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Abstract

Researchers in the area of electoral systems have recently turned their attention to network flow

techniques with the aim to resolve certain practically relevant problems arising in this area. The aim

of the present paper is review some of this work, showing the applicability of these techniques even

to problems of a very different nature.

Major emphasis will be placed on “biproportional apportionment”, a problem that frequently

arises in proportional electoral systems, but which in some countries is still ill-solved, or not dealt

with rigorously, notwithstanding the availability of several sound solution procedures and their con-

crete application in some real-life elections. Beside biproportional apportionment, we shall discuss

applications of network flows to problems such as vote transitions and political districting. Finally,

we address the so-called “Give-up Problem”, which arises in the current elections for the Italian Par-

liament. It is related to the possible assignment of seats to multiple winners of a given party. Based

on the results and techniques presented in this paper, it is fair to state that network flow models and

algorithms are indeed very flexible and effective tools for the analysis and the design of contemporary

electoral systems.

Keywords: network flows, electoral systems, biproportional seat apportionment, matrix scaling, po-
litical districting, closed lists, give-up.

1We dedicate this work to our dear friend and senior coauthor Bruno Simeone, who passed away while this paper was
being finished. He was always a constant source of inspiration and this paper owes greatly to his precious ideas.
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1 Introduction

The use of network flow models and methods is widespread in operations research, with many applications

in a large variety of areas [1]. In recent years, researchers in the field of electoral systems have turned

their attention to network flow techniques in order to deal with biproportional apportionment and other

electoral decision problems. We feel that the time has come to give an account of this research direction.

For an optimization-oriented general introduction to electoral systems, the reader may refer to Grilli di

Cortona et al. [28].

A transportation procedure appears in Hess et al. [30], the earliest operations research paper in

political districting. Since then, network flow models have been proposed for the design of certain

components of electoral systems or for the analysis of their behavior. In this survey we address some

relevant problems in electoral systems, namely, the Biproportional Apportionment Problem (BAP), the

computation of vote transitions, the design of political districts and the so-called “Give-Up Problem”.

Biproportional seat apportionment, to which we devote Sections 2–8, is perhaps the main area of

electoral systems where network flow techniques are brought to bear. The problem arises in situations

where the entire electoral region, usually the whole nation, is subdivided into electoral districts. By

constitutional or legal requirements, the electoral districts are to receive a share of seats proportional to

their population counts. At the same time, political parties are to be allocated a number of seats that

mirrors their nationwide electoral performance. Thus, BAP is a “matrix problem” for which we provide

a formal definition in Section 2. This problem currently arises in the electoral laws of several countries,

e.g., Italy, Mexico, Switzerland, Denmark, Faroe Islands, etc., but it may be of primary interest also

in the European Parliament elections, where the districts correspond to member states of the European

Union.

In the field of statistical applications, some authors analyzed the very structure of BAP as a trans-

portation problem. For example, in [15, 16] the authors study two categories of problems: controlled

selection problems, that is, controlling statistical disclosure in tables of frequency counts (in order to pre-

vent small counts in such tables to be easily inferred); the more general statistical problem of replacing

a table of noninteger counts by an integer one, matching the prescribed row- and column- sums, and

minimizing a measure of the total distortion to the original table. A procedure to solve such problems

that has a long standing already in statistics, is Iterative Proportional Fitting (IPFP) [17]. In computer

science it is called matrix scaling, or the RAS method (after the matrix names used by Bacharach in his

early paper [2]), whose complexity was recently analyzed by Kalantari, Lari, Ricca, and Simeone [35].

The reader may wish also to consult the classical monograph on this method by Bacharach [3].

In 1989, Balinski and Demange [5, 6] published two seminal papers where they characterized pro-

portionality between integral matrices axiomatically, and proposed a procedure to find apportionments

X proportional to V in the above axiomatic sense. Their procedure was implemented as the Tie and

Transfer (TT) algorithm in the public domain software BAZI [38]. The results by Balinski and Demange

are surveyed in Sections 3 and 4.

Looking for a simple algorithm for BAP, in 2004 Pukelsheim [45] proposed a RAS-like Discrete Al-
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ternating Scaling (DAS) procedure which was actually applied in the elections of the Zurich, Aargau and

Schaffhausen Cantons (see Section 5).

In 2008 Gaffke and Pukelsheim [21, 22] formulated BAP as a piecewise linear convex separable trans-

portation model and showed that the TT method of Balinski and Demange may be viewed as an out-of-

kilter algorithm for solving such model, while the Discrete Alternating Scaling method may be viewed as

a cyclic coordinate ascent algorithm for solving its (Fenchel) dual (see Section 6).

These approaches are based on the idea of rounding certain fractional numbers, i.e., the “fair shares”,

which would be the ideal seat assignment if fractional seats were allowed. They focus more on how to

round these quotas while keeping satisfied the row and column sums than on the distance of the final seat

assignment to the quotas, taking for granted that the approximation is good because it can be obtained

by rounding up or down the fair shares.

A different approach consists of minimizing an error measure of the actual seats with respect to “ideal”

quotas. The quoted result (controlled rounding) by Cox and Ernst [16] can be viewed as a polynomial

procedure to minimize the Lp-norm error with respect to ideal quotas, subject to the constraint that

such quotas are rounded only to the up and down nearest integers. Network flow integrality is the basic

property allowing for polynomiality of controlled rounding. It should be noted that this method does not

minimize in general the Lp-norm, because there are instances where the minimum is obtained outside

the above rounding interval. However, exploiting a result by Minoux [40, 41] one can refine the method

into a polynomial algorithm for the general case. This will be discussed in Section 7.

Looking for the minimization of the L∞-norm and following a different approach, Serafini and Simeone

[52] formulate BAP as a minimax approximation of target shares, also providing a strongly polynomial

parametric maximum flow algorithm to solve it (see Section 8).

In Section 9 we address a problem which is subject to very careful analysis after each election, i.e.,

understanding if and how electors have changed their vote with respect to the previous election. The

votes migrating to different parties are generally referred to as electoral flows or vote transitions and, not

surprisingly, transportation models arise in this context.

In Section 10 we show that network flow techniques can be applied also to the political districting

problem. Beside the early method proposed by Hess et al. [30] some variants have been developed in the

literature and actually applied to solve real-life political districting problems: a first example is related

to the provincial electoral districts for the city of Saskatoon, Canada, in 1996 [31]; a second one refers to

the definition of Parliamentary district boundaries in New Zealand in 1997 [26].

The last section (Section 11) is devoted to the presentation of the “Give-up Problem”, that is, the

problem of assigning seats to the winning candidates of a given party. The problem arises when the

electoral system has closed lists in the districts and multiple winners are possible. The attention paid to

this problem is motivated by the Italian case analysis, and justified by results that show that network

flow techniques are appropriate for the solution of this problem.
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2 Biproportional seat apportionment

A formal definition of BAP is as follows. Let H be the house size, that is, the total number of seats, of a

parliament. Firstly, the H parliamentary seats are apportioned among m electoral districts proportionally

to population counts, allocating ri seats to district i ∈ M = {1, . . . ,m}. Secondly, the H seats are

apportioned among n lists of candidates of the contending parties, proportionally to the number of votes

each party has received. Let cj be the nationwide seats of party j ∈ N = {1, . . . , n}. Clearly, one has∑
i∈M ri =

∑
j∈N cj = H. Both steps, of apportioning the H seats among the districts on the one hand,

and among the parties on the other, form the super-apportionment. We assume that both steps have

been carried out, so that the seats ri and the seats cj are known and available. Balinski and Young [7]

is the ultimate comprehensive reference on proportional seat apportionment, its mathematical aspects,

and its history.

Let vij be the number of votes in district i for party j. That is to say, the vote counts are the input

data and form an m× n matrix V . Let Z = {(i, j) : vij = 0} be the “zero-pattern” of V , that is, the set

of the structural zeros of V .

The seat numbers xij form an integer nonnegative m × n matrix X, which is an apportionment if it

satisfies the following constraints:

1)
∑
j∈N

xij = ri, i ∈M (district sum);

2)
∑
i∈M

xij = cj , j ∈ N (party sum);

3) xij = 0, (i, j) ∈ Z (zero-vote zero-seat).

(1)

We denote by A the set of apportionments and by Â the set of fractional apportionments, i.e., real

matrices satisfying 1), 2) and 3). Constraints 1) and 2) mean that rows in X must sum to the pre-

specified row marginals ri, i ∈ M , and column sums must be equal to the given column marginals cj ,

j ∈ N . Condition 3) guarantees that a party j that does not receive votes in a district i is not awarded

any seat in that district.

