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1. INTRODUCTION

In the last decade some large scale combinatorial optimization problems have been
tackled by way of a stochastic technique called `simulated annealing' �rst proposed by
Kirkpatrick et al. (1983). This technique has proved to be a valid tool to �nd acceptable
solutions for problems whose size makes impossible any exact solution method.

The simulated annealing technique lends itself to a setting with multiple objectives
so that the decision maker is eventually o�ered a large set of nondominated solutions.
Of course, since the method is heuristic only suboptimal solutions may be found. The
larger the number of iterations are allowed the higher the chance will be of �nding `true'
non dominated solutions.

The idea is to control the iteration so that the nondominated solutions have higher
stationary probability. In turn, among the nondominated solutions, some of them could
have higher stationary probability according to the preferences of the decision maker
which could be stated either by means of possibly varying weights or by some domination
structure.

In this paper we examine several alternative criteria for the probability of accepting
a new solution. We shall see that a special rule given by the combination of di�erent
criteria makes the probability distribution to be concentrated almost exclusively on the
set of nondominated solutions.

2. MATHEMATICAL BACKGROUND

We �rst give a brief account of how the simulated annealing technique works for
single objective combinatorial problems. Let f : X ! R be a function to be minimized
over X, where X is a �nite (but very large) set. To each element x 2 X a neighbourhood
N(x) � X is associated. Typically N(x) is very small with respect to X.

Iterations can be de�ned by �rst choosing a starting point x and then repetitively
selecting y 2 N(x) and assigning x := y. Local search methods select y so that f(y) <
f(x). In case there is no such y inN(x) the local search stops yielding a local minimum x.

The simulated annealing technique di�ers from a pure local search by letting the
choice of y be governed by the following stochastic rule: �rst y 2 N(x) is chosen
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with probability qxy, then y is accepted (i.e. the assignment x := y is executed) with
probability

pxy(T ) := min
n
1; e(f(x)�f(y))=T

o
(1)

where T is a parameter called temperature. Clearly for T = 0 only improving choices
are accepted and the method reduces to a pure local search. On the opposite side, for
very large values of T , any y chosen in the neighbourhood is accepted, no matter how
worse it is with respect to x. Any value T > 0 allows the iteration to escape from a
local minimum sooner or later.

In order to understand the properties of the iteration de�ned above it is useful to
model it as a Markov chain with state spaceX and transition probabilities pxyqxy. If qxy
is symmetric and the neighbourhood structure is such that each state can be reached by
any other state (i.e. the transition matrix is irreducible) the equilibrium vector �x(T )
can be computed as:

�x(T ) = Ke�f(x)=T =
e�f(x)=TP
y
e�f(y)=T

=
e(f(x

�)�f(x)=T

1 +
P

y 6=x� e
(f(x�)�f(y))=T

(2)

where x� is the global minimum of the problem. From (2) it is seen that the global
optimum has the highest probability and that �x�(T ) ! 1 as T ! 0 and �x(T ) ! 0
as T ! 0, for x 6= x�. Unfortunately for T = 0 the transition matrix is no longer
irreducible, so that the behaviour of the Markov chain for T > 0 is quite di�erent from
the one for T = 0. Furthermore the second largest eigenvalue of the transition matrix,
which is responsible for the speed of convergence toward the stationary probability
vector tends to 1 as T ! 0. These facts suggest controlling the Markov chain by
decreasing T at decreasing speed. The way T is varied during the iteration is called
`annealing schedule'.

For a more comprehensive understanding of simulated annealing the reader is re-
ferred to the literature, for instance, �Cerny (1985), Kirkpatrick and Swendsen (1985),
Lundy and Mees (1986), Laarhoven and Aarts (1987).

