
I

Local search inequalities

Giuseppe Lancia, Franca Rinaldi, Paolo Serafini

Abstract. We describe a general method for deriving new inequalities for integer programming formulations of
combinatorial optimization problems. The inequalities, motivated by local search algorithms, are valid for all optimal
solutions but not necessarily for all feasible solutions. These local search inequalities can help in either pruning the
search tree at some nodes or in improving the bound of the LP relaxations.

1 Optimization and local search

One of the most effective ways to solve an NP-hard combinatorial optimization problem is to formulate it as

an integer program, which is in turn solved by branch and bound [9]. Let the formulation be

zIP := min{c x : x ∈ S} (1)

where S = {x : Ax ≥ b, x ≥ 0, x ∈ Zn}. Moreover, let P = {x : Ax ≥ b, x ≥ 0} and P I = conv(S).

Valid inequalities (also called cuts) can be added to (1) to strengthen the quality of the LP bound to

be used in the branch-and-bound. The process of solving a combinatorial optimization problem with the

addition of valid cuts is called branch-and-cut [11].

Local search is a general framework for finding good (not necessarily optimal) solutions of an optimization

problem [1, 8]. In local search, a neighborhood function N (s) is specified, which, for a feasible solution s,

defines a set of feasible solutions “close” to s. A local optimum is a solution s∗ such that c s∗ ≤ c s for all

s ∈ N (s∗). Clearly, an optimal solution of the problem is also a local optimum for each possible neighborhood

but not vice-versa. Local search heuristics usually work by quickly finding as many local optima as possible,

and then returning the best one.

Local search inequalities

The results presented in this paper are based on the following observation:

Given a local search neighborhood N , a global optimum of the problem must also be a local optimum

for N . This is therefore an additional constraint on the global optimum.

If it is possible to express the above constraint via linear inequalities, we call each such linear constraint a

local search inequality (LSI). Basically, local search inequalities are constraints saying that, for each move

which changes a feasible solution x into a feasible solution x′ ∈ N (x), it must be c x′ ≥ c x. These constraints

are valid for local optima (and hence for global optima), but may be violated by some other feasible solutions

in P I . Therefore, they cut through the set P I and are not valid inequalities in the usual sense.

II

(a) (b)

(c) (d) (e)

Fig. 1. A feasible set with two neighborhood functions N 1 (a) and N 2 (b). In (a) neighbor points are obtained by
moving vertically or horizontally; in (b) by moving diagonally. The objective function is maxx1 + x2 and the local
optima are the black dots. PN1 is shown in (c) and PN2 is shown in (d). PN1 ∩ PN2 is shown in (e) which has only
two local optima points, one of which is the global optimum.

Given a neighborhood function N , let X(N) be the set of incidence vectors of all local optima for N , and

let PN = conv(X(N)). Then, a LSI is nothing but a valid inequality for PN . The polytope PN is contained

in P I , and if k distinct neighborhood functions are considered, the optimal solutions in P I are contained

in PN1 ∩ PN2 ∩ · · · ∩ PNk . In Figs. 1(a) and (b) a feasible set is shown with two neighborhood functions

N 1 and N 2. The neighborhood functions are schematically shown at the left of the figures (in the first case

neighbor points are obtained moving vertically or horizontally; in the second case moving diagonally). If the

objective function is maxx1 + x2 then the local optima are the black dots. In Figs. 1(c) and (d) we can see

PN1 and PN2 . In Fig. 1(e) we see PN1 ∩ PN2 which has only two local optima points, one of which is the

global optimum.

From our computational experiments, we have noticed that X(N1)∩X(N2)∩· · ·∩X(Nk) is typically much

smaller than S, even for k = 2, 3. For example, consider the problem of finding the optimal TSP tour over the

first 13 nodes of the TSPLIB instance fri26. We computed the local optima for three simple neighborhood

functions defined by the moves that exchange two consecutive cities along the tour (N1), exchange any two

cities along the tour (N2) and remove two edges from the tour and reconnect the two resulting paths (N3).

Then, among the 239,500,800 tours, there are 432,507 local optima for N1, 7, 293 local optima for N2 and

III

3 local optima for N3. Moreover, X(N1) ∩ X(N2) ∩ X(N3) has just 2 elements, and they are both global

optima.

Local search inequalities are, by their nature, very general, since they apply whenever a local optimality

condition can be expressed by linear inequalities. In this paper, we will focus on the Traveling Salesman

(TSP), on the Maximum Cut (Max-Cut) and on the Maximum Satisfiability problems (Max-SAT).

In a sense, LSIs are “formulation-independent”, i.e., they can be added to any formulation whose variables

include the variables appearing in the LSIs. For instance, there are several distinct formulations for the TSP

which have, among their variables, binary variables xij associated to the edges of the graph (see [6]). Then,

if we have a set of LSIs involving only the edge variables, they could be added to any of these formulations.

Another nice property of LSIs is that, as long as the neighborhood function is relatively simple (such as

exchanging the order of two elements in a permutation), the number of corresponding inequalities is fairly

small, and LSIs can be directly added to the formulation without the need of a separation algorithm. We

will see examples of this type later on. On the other hand, for more complex neighborhood functions, it may

be the case that there is an exponential number of LSIs, but still they can be dealt with in polynomial time

via a separation algorithm. We will see examples of this type as well.

The remainder of the paper is organized as follows. In Sec. 2 we describe two neighborhoods for the

Symmetric TSP and some corresponding LSIs. In Sec. 3 and Sec. 4 we describe LSIs for the Max-Cut and

the Max-SAT problems, respectively. In Sec. 5 we report the results of some computational experiments.

Some conclusions are drawn in Sec. 6

Notation We will adopt the following notation. For a graph G = (V,E) and a set of nodes S ⊂ V , we

denote by δ(S) the set of edges with one endpoint in S and the other in V \ S. With a slight abuse of

notation, we write δ(v) instead of δ({v}) when |S| = 1. By N(v) we denote the set of neighbors of v ∈ V ,

i.e. N(v) := {u : uv ∈ E}. If x are variables of a linear program with indices in a set I, and J ⊆ I, by x(J)

we denote the sum
∑
i∈J xi.

2 The Traveling salesman problem

The (symmetric) Traveling salesman problem (TSP) is the following problem: Given an undirected graph

G = (V,E), with costs ce on the edges e ∈ E, find a hamiltonian tour τ minimizing c(τ) :=
∑
e∈τ ce. Without

loss of generality, we can assume G is the complete graph Kn and V = {1, . . . , n}.
The TSP is a widely known problem on which almost all combinatorial optimization approaches have

been tried [7]. Almost all ILP formulations for the TSP employ, among others, binary variables xe, associated

to the edges e ∈ E, to select the edges of the tour (for a survey about TSP formulations see [10]).

