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Abstract. The best formulations for some combinatorial optimization problems are integer linear programming
models with an exponential number of rows and/or columns, which are solved incrementally by generating missing
rows and columns only when needed. As an alternative to row generation, some exponential formulations can be
rewritten in a compact extended form, which have only a polynomial number of constraints and a polynomial, although
larger, number of variables. As an alternative to column generation, there are compact extended formulations for
the dual problems, which lead to compact equivalent primal formulations, again with only a polynomial number of
constraints and variables.
In this this paper we introduce a tool to derive compact extended formulations and survey many combinatorial
optimization problems for which it can be applied. The tool is based on the possibility of formulating the separation
procedure by an LP model. It can be seen as one further method to generate compact extended formulations besides
other tools of geometric and combinatorial nature present in the literature.

1 Introduction

For some combinatorial optimization problems problems the best ILP formulations, leading to the tightest
bounds, employ an exponential number of either constraints or variables. Two famous examples are the TSP,
with its exponentially many subtour-inequalities [19] and the Cutting Stock problem with its exponentially
many variables [25, 26]. In both cases we deal with a polyhedron described by an exponential number of
inequalities. In the former case the polyhedron is the feasible set of the (relaxed) primal ILP formulation
whereas in the latter case it is the feasible set of the dual problem.

Both exponential formulations can be adopted in practice since they can be dealt with in an implicit way,
provided the “separation” problem (for either the primal or the dual formulation) can be solved in polynomial
or pseudopolynomial time. More specifically, if a model has an exponential number of constraints, only a
small subset of them is explicitly stored in the LP matrix, and a new row is added to the matrix only
if a specific separation procedure (usually called ‘pricing’ if it refers to the dual problem) finds a missing
constraint violated by the current LP solution. The use of separation and pricing within branch-and-bound
schemes has lead to the successful branch-and-cut [43, 28] and branch-and-price approaches [1, 4].

As an alternative to the exponential formulations, it is sometimes possible to describe formulations
providing the same tight bounds but employing only a polynomial number of variables and constraints.

In the case of a problem with exponentially many inequalities, these alternative formulations are defined
in a higher dimensional space in such a way that the polyhedron of the feasible solutions, once projected back
onto the space of the original variables, coincides with the original polyhedron. These new formulations are
called compact extended, where the adjective “compact” underlines their polynomial-size, while “extended”
implies that they are defined over a superset of the set of the original variables. The use of compact extended
formulations can provide a direct and often simpler way of solving a problem while exploiting the same
strong bounds of the original exponential formulations. We refer the reader to the comprehensive survey on
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Fig. 1. Diagram of derivation of compact formulations

compact extended formulations by [17] and to [33]. The basic tools shown in these surveys are mostly of
geometric and combinatorial type, relying on the transformation of the inequalities in the higher dimensional
space as they are projected in the original smaller dimensional space. Moreover, there are other tools, like,
for instance, the reflection rotations introduced in [34].

In the case of a problem with exponentially many variables (a typical column-generation model), it
is clearly the dual problem of the relaxed primal that exhibits exponentially many inequalities. Hence a
compact extended formulation can be sometimes defined for the dual problem. This new dual has in turn
a dual problem that has a polynomial number of variables and inequalities. This problem is of course in
close connection to the primal problem we started with and can be considered its compact reformulation,
which we call the compact equivalent of the original model. Note that, differently from the compact extended
formulation, the compact equivalent formulation cannot be seen as a problem defined in a higher dimensional
space. On the contrary, it is defined in a much lower dimensional space than the original one. Furthermore,
although the original problem and its compact equivalent solve the same problem, there is no projection
operator which allows to identify some variables of the compact version with the original ones. The original
ones are exponentially many and cannot find place in any compact reformulation. However, as we will describe
by many examples, it is in general not difficult to recover the original solution from the compact one.

In Figure 1 we show the operations that are carried out. The letters P and D refer to the primal and dual
problem respectively. In the upper rows (in larger font size) there are the exponential formulations. In the
lower rows (smaller size and bold face) there are the compact formulations. Within the ovals there are the
problems which have a relation of compact-extended type. A waving arrow underlines a compact equivalent.
In Figure 1(a) we illustrate the case of exponentially many rows in the primal. Both primal problems have
their dual counterparts that are connected. It is sometimes interesting to investigate this connection which
can lead to new insight into the problem. In this case computing the duals is not strictly necessary. In
Figure 1(b) we illustrate the case of exponentially many variables in the primal. In this case we have to
compute the dual and solve its compact extended model. To retrieve the solution of the original problem we
have to compute the dual of the compact extended model.