The problem we are dealing with in this paper is concerned with the minimization
in a multi objective sense of m functions f1(x); f2(x); . . . ; fm(x) over the �nite set X.
The m objective functions de�ne a preference structure over X. A preference structure
(Yu (1989)) is a partition of X�X based on the binary relations f�;�;�; ?g such that
for any ordered pair (x; y) 2 X �X exactly one of the following alternatives holds:

i) x � y; ii) x � y; iii) x � y; iv) x ? y:

Here x � y means that x is preferred to y and holds if and only if y � x, x � y
that x and y are indi�erent, and x ? y that no preference can be stated between x and
y. Optimal points are those x such that there does not exist any y such that y � x.
They are also called non dominated points.

Simple ways to deduce a preference structure from the objective functions are for
instance the followings:
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i) Scalar ordering

x � y () F (f(x)) < F (f(y));

x � y () F (f(x)) = F (f(y)):
(3)

with F : Rm ! R a suitable scalar function like for instance F (f) =
P

i
wifi, with

nonnegative weights wi (in this case the scalarization is called `convex combination')
or, alternatively F (f) = maxi wi(fi � ri), with nonnegative weights wi and reference
points ri (this scalarization is also called `�Cebi�sev norm'). Both scalarizations have been
extensively dealt with in the literature.

ii) Pareto ordering

x � y () f(x) � f(y) and f(x) 6= f(y);

x � y () f(x) = f(y);

x ? y () 9i; j : fi(x) < fi(y); fj(y) < fj(x):

(4)

iii) Cone ordering

x � y () f(x)� f(y) 2 C n f0g ;

x � y () f(x) = f(y);

x ? y () f(x)� f(y) =2 C [ (�C):

(5)

with C a suitable cone. In case C = Rm

� we have the Pareto ordering. In case C is a
halfspace with normal vector w we have a scalar ordering with F = wf .

3. RULES FOR TRANSITION PROBABILITIES

Two alternative approaches can be taken by considering which points in N(x)
should be accepted with probability 1. In one approach we may consider the criterion
that only dominating point should be accepted with probability 1. This approach may
be called strong criterion. In the other approach (weak criterion) we may reverse this
attitude by deciding that only dominated points are accepted with probability strictly
less than 1. The two approaches lead to quite di�erent Markov chains. As we shall see
a combination of the two approaches can provide good results. Throughout the paper
we shall assume that y 2 N(x) () x 2 N(y), qxy > 0 () y 2 N(x), qxy = qyx and
N(x) is su�ciently large so that the transition matrix is irreducible.

3.1 Scalar ordering

For scalar functions we have the standard acceptance criterion which can be stated
as

Rule SL :

pxy(T ) := min
n
1 ; e
P

i
wi(fi(x)�fi(y))=T

o
if F (f) = wf (`SL' for Scalar Linear), or, alternatively, as
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Rule SC :

pxy(T ) := min
n
1 ; e(maxi wi(fi(x)�ri)�maxi wi(fi(y)�ri))=T

o
if F (f) = maxi wi(fi � ri) (`SC' for Scalar �Cebi�sev).

In these two cases the results of the previous section can be applied. The sta-
tionary probability vector is the one with highest probability for the minimum of the
corresponding scalar function. Of course, for the scalar ordering the strong criterion
coincides with the weak criterion.

3.2 Pareto ordering

Let us �rst consider the strong acceptance criterion. In order to compute the
transition probability we introduce a quantitative criterion simply based on the objective
functions. One possibility is given by the following:

Rule SP :

pxy(T ) :=
mY
i=1

min
n
1 ; e(fi(x)�fi(y))=T

o
Rule SP (`SP' for Simple Product) is clearly `local'. Given a point x we try to

improve the situation with respect to x. Also it is separable in the various objectives.
Nonetheless the computation of the stationary probability indicates a result which is
perhaps counterintuitive. The probability stationary vector for Rule P is given by

�x = K

mY
i=1

e�fi(x)=T = K e�
P

i
fi(x)=T

as can be seen by verifying that the detailed balance equations �x qxy pxy = �y qyx pyx
are satis�ed.

