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Introduzione alla Programmazione Lineare

1. Proprietà geometriche

Si definiscono come problemi di Programmazione Lineare (PL) tutti quei problemi di ottimizzazione
in cui la funzione obiettivo è lineare e i vincoli sono tutti espressi da diseguaglianze lineari ed anche, even-
tualmente, uguaglianze lineari. Per poter parlare di PL devono essere sempre presenti delle diseguaglianze
mentre le uguaglianze possono mancare. Un problema con solo vincoli di uguaglianza ha una struttura molto
particolare ed è illimitato tranne il caso in cui tutte le soluzioni ammissibili hanno lo stesso valore di funzione
obiettivo. È chiaro quindi che un modello lineare di un problema reale avrà sempre vincoli di diseguaglianza
(ad esempio il vincolo di non negatività delle variabili).

Consideriamo allora il modo in cui i vincoli di diseguaglianza determinano la struttura del problema.
Per semplicità iniziamo da un problema con solo due variabili x1 e x2. Un vincolo del tipo

a1 x1 + a2 x2 = b (1)

rappresenta una retta R nel piano (cioè l’insieme dei punti che soddisfano la relazione). La retta divide il
piano in due parti H1 e H2. Si veda in figura 1 il caso x1 +2x2 = 2. Se valutiamo (a1 x1 +a2 x2) in un punto
P1 qualsiasi di H1 (figura 2) otteniamo necessariamente un valore diverso da b (altrimenti il punto sarebbe
su R). Supponiamo che tale valore sia inferiore a b (come nell’esempio). Possiamo allora dire che per tutti
i valori di H1 il valore di a1 x1 + a2 x2 è inferiore a b. Infatti se consideriamo un altro punto P2 di H1 e
supponiamo che il valore di (a1 x1 + a2 x2) sia superiore a b, allora presa una qualsiasi linea congiungente
P1 a P2 e tutta in H1, vi sarebbe un punto sulla linea in cui per continuità il valore di a1 x1 + a2 x2 sarebbe
uguale a b, ma allore tale punto dovrebbe essere su R, mentre abbiamo costruito la linea interamente in H1

figura 1 figura 2
Analogamente possiamo concludere che i punti su H2 sono tutti maggiori di b oppure tutti minori di b.

Per capire quale dei due casi si verifichi, notiamo che il vettore formato dai coefficienti di (a1 x1 + a2 x2),
ovvero (a1, a2) è ortogonale alla retta R (figura 3), come si vede dal fatto che la retta parallela a R e passante
per l’origine ha equazione a1 x1 + a2 x2 = 0.

figura 3 figura 4

1



x1

x2

1

1 2

2

R1R2

R3

x1

x2

1

1 2

2

R1 R2

R3

Allora i punti del tipo α (a1, a2), con α scalare qualsiasi rappresentano la retta Q passante per l’origine
e ortogonale a R. Se valutiamo a1 x1 + a2 x2 su Q otteniamo α (a2

1 + a2
2), da cui si vede che sono maggiori di

b i punti del semipiano verso cui è orientato il vettore dei coefficienti (H2 nell’esempio) e minori di b i punti
dell’altro semipiano. Allora un vincolo del tipo

a1 x1 + a2 x2 ≤ b (2)

rappresenta un semipiano. Si noti che la frontiera dell’insieme ammissibile è data dalla retta R. Su tali
punti, per i quali la diseguaglianza viene soddisfatta come eguaglianza, si dice che la diseguaglianza è attiva.
Ogni altro punto, che soddisfa (2) come diseguaglianza stretta (diseguaglianza non attiva), non può che
essere un punto interno. Se ora aggiungiamo un’altra diseguaglianza lineare (che supponiamo linearmente
indipendente dalla prima, cioè definita da una retta non parallela alla prima), cioè

a11 x1 + a12 x2 ≤ b1

a21 x1 + a22 x2 ≤ b2
(3)

Si veda in figura 4 il caso in cui la seconda diseguaglianza, definita dalla retta R2, è x1 + x2 ≥ 1, per cui (3)
diventa

x1 + 2x2 ≤ 2

− x1 − x2 ≤ − 1
(4)