In this paper we introduce a specific tool to generate compact extended formulations and we apply this
tool both to row-generation models and to column-generation models. This tool exploits the possibility of
formulating the separation procedure (for either the primal or the dual) by an LP model. We will show how
the strong duality property of LP allows rewriting the problem in a compact way. Essentially the approach
is similar to that in [17] (for a row generation model): new variables are added to the original variables
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thus obtaining an extended formulation, but at the same time the number of inequalities is dropped to a
polynomial number, and so we have a compact extended formulation.

Since this approach has been around for a while [39, 12] but it is still not widely known, we aim in this
paper to provide a common theoretical background for a variety of problems, taken from many areas of
combinatorial optimization, for which the same technique can be used.

We stress that in this survey we are not concerned with establishing, by means of computational experi-
ments, if solving a compact formulation is faster or slower than solving via branch-and-cut/price. From our
experience we may say that compact optimization is sometimes faster and sometimes slower than exponential
formulations, depending on the problem and the specific instances.

One of the advantages of using a compact extended model is that there is no need for the implementation
of separation/pricing routines (in fact, for the implementation of anything at all). The only effort is put
into describing the model, which can then be given in input to a standard ILP solver. Another advantage
of compact optimization concerns formulations with exponentially many variables. Sometimes, the pricing
problem for these formulations becomes difficult at the internal nodes of the branch and bound tree, since
fixing variables with branching constraints can destroy the structure of the pricing problem. With compact
optimization, this problem is overcome.

As shown also by [17], extended formulations can many times provide new insights and highlight some
properties of a problem which were not apparent at first (we will give examples of these insights later on).
Among the most important theoretical results on extended formulations we recall the work by [21] showing
that there are no compact extended formulations for some known polytopes like, the TSP, the stable set and
the cut polytopes.

In this paper we present compact extended and equivalent formulations for several combinatorial opti-
mization problems. Some of these formulations were already known, while some are presented here for the
first time. We also extend the concept of compact to pseudo-compact, i.e., formulations in which the number
of variables or constraints is pseudo-polynomial.

In Table 1 we provide a summary of the various examples treated in this paper, with a quick reference
to the size of the compact formulations and citations to the literature.

The remainder of the paper is as follows. In Section 2 we define the type of problems we are dealing with
and we define how, in general terms, a so-called compact model can be derived. In Section 3 we provide
a general framework for a particular feature, connected to shortest path problems, which appears in many
problems and leads to a network-flow model. In Section 4 we provide a first (or, better said, a zero-th)
example of the ‘compactification’ procedure. This example, although almost useless for the specific problem
(which has a polynomial algorithm), is useful to pave the way to the subsequent more complex models.
Then, from Section 5 to Section 16 we present the examples listed in Table 1. Some conclusions are drawn
in Section 17.

2 Large-scale and compact LP problems

In this paper we deal with large-scale LP problems, i.e., LP problems with an exponential number of either
columns or rows. If there are exponentially many columns, then the dual problem has exponentially many
rows, so basically the two cases can be dealt with in the same way. As we shall see, a compact extended
reformulation replaces the exponentially many inequalities with a polynomial number of inequalities in a
higher dimensional space. The number of additional variables must also be polynomial. For a compact
extended formulation the feasible polyhedron of the original problem, with an exponential number of facets,
is the projection of a higher dimensional polyhedron with a polynomial number of facets. A pseudo-compact
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1 2 3 4 5 6 7 8

BIN PACKING 5 C O(nK) O(n+K) p [25, 26] [14, 15]

MAX CUT 6 R O(n2) O(nm) c [3, 2, 20] [17, 37]

IND SET 7 R O(n2) O(nm) c [16, 24] [17]

TSP 8 R O(nm) O(nm) c [19, 44] [12]

MRCT 9 C O(n2m) O(n2m) c [22] [12]

STEINER TREE 10 C O(nm) O(nm) c - -

BND DEGREE TREE 11 C O(nm) O(nm) c - -

CYCLE PACKING 12 C O(nm) O(m2) c [11] -

ALT CYCLE PACK 13 C O(n2) O(n4) c [10] -

ROBUST KNAPSACK 14 R O(n) O(n) c [23] [7]