BAP can be formulated as follows: given the vote matrix V and the vectors r and c, find an appor-

tionment X ∈ A “as proportional as possible” to V .

It is not obvious, and more of a challenge, to turn the proportionality requirement into an operational

concept. The difficulty is twofold. On the one hand we have to find a definition of “ideal” proportionality,

and, on the other hand, we have to make a compromise between the ideal proportionality and the

integrality requirement for the seats.

The fact that the problem is not trivial is witnessed by the presence in the electoral law of some coun-

tries of unsound and self-contradictory procedures for solving BAP. For example, Balinski and Ramı́rez [9]

discovered that the Mexican electoral law was not correct, with the result that the procedure was modified.

However, in other countries - like Italy - this problem still persists.

In some countries, like Italy and Belgium, regional quotas are used as a template of ideal proportion-
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ality. For each region i and party j, they are given by

qij = ri
vij∑
h∈N vih

, i ∈M, j ∈ N.

Equivalently, qij is the (usually fractional) number of seats party j would receive in region i under

the assumption of perfect proportionality between votes and seats in that region. Notice that regional

quotas depend only on data associated with the given region. It is conceivable also to use party-wise (i.e.,

column-wise) quotas. However, both in the Belgian and Italian legislation, districts and parties are not

dealt with in a symmetric fashion, and proportionality within districts is felt to be more important than

proportionality within parties. This asymmetry is confirmed by the fact that in the Italian system seats

are assigned to parties by an ordinary law and to districts by the very Constitution.

Regional quotas reflect proportionality within districts. Since they are usually not integers, one

way to obtain an apportionment is to find a “suitable” rounding of the regional quotas that satisfies

constraints (1). The Italian biproportional allocation procedure relies on the underlying assumption

that one can always get an apportionment by rounding up or down the regional quotas. Unfortunately,

realistic examples can be exhibited in which no up- or down-rounding of the regional quotas satisfies

both the district- and the party-sum constraints. The Italian procedure tries to solve the biproportional

apportionment problem in the wrong way [43]: the matrix of seats produced by such procedure may fail

to satisfy the district-sum constraints, the party-sum constraints, or both. The result is that in the five

last political elections for the Chamber of Deputies this has indeed happened three times (precisely in

1996, 2006, 2008). The unavoidable consequence is that citizens living in different districts of the same

country have different voting power. For instance, in the 2006 political elections, the Trentino-Alto Adige

district got 11 seats instead of the 10 granted by the Constitutional Law, while the Molise got 2 seats

instead of 3. As a consequence, in Trentino-Alto Adige 85,456 votes were necessary to get one seat, while

in Molise one needed 160,300 votes per seat. Therefore, it is legitimate to state that in the 2006 elections

for Molise’s citizens the motto “one-man-half-vote” applied! Similar results were obtained in the more

recent Italian political elections of 2008 [44].

Actually, correct procedures for BAP do exist, as demonstrated by the many papers in the literature

on this topic. In 1989, Michel Balinski and Gabrielle Demange [5, 6] published two seminal papers where

they characterized proportionality between real and integral matrices axiomatically. Their results are

surveyed in the next two sections.

3 Proportionality between two real matrices

In [5] Balinski and Demange characterize proportionality between two real matrices axiomatically. They

introduce axioms of Exactness, Relevance, Uniformity, Monotonicity, and Homogeneity, describing rea-

sonable properties that an apportionment should satisfy. The authors prove that, given V , r, c, there

exists, under some necessary assumptions, a unique matrix F , called the fair share matrix, proportional to

V (in the above axiomatic sense) with the same zero-pattern Z as V and fitting the row- and column-sums

r, c. In order to find such a matrix Balinski and Demange follow the continuous approach of RAS. Thus,
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nonnegative m n matrix

1

1

2

3

3

2

4

M = rows

N = columns

bipartite graph

1 2 3 4

1 + + 0 +

2 0 + + 0

3 0 0 + +

Figure 1: A nonnegative 3 × 4 matrix V and the corresponding bipartite graph.

matrix F has the form [fij ] = [λi vij µj ] for suitable positive row multipliers λi and column multipliers

µj .

The RAS algorithm can be briefly summarized in the following main steps. Starting from V , all rows

are scaled to fit their prespecified row-sums, thus generating a row-wise rescaled matrix V (1). In V (1),

all columns are scaled to fit their prespecified column-sums, giving rise to a column-wise rescaled matrix

V (2). Continue by alternately scaling all rows at each odd step, then all columns at the subsequent even

step. The procedure yields rescaled matrices V (t) that are usually convergent to the fair share matrix

sought for, limt→∞ V (t) = F .

Unfortunately, F is a fractional apportionment, while BAP requires an integral one. Thus, a suitable

rounding of F must be performed in order to get a solution for BAP. Balinski and Demange observe that

from the Integrality Theorem of Flows [1] the following fundamental Rounding Property holds: one can

always obtain an apportionment by rounding either up or down the entries of the fair share matrix F .

It is well known (see, for example, [48]) that a nonnegative m× n matrix A can be represented by a

bipartite graph (M,N ;E), where the node sets M and N correspond to the set of rows and the set of

columns of A, respectively, and there exists an edge in E if and only if aij > 0 (Fig. 1). Furthermore,

one may direct each edge in E from M to N and assign source values ri to the nodes in M and sink

values cj to the nodes in N . Let us denote this network by G. Thus, the problem of finding a nonnegative

integer matrix satisfying constraints 1), 2) and 3) of (1) can always be formulated as finding a feasible

solution to a transportation problem on G, where constraints 1) and 2) correspond to supply and demand

constraints, while 3) defines forbidden routes in G.

The following theorem summarizes some equivalent conditions for the existence of a fair share matrix

(see, [4, 35, 46, 49, 52]), where N(S) denotes the neighborhood of S ⊂M , i.e., N(S) = {j ∈ N : (i, j) ∈ E
for some i ∈ S}.

Theorem 1 For a nonnegative m×n matrix V and nonnegative vectors r and c, the following statements

are equivalent:

(i) there exists a fair share matrix for (V, r, c);
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(ii) there exists a matrix X satisfying the following system of linear constraints:∑
j:(i,j)∈E xij = ri i ∈M∑
i:(i,j)∈E xij = cj j ∈ N

xij ≥ 1
|E| (i, j) ∈ E

(2)

(iii)
∑
i∈S ri ≤

∑
j∈N(S) cj for each ∅ 6= S ⊂M .

Condition (ii) can be checked via the solution of a max-flow problem on a suitably modified network.

Condition (iii) follows from the well-known Marriage Theorem [34] if the transportation problem on

(M,N ;E) is suitably reformulated on a bipartite graph with all supplies and all demands equal to 1 .

To network optimization people, interest in the above theorem is twofold. On the one hand, one

can check condition (ii) by solving a suitable feasible flow problem which, in turn, is well known to

be reducible to a maximum flow one. So, one gets yet another application of maximum flows, namely,

checking the convergence of the RAS algorithm. On the other hand, things work also in the reverse way.

Given a transportation problem with supplies r, demands c, and with forbidden routes, one can find

a feasible transportation plan, if any, as follows: start from an arbitrary nonnegative m × n matrix V

such that vij = 0 for any pair i, j corresponding to a forbidden route. Run RAS on V : if the algorithm

converges, then the unique limit matrix provides a feasible solution; otherwise, no such solution may

exist.

Actually, this result provides an alternative method, computationally effective in practice, for finding

a feasible solution to a transportation problem. The result looks quite surprising if one considers that the

above procedure works no matter what the starting matrix V is: V can be chosen arbitrarily, provided that

its zero entries correspond to the forbidden routes in the transportation problem. It must be understood

that this invariance result is related to the existence of a feasible solution and not to the feasible solution

itself (if any). Indeed, starting from different matrices V one obtains different limit matrices.

4 Proportionality between two integral matrices: the Tie and Transfer method

The Tie and Transfer (TT) method of Balinski and Demange is a divisor-based algorithm to find an

apportionment X ∈ A. In order to understand divisor-based methods for BAP, we refer to the simpler

case of vector apportionment, that is, apportionment in one dimension. Given a nonnegative real n-

vector v = (v1, . . . , vn) and a positive integer H, one wants to find a nonnegative integral n-vector

x = (x1, . . . , xn) (the apportionment) with sum of components equal to H and such that the xi’s are “as

proportional as possible” to the vi’s.

Any divisor method is characterized by a signpost sequence given by a signpost function s(z) mapping

each integer z into a real number in the interval [z − 1, z]; that is,

z − 1 ≤ s(z) ≤ z, z = 1, 2, . . .