This result shows that the Markov chain given by Rule SP has the same stationary
distribution as the one given by Rule SL with unit weights. This is rather counterin-
tuitive, since the local rule of transition does not make any trade-o� between di�erent
objectives. Nonetheless the stationary distribution looks like if a scalar minimization is
being performed.

Note that the Markov chain given by Rule SP could be controlled by using dif-
ferent temperatures, one for each objective. It is therefore quite clear that there is
an equivalence between possible weights and di�erent temperatures for the objective
functions.

In other words Rule SP could be modi�ed into:
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Rule P :

pxy(T ) :=
mY
i=1

min
n
1 ; ewi(fi(x)�fi(y))=T

o
(`P' for Product) where the quantity T=wi plays the role of a temperature Ti. This
is like having a di�erent annealing schedule for each objective function. An immedi-
ate application of this idea consists in varying slowly the weights, while keeping the
temperature at a very low level, so to have the possibility to explore the entire Pareto
set.

We may introduce a new rule based on the local version of the �Ceby�sev norm
scalarization, that is we take the current values fi(x) as the reference point, so that we
are led to the following rule

Rule C :

pxy(T ) := min

�
1 ; min

i=1;...;m

n
ewi(fi(x)�fi(y))=T

o�
Rule C (`C' for �Cebi�sev) has transition probabilities not less (and most of time

larger) than the ones of Rule P. As T ! 0 the transition matrices tend to the same
matrix . For Rule C it is not possible to derive an analytical expression for the stationary
probability.

With the weak criterion any solution which is not strictly dominated is accepted
with probability 1. For continuity reasons solutions which are dominated in some ob-
jectives and are indi�erent in other objectives must also be accepted with probability 1.
So the only practical possibility is the following transition rule (`W' for Weak):

Rule W :

pxy(T ) = min

�
1 ; max

i=1;...;m

n
ewi(fi(x)�fi(y))=T

o�
For T = 0 transitions are not allowed only from a point to another point dominated

by it. This `permissive' behaviour of the Markov chain makes it possible in most cases
to have an irreducible chain even for T = 0. Therefore the stationary vector for T > 0
tends to the stationary vector for T = 0 as T ! 0. It is not possible to derive an
analytical expression for the stationary vector given by Rule W.

3.3 Cone ordering

In case we have a cone ordering based on a polyhedral cone C with polar cone
C� := fu : uv � 0 8v 2 Cg and generators cj , j = 1; . . . ; h, of C� we may de�ne
functions ~fj(x) := cj f(x), j = 1; . . . ; h, and apply the rules previously de�ned to the
new functions:
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Rule CP :

pxy(T ) :=
hY

j=1

min
n
1 ; e(

~fj(x)� ~fj(y))=T
o
=

hY
j=1

min
n
1 ; ec

j(f(x)�f(y))=T
o

(`CP' for Cone Product). The stationary probability vector of this chain is

�x = K e
�
P

j
~fj(x)=T

so that the point minimizingX
j

cjf(x) =
X
ij

cj
i
fi(x) =

X
i

(
X
j

cj
i
)fi(x)

is the one with highest probability and therefore Rule CP has the same stationary vector
as Rule P and Rule SL with wi =

P
j
cj
i
. The transition matrices are however di�erent.

Similarly we may de�ne the following

Rule CC :

pxy := min

�
1 ; min

j=1;...;h

n
ec

j(f(x)�f(y))=T
o�

Rule CW :

pxy := min

�
1 ; max

j=1;...;h

n
ec

j(f(x)�f(y))=T
o�

which have di�erent stationary vectors than the corresponding Rule C and Rule W. All
these rules boil down to the minimization of wf(x) whenever C� = f�w : � � 0g.