L’insieme ammissibile di (4) è raffigurato in figura 4. Si tratta di un insieme particolare: si noti che il punto
d’incrocio delle due rette (il punto (0, 1) nell’esempio) è ammissibile e, se si trasla l’insieme ammissibile in
modo che tale punto si trovi nell’origine, ogni punto ammissibile (x1, x2) può essere moltiplicato per uno
scalare positivo α (ottenendo quindi il punto (α, x1, α, x2)) e il nuovo punto è ancora ammissibile. Insiemi con
la proprietà che ogni punto dell’insieme può essere moltiplicato per uno scalare positivo rimanendo ancora
nell’insieme vengono chiamati coni.

Si noti ancora che il punto (0, 1), intersezione delle due rette ha la particolarità di non essere contenuto
all’interno di nessun segmento interamente ammissibile (ciò è vero invece per tutti gli altri punti ammissibili).
Punti con questa proprietà vengono detti vertici .

La frontiera dell’insieme ammissibile è costituita, oltre che dal vertice, dai punti ammissibili delle due
rette. Quindi per ogni punto della frontiera almeno una delle due diseguaglianze è attiva. Tutti i punti per
cui entrambe le diseguaglianze sono non attive sono punti interni.

Ora aggiungiamo una terza diseguaglianza lineare, ottenendo
a11 x1 + a12 x2 ≤ b1

a21 x1 + a22 x2 ≤ b2

a31 x1 + a32 x2 ≤ b3

(5)

Si veda in figura 5 il caso in cui la terza diseguaglianza, definita dalla retta R3, è x1 − x2 ≤ 1, per cui (5)
diventa

x1 + 2x2 ≤ 2

− x1 − x2 ≤ − 1

x1 − x2 ≤ 1

(6)

figura 5 figura 6
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Vi sono ora tre punti d’intersezione, dati da tutte le possibili scelte di due rette su tre. In questo semplice
esempio avviene che i tre punti calcolati risolvendo i tre sistemi lineari

x1 + 2x2 = 2

− x1 − x2 = − 1

x1 + 2x2 = 2

x1 − x2 = 1

− x1 − x2 = − 1

x1 − x2 = 1

(e cioè rispettivamente i punti (0, 1), (4/3, 1/3), (1, 0)) siano ammissibili anche rispetto alla diseguaglianza
che non interviene nel sistema lineare che determina il punto stesso. Questa circostanza però è del tutto
particolare. Se ad esempio la retta R1 fosse quella indicata in figura 6 e quindi (6) fosse

− 2x1 + x2 ≤ 0

− x1 − x2 ≤ − 1

x1 − x2 ≤ 1

(7)

si vede che il punto (−1,−2) intersezione della retta R1 con R3 è inammissibile rispetto alla rimanente
diseguaglianza. Come si vede l’insieme ammissibile in due dimensioni è un poligono (non necessariamente
limitato).

In generale, date m diseguaglianze in n variabili l’insieme ammissibile è un poliedro. Se n ≤ m (che
è il caso tipico), ogni insieme di n diseguaglianze attive linearmente indipendenti determina un punto. Se
inoltre questo punto è ammissibile anche rispetto alle altre m − n diseguaglianze, costituisce un vertice del
poliedro. Punti determinati da n − 1 diseguaglianze attive formano gli spigoli mentre punti determinati da
un’unica diseguaglianza attiva formano le faccette.

Se non esistono punti per cui una diseguaglianza è l’unica diseguaglianza attiva, allora tale diseguaglianza
è ridondante e può essere omessa. Può succedere che in un vertice siano attive più di n diseguaglianze (non
ridondanti). Tali vertici vengono detti degeneri. Si veda in figura un esempio di vertice degenere.