IV

(a) (b)

Fig. 2. 2-OPT and SWAP moves

A popular and very effective formulation consists in minimizing
∑
e∈E ce xe subject to the degree con-

straints (2) and the subtour elimination constraints (3):

x(δ(v)) = 2 v ∈ V (2)

x(δ(S)) ≥ 2 S ⊆ V : 2 ≤ |S| ≤ n− 2 (3)

We have used this formulation in our computational experiments to test the effectiveness of LSIs. Several

local search neighborhoods have been proposed for the TSP. In this section we consider the following two:

2-OPT Neighborhood: Given a tour H = (v1, v2, . . . , vn, v1), remove two edges and replace them

with two new ones, to obtain a new tour. For instance, replacing the edges vivi+1 and vjvj+1 in H

yields the new tour

H ′ = (v1, . . . , vi, vj , vj−1, . . . , vi+1, vj+1, . . . , v1)

(see Fig. 2 (a)).

(Node) SWAP Neighborhood: Given a tour H = (v1, v2, . . . , vn, v1), pick any two vertices and

exchange them within the tour. For instance, swapping the vertices vi and vj in H yields the new

tour

H ′ = (v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , v1)

(see Fig. 2 (b)).

The 2-OPT neighborhood can be generalized to k-OPT, in which k edges are removed and replaced by

some other edges yielding a new tour. It can be observed that the SWAP move is in fact a special type of

4-OPT move, in which four edges are removed and replaced by four new ones.

We will now present LSIs based on the above neighborhoods. The first family, 2-OPT inequalities are

LSIs based on the fact that an optimal tour cannot be improved by a 2-OPT move. Similarly, the SWAP

inequalities state that an optimal tour cannot be improved by a SWAP move.

V

1

43

2
α

γ
β

Fig. 3. Partition of E({1, 2, 3, 4}) in α, β and γ

2-OPT inequalities

Denote by P 2O the convex hull of the incidence vectors of the local optimal solutions for the 2-OPT neigh-

borhood. In this section we introduce some inequalities that are valid for P 2O.

Given any subset S of V with four nodes (without loss of generality we hereafter assume S = {1, 2, 3, 4}),
we partition E(S) := {ij ∈ E : i, j ∈ S} in three disjoint pairs of edges, i.e., the horizontal edges α, the

crossing edges β and the vertical edges γ (see Fig. 3). Without loss of generality we assume c(α) ≥ c(β) ≥ c(γ)

where c(p) is the cost of pair p for each pair p = α, β, γ. Given the labeling of the nodes as in Fig. 3, we

have α = {12, 34}, β = {14, 23} and γ = {13, 24}. In the following we denote by x(α) := x12 + x34,

x(β) := x14 + x23 and x(γ) := x13 + x24.

Proposition 1 Assume

c(α) > c(β) ≥ c(γ).

Then the inequality

x(α) ≤ 1 (4)

is valid for P 2O.

Proof Let x̄ be the incidence vector of a feasible tour τ . Then, if x̄(α) = 2, the two edges in α could be

removed from τ and replaced by either the edges in β or those in γ to obtain a better tour. Hence, τ would

not be a local optimum.

Proposition 2 Assume

c(α) ≥ c(β) > c(γ).

Then the inequality

x(α) + x(β) ≤ 2 (5)

is valid for P 2O.

VI

Proof Let x̄ be the incidence vector of a feasible tour τ . If x̄(α) + x̄(β) ≥ 3, then τ either contains both

α edges and an edge of β, or it contains both β edges and an edge of α. In the first case, by replacing the

edges α with γ we would obtain a better tour. Similarly, in the second case, we could obtain a better tour

by replacing β with γ.

From the degree constraints (2) and the subtour elimination inequalities (3) it follows that any incidence

vector of a tour satisfies the condition

(x(α) = 0) ∨ (x(β) = 0) ∨ (x(γ) = 0) . (6)

Proposition 3 Assume

c(α) > c(β) > c(γ).

Then the following inequalities are valid for P 2O:

2x(α) + x(β) + xeγ ≤ 3 for each eγ ∈ γ (7)

2x(α) + 2xeβ1 + xeβ2
+ x(γ) ≤ 4 for each eβ1 , e

β
2 ∈ β, eβ1 6= eβ2 (8)

3x(α) + 2x(β) + x(γ) ≤ 5. (9)

Proof Let x̄ be the incidence vector of a 2-OPT local optimum tour τ . By (6) x̄(α) = 0 or x̄(β) = 0 or

x̄(γ) = 0. In the first case, all the inequalities are satisfied because of the soubtour elimination constraint

x̄(α)+ x̄(β)+ x̄(γ) ≤ 3 induced by the set S = {1, 2, 3, 4}. In the second case, they follow from Proposition 1.

In the third case, they follow from Proposition 1 and Proposition 2.

We notice that for each inequality of type (7)-(9) one can find a feasible fractional solution that satisfies

that inequality as an equality while satisfies each other inequality and the subtour elimination constraints

strictly.

We have also derived the inequalities (7)-(9) directly by computing all facets of the projection of the

polytope P 2O. The inequalities (7)-(9) are indeed facet defining. There are other facet defining inequalities

but they are less effective. Considering the set of six arcs α ∪ β ∪ γ, there are 27 incidence vectors of

subsets belonging to tours, and 7 of them are not local optima (assuming the ordering in Proposition 3).

The inequalities (7) and (9) cut all non local optima and the inequalities (8) cut all but one. The other

inequalities (not listed here) cut less non local optima. In particular one cuts none of the non local optima.

It turns out that it is a subtour inequality.

The next proposition introduces a new family of inequalities with an exponential number of elements.

Proposition 4 Assume

c(α) ≥ c(β) > c(γ).

VII

Then for each subset T of nodes such that 1, 2 ∈ T and 3, 4 /∈ T the inequality

x(δ(T)) ≥ 2x(β) (10)

is valid for P 2O.

Proof Let x̄ be the incidence vector of a 2-OPT local optimum tour τ . If x̄(β) ≤ 1, then inequality (10) is

dominated or equal to the subtour elimination constraint induced by T . Assume x̄(β) = 2. Since, despite the

fact that c(γ) < c(β), the local optimal tour τ uses both edges in β, then τ must contain a path p′ between

1 and 3 and a path p′′ between 3 and 4. Therefore, the cut δ(T) contains, besides the edges of β, at least

one edge of p′ and at least one edge of p′′, thus at least 4 = 2 x̄(β) edges of τ .

Separating 2-OPT LSI. Each set of four nodes identifies one inequality of type (4), (5), (7), (8) and (9) and

an exponential number of inequalities of type (10). As a consequence, the O(n4) inequalities (4), (5), (7), (8)

and (9) can be either added to the initial model or separated in polynomial time by a direct check. On the

other hand, the separation of inequalities (10) requires the adoption of a cutting plane approach. For each

set of four nodes, they can always be labeled as 1, 2, 3, 4 in such a way that c(α) ≥ c(β) ≥ c(γ). If c(β) > c(γ)

the separation problem of (10) with respect to these nodes is the following

Separation problem for inequalities (10): Given x̂ ∈ R|E| and nodes 1, 2, 3, 4 for which condition

c12 + c34 ≥ c14 + c23 > c13 + c24 holds, find, if it exists, a subset T ⊆ V , with 1, 2 ∈ T , 3, 4 /∈ T such

that
∑
e∈δ(T) x̂e < 2 (x̂14 + x̂23).

The above separation problem can be solved in polynomial time as a maximum flow problem as follows.