4. A COMPOSITE RULE

By examining Rule P (or Rule C) we see that essentially one solution gets the
highest probability in the steady state. All other solutions, including Pareto optima,
have a very low probability. This is not a desirable property of the Markov chain since
we would like the Pareto set to have a relevant probability over all other points.

On the other hand we see that Rule W does give a prominent role to the Pareto
set, since these are the solutions to which the chain most often goes. However, also
other solutions which are not Pareto optima have a rather high probability, being, so
to speak `transit' points for the Pareto set. Again this is not an entirely satisfactory
behaviour.

By combining together Rule P and Rule W as
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Figure 1

Rule M :

pxy(T ) := �

mY
i=1

min
n
1; ewi(fi(x)�fi(y))=T

o
+(1��)min

�
1; max

i=1;...;m

n
ewi(fi(x)�fi(y))=T

o�

with 0 < � < 1 (`M' for Mixed), we may retain both the advantages of Rule P and
Rule W. Furthermore the transition matrix of Rule M remains irreducible for T = 0 as
long as Rule W does.

5. TWO EXAMPLES

In order to appreciate the e�ect of choosing one of the above rules a small example
has been provided. In Figure 1 ten points are displayed in a bidimensional objective
space. The segments connecting the points represent the neighbourhood structure.
The probabilities qxy are taken as 1=dx with dx the number of points adjacent to x.
The points 1, 8 and 9 are Pareto optima, and the points 4 and 10 are local Pareto
optima. For such an example it is easy to compute the transition matrix and the
relative stationary probabilities. In Table 1 and 2 the stationary probabilities �x are
reported for temperatures ranging from T = 10 to T = 0:01 for Rules P,C and W with
unit weights. Furthermore the values for T = 0 are also given for Rule W. Note that
Rule P and Rule C give almost identical results. For small values of T the point 9 which
minimizes the sum of the coordinates is clearly the highest probability solution.

By contrast note the quite di�erent behaviour of Rule W. As T ! 0 the most
likely solutions are the Pareto optima. Slightly less likely are other solutions which
apparently constitute transit points between the optima or are themselves local Pareto
optima. Note the positive e�ect of Rule M with parameters � = 0:9 and � = 0:99 (i.e.
by giving a predominant role to Rule P) displayed in Table 3.

As a second example we have applied the simulated annealing technique to a trav-
elling salesman problem (TSP) with two objectives. We recall that the TSP is de�ned
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Table 1