Let [[t]] denote the rounding of t ∈ [z − 1, z]. Then, if z − 1 ≤ t ≤ s(z), we have [[t]] = z − 1, while we

have [[t]] = z if s(z) ≤ t ≤ z. When t = s(z) one has either [[t]] = z − 1 or [[t]] = z. For example, standard
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Figure 2: Signpost function in divisor-based methods.

rounding, that is, rounding to the closest integer, is defined by the signposts s(z) = z − 1/2 (see Fig. 2).

The divisor method corresponding to a signpost sequence {s(z)} consists of the choice of a multiplier λ

such that, letting xj = [[λ vj ]] for each j (or, equivalently, s(xj) ≤ λ vj ≤ s(xj + 1)), the resulting vector x

has the sum of components equal to H.

It transpires that the multiplier λ plays a crucial role. Given λ, we easily calculate the seat numbers

from the formula xj = [[λ vj ]]. Conversely, asssume that we are given seat numbers xj that sum up to

the desired house size H. Then the apportionment (x1, . . . , xn) originates from the divisor method with

signpost sequence s(z) if and only if

max
j:vj>0

s(xj)
vj
≤ min
j:vj>0

s(xj + 1)
vj

and in this case every number λ in the multiplier interval [22]

[λ−, λ+] =
[

max
j:vj>0

s(xj)
vj

, min
j:vj>0

s(xj + 1)
vj

]
may serve as a viable multiplier for the apportionment under consideration.

As in the fractional case, Balinski and Demange show in [5] that divisor-based matrix apportionment

methods satisfy some theoretical properties that guarantee proportionality of the resulting apportionment

from an axiomatic viewpoint. They characterize proportionality between two integral matrices by a

system of six axioms, five of which are the integer counterparts of the previous ones, while the additional

one is an axiom of Completeness [5]. Then, they introduce the TT algorithm, a procedure whose basic

strategy is Scale and Round. Given a matrix V , vectors r, c, and a divisor method with signpost sequence

{s(z)} (s(1) > 0), there exists, under the same assumptions as in the real case, an apportionment X

proportional to V w.r.t. the introduced axioms.

To obtain the seat numbers xij , the TT algorithm computes row multipliers λi > 0 and column

multipliers µj > 0 such that

xij = [[λi vij µj ]]

and the multipliers satisfy the following rounding inequalities

s(xij) ≤ λi vij µj ≤ s(xij + 1). (3)

When λi vij µj = s(dλi vij µje) occurs, λi vij µj cannot be rounded unequivocally. In this case we have

a tie. If we resolve the tie by assigning xij = bλi vij µjc we refer to an upper tie, whereas we refer to a

8



lower tie if we set xij = dλi vij µje. We observe that sometimes the other constraints allow for only one

way to resolve the tie in order to obtain a feasible apportionment [55].

It must be noticed that any apportionment X ′, obtained from X after replacement of xij by x′ij =

xij+1, for some upper ties (i, j), and by x′ij = xij−1, for some lower ties (i, j), also satisfies the rounding

inequalities relative to the same multipliers.

In [8] it is proved that divisor-based methods provide an apportionment X (if it exists) unique up to

ties.

The TT algorithm searches for X ∈ A that minimizes the following L1-error:

1
2

∑
i∈M
|xiN − ri|+

1
2

∑
j∈N
|xMj − cj | (4)

where xiN =
∑
j∈N xij and xMj =

∑
i∈M xij .

The objective function (4) is iteratively minimized by a procedure relying on “transfer” operations.

W.l.o.g, initially all the row multipliers are set to 1. The column multipliers µj , j ∈ N , are then computed

such that vij µj satisfies the column-sum cj , that is, µj = cj/
∑
i∈M vij , j ∈ N . Starting from V , for each

column j the vector apportionment is solved w.r.t. v1j , . . . , vmj and cj , thus obtaining an integer matrix

X(0) (current solution) where column-sums match c, but row-sums are generally not satisfied. Hence,

the error in (4) reduces to

1
2

∑
i∈M
|xiN − ri|. (5)

Starting from X(0) the algorithm proceeds by decreasing the error while maintaining the column-sums

constraints satisfied. Since in X(0) column-sums are satisfied, and we also have
∑
j∈N cj =

∑
i∈M ri = H,

then, if the row-sums are not satisfied, there must exists at least one underbalanced row i for which∑
j∈N xij < ri, and at least one overbalanced row k for which

∑
j∈N xkj > rk. In order to decrease the

error, one can “transfer” seats from overbalanced rows to underbalanced ones, leaving the balanced rows

unchanged. The only condition that must be satisfied is that only the cells corresponding to ties can be

modified. In other words, if xij corresponds to an upper tie in a underbalanced row it can be increased

by 1, and if xij corresponds to lower tie in an overbalanced row it can be decreased by 1, while all other

cells must remain the same (see Fig. 3 where the grey cells corresponds to ties, and a +1 denotes an

upper tie, while -1 stands for a lower tie).

It is easy to recognize that at each iteration t a directed bipartite graph can always be associated to

each matrix X(t) [55] with the set of nodes corresponding to those rows and columns in X(t) that are

involved in some ties (sometimes this graph is referred to as the row/column graph). For i ∈ M and

j ∈ N and xij = [[λi vij µj ]], an arc (i, j) exists if λi vij µj = s(xij + 1) (upper tie), while an arc (j, i)

exists if λivijµj = s(xij) (lower tie). Then, the transfer of a seat from an overbalanced row (district)

to an underbalanced one corresponds to a flow along a simple (even) path P connecting such rows

in the row/column graph. Assume that X(t) is the current matrix, then, if path P can be found, the

corresponding transfer can be performed producing a decrease of 1 in the error (5) (Primal Step of the TT

algorithm). Suppose that P = {(i1, j1), (j1, i2), . . . , (jg−1, ig)}. Then, the transfer along P corresponds
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+1

-1 +1

+1 -1

-1

Underbalanced rows

Balanced rows

Overbalanced rows

Figure 3: The structure of the current matrix X(t) in the TT algorithm.

to rounding up x(t)
i1j1

, rounding down x(t)
i2j1

and so on, up to rounding down the last element x(t)
igjg−1

. The

global result will be that the i1-th row-sum is increased by 1, the ig-th row-sum is decreased by 1, while

the other row-sums and all the column-sums are not affected by the transfer. Consequently, the error (5)

decreases by 1. In order to perform a transfer, for a given L ⊂M ∪N , TT applies a breadth-first-search

to identify all vertices that are reachable from a vertex in L through a simple path in the row/column

graph. At the beginning of iteration t, L corresponds to the indices of the underbalanced rows in X(t);

then, all the reachable vertices are added to L. If one of the overbalanced rows is reached, path P has

been found; otherwise, matrix X(t) must be updated in order to produce additional ties that may help

in reaching an overbalanced row in a following (primal) step.

The updating of X(t) is performed during a Dual Step in which row and column multipliers are

suitably modified. At this stage of the algorithm the current set L may include indices from both rows

and columns of X(t), that are considered as labeled, that is, L = ML∪NL, where ML and NL are subsets

of labeled rows’ and column’s indices, respectively.

The multipliers are updated through a factor δ > 0 such that, when multiplying all rows i ∈ ML

by δ and all columns j ∈ NL by 1/δ, the current solution remains feasible. Thus, δ is computed as a

bottleneck value, i.e., it is the maximum value that guarantees that all the rounding inequalities are still

valid, but at least one is satisfied with equality. This produces at least one additional tie in the new

feasible apportionment X(t+1) (see, [5, 55]).

The underlying idea is that the addition of new ties may help in finding a path P from an overbalanced

row to an underbalanced one in the updated row/column graph corresponding to X(t+1) (that means

performing an additional transfer).

The TT procedure either produces an apportionment X ∈ A, or halts (after a dual step) reporting

that no solution exists. A detailed description (a pseudo-code) of the algorithm can be found in [37] and

in [55] where the author also provides a polynomial time implementation of it.

5 Discrete alternating scaling procedure

For the sake of completeness, we briefly recall the Discrete Alternating Scaling (DAS) procedure for BAP

proposed in [45]. The procedure is very simple and performs the following basic steps: starting from V ,

alternately scale each row i of the current (unrounded) matrix so that the sum of its rounded entries
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matches ri and then scale each column j of the current (unrounded) matrix so that the sum of its rounded

entries matches cj .

In order to do this, each row multiplier λi must be chosen in a feasible interval [λ−i , λ
+
i ] defined as

before; similarly for column multipliers.