2. Algoritmi

Il metodo del simplesso, inventato da Dantzig nel 1947, è uno degli algoritmi risolutivi della PL. Fino
al 1979 è stato l’unico metodo risolutivo noto. È importante notare che il metodo del simplesso non è un
algoritmo polinomiale. Tuttavia la complessità computazionale di caso medio è polinomiale e questo spiega
il grande successo pratico del metodo del simplesso. Il primo algoritmo polinomiale per la PL (dimostrando
quindi l’appartenenza della PL alla classe P) è stato l’algoritmo dell’Ellissoide, dovuto a Khacyan. Tuttavia
tale algoritmo, pur essendo polinomiale, presenta grandi problemi implementativi e non è stato mai usato
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in pratica. Nel 1984 fu proposto da Karmarkar un nuovo algoritmo polinomiale che era anche praticamente
efficiente. Da tale algoritmo sono stati generati molti algoritmi analoghi, detti ai punti interni, perché
generano una successione di punti che tende all’ottimo, tutta all’interno del poliedro.

I moderni pacchetti commerciali di PL usano entrambi i metodi cercando di sfruttare abilmente i rispet-
tivi vantaggi. L’esposizione dei metodi ai punti interni richiederebbe uno spazio eccessivo per questo testo,
per cui ci si limita solamente ad una trattazione sintetica del metodo del simplesso.

Se la funzione obiettivo è lineare (come nella PL), ad esempio
∑

j cj xj = c x, i punti di equazione
c x = K costituiscono un piano sul quale la funzione obiettivo è costante con valore K. Punti con valore K ′

della funzione obiettivo determinano il piano c x = K ′, parallelo al precedente. È abbastanza intuitivo che se
il piano c x = K non interseca un vertice del poliedro (ma interseca il poliedro), allora esiste un altro piano
c x = K ′ che interseca il poliedro con valore K ′ < K (nonostante la proprietà sia intuitiva, la dimostrazione
di questo fatto, che richiede anche l’ipotesi di esistenza di vertici, non è semplice e viene omessa). Quindi i
punti del poliedro sulla retta c x = K non sono ottimi. Si deduce che, se vi sono ottimi, almeno un vertice è
ottimo.

Quindi ha senso “limitare” la ricerca degli ottimi ai vertici del poliedro. La parola ‘limitare’ è stata
posta fra virgolette perché il passaggio da un numero infinito (con potenza del continuo) di punti da esplorare
ad un numero finito non deve far pensare che il problema sia facile. Il numero di vertici di un poliedro è
generalmente esponenziale nei dati del problema (ad esempio si consideri l’ipercubo 0 ≤ xi ≤ 1, i = 1, . . . , n,
dove 2n diseguaglianze determinano 2n vertici) e quindi una enumerazione ingenua dei vertici non può essere
considerata una valida strategia di calcolo.

Il metodo del simplesso esplora i vertici cercando però di migliorare ad ogni passo la funzione obiettivo.
Questo non garantisce all’algoritmo di sfuggire ad un’eventuale esplorazione di un numero esponenziale di
vertici. Però la probabilità che ciò avvenga è trascurabile.

Dovendo esplorare i vertici, bisogna trovare un metodo per rappresentarli. Siccome un vertice è deter-
minato dall’intersezione di n piani, si tratta di specificare quali sono i piani, ovvero quali diseguaglianze sono
attive. In altre parole un vertice può venire rappresentato dall’insieme degli indici delle n diseguaglianze
attive. Tale insieme prende il nome di base (a dire il vero nel metodo del simplesso classico la base è l’insieme
complementare, ma per questa breve esposizione la cosa è irrilevante). Quindi sembrerebbe che il passaggio
da un vertice ad uno migliore possa essere riprodotto dal passaggio da una base ad una migliore.

Purtroppo le cose sono un po’ più complicate. Se un vertice si trova nell’intersezione di più di n piani
(cosiddetta degenerazione) sono disponibili rappresentazioni diverse, cioè diverse basi, per lo stesso vertice.
La conseguenza di questo fatto è che il passaggio da una base all’altra può avvenire fra basi che rappresentano
lo stesso vertice. Quindi in realtà il metodo progredisce solo apparentemente e invece staziona per diverse
iterazioni sul medesimo vertice. Inoltre c’è il concreto rischio che la sequenza di basi cicli indefinitamente
(mentre se si abbandona un vertice passando ad uno migliore, non si può mai ritornare ad un vertice già
esplorato). Stranamente gli esempi di ciclaggio sono stati costruiti a tavolino e in pratica tale fenomeno
non si è mai verificato. Comunque esistono delle tecniche che impediscono il ciclaggio. Resta il fatto che la
degenerazione provoca normalmente un sensibile rallentamento del calcolo.