T=10 T=1

Rule P Rule C Rule W Rule P Rule C Rule W

�1 0.0898 0.0894 0.0886 0.101 0.0984 0.0919

�2 0.0829 0.0843 0.0867 0.0454 0.0552 0.0745

�3 0.112 0.113 0.116 0.0735 0.0832 0.105

�4 0.0880 0.0877 0.0885 0.0829 0.0814 0.0912

�5 0.119 0.118 0.118 0.134 0.129 0.125

�6 0.118 0.117 0.118 0.119 0.115 0.122

�7 0.0576 0.0580 0.0583 0.0458 0.0500 0.0543

�8 0.151 0.150 0.147 0.191 0.184 0.154

�9 0.0621 0.0616 0.0593 0.0976 0.0917 0.0637

�10 0.117 0.117 0.117 0.107 0.110 0.115

Table 2

T=0.1 T=0.01 T=0

Rule P Rule C Rule W Rule P Rule C Rule W Rule W

�1 0.0283 0.0270 0.117 4.23 10
�13

1.35 10
�12

0.186 0.217

�2 9.22 10
�6

1.90 10
�4

0.0225 8.14 10
�20

2.0810
�20

0.00741 0.00672

�3 8.51 10
�5

4.84 10
�4

0.0536 1.51 10
�21

3.1610
�20

0.0299 0.0268

�4 0.00381 0.00486 0.100 3.12 10
�21

7.9510
�19

0.0933 0.0919

�5 0.0368 0.0537 0.141 1.61 10
�16

1.4410
�14

0.104 0.103

�6 0.0105 0.0111 0.145 1.98 10
�18

2.2110
�17

0.119 0.0970

�7 3.88 10
�4

9.93 10
�4

0.0292 2.62 10
�20

4.6510
�20

0.00748 0.00672

�8 0.166 0.167 0.189 7.79 10
�11

7.7910
�11

0.218 0.223

�9 0.749 0.728 0.0893 1. 1. 0.137 0.141

�10 0.00377 0.00545 0.110 3.12 10
�15

1.9010
�14

0.0947 0.085

Table 3

Rule M

� = 0:9 � = 0:99

T=1 T=0.1 T=0.01 T=0 T=1 T=0.1 T=0.01 T=0

�1 0.100 0.0855 0.318 0.338 0.101 0.0351 0.316 0.368

�2 0.0483 4.35 10
�4

7.61 10
�5

1.11 10
�4

0.0457 2.42 10
�5

1.18 10
�7

1.05 10
�6

�3 0.0769 0.00176 0.00213 0.00313 0.0738 1.48 10
�4

3.1710
�5

2.81 10
�4

�4 0.0841 0.0203 0.0369 0.0695 0.0831 0.00525 0.00509 0.0629

�5 0.134 0.0946 0.0322 0.0255 0.134 0.0447 0.00389 0.00297

�6 0.119 0.0406 0.0306 0.0236 0.119 0.0135 0.00311 0.00271

�7 0.0469 0.00337 1.02 10
�4

1.42 10
�4

0.0459 5.72 10
�4

4.51 10
�7

1.39 10
�6

�8 0.187 0.249 0.273 0.265 0.191 0.182 0.265 0.274

�9 0.0931 0.482 0.277 0.233 0.0972 0.712 0.402 0.258

�10 0.108 0.0212 0.0277 0.0403 0.107 0.00523 0.00333 0.0290
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Figure 2

by assigning intercity distances dij for a set of n cities and asking for a tour which
passes through each city exactly once and has minimal length. This is a notoriously
di�cult problem (see Lawler et al. 1985). Whereas exact solutions can be obtained
for problems up to 1000 cities (Gr�otschel and Holland (1991)) and exact solutions are
reported for even larger instances (2393 cities in Padberg, Rinaldi (1990)), the only
practical approach for problems of more than 10,000 cities are heuristic methods among
which the simulated annealing technique.

Although the TSP is a typical test problem for new techniques (and this is what
we are also doing for multi objective problems), one should be aware of the fact that in
the TSP feasible solutions are quite easily generated and this is not always the case for
general problems. Finding a feasible solution can be a NP-hard problem by itself.

Here we use two sets of intercity distances d1
ij
, d2

ij
in order to generate a biobjective

problem. In our test problem two random numbers a; b between 0 and 1 are generated
and then they are used to produce distances in the following way

d1
ij
:= a+ �(b� 0:5) d2

ij
:= b+ �(a� 0:5)

with � a parameter expressing the correlation between the objectives. We have set
� := �0:2. The number of cities is 50.

For space reasons it is not possible to report all computational tests. The rule
producing the best results has been Rule M with parameter � = 0:9. Moreover we
have chosen variable weights for the two objectives during the iteration; more exactly
starting from the values w1 = w2 = 1 at each iteration a random number in the range
[�0:05;+0:05] was added to each weight so as to have two di�erent weights varying
rather slowly. The starting temperature was T = 10; 000 and the �nal one T = 1. The
annealing schedule was chosen as T = c= log(k0 + k) with k index of iteration and c, k0
parameters set so to have T = 10; 000 for k = 0 and T = 1 for k = 1; 000.

Out of 1,000 iterations 641 solutions have been accepted and 19 of them were non-
dominated among the generated solutions. In Figure 2 the 641 solutions are displayed
in the objective space. Note that the picture does not re
ect properly the stationary
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distribution, since repeated solutions (and this happened 359 times) are drawn only
once.
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