Usually the algorithm enjoys finite termination, providing the required apportionment. However,

there are rare cases when the algorithm stalls at a nonoptimal pair of row and column multipliers (see

[22]).

Discrete Alternating Scaling was implemented in BAZI (see Maier and Pukelsheim [38]), with the

provision that, if stalling is produced the algorithm automatically switches to the TT algorithm for which

termination is guaranteed. In the following we report the pseudo-code of DAS where we set vij(0) = vij ,

t = 1 and increase t by one after each step, until x does not change from one step to the other.

Odd Step: Find row multipliers λi(t), i ∈ M , such that vij(t) = [λi(t) vij(t − 1)], and xij(t) =

[[λi(t) vij(t− 1)]] satisfy the conditions xiN (t) = ri, i ∈M .

Even Step: Find column multipliers µj(t), j ∈ N , such that vij(t) = [vij(t − 1)µj(t)], and xij(t) =

[[vij(t− 1)µj(t)]] satisfy the conditions xMj(t) = cj , j ∈ N .

If the procedure terminates successfully at step t̄, it outputs an apportionment X given by xij =

[[λi vij µj ]], where λi = λi(1)λi(2) · · ·λi(t̄) and µj = µj(1)µj(2) · · ·µj(t̄).

6 Convex separable formulation of the biproportional apportionment problem

It is tempting, of course, to try to embed the Balinski and Demange procedure into an optimization

approach. Following Carnal [14] and Helgason, Jörnsten, and Migdalas [29], Gaffke and Pukelsheim

[21, 22] propose a problem formulation that is not restricted to standard rounding, but admits more

general rounding rules. Any such rule equips an integer interval [z − 1, z] with a signpost s(z). Gaffke

and Pukelsheim analyze both the vector and matrix apportionment problems.

Generalizing the notion of proportionality in vector apportionment, the authors provide a definition

of proportionality between a feasible apportionment matrix X and the corresponding vote matrix V that

is based on some “critical inequalities”. Let Ā denote the set of m× n integer matrices X inheriting all

zeros that appear in the vote matrix V , and let supp(V ) = {(i, j)| vij 6= 0} be the support set of the vote

matrix V . Note that supp(V ) coincides with the set E of the edges in the graph G defined in Section 3.

A cycle on supp(V ) is a sequence of positive entries of V where two consecutive entries sharing the same

row and two consecutive entries sharing the same column alternate, and the first entry in the sequence

equals the last one.

Example 1 [22] Consider the following 3× 3 matrix V 0 v12 v13
v21 0 v23
v31 v32 0


A cycle is given by the following succession of positive entries: v12, v13, v23, v21, v31, v32 v12.
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Given a matrix of votes V and a cycle on supp(V ), the corresponding critical inequality is given by

∏
f≤g

s(xif jg )
vif jg

≤
∏
f≤g

s(xif j∗g + 1)
vif j∗g

(6)

where the cycle is determined by the vectors of row and column indices i(g) = (i1, i2, . . . , ig−1, ig), j(g) =

(j1, j2, . . . , jg−1, jg), g ≥ 2, and the vector j∗(g) = (j2, . . . , jg−1, jg, j1), i.e., the cyclic permutation of vector

j(g).

The following theorem in [22] provides necessary and sufficient conditions for the existence of row and

column multipliers for BAP.

Theorem 2 Let X ∈ A be a feasible apportionment for V , r and c. Then X obeys the set of critical

inequalities (6) for all cycles on supp(V ) if and only if there exist row multipliers λ1, . . . , λm > 0 and

column multipliers µ1, . . . , µn > 0 satisfying

s(xij)
vij

≤ λi µj ≤
s(xij + 1)

vij
(i, j) ∈ supp(V ). (7)

Then, the formulation of BAP as a convex integer minimization problem with linear constraints follows:

min
{ ∏

(i,j):vij>0

∏
z≤xij :s(z)>0

s(z)
vij

: x ∈ A
}

(8)

The authors also provide the following optimality results.

Theorem 3 Let X ∈ A be an apportionment for V , r and c. Then the following three statements are

equivalent:

1. for all rows i and for all columns j there exist multipliers λi and µj such that xij ∈ [[λi aij µj ]];

2. X satisfies the critical inequalities for all cycles on supp(V );

3. X is an optimal solution of problem (8).

Corollary 1 (Multiple solutions) For every optimal apportionment matrix of problem (8), X ∈ A, the

following statements are equivalent:

1. there exists a matrix Y ∈ A such that Y 6= X;

2. there exists a cycle on supp(V ) for which the critical inequality holds with equality.

Corollary 2 (Uniqueness) For every optimal apportionment matrix of problem (8), X ∈ A, the following

statements are equivalent:

1. the set A is a singleton, that is, A = {X};
2. for every cycle on supp(V ) the critical inequality is strict.

In [21] Gaffke and Pukelsheim take the logarithm of the objective function (8)

min
{ ∑

(i,j):vij>0

∑
z≤xij :s(z)>0

log
s(z)
vij

: x ∈ A
}

(9)
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and then they treat the problem as a piecewise linear separable transportation model.

Actually, the last formulation corresponds to a minimum cost flow problem defined over the bipartite

graph G modified to have a set of parallel arcs (i, j)z, z = 1, 2, . . . ,H, replacing the single arc (i, j). The

capacity of each new arc is 1 and the cost coefficients are czij = log (z/vij) (see, for example, [48]).

Alternatively, the problem can be formulated as a standard minimum cost flow (without parallel arcs)

on a suitably modified graph G′. In order to get G′ from G it suffices to introduce H copies of each node

i ∈M and assign to each arc (`, j) capacity 1 and cost czij = log (z/vij), where ` is the z-th copy of node

i in G′. W.r.t. the previous model, in this formulation the number of variables increases to H · |M | · |N |.
In any case, the problem can be efficiently solved by standard min-cost flow algorithms, such as the

successive path or cycle cancelling algorithms [1, 48].

In [21] problem (9) is analyzed in the more general framework of separable convex integer minimization

problems under a set of linear equality restrictions with a totally unimodular matrix of coefficients [51].

Let x = [xe]e∈E be a vector whose components are labeled by the elements e of a finite set E, and let

fe(·), e ∈ E, be real functions. Let A be a totally unimodular matrix with α rows and β = |E| columns,

b ∈ Zα, and ρ ∈ Zβ a positive vector. Each function fe(·), e ∈ E, is assumed to be convex in the interval

0 ≤ xe ≤ ρe. Then, the following separable convex integer minimization problem is formulated as follows

min F (x) =
∑
e∈E

fe(xe)

Ax = b

0 ≤ x ≤ ρ

x ∈ Zβ

(10)

The authors assume that fe(·), e ∈ E, are piecewise linear.

It is easy to check that BAP formulation given by (9) is a particular case of (10) where one has

α = m+ n, β = m× n.

Under the above assumptions, if the linear system

Ax = b, 0 ≤ x ≤ ρ

has a solution x ∈ Rβ , then it also has a solution x ∈ Zβ . Hence, the authors observe that Fenchel duality

can be applied to (10) despite the integer restrictions on the variables.

The authors provide a primal augmentation algorithm for (10) and also a dual algorithm. They show

that the Balinski and Demange TT algorithm corresponds to such a dual algorithm when one has to

solve problem (9). Actually TT may be viewed as an out-of-kilter algorithm [20, 42] for solving (9).

Moreover, Gaffke and Pukelsheim formulate the (Fenchel) dual problem of (9) and discuss how the DAS

procedure can be viewed as a cyclic coordinate ascent algorithm for solving this dual formulation. The

dual variables of such a problem correspond to the row and column multipliers w.r.t. BAP. However, since

the objective function of the dual problem is nondifferentiable, DAS might not converge to a maximizer

and may stall at a nonoptimal solution. This situation is illustrated by the authors who provide some

small examples to analyze the structure of stalling instances.
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Practical instances point toward a peculiarity of the solution matrix X, which may feature discordant

seat assignments, when held against the input vote matrix V . When comparing two cells (i, j) and (k, `),

that is, party j in district i and party ` in district k, it may happen that fewer votes go along with more

seats, i.e., vij < vk` and xij > xk`. Discordant seat assignments represent local adjustments that are

unavoidable in order to achieve global biproportionality, as already observed by Gassner [25].

A particular irritation occurs when a single-seat district is struck by a discordant seat assignment, so

that the one and only seat does not go to the district candidate who performed best, but to someone else

who did less well. To overcome this obstacle, Maier [37] proposes a Winner-Take-One (WTO) amendment

stipulating that in each district the strongest party is allocated at least one seat. The BAP formulations

presented above are clearly powerful enough to support the additional district-wise WTO amendment.