Il passaggio fra un vertice ed un altro avviene fra due vertici adiacenti, ovvero connessi da uno spigolo. Se
non c’è degenerazione le due basi corrispondenti differiscono solo per un indice. Quindi n− 1 diseguaglianze
rimangono attive (quelle che determinano lo spigolo), mentre una diseguaglianza attiva della seconda base
diventa non attiva (si abbandona il vertice seguendo lo spigolo) e una diseguaglianza non attiva diventa
attiva (si è raggiunto l’altro vertice).

È naturalmente possibile determinare quale diseguaglianza eliminare dalla base per migliorare la funzione
obiettivo e anche calcolare quale è la nuova disegualianza che entra in base. Potrebbe avvenire che lo spigolo
in questione è illimitato e questo fatto segnala la presenza di un’istanza illimitata.
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Infine ad ogni iterazione del metodo è disponibile, oltre alla soluzione, anche la soluzione duale (vedi
sezione successiva), che permette di verificare l’ottimalità della soluzione trovata.

3. Dualità

Si consideri il seguente problema: devono essere prodotti due tipi di oggetti i cui prezzi di mercato
sono 120 ––C/pezzo e 180 ––C/pezzo. Per produrre un pezzo del primo oggetto sono richiesti 15 minuti di una
macchina, 35 minuti di un’altra macchina e 60 minuti di lavoro-uomo. Per il secondo oggetto sono invece
richiesti 55 minuti della prima macchina, 45 minuti della seconda e 100 minuti di lavoro-uomo. La giornata
lavorativa è di 16 ore e sono disponibili 2 operai. Si vuole determinare quanti pezzi produrre al giorno per
massimizzare il profitto all’interno dei vincoli di risorsa disponibile. Il problema da risolvere è pertanto:

max 120x1 + 180x2

15x1 + 55x2 ≤ 960

35x1 + 45x2 ≤ 960

60x1 + 100x2 ≤ 1920

x1 ≥ 0, x2 ≥ 0

(8)

In figura è rappresentato l’insieme ammissibile. I cinque vertici hanno coordinate: (0, 0) (entrambi i
vincoli di non negatività attivi); (192/7, 0) ≈ (27.42, 0) (attivi x2 ≥ 0 e secondo vincolo); (12, 12) (attivi
secondo e terzo vincolo); (16/3, 16) ≈ (5.33, 16) (attivi primo e secondo vincolo); (0, 192/11) ≈ (0, 17.45)
(attivi x1 ≥ 0 e primo vincolo).

La funzione obiettivo vale nei rispettivi vertici 0, 3291.42, 3600, 3520, 3141.80. Quindi l’ottimo vale
x̂1 = 12, x̂2 = 12 con profitto ottimo pari a 3600 ––C/giorno. Si noti che in ottimalità bastano 14 ore al giorno
alla prima macchina per produrre i pezzi richiesti. In altre parole la prima macchina rimane inattiva per 2
ore al giorno.

Si supponga ora che il produttore consideri un cambio radicale nella sua strategia, consistente nell’affi-
dare all’esterno i processi produttivi prendendo in affitto le risorse necessarie, anziché produrre in casa con
le risorse disponibili. Prima di avviare le trattative vuole valutare quali prezzi offrire ai committenti esterni.
Siano allora y1, y2 e y3 i prezzi al minuto delle tre risorse. L’obiettivo è naturalmente quello di ridurre le
spese d’affitto ovvero:

min 960 y1 + 960 y2 + 1920 y3

Bisogna però tener presente che i prezzi devono essere accettabili e prezzi troppo bassi fanno fallire le
trattative. Chi affitta le risorse deve trovare conveniente lavorare per altri, anziché in proprio, per cui, ai
prezzi y1, y2 e y3 ogni pezzo del primo oggetto viene ad assumere un valore di 15 y1 + 35 y2 + 60 y3 e questo
non deve essere inferiore al profitto di 120 ––C. Allora complessivamente il problema da risolvere è

min 960 y1 + 960 y2 + 1920 y3

15 y1 + 35 y2 + 60 y3 ≥ 120

55 y1 + 45 y2 + 100 y3 ≥ 180

y1 ≥ 0, y2 ≥ 0 y3 ≥ 0

(9)