Define a directed graph Ḡ = (V̄ , Ē) with n − 2 nodes, where two special nodes s and t are obtained by

contraction of {1, 2} and {3, 4}, respectively, and the remaining n−4 nodes correspond to the other nodes of

G. For each ij ∈ E with i, j /∈ {1, 2, 3, 4}, the arcset Ē contains both arcs (i, j) and (j, i) with capacity x̂ij .

Moreover, Ē contains an arc (s, i), for each i 6= 3, 4, with capacity x̂1i + x̂2i, an arc (j, t), for each j 6= 1, 2,

with capacity x̂3j+ x̂4j and the arc (s, t) with capacity x̂13 + x̂14 + x̂23 + x̂24 (note that arcs with zero capacity

can in fact be omitted from Ē). Clearly, each subset T̄ of nodes of Ḡ containing s and not t corresponds to

a subset T of nodes of G with 1, 2 ∈ T and 3, 4 /∈ T . Moreover, the capacity of the cut δ(T̄) in Ḡ is equal to

the left hand side of inequality (10) evaluated in x̂. Therefore inequalities (10) are satisfied by x̂ if and only

if the minimum cut separating s from t in Ḡ has capacity at least 2 x̂(β). By the max flow-min cut theorem,

a cut of minimum capacity separating s and t in Ḡ may be found by solving a maximum flow problem.

We remark that when x̄(β) ≤ 1 the inequalities (10) are dominated by the subtour elimination constraints.

We note the interesting fact that there may be solutions that do not violate subtour inequalities but violate

VIII

1 2 3 4 5 6 7 8

1 - 100 159 102 146 165 219 670
2 100 - 68 8 40 61 135 62
3 159 68 - 76 55 74 62 116
4 102 8 76 - 45 64 134 27
5 146 40 55 45 - 25 111 63
6 165 61 74 64 25 - 88 59
7 219 135 62 134 111 88 - 86
8 670 62 116 27 63 59 86 -

Table 1. The TSP instance of the example

1

8
5 6

73

2

4 1

8
5 6

73

2

4
x1,3 := 0

(a) root solution (b) subproblem solution

Fig. 4. LP solutions for the example

both comb inequalities ([4]) and local search inequalities. These solutions can be cut off by local search

inequalities without the need of resorting to separation routines for comb inequalities. In the following

example we show an occurrence of this fact.

An example. We now describe the effect of the 2-OPT local search inequalities when added to the subtour

elimination model of the TSP. Consider the instance over 8 nodes reported in Table 2. The root node solution

x∗ is shown in Fig. 4(a) where a solid line represents an edge of value 1 and a dashed line represents an edge

of value 0.5. The value of x∗ is 512.5 and the solution does not violate any 2-OPT local search inequality.

After branching on the edge 13, we consider the subproblem in which x13 = 0. The optimal solution x̂ of

the subtour elimination relaxation is shown in Fig. 4(b) and has value 514. This solution satisfies all subtour

inequalities but violates the comb inequality given by the handle {2, 3, 5} and the teeth {1, 2}, {5, 6} and

{3, 7}, i.e.

x23 + x25 + x35 + x12 + x56 + x37 ≤ 4.

IX

Moreover, x̂ violates local search inequalities of types (5), (7), (8) and (9) corresponding to the four nodes

1, 2, 3, 4. In this case c(α) = c12 + c34 = 176, c(β) = c14 + c23 = 170 and c(γ) = c13 + c24 = 167. We have

x̂(α) + x̂(β) = 1 + 1.5 = 2.5 > 2,

2x̂(α) + x̂(β) + x̂24 = 2 + 1.5 + 0 = 3.5 > 3

2x̂(α) + 2x̂14 + x̂23 + x̂(γ) = 2 + 2 + 0.5 + 0 = 4.5 > 4,

3x̂(α) + 2x̂(β) + x̂(γ) = 3 + 3 + 0 = 6 > 5.

Moreover, x̂ violates the inequality of type (10) corresponding to the set T = {1, 2} separating {1, 2} from

{3, 4}. Indeed x̂(β) = 1.5 while the cut δ(T) has capacity 2 < 2 × 1.5 = 3. We observed that after the

addition of any of the corresponding violated inequalities the new solution is the global optimum tour

(1, 4, 8, 7, 3, 6, 5, 2, 1) of value 516.

SWAP inequalities

Let us consider the SWAP neighborhood, in which a new tour τ ′ is obtained from a given one τ by exchanging

any two nodes i and j in τ (see Fig. 2 with i := vi and j := vj).

Proposition 5 All local optima with respect to the SWAP neighborhood satisfy the following LSIs∑
k 6=j

cikxik +
∑
k 6=i

cjkxjk ≤
∑
k 6=i

cikxjk +
∑
k 6=j

cjkxik i, j ∈ V (11)

Proof Suppose that in a local optimum tour x the nodes i and j are not adjacent. Hence the value of the

lhs is the value of the two edges incident to i plus the value of the two edges incident to j in the tour x. This

is the value of the edges that the SWAP move would delete from the tour. Now note that cikxjk represents

the cost of going from k to i when k is adjacent to j in the tour. In other words, the tour passes through

the edge jk, but we exploit this fact to pick up the cost of the edge ik, which will be brought into the tour

by the SWAP move. Hence the rhs is the value of the new edges. Then the inequality simply states the local

optimality of x. If i and j are adjacent in the tour the inequality is still valid. The edge ij, which is present

also after the SWAP move, does not enter (11) and the lhs and the rhs amount to the cost of two edges,

instead of four.

While in the inequalities (11) the coefficients of the variables are given by the edge costs, in the 2-OPT

LSIs the variables have low-value constant coefficients (either 1, 2 or 3). Usually, having low coefficients is

preferable, as in LP relaxations variables with high coefficients tend to assume small fractional values. We

then propose the following “combinatorial” version of the SWAP inequalities in which all variables have

coefficient 1.

X

Proposition 6 For each choice of six nodes i′, i, i′′, j′, j, j′′ such that

ci′i + cii′′ + cj′j + cjj′′ > cj′i + cij′′ + ci′j + cji′′

the following LSI must be satisfied by each SWAP local optimum:

xi′i + xii′′ + xj′j + xjj′′ ≤ 3 (12)

Proof If all four variables were equal to 1, it would mean that the tour visits i′, i, i′′ in sequence and j′, j, j′′

in sequence. By swapping i and j we would then obtain a better tour.

Both inequalities (11) and (12) can be separated by complete enumeration in polynomial time (or directly

added to the model) as there are O(n2) inequalities (11) and O(n6) inequalities (12).

3 The Max-Cut Problem

Given an undirected graph G = (V,E), the cardinality Max-Cut problem requires finding a subset S ⊂ V

such that |δ(S)| is maximum. The problem is strongly NP-hard [3]. A possible neighborhood for Max-Cut is

the following

k-FLIP Neighborhood: Given a solution S ⊂ V , pick a subset A of k nodes and “flip their color”

(i.e., if a node is in S move it to V \ S, while if it is V \ S move it to S).

We note that a k-flip on a subset A of nodes changes the state only of edges in δ(A). In particular, an

edge e ∈ δ(A) belongs to the cut after the move if and only if it was not in the cut before.