7 Controlled rounding procedure

If one adopts the point of view that the fair share matrix would be the ideal seat assignment if only seats

were allowed to be fractional, then it is natural to consider the actual integral seat assignment as an

“error” with respect to the ideal fractional assignment. Then it makes sense to find an assignment that

minimizes a certain measure of the error. This section and the next one describe approaches to BAP

which explicitly exploit the idea of minimizing some given error.

The procedure devised by Cox and Ernst [16] is meant to round a matrix of rational numbers so that

the row sums and the column sums of the rounded matrix are equal to pre-specified integer numbers.

Although the authors investigate statistical problems, the rounding problem has some of the features of

a BAP, as observed by Gassner [24]. The matrix to be rounded can be viewed as a matrix of quotas, like

the fair share matrix or the regional quotas. We notice that in this case it is taken for granted that the

seats are obtained only by rounding up or down the quotas.

Cox and Ernst formulate the following Controlled Rounding Problem. Given a real m × n matrix A

such that ∑
j∈N

aij = r̃i, i ∈M,
∑
i∈M

aij = c̃j , j ∈ N

where r̃i and c̃j are not necessarily integers, a controlled rounding of A is a matrix X satisfying the

following conditions:

(1) either xij = baijc or xij = baijc+ 1 i ∈M, j ∈ N
(2)

∑
j∈N xij ∈ {br̃ic , br̃ic+ 1} i ∈M∑
i∈M xij ∈ {bc̃jc , bc̃jc+ 1} j ∈ N

(11)

The authors show that the above problem can be equivalently formulated as a nonlinear transportation

problem even if n+m+1 additional variables must be introduced. In order to describe how the transfor-

mation works, we may consider w.l.o.g. the simplified version of the optimal controlled rounding problem

under the condition

0 ≤ aij < 1, i ∈M, j ∈ N. (12)
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Consider the constraints (11-2) which can be rewritten as:

n∑
j=1

xij = br̃ic+ yi, i ∈M

m∑
i=1

xij = bc̃jc+ zj , j ∈ N

where yi and zj are binary variables. The above system of linear equations can be rewritten as the set of

constraints of a (balanced) capacitated transportation problem with m+1 origins and n+1 destinations,

where xi,n+1 := 1− yi and xm+1,j := 1− zj :

n+1∑
j=1

xij = br̃ic+ 1, i = 1, . . . ,m

n+1∑
j=1

xm+1,j =
n∑
j=1

(bc̃jc+ 1)−
⌊∑

j c̃j

⌋
m+1∑
i=1

xij = bc̃jc+ 1, j = 1, . . . , n

m+1∑
i=1

xi,n+1 =
m∑
i=1

(br̃ic+ 1)− b
∑
i r̃)ic

0 ≤ xij ≤ 1, i = 1, . . . ,m+ 1; j = 1, . . . , n+ 1.

(13)

The authors show that a feasible solution always exists and, in view of the Integrality Theorem of Network

Flows, also a binary feasible solution always exists. Furthermore they extend their results to the case

where some entries of the matrix X must have a fixed integer value. This is particularly relevant for

BAP, because of the presence of the zero vote set Z for which the corresponding element in X must be 0.

Since the solution of (13) is not unique in general, one can search for an optimal controlled rounding

of A by minimizing either the Lp-norm∑
i∈M

∑
j∈N

(
|xij − aij |p

) 1
p , 1 ≤ p <∞,

or, the L∞-norm

max {|xij − aij | : i ∈M, j ∈ N}.

For the Lp norm they adopt a standard device for functions of binary variables, which consists of linearly

interpolating the function values at 0 and at 1, thus obtaining a linear function on [0, 1]. Again, the

Integrality Theorem of Network Flows guarantees integrality of the linear optimum. For the L∞ norm a

more complex linearization is suggested.

It is important to remark that limiting the seat values to either rounding down or up the fair shares

introduces a constraint which may cut off the true solution minimizing either the L1-norm or the L2-norm

over all possible apportionments. Consider the following example with A an (n+ 2)× (n+ 2) matrix of
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fair share quotas

A =


n−1
n

1
n · · · 1

n
1
n

1
n

n−1
n · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
1
n 0 · · · n−1

n 0
1
n 0 · · · 0 n−1

n

 , r = ( 2 1 · · · 1 ) , p = ( 2 1 · · · 1 ) .

There are essentially three apportionments up to permutation of the indices {2, . . . , n+ 2}, namely

X1 =


2 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
. . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · 1

, X2 =


1 1 0 0 · · · 0
1 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
. . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · 1

, X3 =


0 1 1 0 · · · 0
1 0 0 0 · · · 0
1 0 0 0 · · · 0
0 0 0 1 · · · 0
. . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · 1


for which we have

‖X1 −A‖1 = 4 +
4
n
, ‖X2 −A‖1 = 6− 2

n
, ‖X3 −A‖1 = 10− 10

n

and

‖X1 −A‖22 = 1 +
5
n

+
4
n2
, ‖X2 −A‖22 = 3− 3

n
+

4
n2
, ‖X3 −A‖22 = 7− 11

n
+

4
n2

Hence for n > 4 the optimal apportionment (both for the L1 and the L2-norm) is X1, with x1
11 outside

the range {0, 1}. If we restrict the apportionments to {0, 1}, then the optimal apportionment is X2.

We may therefore wonder whether it is possible to solve efficiently the L1 and L2 minimization without

the restriction of finding seats within {baijc , daije}. The answer is affirmative thanks to the properties

of network flows. As for the minimization of the L2 norm we direct the reader to a result by Minoux [40].

For the L1 minimization we sketch here a simple procedure. The main idea is to replace (if aij is not

integral) each function fij(x) := |x− aij | , which is convex piecewise linear but has a breakpoint at the

fractional value aij , with the convex piecewise linear function

f ′ij(x) =


aij − x if x ≤ baijc
(1− 2 <aij>) (x− baijc)+ <aij> if baijc ≤ x ≤ daije
x− aij if x ≥ daije

where <a>:= a − bac is the fractional part of a. The functions f(x) and f ′(x) concide at all integral

points x and therefore we may replace f(x) with f ′(x) since we are interested only in integral values of x.

But now f ′(x) has breakpoints at integral values and network flow techniques can be easily applied to

produce integral values.

The same technique might be applied to any convex objective function, by sampling the function at

the integral points and building an equivalent (on the integral points) convex piecewise linear function.

However, a question arises. The number of breakpoints might grow in a nonpolynomial way (different

from the L1 case). The trick devised by Minoux [40] just overcomes this difficulty.
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8 Minimax approximation of target quotas

Serafini and Simeone [52] approach BAP by focusing on the minimization of the maximum error. They

do not make any assumption on the quotas qij to which the apportionment should be as proportional

as possible, apart from the obvious requirement that
∑
ij qij = H and vij = 0 implies qij = 0. These

“target” quotas could be the fair shares or the regional quotas or any other type of quotas defined by the

electoral system.

They define the error w.r.t. the target quotas in assigning the actual seats in two alternative ways.

The absolute error τ and the relative error σ are defined as

τ := max
ij
|xij − qij |, σ := max{ max

(ij)/∈Z

xij − qij
qij

; max
(ij)/∈Z,qij≥1

qij − xij
qij

}

The approach proposed in [52] calls for finding a feasible apportionment minimizing either the absolute

error or the relative error. If the absolute error is minimized, the best approximation problem is formulated

as follows:

min τ

qij − τ ≤ xij ≤ qij + τ i ∈M, j ∈ N, (ij) /∈ Z

x ∈ A

(14)

while, when the relative error is considered, the formulation is:

min σ

0 ≤ xij ≤ (1 + σ) qij i ∈M, j ∈ N : qij < 1, (ij) /∈ Z

(1− σ) qij ≤ xij ≤ (1 + σ) qij i ∈M, j ∈ N : qij ≥ 1, (ij) /∈ Z

x ∈ A

(15)

W.r.t. formulations (14) and (15), the authors note that, given a bound τ > 0 on the absolute error

or a bound σ > 0 on the relative error, both problems can be modeled as a feasible flow problem with

lower and upper arc capacities on the network G. If the absolute error is adopted, each arc (i, j) has a

capacity interval given by

[c−ij , c
+
ij ] := [dqij − τe+ , bqij + τc],

where, by definition a+ := max {a, 0}. If one measures the relative error, each arc (i, j), i ∈ M , j ∈ N ,

has a capacity interval

[c−ij , c
+
ij ] :=

{
[d(1− σ) qije+ , b(1 + σ) qijc] if qij ≥ 1

[0, b(1 + σ) qijc] if qij < 1.