Gli ottimi di (9) sono
ŷ1 = 0, ŷ2 = 1.5, ŷ3 = 1.125

5



Si tratta di valori espressi in ––C/minuto, che diventano, espressi in ––C/ora, ŷ1 = 0, ŷ2 = 90, ŷ3 = 67.50. Si noti
che il profitto massimo di 3600 ––C/giorno è uguale al minimo costo d’affitto 960·0+960·1.5+1920·1.125 = 3600.
Inoltre, dalle seguenti cosiderazioni:y1 ≥ 0, y2 ≥ 0, y3 ≥ 0,

15x1 + 55x2 ≤ 960

35x1 + 45x2 ≤ 960

60x1 + 100x2 ≤ 1920

 =⇒

y1 (15x1 + 55x2) + y2 (35x1 + 45x2) + y3 (60x1 + 100x2) ≤ 960 y1 + 960 y2 + 1920 y3 (10)

e {
x1 ≥ 0, x2 ≥ 0,

15 y1 + 35 y2 + 60 y3 ≥ 120

55 y1 + 45 y2 + 100 y3 ≥ 180

}
=⇒

x1 (15 y1 + 35 y2 + 60 y3) + x2 (55 y1 + 45 y2 + 100 y3) ≥ 120x1 + 180x2 (11)

Siccome i termini di sinistra di (10) e (11) sono uguali si ottiene che

120x1 + 180x2 ≤ 960 y1 + 960 y2 + 1920 y3

cioè che in ogni caso il costo d’affitto non può essere inferiore al profitto. L’uguaglianza che si ottiene in
ottimalità rappresenta pertanto una condizione d’equilibrio fra domanda e offerta.

Il problema (9) prende il nome di problema duale del problema (8) e le variabili ottime duali prendono
anche il nome di prezzi ombra.

In termini più generali il problema duale viene definito a partire dal problema originale, che a questo
punto viene chiamato problema primale, semplicemente trasponendo la matrice dei coefficienti dei vincoli
e scambiando fra loro i coefficienti dell’obiettivo con quelli dei termini destri delle disequazioni. Inoltre
quando in uno dei due problemi l’obiettivo è un massimo, nell’altro problema l’obiettivo è un minimo. Le
diseguaglianze sono del tipo ≤ se l’obiettivo è un massimo mentre sono del tipo ≥ se l’obiettivo è un minimo.
Le variabili sono in ogni caso non negative. In base a questo schema il duale del duale è il primale quindi
fra i due problemi c’è una perfetta relazione di simmetria.

min
n∑

j=1

cj xj

n∑
j=1

Aij xj ≥ bi i := 1, . . . ,m

xj ≥ 0 j := 1, . . . , n

⇐⇒

max
m∑
i=1

yi bi

m∑
i=1

yi Aij ≤ cj j := 1, . . . , n

yi ≥ 0 i := 1, . . . ,m

(12)

oppure in sintetica notazione matriciale

min c x

Ax ≥ b

x ≥ 0

⇐⇒
max y b

y A ≤ c

y ≥ 0

dove c e y sono vettori riga, mentre b e x sono vettori colonna. L’eguaglianza dei valori ottimi riscontrata
nell’esempio (cosiddetto principio di dualità forte) è un fatto generale che non viene qui dimostrato.