Consider any formulation of the problem which, possibly among others, has variables xij for each pair

i, j in V such that xij = 1 iff |S ∩ {i, j}| = 1. Note that a subset of these variables correpond to the edges

of E. It is immediate to verify that each local optimum has to satisfy the following local search inequalities

∑
e∈δ(A)

xe ≥
⌈
|δ(A)|

2

⌉
A ⊂ V. (13)

In particular, the case |A| = 1 is the most commonly used in local search procedures for Max-Cut, and

the corresponding 1-FLIP LSIs are ∑
e∈δ(i)

xe ≥
⌈
|δ(i)|

2

⌉
i ∈ V. (14)

For |A| = 2, (13) become the following 2-FLIP LSIs

x(δ(i)) + x(δ(j))− 2 [ij ∈ E]xij ≥
⌈
|δ({i, j})|

2

⌉
i ∈ V, j ∈ V, i 6= j. (15)

XI

where [ij ∈ E] = 1 if ij ∈ E and 0 otherwise.

From (15) one can derive other, possibly stronger, families of local cuts by separately considering the

cases xij = 0 and xij = 1. We call these LSIs the I2-FLIP (standing for “Improved 2-FLIP”). For each pair

of vertices a, b ∈ V , we define N(a − b) := N(a) \ (N(b) ∪ {b}) and N(a + b) := (N(a) ∪ N(b)) \ {a, b}. In

other words N(a− b) is the set of vertices, different from b, that are adjacent to a but not to b and N(a+ b)

is the set of vertices that are adjacent to the subset {a, b}.
Let us consider the case that, in a feasible solution, xij = 0. Then i and j are on the same shore of the

cut and xik = xjk for each k 6= i, j. The constraints (15) can be used to derive a family of inequalities, each

of which is of the general form

∑
k∈N(i+j)

| N(k) ∩ {i, j}|xak ≥
⌈
|δ({i, j})|

2

⌉
(1− xij) (16)

where, for each k ∈ N(i + j), a can be any index in the set {i, j}. Note that the left hand side of (16)

corresponds to the sum x(δ(i)) + x(δ(j)) since for each k ∈ N(i) ∩ N(j) it is xik + xjk = 2xak = |N(k) ∩
{i, j}|xak for each a = i, j. The inequalities (16) are trivially satisfied when xij = 1.

Since for each pair i, j and k ∈ N(k) ∩ {i, j} the variable xak could be either xik or xjk, there are

an exponential number of inequalities (16). These inequalities have a simple separation algorithm. Namely,

given a fractional solution x̄, to obtain the most violated inequality for a pair i,j, we set a = i if x̄ik ≤ x̄jk

and a = j otherwise.

Let us now consider the case that, in a feasible solution, xij = 1. Then i and j are on different shores

and each vertex k ∈ N(i) ∩N(j) contributes exactly one edge to the cut (either ik or jk), and this remains

true also after the 2-FLIP. However, for all the remaining edges in δ({i, j}) an edge is in the new cut if and

only if it was not in the cut before. Therefore, at a local optimum at least half of them are in the cut. This

can be enforced via the following constraints:

∑
k∈N(i−j)

xik +
∑

k∈N(j−i)

xjk ≥
⌈
|N(i)	N(j)|

2

⌉
xij (17)

where the symbol 	 denotes the symmetric difference of two sets. Note that all the inequalities (17) are

trivially satisfied when xij = 0.

While there are many ILP formulations for the TSP, some of which very effective, the same cannot

be said for the Max-Cut, which is more efficiently solved by semidefinite programming techniques. In our

experiments we used the following well-known triangle inequalities formulation. The (binary) variables of

this formulation are xij for each pair of vertices i, j, while the constraints are

xjk − xij − xik ≤ 0 (18)

XII

xik − xij − xjk ≤ 0 (19)

xij − xik − xjk ≤ 0 (20)

xij + xjk + xik ≤ 2 (21)

for all triples of vertices i, j, k.

4 The Max-SAT Problem

Given n Boolean variables v1, . . . , vn, a literal is either a variable vi or its negation v̄i. A clause is the

disjunction of a set of literals, and a Boolean formula, in conjunctive form, is the conjunction of a set of

clauses. A clause is satisfied by a truth assignment of the variables if at least one of its literals is true.

The Maximum Satisfiability (Max-SAT) problem requires to find an assignment of truth values for all the

variables which satisfies the maximum number of clauses in a given Boolean formula.

With a slight abuse of terminology, we will identify a clause with its underlying set of literals, so that we

will write l ∈ C meaning that the literal l appears in the clause C.

Given a Boolean formula with variables v1, . . . , vn and clauses C1, . . . , Cm, for each variable vi we denote

by C+(vi) := {j : vi ∈ Cj} the set of indices of the clauses containing the literal vi, by C−(vi) := {j : v̄i ∈ Cj}
the set of indices of the clauses containing the literal v̄i and define C(vi) := C+(vi) ∪ C−(vi). Similarly, we

denote by V +(Cj) := {i : vi ∈ Cj} and by V −(Cj) := {i : v̄i ∈ Cj} the sets of indices of the variables whose

literal vi and, respectively, v̄i appears in Cj and define V (Cj) := V +(Cj) ∪ V −(Cj).

The Max-SAT problem can be formulated as the following ILP problem with 0-1 variables x1, . . . , xn

associated to the n Boolean variables and 0-1 variables y1, . . . , ym associated to the m clauses. The meaning

of the x variables is that xi = 1 when vi is set to TRUE, while yj = 1 when clause Cj is satisfied.

max
∑
j

yj

yj ≤
∑

i∈V +(Cj)

xi +
∑

i∈V −(Cj)

(1− xi) j = 1, . . . ,m

xi, yj ∈ {0, 1} i = 1, . . . , n, j = 1, . . . ,m.

(22)

We consider the following neighborhood for Max-SAT:

1-FLIP Neighborhood: Given a truth assignment for all the variables, pick a variable vi and

change its truth value.

It is immediate to verify that each local optimum has to satisfy the following LSIs, called 1-FLIP in-

equalities

XIII

∑
j∈C(vi)

yj ≥
⌈
|C(vi)|

2

⌉
i = 1, . . . , n. (23)

Indeed, if this were not the case for a variable vi, by swapping the truth value of vi we would obtain

a better solution. This idea can be strengthened by observing that the best assignment for the variable vi
can guarantee to satisfy the largest between the set of clauses C+(vi) and C−(vi). Therefore, we obtain the

following LSI: ∑
j∈C(vi)

yj ≥ max{|C+(vi)|, |C−(vi)|} i = 1, . . . , n.