A feasible flow xij satisfies c−ij ≤ xij ≤ c
+
ij and, by flow properties, if there is a feasible flow x there is

also an integral flow since the capacity values are integers. Hence one wants to find the minimum value

for τ or for σ such that a feasible flow exists. The existence of a feasible flow can be easily established

through a max-flow problem.
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A B C D E F

1 0.992 0.870 0.170 0.994 0.988 0.986

2 0.460 0.580 0.991 0.993 0.989 0.987

3 0.001 0.001 0.001 0.986 0.001 0.010

4 0.001 0.001 0.001 0.440 0.001 0.556

5 0.001 0.001 0.001 0.140 0.856 0.001

Table 1: An example of a matrix Q of regional quotas.

By the integrality of the xij ’s only a finite number of values for τ are relevant to the solution, namely,

those for which either qij − τ or qij + τ is integral for some (i, j). Similarly, one can define the relevant

values for the relative error minimization. The number of relevant values is at most (H + |M |) · |N |.
For the absolute and relative errors the authors provide some useful error bounds, some of which are

exploited in the design of algorithms for the minimization of the absolute error.

Clearly if the target quotas are the fair shares, the optimal absolute error τ∗ is bounded above by 1.

In this case the number of relevant errors to be checked is at most |M | · |N |, i.e., a polynomial bound.

However, if other quotas are used, like the regional quotas, there are no “natural” bounds. The authors

show that if the seats cj are assigned by the rule of Largest Remainders applied to the vector
∑
i vij

(like in the Italian system) and vij > 0 for all i, j, then τ∗ < 2. The authors also provide the following

example that shows that there are instances with τ∗ > 1 under the same assumptions.

Consider the matrix q given in Table 1 (parties A–F, regions 1–5) with r = (5 5 1 1 1) and c =

(1 1 1 4 3 3). Computing the column-wise sums of qij , one has∑
i∈M

qij = ( 1.455 1.453 1.164 3.553 2.835 2.540 )

thus implying c = (1 1 1 4 3 3) by the method of Largest Remainders.

Rounding down the regional quotas in the above matrix, one always gets 0 and rounding them up

one always gets 1. One can check that there is no way to assign 0 or 1 seats to each pair (i, j). Indeed

the parties D, E and F would receive at most 6 seats altogether in the regions 1 and 2. Hence the parties

A, B and C would receive at least 10 − 6 = 4 seats in the same regions 1 and 2. But these parties are

allotted 3 seats in total! So at least one party among D, E and F should receive two seats either in region

1 or 2. For a minimax solution this has to be for party D in region 1 with optimal error equal to 1.006.

The seat assignment in Table 2 corresponds to one of these solutions.

Serafini and Simeone design three algorithms to find a solution minimizing the maximum absolute error

taking into account both the computational complexity and the simplicity of implementation. Noting

that the size of problems to be solved is never large, they point out that speed of computation can be

reasonably exchanged in favor of simplicity of the description in the law and implementation itself.

As already pointed out, only a finite number of errors are relevant to the solution and this number

is at most (H + |M |) · |N |. At first sight it might seem that it is enough to carry out a binary search

over this set in order to find the smallest relevant error such that the network flow problem admits a
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A B C D E F

1 1 0 0 2 1 1

2 0 1 1 1 1 1

3 0 0 0 1 0 0

4 0 0 0 0 0 1

5 0 0 0 0 1 0

Table 2: A minimax solution to the best approximation of matrix Q of Table 1.

solution. However a naive implementation of the binary search requiring the sheer calculation (without

taking into account sorting) of all relevant errors calls for an execution time linearly dependent on H and

thus pseudopolynomial. Therefore binary search can be used but with some caution.

We refer the reader to [52] for details on the three algorithms. We limit ourselves here to say that the

first algorithm is simple but runs in pseudopolynomial time; the second algorithm is more complex but

runs in polynomial time and the third algorithm is strongly polynomial at the expense of being a complex

three-stage algorithm. The authors also provide a (weakly) polynomial algorithm for the minimization of

the maximum relative error. They avoid the trap of the pseudopolynomial number of relevant errors by

using binary search on the relevant errors without the need of computing all of them. See [52] for details.

The authors are also concerned with two other practical and important issues: uniqueness of the

optimal apportionment and possibility of providing the layman with a certificate of optimality.

As for the first problem it is clear that any sound seat assignment method that takes as input the votes,

must output a unique apportionment. On the other hand, optimization problems usually admit multiple

optimal solutions. Therefore it is crucial to develop a method that outputs a unique apportionment.

One way to overcome the difficulty of nonunique solutions consists of finding unordered lexicominima,

as defined in Schrage [50]. For details, the reader is referred to [52]. In this case the vectors to be ordered

consist of the absolute errors for all pairs (ij). In order to find unordered lexicominima, once a minimax

solution has been found with relevant error τk for the blocking pair (ij)k (k is the index of the ordered

relevant τ ’s), a solution minimizing

max
(ij) 6=(ij)k

|xij − qij |

is found. This can be done as before with the only difference that the capacity for the pair (ij)k is no

longer changed. Once a second solution with error τh (h < k) and blocking pair (ij)h has been found,

one proceeds recursively by fixing the capacities of the blocking pairs one at a time. If for the current

relevant τ , τ < 1/2 holds, one simply fixes the capacity interval for the arc (i, j) to [q̄ij , q̄ij ] with q̄ij equal

to qij rounded to the nearest integer and the computation is finished because there cannot be any better

error.

As for the second problem, it can be argued that sound assignment procedures available in the

literature are generally too complex to be fully understood by the general public. A voting system

cannot be based on the simple trust that the persons involved in the computations are honest and do

not make mistakes. Therefore, a way to check the election outcome which does not call for difficult
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mathematical concepts should be provided. Serafini and Simeone [52, 53] point out that it is possible to

exploit the Max Flow-Min Cut Theorem [1] to get a certificate of optimality whereby anybody can check

through simple elementary calculations that no solution can be better than the given one. As a hint of

how such a certificate can work we refer to the previous discussion showing the impossibility of rounding

down or up the quotas in Table 1.

At the end of the sections devoted to BAP, it may be useful to compare the different approaches

to BAP. In particular we compare (i) Balinski and Demange’s Tie-and-Transfer with rounding to the

closest integer (TT), (ii) Pukelsheim’s Discrete Alternating Scaling (DAS), (iii) Gaffke and Pukelsheim’s

algorithm, in the Rote and Zachariasen’s minimum cost flow implementation (GFRZ), (iv) Cox and

Ernst’s Controlled Rounding (CR), and finally, (v) Serafini and Simeone’s minimax approximation of

target shares (MM). Note that the first three algorithms yield, for a given rounding method, the same

apportionment, namely, the unique one that satisfies all the six proportionality axioms.

We have taken into consideration the following criteria.

1. Finiteness (the algorithm stops after a finite number of steps): there are rare pathological instances

where DAS does not converge;

2. Feasibility (the output seat assignment always yields an apportionment): CR does not guarantee

feasibility for general quotas;

3. Soundness (satisfaction of Balinski and Demange’s six integral proportionality axioms): only TT,

DAS and GFRZ satisfy the axioms;

4. Uniqueness (uniqueness of the seat assignment output by the method): the optimal solution of CR

may not be unique; MM exhibits a unique solution with the lexicomin refinement;

5. Theoretical Complexity (worst-case rate of growth of the number of elementary operations as the

instance size increases): TT is pseudopolynomial in general and weakly polynomial in Zachariasen’s

[55] implementation; the complexity of DAS is unknown; GFRZ is weakly polynomial; MM and CR

are strongly polynomial;

6. Generality (range of applications besides Biproportional Apportionment): MM can be applied to

other problems (see [52]);

7. Flexibility (dependence on other parameters besides input data): the freedom of choice of the

rounding method in TT, DAS, and PGRZ is counter-balanced by the freedom of choice of the

target quotas in CR and MM;

8. Ease of implementation (no need to write sophisticated ad hoc computer codes): DAS has perhaps

the simplest implementation and TT the most sophisticated;

9. Transparency (possibility of translating the procedure into a simple, easy-to-understand, electoral

law): the simplest version of MM can be stated very easily;

10. Certifiability (easy verifiability by a layman, through simple elementary operations, that the seat

assignment output by the method satisfies the claimed requirements, like feasibility, optimality):

MM seems to be the only method with this feature (see [53]).
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9 Vote transitions

Published election data include the marginal distributions of votes cast at two successive elections. There

is a strong political interest in the estimation, on the basis of these data and possibly of local surveys or exit

polls, of vote transitions between parties at the two elections. To this purpose, a large variety of statistical

methods are available: among them, what is known as Goodman’s ecological regression [27, 36]; the

compound multinomial model of Brown and Payne [13] and its reformulation as a multivariate generalized

linear model in [19]; the quadratic programming estimation model of [54]; entropy maximization models

[32, 33]. Here, for the purposes of this survey and for the sake of illustration, we restrict ourselves to

present the nonlinear transportation model for vote transition estimation discussed in [10]. Let I be the

set of parties in the first election and J the set of parties in the subsequent election. The sets I and J

do not necessarily coincide. Moreover, one can keep track of new voters, lost voters, and abstentionism

by the introduction of dummy parties in I or in J . Let ai be the number of votes received by party i ∈ I
in the first election at national level and bj the number of votes received by party j ∈ J in the second

election, again at the national level. The unknown data to be inferred are the values xij , defined as the

number of voters who in the first election voted for party i and in the next election voted for party j.