Sfruttando la dualità forte è possibile caratterizzare ulteriormente le variabili duali. Si supponga di
variare i valori b in b + ∆b. Quindi abbiamo la seguente coppia primale-duale

min c x

Ax ≥ b + ∆b

x ≥ 0

⇐⇒
max y (b + ∆b)

y A ≤ c

y ≥ 0

(13)
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Siano (x1, y1) e (x2, y2) i valori ottimi di (12) e (13) rispettivamente. Per la dualità forte si ha c x1 = y1 b

e c x2 = y2 (b + ∆b). Siamo ora interessati a valutare l’effetto della variazione ∆b sulla variazione di valore
ottimo c x2 − c x1. Si noti che l’insieme ammissibile duale non viene modificato da ∆b. Si supponga che
l’ottimo duale y1 sia unico. Questo significa che piccole variazioni ∆b non alterano l’ottimalità di y1. Quindi
se ∆b è sufficientemente piccolo si ha y1 = y2 da cui

c x2 − c x1 = y2 (b + ∆b) − y1 b = y1 (b + ∆b) − y1 b = y1 ∆b

Quindi, indicando con v(b) il valore ottimo di (13) in funzione di b si ha (ponendo ∆bj := 0 per ogni j �= i e
facendo tendere ∆bi a 0)

yi =
∂v(b)
∂bi

ovvero la variabile duale ottima misura la variazione del valore ottimo rispetto a variazioni dei vincoli.
Questa interpretazione della variabile duale ne rafforza il significato di prezzo se l’obiettivo è di natura

monetaria. In questo caso, con riferimento all’esempio (8), si vede che la variabile duale misura l’aumento
di profitto rispetto ad una variazione nella disponibilità delle risorse e quindi ne valuta il prezzo intrinseco
rispetto alla loro capacità di produrre profitto.

Il fatto importante che si deve notare è che, almeno nei limiti di un modello di produzione altamente
semplificato e nelle ipotesi di flessibilità sottolineate precedentemente, il prezzo di un bene o di una risorsa de-
terminato intrinsecamente dal processo produttivo è uguale a quello determinato dall’equilibrio fra domanda
e offerta.

Possiamo estendere facilmente la definizione di problema duale anche al caso di vincoli di eguaglianza.
Sia un problema definito da

min c x

Ax = b

x ≥ 0

(14)

che possiamo riscrivere come
min c x

Ax ≥ b

−Ax ≥ − b

x ≥ 0

A questo punto il problema è nella forma (12) e il suo duale è

max y+ b− y− b

y+ A− y− A ≤ c

y+ ≥ 0, y− ≥ 0

=⇒
max (y+ − y−) b

(y+ − y−)A ≤ c

y+ ≥ 0, y− ≥ 0

(15)

Ora si noti che in (15) le variabili duali compaiono sempre come differenza (y+
i − y−i ). Quindi data una

soluzione ammissibile (ȳ+
i , ȳ

−
i ) tutte le soluzioni del tipo (ȳ+

i +K, ȳ−i +K), con K ≥ min
{
y+
i , ȳ

−
i

}
, sono tutte

equivalenti fra loro sia nel valore della funzione obiettivo sia nel valore dei vincoli. Conviene allora definire
come problema duale di (14) il seguente problema dove la variabile y è legata a (y+

i , y
−
i ) da y := y+ − y−,

ovviamente svincolata nel segno
max y b

y A ≤ c
(16)

Anche per la coppia (14)-(16) vale ovviamente l’eguaglianza dei valori ottimi (purché ammissibili).
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1
2
3
4
5
6
7
8

A B C D E
oggetto 1 oggetto 2

numero pezzi profitto
prezzi 120 180

ore richieste ore disponibili
ore-macchina 1 1 5 5 5 960
ore-macchina 2 3 5 4 5 960

ore-uomo 6 0 100 1920

4. Complementarità

È conveniente riscrivere (12) introducendo delle variabili, cosiddette di scarto, definite da

si :=
n∑

j=1

Aij xj − bi, tj := cj −
m∑
i=1

yi Aij

per cui (12) può essere riscritto come

min c x

Ax− I s = b

x ≥ 0, s ≥ 0

⇐⇒
max y b

y A + t I = c

y ≥ 0, t ≥ 0

portando tutti i vincoli di non negatività sulle variabili. Vale il seguente risultato: una soluzione (x̂, ŝ, ŷ, t̂)
è ottima se e solo se è ammisibile e vale t̂j x̂j = 0 per ogni j e ŷi ŝi = 0 per ogni i.