These LSIs can be further strengthened as follows. For each variable vi and each clause Cj , j ∈ C(vi),

we introduce a new 0-1 variable zij such that zij = 1 if and only if Cj is satisfied by a variable different from

vi (irrespective of vi satisfying Cj). Hence,

zij = max
{

max
r∈V +(Cj)\{i}

xr, max
r∈V −(Cj)\{i}

1− xr
}
,

which leads to the |Cj | linear inequalities

zij ≥ xr r ∈ V +(Cj) \ {i}

zij ≥ 1− xr r ∈ V −(Cj) \ {i}

zij ≤
∑

r∈V +(Cj)\{i}

xr +
∑

r∈V −(Cj)\{i}

(1− xr).
(24)

Hence the following LSIs are valid for the 1-FLIP local optima:∑
j∈C(vi)

yj ≥ |C+(vi)|+
∑

j∈C−(vi)

zij ∀ i = 1, . . . , n (25)

∑
j∈C(vi)

yj ≥ |C−(vi)|+
∑

j∈C+(vi)

zij ∀ i = 1, . . . , n. (26)

Indeed, given a truth assignment, by setting vi = TRUE and keeping all the other variables at their

values, we obtain a truth assignment for which all clauses in C+(vi) are satisfied while all the clauses in

C−(vi) which are satisfied by variables different from vi remain satisfied. This explains the inequalities (25).

A similar argument applies to setting vi = FALSE for the inequalities (26). We call the inequalities (25) and

(26) I1-FLIP, for Improved 1-FLIP. They require to add
∑
j |V (Cj)| variables and

∑
j |V (Cj)| constraints to

the original model. In alternative to introducing the z variables and the constraints (25) and (26), one can

use an equivalent formulation with an exponential number of constraints that allows for an easy separation

algorithm. Note that, by (24), we can replace the variable zij in (25) with either xr, for any r ∈ V +(Cj)\{i},

XIV

or 1−xr, for any r ∈ V −(Cj)\{i}, and still obtain a valid inequality. By doing this for all clauses j ∈ C−(vi)

we obtain a family of valid inequalities of the form, for i = 1, . . . , n,∑
j∈C(vi)

yj ≥ |C+(vi)|+
∑

j∈C−(vi)

(
∆
(
r(j), V +(Cj)

)
xr(j) +∆

(
r(j), V −(Cj) \ {i}

)
(1− xr(j))

)
(27)

where, for each j ∈ C−(vi), r(j) can be any index in V (Cj) \ {i} and ∆(a,A) denotes a function which,

for an element a and a set A, is 1 if a ∈ A and 0 otherwise. Furthermore, for each solution (x̄, ȳ, z̄), each

variable-index i and each j ∈ C−(vi), there is at least a choice of the index r(j) ∈ V (Cj) \ {i} such that

z̄ij = ∆
(
r(j), V +(Cj)

)
x̄r(j) +∆

(
r(j), V −(Cj) \ {i}

)
(1− x̄r(j))

holds.

Similarly, for each i = 1, . . . , n we can replace contraints (26) with the equivalent family of constraints∑
j∈C(vi)

yj ≥ |C−(vi)|+
∑

j∈C+(vi)

(
∆
(
r(j), V +(Cj) \ {i}

)
xr(j) +∆

(
r(j), V −(Cj)

)
(1− xr(j))

)
(28)

containing an element for each choice of indices r(j), j ∈ C+(vi), in the sets V (Cj) \ {i}.
We remark that, although there is an exponential number O(nm) of inequalities (27) and (28), these

inequalities allow for a trivial separation algorithm. Indeed, given a solution (x̄, ȳ) of the LP relaxation of

(22), for each variable-index i and for each j ∈ C(vi) we can easily compute an index r̄(j) that achieves the

maximum

max
{

max
r∈V +(Cj)\{i}

x̄r, max
r∈V −(Cj)\{i}

1− x̄r
}
.

It is easy to see that the indices r̄(j), where j ∈ C−(vi) for (27) and j ∈ C+(vi) for (28), determine the

most violated constraints, if any exists. We call the inequalities (27)-(28) SI1-FLIP, standing for Separated

I1-FLIP.

5 Computational experiments

In this section we describe the computational experiments in which we tried to assess the effectiveness of the

local search inequalities. We ran some tests for the TSP problem, Max-Cut and Max-SAT. The results are

discussed in Sections 5.1, 5.2 and 5.3, respectively. In our tests we used CPLEX version 12.1 as the LP-solver,

called by a general-purpose branch-and-cut code that we developed. In general, the branch-and-bound search

strategy was depth-first, while the branching variable was the most fractional. An exception to this branching

rule, that turned out to be quite effective, was adopted for the Max-Cut problem, and is described in Section

5.2.

XV

In order to study the effectiveness of LSIs, we have used two fundamental measures: the running time and

the total number of nodes explored in the search-tree. Both measures were evaluated with and without the

addition of LSIs. Clearly, the two measures are correlated, since to a decrease in the number of nodes explored

should correspond a decrease in the running time, which is, ultimately, our main goal. However, there is a

trade-off to evaluate: in some cases the addition of LSIs can lead to fewer nodes explored, but at the same

time it increases the computational work at each node. As a result the overall running time can increase.

When this phenomenon happened, we noticed that most of the times the running time did not increase by

much, while the number of nodes was quite smaller. Hence, there is the hope that by fine-tuning all the

work done at each node other than the LP-solution (e.g., by avoiding similar/identical re-computations at

different nodes, for example with the use of suitable global data structures or incremental computations from

a node to its descendants, etc.) the running time can be further decreased. We did not perform this type

of fine tuning, but have elected to report both the running time and the number of nodes explored in our

computational experiments.

The goal of the experiments is, loosely speaking, to “see if LSIs work”. Hence the way we present the

results reflects this goal. If (T0, N0) are the running time and number of nodes explored without LSIs, and

(T,N) are the same parameters after the addition of LSIs, it makes sense adding LSIs if either T < T0 or

N < N0, and this independently of the actual values of T0, N0, T,N . We have therefore decided to normalize

all values so that T0, N0, T,N , being irrelevant, are not reported, while we report the percentages pT and

pN of increment or decrement of T and N with respect to T0 and N0, namely

pT =
T − T0

T0
× 100, pN =

N −N0

N0
× 100.

This normalization has a practical advantage. In particular, it allows us to run the experiment across different

hardware platforms (clearly, after making sure that we use the same CPLEX version, and the same random

seeds, so that all runs would be identical on different machines except for the actual running time). Due to

the number of experiments and the overall computing time needed, this parallelism allowed us to complete

our experiments in a shorter amount of time.

In general, for each problem, we consider a set of instances that are first solved without LSIs (thus,

returning the base reference values of T0’s and N0’s) and then solved again with the addition to the model of

different type of LSIs (individually or together). A first table reports the percentage of increment/decrement

of each LSI with respect to the base reference values. In a second table, we report, for each LSI, how many

times the model with that particular LSI turned out to yield the minimum running time and/or number

of search nodes. We call this the number of wins for that strategy, so that this table makes it easier to

appreciate which is the best overall strategy, among not having LSIs, or having a particular type of LSIs.