Clearly these values must satisfy the following transportation constraints:∑
i∈I xij = bj , j ∈ J,∑
j∈J xij = ai, i ∈ I,

xij ≥ 0, i ∈ I, j ∈ J

(16)

Let yij be the probability that somebody votes for party i in the first election and for party j in the

next election. Such probabilities are estimated through a loglinear regression model from a sample of

empirical frequencies ykij in each electoral district k ∈ K - where K is the set of all electoral districts -

along with the values z1k, . . . , zdk of certain socio-economic variables observed in district k.

Then one obtains the desired vote transitions xij by running the RAS algorithm (see Section 3) on

the starting matrix yij , so as to fit the marginals ai and bj . According to a well-known result of [12], the

matrix xij is the unique optimal solution to the entropy maximization problem

max −
∑
i∈I

∑
j∈J

xij log
xij
yij

, (17)

subject to (16).

Hence xij is the optimal solution to a transportation problem with concave separable objective func-

tion, to be maximized.

The choice of the objective function in (17) has the effect that the optimal solution is the “most likely”

vote transition matrix fitting the marginals ai and bj , conditional on the probabilities yij .

Johnston and Hay ([32], see also [33]) argue that, for the purposes of post-electoral analysis, the

estimate of the vote transition matrix xij at the national level should be supplemented by detailed

information about the disaggregated matrices xkij , similarly defined for each district k. For the actual

computation of the 3-dimensional array xkij they propose, as a natural extension of (17) with constraints
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(16), a 3-dimensional transportation model whose objective function, to be maximized, has again the

meaning of an entropy. Out of the three marginals bik, ajk, xij (corresponding to summations over the

index i, j, k, respectively) the first two are typically known from election records, while the third one, xij ,

must be estimated, e.g. through the solution of (17) with constraints (16). Although such model brings

us outside the realm of network flows, it is worth pointing out that one can still find an optimal solution

via a straightforward 3-dimensional generalization of the RAS algorithm (see [11]).

10 Political districting

A transportation procedure appears in Hess et al. [30], the earliest operations research paper in political

districting. First the districting problem is formalized as a discrete location problem. Each territorial

unit must be assigned to exactly one center and all units assigned to the same center form a district.

Let n be the total number of territorial units and k be the number of districts. The political districting

model is the following:

min
n∑
i=1

n∑
j=1

d2
ij pi xij

n∑
j=1

xij = 1 i = 1, . . . , n

n∑
j=1

xjj = k

a P̄ xjj ≤
n∑
i=1

pi xij ≤ b P̄ xjj j = 1, . . . , n

xij ∈ {0, 1}, i, j = 1, . . . , n

where xij is a binary variable equal to 1 when unit i is assigned to center j, pi is the population of

unit i, dij is the distance between unit i and center j, and a and b are the minimum and the maximum

allowable district population fractions, calculated as a percentage of the average district population P̄

(total population divided by k). Moreover, the variable xjj takes the value 1 whenever unit j is chosen as

one of the centers. The first n constraints mean that each unit must belong exactly to one district. The

next one imposes that the total number of districts is exactly k. The other two groups of n constraints

represent the conditions on the maximum and the minimum allowable district population, with respect to

chosen parameters a < 1 and b > 1 (population equality). Finally, the objective function (total inertia)

is a measure of compactness.

Due to the computational difficulty in the solution of the above model, in [30] an iterative heuristic

procedure is proposed as an alternative solution approach. Essentially, the generic iteration of the algo-

rithm consists of five steps: (1) guess the district centers; (2) solve a transportation problem to assign

population equally to these centers at minimum cost (defined in terms of distances between units and

centers of the districts); (3) adjust the solution of the transportation problem so that each territorial unit

is entirely within one district; (4) compute centroids of the current districts and use them to update the
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district centers; (5) repeat from step (1) until the procedure converges (i.e., the centers do not change in

two successive iterations).

The main step of the above procedure is step (2) in which a transportation problem must be formulated

and solved. The formulation of the problem is the following. The set of origins in the transportation

graph represents the current centers, all with supplies equal to P̄ . The set of destinations represents the

territorial units, with demands equal to their population. Each edge (i, j) of the graph has a weight equal

to d2
ij .

In the above iterative procedure it may happen that in the solution of the transportation problem a

territorial unit i is split between two or more districts; in this case, in step (3) i is entirely assigned to the

district to which the largest quota of its population was assigned. The convergence of the procedure is not

guaranteed in theory. However, the authors report that, in real-life applications, the heuristic converges

to a local minimum in fewer than ten iterations (that is, ten transportation problems must be solved).

Following the approach of Hess et al., other authors developed political districting methods related to

network flows. The procedure proposed in [31] differs from the previous one in the first and in the third

step. Instead of adopting an iterative strategy based on successive adjustments of the centers, Hojati

locates them only once at the beginning of the procedure and this choice is permanent. To solve this

problem, the author introduces a (mixed integer) warehouse location model, similar to the one in [30],

but based on two different sets of variables, namely, xij , i, j = 1, . . . , n, representing the proportion of

population of unit i assigned to district j, and indicator variables yj , j = 1, . . . , n, such that yj = 1 if

unit j is chosen as the center of a district and yj = 0 otherwise. A Lagrangian relaxation of the resulting

model is derived and is solved by a subgradient optimization algorithm.

After step (2), when in the solution of the transportation problem there are split territorial units (i.e.,

units fractionally assigned to more than one center) Hojati introduces the Split Resolution Problem (SRP)

which is formulated as a graph-theoretic model. Actually, he takes into consideration the subgraph of

the transportation graph whose vertices are given, on the one hand, by the split units and, on the other

hand, by those centers to which some split units have been (partially) assigned. The author shows that

SRP can be solved by a sequence of capacitated transportation problems defined over a suitable modified

network (see [31]).

The procedure proposed in [26] basically follows the iterative location/allocation approach pioneered

by Hess et al., but with the main difference that a new method for assigning territorial units to districts

is adopted. For this step, the authors introduce a minimum cost network flow problem defined on

the following network. The nodes of the network are the territorial units, the district centers and an

additional sink node t. Each unit-node i has a supply equal to pi, while the sink-node has a demand

equal to P =
∑n
i=1 pi. Beside the arcs (i, j) corresponding to all the unit-center pairs, i = 1, . . . , n,

j = 1, . . . , n, there exists an arc (j, t) in the network for each district center j.

The authors introduce different cost functions to define the costs associated with the arcs of the

network (see, [26], page 20, Table 1) with the aim of modelling additional political districting issues that

were not taken into account in the original model of Hess et al. Their iterative procedure stops when

the difference between the optimal value of two successive solutions of the minimum cost flow problem
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is sufficiently small. The authors notice that split units can still arise and for this problem they suggest

following the same rule adopted by Hess et al. [30].

11 The Give-up Problem

Ricca, Scozzari and Simeone [47] discuss network flow techniques for the decision problem related to seat

“give-ups” by multiple winners in a system with closed (blocked) lists. This problem is of particular

interest in Italy where multiple winners may arise both in the election of the Chamber of Deputies and

of the Senate. In fact, the current Italian electoral law requires that each party presents, in each district,

an ordered list of candidates. It also allows for the same candidate to be present in more than one list.

Voters can cast their ballots for parties, but not for candidates. If a party receives w seats in a district,

the winners of that party will be exactly the first w of its list in that district, but if a candidate is a

winner in more than one district, he or she must give up all the seats won but one. The decisions about

give-ups are usually centralized. Clearly, central decisions must be based on inter-district comparisons of

preferences.