Si noti che in un ottimo primale di vertice necessariamente almeno n diseguaglianze primali devono essere
soddisfatte come uguaglianza (diseguaglianze attive). Quindi al più m diseguaglianze primali devono essere
soddisfatte come stretta diseguaglianza (diseguaglianze non attive). Se vi sono esattamente m diseguaglianze
non attive, le relazioni di complementarità impongono il valore 0 a m variabili duali (includendo le variabili
di scarto). Le altre n variabili duali sono determinate da un sistema lineare in n equazioni. Siccome il vertice
ottimo è determinato da n diseguaglianze attive, le corrispondenti righe della matrice A sono linearmente
indipendenti e quindi il sistema lineare duale è non singolare e fornisce una soluzione unica.

5. Risoluzione di un problema di PL

Sono disponibili molti software per risolvere problemi di PL. Alcuni sono commerciali ed altri liberi.
Alcuni sono concepiti puramente per risolvere problemi di PL ed altri permettono di risolvere la PL all’interno
di programmi generali. Un elenco del software disponbile per la PL aggiornato al 2003 si può reperire al sito
http://lionhrtpub.com/orms/surveys/LP/LP-survey.html.

I dati necessari ad identificare un’istanza di PL sono costituiti dalla matrice dei vincoli e dai vettori
dei costi e dei termini noti, più alcuni indicatori sul tipo di vincolo (≤, = oppure ≥). Inserire i dati in
questo modo può essere abbastanza fastidioso, specie se la matrice è sparsa (come avviene normalmente,
soprattutto quando la matrice è molto grande) ed obbedisce ad una struttura particolare. Per questo motivo
sono stati sviluppati programmi che permettono di fornire i dati in forma strutturata e poi generano la
matrice da passare all’algoritmo risolutore in modo trasparente per l’utente. Uno di questi programmi è il
LINGO (http://www.lindo.com/).

Uno dei risolutori più potenti è CPLEX che è un insieme di librerie scritte in C che gestiscono vari
aspetti della risoluzione di un problema di PL. Le librerie vanno chiamate all’interno di programmi in C
scritti dall’utente, che, nell’ipotesi minimale, si limitano a scrivere la matrice dei dati, ma possono anche
risolvere problemi molto complessi che richiedono l’uso ripetuto della PL.

Anche il programma Excel è in grado di risolvere problemi di PL, purché si sia installato il ‘Solver’
(che normalmente richiede una installazione ad hoc). I dati da passare ad Excel sono in forma di matrice
esplicita. Ad esempio per il problema di produzione precedentemente visto i dati, con l’indicazione verbale
di quali sono le grandezze a cui si riferiscono, possono essere inseriti come in figura:
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1
2
3
4
5
6
7
8

A B C D E
oggetto 1 oggetto 2

numero pezzi 1 0 5 profitto
prezzi 120 180 2100

ore richieste ore disponibili
ore-macchina 1 1 5 5 5 425 960
ore-macchina 2 3 5 4 5 575 960

ore-uomo 6 0 100 1100 1920

Nelle celle B2 e C2 andranno indicati i numeri di pezzi, che saranno calcolati dal programma. Tut-
tavia possiamo sempre indicare dei valori, ad esempio possiamo indicare i valori 10 per il numero di pezzi
dell’oggetto 1 e 5 per l’oggetto 2. Noti questi valori possiamo far calcolare ad Excel il profitto indicando
nella cella D3 la formula

=SUMPRODUCT(B$2:C$2,B3:C3)
che automaticamente esegue il prodotto scalare del vettore dei numeri dei pezzi per il vettore dei prezzi
(l’indirizzo della riga 2 deve essere assoluto dato che ora copieremo la formula per le ore richieste in base al
numero di pezzi assegnato). Copiando direttamente la cella D3 sulle celle D6:D8, il foglio si presenta cos̀ı:

Si tratta ora di far intervenire il Solver, che si trova nel Menù dei Tools (non è presente con un’instal-
lazione standard di Excel; bisogna operare una installazione ad hoc). Compare una finestra con la quale
si dichiara quale è il valore da massimizzare (o minimizzare), quali sono le variabili e quali sono i vincoli,
nonché alcune opzioni dell’ottimizzatore:

- obiettivo: la cella che contiene il valore della funzione obiettivo è nel nostro esempio la cella D3. Quindi
bisogna indicare (direttamente ‘cliccando’ sul foglio) l’indirizzo $D$3 nella finestra ‘Set Target Cell’
cliccando poi max o min a seconda del caso (max nel nostro caso);

- variabili: ci si posiziona nella finestra ‘By changing cells’ e si selezionano le due celle dei numeri di pezzi.
Nella finestra compare l’indirizzo (multiplo) $B$2:$C$2. Si possono anche operare selezioni multiple se
ad esempio le variabili non sono necessariamente posizionate nel foglio come vettori o matrici.