XVI

pr124 ch130 d198 kroA100 kroE100 kroA150 kroB150 bier127 pr136 pr152
SWAP pT -57.1 -50.0 +8.1 0 -42.9 -12.5 +39.6 -46.0 +20.1 -18.7

pN -75.0 -66.6 -17.7 -39.6 -49.6 -40.4 -9.5 -67.2 -22.4 -43.6
2OPT(4) pT -64.3 -27.8 -11.7 -66.7 -57.1 -58.3 -59.4 -50.7 -22.9 -76.3

pN -72.2 -33.2 -17.5 -70.7 -61.0 -61.5 -63.3 -55.7 -25.9 -80.5
2OPT(5) pT -21.4 -5.56 -8.1 -46.2 -42.9 -12.5 -43.0 -37.3 -5.5 -23.0

pN -28.1 -9.16 -12.2 -48.7 -36.4 -16.3 -45.6 -42.4 -6.8 -26.2
2OPT(7) pT -71.4 -44.4 +2.7 -79.5 -71.4 -60.4 -45.9 -71.0 -21.7 -69.1

pN -78.6 -53.0 -12.2 -83.3 -68.5 -66.0 -72.8 -76.5 -24.0 -74.2
2OPT(8) pT -50.0 -27.8 -16.2 -71.8 -57.1 -50.0 -53.1 -61.6 -30.1 -38.1

pN -59.2 -33.2 -20.4 -75.3 -62.2 -53.1 -56.9 -66.6 -23.3 -43.4
2OPT(9) pT -64.3 -44.4 -15.3 -71.8 -57.1 -45.8 -55.1 -79.1 -28.7 -51.8

pN -68.0 -49.2 -20.4 -76.3 -60.5 -52.4 -59.2 -82.6 -20.5 -57.4
2OPT(10) pT -57.1 -61.1 -38.7 -59.0 -71.4 -39.6 -62.8 -64.8 -64.5 -56.8

pN -71.1 -73.3 -46.1 -76.6 -71.9 -53.1 -71.7 -75.5 -55.5 -67.7
all pT -71.4 -50.0 -0.9 -66.7 -42.9 -33.3 -19.3 -48.1 -43.8 -66.9

pN -87.6 -78.3 -38.4 -88.3 -72.3 -68.2 -66.7 -79.2 -53.0 -85.6

Table 2. TSPLIB instances solved with different LSIs.

LSI time nodes

SWAP 7/10 10/10
2OPT(4) 10/10 10/10
2OPT(5) 10/10 10/10
2OPT(7) 9/10 10/10
2OPT(8) 10/10 10/10
2OPT(9) 10/10 10/10
2OPT(10) 10/10 10/10

all 10/10 10/10

Table 3. With LSI vs without LSI.

LSI time nodes
none 0/10 0/10

SWAP 0/10 0/10
2OPT(4) 1/10 0/10
2OPT(5) 0/10 0/10
2OPT(7) 4/10 1/10
2OPT(8) 0/10 0/10
2OPT(9) 1/10 1/10
2OPT(10) 5/10 2/10

all 1/10 6/10

Table 4. Wins for different LSIs.

5.1 TSP

To test our LSIs for the TSP, we used a Branch-and-Cut code which was run on ten instances from the

TSPLIB [12]. The instances were randomly chosen among those of small/moderate size. The basic reference

ILP model was (2)-(3) i.e., degree constraints and subtour inequalities. In Table 2 we report the computational

results for our seven families of LSIs over the ten TSPLIB instances. Each row is labeled with one type of

LSI, and is relative to the basic model with the addition of the corresponding LSI. Each family of LSIs

is added to the model by a separation procedure which determines the violated inequalities. The first row

refers to SWAP LSI, while the other rows are labeled each with the reference to the relative 2OPT LSI (from

2OPT(4) to 2OPT(10)). The last row, labeled “all”, corresponds to the basic model with the addition of all

the above LSIs together.

For each column, we highlight in boldface the entries yielding the best running time and number of nodes

in the search tree. It can be seen that there is always a LSI that beats the basic TSP model without LSIs.

Furthermore, a look at the table by rows shows that the addition of each LSI would, on average, yield an

improvement over the basic TSP model.

XVII

G(30, 0.5) G(30, 0.75) G(40, 0.5)
pT pN pT pN pT pN

min -31.5 -51.6 -8.6 -0.8 -13.2 -11.2
no LSI / BC max +10.0 0.0 +4.3 +0.4 +30.9 0.0

avg -4.1 -3.9 -1.2 -0.1 +0.3 -1.9

min -12.5 -38.7 -22.6 -41.4 -25.8 -35.4
1-FLIP / BF max +116.2 +41.9 +48.8 +10.8 +52.6 +42.1

avg +27.5 +1.5 -1.0 -26.8 +11.6 -3.9

min -23.3 -38.7 -32.7 -49.8 -32.1 -43.0
1-FLIP / BC max +87.5 +27.9 +9.1 -19.8 +36.7 +12.9

avg +19.7 -3.8 +17.1 -39.9 -0.3 -15.9

min -19.2 -38.7 -19.0 -47.2 -13.4 -30.2
I2-FLIP / BF max +150.0 +74.4 +62.5 -6.0 +65.9 +52.6

avg +48.4 +15.4 +11.6 -30.3 +23.0 +3.9

min -12.3 -38.7 -60.2 -68.1 -27.8 -43.5
I2-FLIP / BC max +130.0 +37.2 -5.8 -38.7 +34.6 +15.5

avg +35.3 -0.9 -31.8 -58.4 +1.7 -15.8

Table 5. Max Cut random instances

This result is detailed in Table 3, where we report for each family of LSIs how many times the basic

model plus the corresponding LSIs outperforms the model without the LSIs. It can be seen that each type of

LSIs yields an improvement over most instances. In fact, most LSIs yield an improvement over all instances.

In Table 4 we report, for each type of LSI, the number of times it yields the best performance over the 10

instances (notice that, since different types of LSIs can yield the same performance, the sum of these values

over all the LSIs can exceed 10). It can be noted that the best improvement in the running time is achieved

by using LSIs 2OPT(10) alone (five times out of ten), while the second best are 2OPT(7). With respect to

the number of explored nodes, the best savings are achieved when all the LSIs are included together to the

model. In this case, as it can be deduced from last row of Table 2, the average number of nodes with the

LSIs is less than a third of the number without the LSIs.

5.2 Max-Cut

In a second run of tests we considered the Max-Cut problem, in which the basic model was the maximization

of
∑
ij∈E xij under the triangle inequalities (18)-(21).

For this problem we introduced also an ad-hoc branching strategy, alternative to the standard choice of

branching on the most fractional variable. This strategy has combinatorial motivations, described below.

Let us call BF the standard branching on fractional variables and BC the new branching strategy. In our

computational tests, the basic model for Max-Cut was extended in five ways, i.e., one by using the BC

strategy on the model without LSIs, and the other four corresponding to all the combinations of adding to

it one of the two LSIs and using BF or BC .

XVIII

G(30, 0.5) G(30, 0.75) G(40, 0.5)
time nodes time nodes time nodes

no LSI / BF 7/20 6/20 0/20 0/20 3/20 1/20
no LSI / BC 13/20 10/20 0/20 0/20 6/20 2/20
1-FLIP / BF 1/20 5/20 1/20 0/20 1/20 2/20
1-FLIP / BC 2/20 13/20 1/20 0/20 7/20 7/20
I2-FLIP / BF 1/20 5/20 0/20 0/20 0/20 0/20
I2-FLIP / BC 0/20 7/20 18/20 20/20 3/20 11/20

Table 6. Max-Cut: the number of wins for different LSIs strategies.