Then, for a given party, the Give-up Problem can be formulated as finding a set of give-ups consis-

tent with the inter-district system of preferences of that party. To this purpose, the authors introduce

two classes of models, i.e., “utility” and “ordinal” ones, and show that for both of them some natural

formulations of the above Give-up Problem can be efficiently solved by network flow techniques.

A strict linear order � is defined over the set of candidates. Ordinal models rely exclusively on order

relations between candidates w.r.t. �. In utility models for each district k and each candidate i in the

list of that district, a disutility or cost cki of letting i win in district k is defined and the objective is the

minimization of a cost function (or equivalently the maximization of the total utility of a party).

An instance of the Give-up Problem refers to a single political party and it is defined by three integers

n, m and S, with S ≤ n, and by a four tuple (C,R, list, seat), where:

- C is a set of n candidates;

- R is a set of m regions;

- list = {L1, . . . , Lk, . . . , Lm} is a set of m regional ordered lists of candidates, Lk ⊆ C, ∀k = 1, . . . ,m,

and |Lk| is the length of the list Lk;

- seat = (s1, . . . , sk, . . . , sm) is a vector of integers, where, for all k, sk (1 ≤ sk ≤ |Lk|) denotes the

number of seats obtained by the party in the k-th region, with S = s1 + s2 + · · ·+ sm.

The authors assume the following hypothesis of consistency: if i � j then i precedes j in all the lists

where both i and j compete. Similarly, a cost matrix [cki], k ∈ R, i ∈ C is said to be consistent if i � j

implies cki < ckj , for all k ∈ R.

A feasible seat assignment x is an assignment of seats to candidates such that (i) each candidate

gets at most one seat; (ii) the number of candidates who win a seat in district k is exactly sk. Then, a

feasible seat assignment can be described by a binary matrix [xki] such that (i)
∑
k∈R xki ≤ 1, i ∈ C; (ii)∑

i∈C xki = sk, k ∈ R.
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In general, one would like the final set of winners to be concentrated in the top part of the ranking

given by � . This broad goal can be formalized in several ways. The simplest formulation is to find

a feasible seat assignment whose winners are precisely the first S candidates in the linear order �. A

feasible assignment satisfying this property will be called perfect. However, such assignment may not

exist as the following example shows.

Example 2 Suppose that in a party there are six candidates, C = {1, 2, 3, 4, 5, 6}, and that S = |R| = 3,

sk = 1, for k = 1, 2, 3. The party presents the following three lists in three districts: L1 = {1, 2, 3},
L2 = {1, 2, 6} and L3 = {4, 5, 6}. It is easy to check that no perfect set of winners exists. Here, there is

no way to assign the S = 3 seats to the first 3 candidates, since all these candidates can only receive a

seat either in district k = 1, or in district k = 2.

The first result in [47] is the characterization of a perfect seat assignment as a feasible flow in a

suitable network.

Consider the bipartite graph (R,C,E), where the two sides correspond to the regions R and the

complete set of candidates C, respectively, and an arc (k, i) exists if and only if candidate i is included

in list Lk. The edge-set is denoted by E. Now direct all the edges in E from R to C; add a source

s and a sink t; then connect the source s to each region-node k = 1, . . . ,m, and each candidate-node

i = 1, . . . , n to the sink t. Let N = (V,E′) be the resulting network, with V = {s} ∪ R ∪ C ∪ {t} and

E′ = E ∪ {(s, k) : k ∈ R} ∪ {(i, t) : i ∈ C}. Assign to each arc (s, k), k = 1, . . . ,m, both an upper and

a lower capacity equal to sk; assign to all the other arcs in N a lower capacity and an upper capacity

equal to 0 and 1, respectively.

Consider the subnetworkM of N induced by the subset of nodes {s} ∪R∪ JS ∪ {t}, where JS is the

set of the first S candidates in C.

Proposition 1 A perfect seat assignment exists if and only if there exists a feasible flow in the network

M with the above defined lower and upper capacities.

It is well known (see, e.g. [1]) that a feasible flow in a network with lower and upper capacities can

be found, if it exists, through the solution of a maximum flow problem. Indeed, this is the main technical

difficulty in solving the existence problem for a perfect assignment.

In order to manage the problem when a perfect assignment does not exist, as a first possibility, the

authors introduce the formulation of an ordinal model.

For any given instance of the Give-up Problem, and for a given ranking �, the height of a feasible

assignment is defined as the smallest positive integer h such that all the candidates after the h-th in �
get no seats. One then looks for a feasible assignment minimizing the height.

Another option is to define a notion of lexicographically best assignment. For a given feasible as-

signment x, let I(x) = {i1(x), . . . , in(x)} be a binary indicator vector such that |I(x)| = n and for

ν = 1, . . . , n, iν(x) =
∑
k∈R xkν . Let x and y be two feasible assignments, x 6= y, and let I(x) and

I(y) be the associated binary indicator vectors. One says that x is lexicographically better than (or
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dominates) y if I(x) is lexicographically greater than I(y). A feasible assignment x is called lexicograph-

ically best if it is not dominated by any other feasible assignment.

The authors show that one can find a feasible assignment minimizing the height by solving a bottleneck

transportation problem. As a consequence, one can solve the height minimization problem in strongly

polynomial time by O(log(n)) max-flow computations. They also show that a lexicographically best

assignment is a minimum height assignment.

As an alternative, one can find an optimal solution to a utility model. Let [cki] be a cost matrix,

where cki ≥ 0 is the cost of assigning a seat in region k to candidate i. Then, the cost of a feasible seat

assignment x is given by:

c(x) =
∑

k∈R,i∈C

ckixki (18)

A cost matrix is defined to be consistent if i � j implies cki < ckj , for all k ∈ R, and to be uniform

if, for every candidate i ∈ C, cki = cri for all k 6= r ∈ R. A utility model with consistent and uniform

cost matrix is called a score function model. In particular, the uniformity assumption on the cost matrix

implies that, for any given i ∈ C, one has cki = γi for all k ∈ R. Let Z be the sum of the γi’s over the

first S candidates i ∈ C according to �.

In order to formulate a utility model, the authors consider the network N = (V,E′), and introduce

a nonnegative cost function c : E′ → R+
0 that assigns a cost to each arc in E′. The costs on the arcs

{(s, k) : k ∈ R} ∪ {(i, t) : i ∈ C} are all equal to zero, while, for all k ∈ R and i ∈ C, the cost on the arc

(k, i) is equal to the corresponding cki.

A best seat assignment w.r.t. a utility model can be found by solving a minimum cost flow problem

on the network N [1].

The following proposition provides an alternative characterization of a perfect seat assignment as an

optimal solution of a minimum cost flow problem on N .

Proposition 2 A perfect seat assignment exists if and only if, for any score function model, there

exists an optimal solution x∗ to the corresponding minimum cost flow problem on N whose total cost is

c(x∗) = Z.

The central result in [47] establishes strong relations between the optimal solution of a score function

model, a minimum height assignment, and a lexicographically best one. The result exploits the notion

of “illegitimate path”. Given an instance of the Give-up Problem and the corresponding bipartite graph

(R,C,E), for any given feasible assignment x an illegitimate path w.r.t. x is an even path from a non-

winner candidate i to a winner candidate j, with i � j, and formed alternately by edges with flow 0 and

flow 1 in x.

Theorem 4 Given an instance of the Give-up Problem and a feasible seat assignment x, the following

four statements are equivalent:

1) x is an optimal assignment for every score function model;
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2) x is an optimal assignment for some score function model;

3) there is no illegitimate path w.r.t. x;

4) x is lexicographically best.

The notion of illegitimate path can be also used to develop an algorithm for finding a best assignment

w.r.t. a score function model. Actually, starting from a feasible flow on N , at each step the algorithm

either finds an illegitimate path, or it stops with an optimal solution. Let y be any feasible seat assignment.

Then, since for a given non-winner i in y, in (R,C,E) there exist at most |E′| different illegitimate paths

starting from i, a best assignment w.r.t. a score function model can be found in time O(|E′|n) by the

above algorithm.

The authors note that in many situations imposing a strict linear order on the set of candidates might

be too restrictive. Thus, they also take into account the possibility that, given any two candidates i and

j, neither of them is better than the other, since i and j could be regarded by the party as “indifferent”.

In this case, one has a “ranking with ties” of the candidates: this concept is captured by the formal notion

of weak order, i.e., a complete and transitive relation �. The authors show that the main results already

obtained for strict linear orders can be generalized to weak orders, provided that the basic definitions

and constructions are suitably modified (see, [47]).
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