- vincoli: si clicca su ‘Add’ e compare una tripla finestra di dialogo in cui i valori di sinistra sono vincolati
rispetto a quelli di destra. Nel nostro caso dobbiamo fare in modo che le ore richieste in base ai numeri
dei pezzi siano non superiori alle ore disponibili. Quindi nella finestra di sinistra selezionamo il vettore
di ore richieste, in quella centrale selezionamo l’operatore che ci interessa (nel nostro caso ≤) e in quella
di destra selezionamo il vettore di ore disponibili. Cliccando ‘done’ il vincolo è inserito (direttamente
per tutte le righe). Resterebbe da inserire il vincolo di non negatività, ma di questo si tiene conto nel
punto successivo;

- opzioni di calcolo: cliccando su ‘Options’ compare una finestra in cui bisogna selezionare ‘Assume Linear
Model’ e ‘Assume Non-Negative’. Poi si clicca ‘OK’.
A questo punto ricompare la finestra del Solver. Basta cliccare su ‘Solve’ e Excel inizia il calcolo, che in

questo caso dura pochi istanti. I valori dei numeri dei pezzi nella tabella vengono modificati e compaiono i
valori ottimi. Excel chiede se si vogliono dei rapporti. Se si selezionano tutti e tre, vengono creati i rapporti
della pagina seguente il cui significato è abbastanza evidente. Dei tre rapporti il più interessante è quello di
sensibilità (Sensitivity Report) che fornisce le variabili duali e le relazioni di complementarità.

Notiamo come non sia necessario indicare una soluzione iniziale necessariamente ammissibile (ad esempo
la soluzione nulla sarebbe la scelta naturale). Il sistema risolve il problema indipendentemente dalla soluzione
iniziale indicata.
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Microsoft Excel 11.0 Answer Report
Worksheet: [Workbook1]Sheet1
Report Created: 9/24/2004 4:44:46 PM

Target Cell (Max)
Cell Name Original Value Final Value

$D$3 prezzi profitto 2100 3600

Adjustable Cells
Cell Name Original Value Final Value

$B$2 numero pezzi oggetto 1 1 0 1 2
$C$2 numero pezzi oggetto 2 5 1 2

Constraints
Cell Name Cell Value Formula Status Slack

$D$6 ore-macchina 1 ore richieste 840 $D$6<=$E$6 Not Binding 120
$D$7 ore-macchina 2 ore richieste 960 $D$7<=$E$7 Binding 0
$D$8 ore-uomo ore richieste 1920 $D$8<=$E$8 Binding 0

Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Workbook1]Sheet1
Report Created: 9/24/2004 4:44:50 PM

Adjustable Cells
Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease
$B$2 numero pezzi oggetto 1 1 2 0 120 2 0 1 2
$C$2 numero pezzi oggetto 2 1 2 0 180 2 0 25.71428571

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
$D$6 ore-macchina 1 ore richieste 840 0 960 1E+30 120
$D$7 ore-macchina 2 ore richieste 960 1.5 960 160 53.33333333
$D$8 ore-uomo ore richieste 1920 1.125 1920 76.8 274.2857143

Microsoft Excel 11.0 Limits Report
Worksheet: [Workbook1]Sheet1
Report Created: 9/24/2004 4:44:53 PM

Target
Cell Name Value

$D$3 prezzi profitto 3600

Adjustable Lower Target Upper Target
Cell Name Value Limit Result Limit Result

$B$2 numero pezzi oggetto 1 1 2 0 2160 1 2 3600
$C$2 numero pezzi oggetto 2 1 2 0 1440 1 2 3600
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