A branching scheme for Max-Cut Consider a node of the search tree, and let F0 and F1 be the set of variables

that can only assume the values 0 and, respectively, 1 in any feasible solution at the node. Let F = F0 ∪F1.

We recall that in the Max-Cut model the variables correspond to binary relations between the nodes, i.e.,

xij = 0 if i and j are on the same shore of the cut, and xij = 1 otherwise. Some of the variables in F have

been fixed to their values by the branching constraints leading to the node, while others are forced to their

values by logical implications. In particular, consider the connected components of the graph GF := (V, F)

(note that GF is not necessarily a subgraph of G, but rather of the complete graph over V). It is easy to see

that each connected component of GF is a clique. Note that we can explicitly add the constraints xab = 0/1

for all the variables in F that are not explicitly fixed by branching constraints. This is better from a practical

point of view, even if these constraints are in fact already implied by constraints (18)–(21).

For the branching rule, it makes sense to choose the fractional variable whose setting will force the largest

number of unfixed variables to assume fixed values. The first time we branch, only one variable becomes

fixed and so we choose the most fractional variable, as usual. At later branching decisions, however, we

use a strategy similar to Prim’s strategy for the Minimum Spanning Tree problem. Namely, at the generic

branching, we have only one connected component in F , say C, of size ≥ 1, while all other components are

isolated nodes. By branching on a variable xab such that ab ∈ δ(C), there will be |C| variables that will

assume fixed values, since C will be added a new node and become a clique of size |C|+1. The branching rule

is therefore the following: among the fractional LP variables xab with ab ∈ δ(C), choose the most fractional.

In our tests, we generated some random instances in which we set the density (i.e., probability that

an edge belongs to the instance) to 1
2 and 3

4 (this implies an average degree of 1
2 (n − 1) and 3

4 (n − 1)

respectively). In Table 5 we report the results over 60 instances. There are 40 instances with 30 nodes, half

with density 0.5, and half with density 0.75. Furthermore, there are 20 instances with 40 nodes and density

0.5, which was the largest size which the model could tackle in a reasonable amount of time on our machine

(i.e., within about one hour per instance). The table has three columns, one per each instance family, and

five rows, each depending on the LSIs and the branching strategy used. The reference model is the basic ILP

model with standard branching BF . For each instance family and combination of LSI/branching, we report

XIX

the minimum, average, and maximum of the relative increment of time and nodes of the search tree with

respect to the reference model. In each column we highlighted the best relative increment. Since there are

only O(n) 1-FLIP LSIs, there is no need for a separation algorithm and they were all added to the model.

The I2-FLIP LSIs, on the other hand, were separated.

In Table 6 we consider each combination of LSIs and branching rule, and see how many times, over all

instances, it yields the best result. It appears that for this particular problem, the best results are achieved

by using the branching strategy BC , and that LSIs become more effective as the size of the graphs grows

(either because of a larger number of edges or nodes or both). For the smallest graphs, the best results as far

as running time is concerned are obtained by using the basic model without LSIs, while the greatest savings

in nodes are achieved by using the 1-FLIP LSIs. For the 30-nodes graph at density 0.75, the best running

times and search nodes are obtained by using I2-FLIP LSIs. For the 40-nodes graphs, the best running times

are obtained with 1-FLIP LSIs, while the fewer search tree nodes are obtained with the I2-FLIP LSIs.

5.3 Max-SAT

The experiments for Max-SAT problems were run on istances taken from the literature. In particular, they

are instances from “The Second Evaluation of Solvers” (MaxSAT-2007), an affiliated event of the Tenth

International Conference on Theory and Applications of Satisfiability Testing [2]. There are 2SAT and 3SAT

instances, with either n =40 or 60 variables over m =300, 400, 500 and 600 clauses (each file name specifies

the values of n and m for an instance. In our table, we have reported the original file names, as from [2]).

In Table 7 we report the results of LSIs for the 30 instances of 2SAT. In the comparisons, the ILP reference

model for SAT is (22). As it can be observed, the inequalities SI1-FLIP allow the greatest savings in running

times on all but one instance (for which I1-FLIP yields the best running time). For some instances, such as

sz60.500.8, the running time and number of nodes are almost two orders of magnitude smaller than when

LSIs are not added to the model.

In Table 8 we report a summary of the LSIs performance over all 30 instances, grouped by instance size.

It can be seen that I1-FLIP and SI1-FLIP allow similar savings with respect to the number of nodes, but

using SI1-FLIP is better as far as the running time is concerned.

In Table 9 we report the results for the 20 instances of 3SAT. Due to the very large size of the LP

when inequalities I1-FLIP are added to the model, we have only considered the LSIs 1-FLIP and SI1-FLIP.

For 3SAT the results are quite worse than for 2SAT. In particular, while the addition of LSIs causes almost

invariably a decrease in the number of search tree nodes, only for 3 out of 20 instances there is an improvement

in the running time when LSIs are added to the model. While this always happens with 1-FLIP LSIs, it can

be seen from Table 10 that, on average, SI1-FLIP are better than I1-FLIP with respect to the running times.

However, the best model for 3SAT is the one without LSIs.

XX

1-FLIP I1-FLIP SI1-FLIP
instance pT pN pT pN pT pN

sz60.300.1.cnf -6.8 -35.1 -60.2 -90.4 -81.4 -90.4
sz60.300.2.cnf 0 -30.4 -50.0 -87.0 -83.3 -87.1
sz60.300.3.cnf +40.0 -6.7 +20.0 -68.0 -40.0 -67.9
sz60.300.4.cnf +28.6 -12.7 -28.6 -84.1 -71.4 -78.9
sz60.300.5.cnf 0 -41.4 -47.4 -86.7 -78.9 -86.8
sz60.300.6.cnf 0 -34.5 -47.6 -84.0 -76.2 -83.9
sz60.300.7.cnf -25.0 -42.7 -53.1 -88.1 -78.1 -88.1
sz60.300.8.cnf 0 -32.2 -59.2 -89.1 -80.3 -89.0
sz60.300.9.cnf -37.1 -54.4 -62.9 -91.1 -83.1 -91.2
sz60.300.10.cnf -6.3 -34.3 -31.2 -83.8 -75.0 -84.1
sz60.400.1.cnf +48.3 -16.4 -18.1 -89.8 -68.7 -89.8
sz60.400.2.cnf -4.5 -51.4 -78.4 -96.9 -91.3 -96.9
sz60.400.3.cnf +41.6 -23.2 -57.3 -93.4 -82.6 -93.4
sz60.400.4.cnf +7.0 -34.0 -46.9 -90.6 -77.2 -90.6
sz60.400.5.cnf -27.9 -54.0 -74.1 -95.8 -88.8 -95.8
sz60.400.6.cnf -23.7 -51.3 -76.3 -95.8 -88.8 -95.8
sz60.400.7.cnf -26.7 -64.9 -78.3 -95.7 -90.1 -95.7
sz60.400.8.cnf 0 -45.8 -72.0 -95.2 -87.3 -95.1
sz60.400.9.cnf -13.5 -37.5 -76.4 -95.5 -88.9 -95.5
sz60.400.10.cnf -43.8 -62.5 -80.0 -96.9 -91.0 -96.8
sz60.500.1.cnf +90.3 -26.5 -43.3 -95.3 -77.7 -95.3
sz60.500.2.cnf +43.1 -39.0 -83.0 -98.0 -92.7 -98.0
sz60.500.3.cnf +24.6 -36.7 -98.9 -98.1 -93.5 -98.1
sz60.500.4.cnf +4.9 -47.3 -83.0 -98.3 -93.4 -98.4
sz60.500.5.cnf -11.7 -51.3 -91.5 -98.9 -95.8 -98.9
sz60.500.6.cnf -6.1 -56.6 -85.8 -98.0 -93.1 -98.0
sz60.500.7.cnf -14.6 -49.6 -81.2 -97.7 -91.8 -97.6
sz60.500.8.cnf -68.0 -84.4 -97.7 -99.6 -98.8 -99.6
sz60.500.9.cnf -26.3 -59.4 -94.5 -99.3 -97.2 -99.3
sz60.500.10.cnf -54.9 -80.6 -78.3 -97.8 -92.0 -97.7

Table 7. 2SAT results.

