2 2 0.26 0 0 0 0.39 0 0 0 0.61 1 1 1 0.18 0 0 0 3

C1 18.00 18 11 18 1.00 1 1 1 10.28 10 16 10 1.72 2 2 2 1.84 2 3 2 33

C2 16.32 16 9 16 0.68 1 1 0 8.65 9 14 9 1.35 1 2 1 2.20 2 3 3 29

PU 23.10 23 13 23 0.90 1 1 1 13.95 14 22 14 2.05 2 3 2 3.58 4 5 4 44

BA 2.94 3 2 3 0.06 0 0 0 2.60 3 4 3 0.40 0 0 0 0.44 0 0 0 6

CA 11.29 11 6 12 0.71 1 1 0 7.20 7 11 7 0.80 1 1 1 1.92 2 3 2 22

S1 13.37 13 8 12 1.63 1 2 2 6.95 7 11 7 1.05 1 1 1 2.97 3 4 4 26

S2 14.98 15 11 14 3.02 3 2 4 7.16 7 11 7 0.84 1 1 1 2.11 2 3 2 28

SA 8.87 9 5 9 0.13 0 0 0 7.21 7 11 7 0.79 1 1 1 1.06 1 1 1 18

pi 272 60 – 8 211 28 36 617

Table 3: Italian elections 2008: relative error minimization

27