6 Conclusions

In this paper we have described a new type of inequalities, the local search inequalities, which impose local

optimality conditions that all global optima must satisfy. LSIs are not valid inequalities in the usual sense,

but they can be added to ILP models to improve their performance. We have seen that, for some ILP models,

the number of search nodes explored, as well as the total time needed to obtain the optimal solution, can be

reduced with the use of LSIs.

LSIs are very general and “formulation independent”, i.e., the same LSI can be added to many different

formulations as long as such formulations include the variables of the LSI.

Our computational experiments have shown that the addition of LSIs can be quite beneficial in improving

some basic, simple, ILP models for the optimization problems that we considered. To better assess the impact

of LSIs in branch-and-bound schemes it would be important to embed LSIs in state-of-the-art branch-and-

cut codes for TSP, Max-Cut and Max-SAT, where the underlying ILP models are more sophisticated than

the ones we considered. In this paper we have limited ourselves to lay out the basic ideas and perform some

XXI

1-FLIP I1-FLIP SI1-FLIP
pT pN pT pN pT pN

min -37.1 -54.4 -60.2 -90.4 -81.4 -90.4
sz60 300 max +40.0 -6.7 +20.0 -68.0 -40.0 -67.9

avg -0.7 -32.4 -42.0 -85.2 -74.8 -84.7

min -43.8 -64.9 -78.4 -89.8 -91.3 -89.8
sz60 400 max +48.3 -16.4 -18.1 -89.8 -68.7 -89.8

avg -4.3 -44.1 -65.8 -94.6 -85.5 -94.6

min -68.0 -84.4 -97.7 -99.3 -92.7 -99.3
sz60 500 max +90.3 -26.5 -43.3 -95.3 -77.7 -95.3

avg -1.8 -53.2 -82.4 -98.1 -92.6 -98.1

Table 8. 2SAT aggregate results.

preliminary tests. How to apply these ideas to other problems and how to efficiently implement the technical

details in existing codes can be matter of future research.

References

1. Aarts E. and J.K. Lenstra (eds), Local Search in Combinatorial Optimization, John Wiley &

Sons, London, 1997.

2. http://www.maxsat.udl.cat/07/index.html

3. Garey M.R., Johnson D.S. and Stockmeyer L., “Some simplified NP-complete graph problems”,

Theoretical Computer Science, 1(3), 237–267, 1976.

4. Grötschel M. and Padberg M. W., “On the symmetric travelling salesman problem 1: inequali-

ties”, Mathematical Programming, 16, 265–280, 1979.

5. Johnson D.S. and L.A. McGeoch, “The traveling salesman problem: A case study in local op-

timization”, in Local search in combinatorial optimization, eds. E. Aarts and J.K. Lenstra, pp.

215–310, John Wiley & Sons, London, 1997.

6. Jünger M., G. Reinelt, G. Rinaldi, M.O. Ball, T.L. Magnanti, C.L. Monma and G. L. and

Nemhauser, “The traveling salesman problem”, Network Models, Handbooks in Operations Re-

search and Management Science, v. 7, North-Holland, Amsterdam, The Netherlands, pp. 225–330,

1995.

7. Lawler E. L., J. K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds), The traveling salesman

problem, John Wiley & sons, Chichester, 1985.

8. Michiels W., E. Aarts and J. Korst, Theoretical aspects of local search, Springer, Berlin, 2007.

9. Nemhauser G.L. and L.A. Wolsey, Integer Programming and combinatorial optimization, John

Wiley & Sons, New York, NY, USA, 1988. Wiley

XXII

1-FLIP SI1-FLIP
instance pT pN pT pN

cnf3.40.400.907721 +18.75 +0.64 +9.38 -5.99
cnf3.40.400.907722 +14.29 -7.74 +4.76 -14.87
cnf3.40.400.907723 +46.43 +13.08 +3.57 -14.77
cnf3.40.400.907724 -29.89 -41.22 +13.22 -14.56
cnf3.40.400.907725 +14.46 -4.29 +9.04 -9.84
cnf3.40.400.907726 +24.18 +9.52 +10.99 -10.15
cnf3.40.400.907727 +9.78 -10.37 +8.70 -8.66
cnf3.40.400.907728 -11.25 -25.80 +12.50 -7.65
cnf3.40.400.907729 +31.58 +8.94 +10.53 -1.66
cnf3.40.400.907730 +16.67 -4.49 +16.67 -3.33
cnf3.40.600.359121 +10.64 -11.10 +9.80 -34.17
cnf3.40.600.359122 +0.93 -19.64 +14.81 -20.44
cnf3.40.600.359123 +27.33 +3.16 +4.53 -33.60
cnf3.40.600.359124 +49.23 +18.82 +12.31 -11.17
cnf3.40.600.359125 +22.04 -1.83 +7.95 -34.61
cnf3.40.600.359126 +47.21 +21.39 +0.97 -40.63
cnf3.40.600.359127 +17.88 -6.09 +12.73 -20.42
cnf3.40.600.359128 +72.45 +38.42 +17.14 -12.03
cnf3.40.600.359129 -14.69 -32.89 +4.88 -35.07
cnf3.40.600.359130 +35.62 +4.38 +15.07 -18.82

Table 9. 3SAT results

10. Öncan T., Altinel I. K., and Laporte G., “A comparative analysis of several asymmetric travelling

salesman problem formulations”, Computers & Operations Research, 36, 637–654, 2009.

11. Padberg M. and G. Rinaldi, “A branch-and-cut algorithm for the resolution of large-scale sym-

metric traveling salesman problems”, SIAM Review, 33(1), 60–100, 1991.

12. Reinelt, G., “TSPLIB - A Traveling Salesman Problem Library”. ORSA Journal on Computing,

3, 376–384, 1991.

XXIII

LC1 LC3
pT pN pT pN

min -29.89 -41.22 +3.57 -14.87
cnf3.40 400 max +46.43 +13.08 +16.67 -1.66

avg +13.50 -6.17 +9.93 -9.15

min -14.69 -32.89 +0.97 -40.63
cnf3.40 600 max +72.45 +38.42 +17.14 -11.17

avg +26.86 +1.46 +10.02 -26.10

Table 10. 3SAT aggregate results.