JOB SHOP 15 C O((`+m)T̄ ) O(` T̄ ) p [36] [36]

FOLD COMPARISON 16 R O(m1m2) O(m1n2 + n1m2) c [35, 9] [12, 13]

Table 1. 1: Problem name; 2: Section in which the problem is described; 3: C (R) means the columns (rows)
are exponentially many in the large-scale formulation; 4: column size of the compact formulation; 5: row size of
the compact formulation; 6: c means compact; p means pseudo-compact; 7: literature reference of the large-scale
formulation, ‘-’ means there is no previous reference; 8: literature reference of the compact formulation.

reformulation can be described exactly in the same way, with the only difference that “pseudo-polynomial”
should replace “polynomial” everywhere.

In this paper we will show several LP exponential models that can be reformulated in a compact or
pseudo-compact way. In general, the procedure goes as follows. We first explain in detail the case of column
generation. The case of row generation, which has similar features, will be treated at the end of the section.
Consider the following large-scale ILP problem:

min
∑
j∈J

cj xj∑
j∈J

Aji xj ≥ bi i ∈ I

xj ≥ 0, integer j ∈ J

(1)

where J is an index set of exponential size, so that the matrix A and the vector c are never given explicitly but
they are implicitly defined by some properties of their entries. A convention we use in this paper regards the
equation numbering. If we reference an integer linear program as (x), we reference the integrality relaxation
of (x) as (x). We also use the notation [n] := {1, . . . , n}. The dual of (1) is

max
∑
i∈I

bi ui∑
i∈I

Aji ui ≤ cj j ∈ J

ui ≥ 0 i ∈ I.

(2)
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As is well known, the column-generation scheme for (1) requires solving the following Master problem

min
∑
j∈J̄

cj xj

∑
j∈J̄

Aji xj ≥ bi i ∈ I

xj ≥ 0 j ∈ J̄

(3)

where J̄ ⊂ J is small and explicitly given. Given optimal dual variables ūi, i ∈ I, of (3), if they are also
feasible in (2), then x̄j , j ∈ J̄ , optimal in (3), padded with x̄j = 0, j ∈ J \ J̄ , is also clearly optimal in (1),
because x̄ and ū satisfy strong duality and are both feasible. Detecting feasibility of ū in (2) is usually called
pricing. If ū is not feasible, then a violated inequality must be found, the corresponding column is added to
J̄ and the Master problem is solved again. The pricing problem is therefore

min
j∈J

(
cj −

∑
i∈I

Aji ūi
)
. (4)

Of course the pricing problem is never solved by inspection and it is instead solved by another problem that
exploits the properties of the matrix A and the vector c. Let us rewrite the pricing problem as

min
y∈Y

f(y, ū) (5)

Compact and pseudo-compact reformulations of (2) are possible if (5) has a dual problem and strong duality
holds. This is always the case if (5) is an LP problem [12, 13]. Let the dual problem of (5) be

max
z∈Z

g(z, ū) (6)

Then problem (2) can be reformulated as

max
∑
i∈I

bi ui

min
y∈Y

f(y, u) ≥ 0

u ≥ 0 .

(7)

Note that by LP properties miny∈Y f(y, u) ≤ 0 since there exists ū and indices j such that cj−
∑
i∈I A

j
i ūi = 0

and therefore we may equivalently express the condition miny∈Y f(y, u) = 0 as miny∈Y f(y, u) ≥ 0. However
it is very difficult to express the condition miny∈Y f(y, u) ≥ 0 within the constraints on the variable u as in
(7). Therefore we exploit strong duality and reformulate (7) as

max
∑
i∈I

bi ui

max
z∈Z

g(z, u) ≥ 0

u ≥ 0

(8)

which can be simply rewritten as
max

∑
i∈I

bi ui

g(z, u) ≥ 0
u ≥ 0, z ∈ Z .

(9)
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Therefore the basic idea is to free u to let it adjust itself to a feasibility value in (2) by imposing the
feasibility condition g(z, u) ≥ 0. Although (5) and (6) are just two faces of the same problem, it is only the
latter that can be fruitfully used in a compact formulation. If (5) is an LP problem we expect the variables ū
to appear as coefficients in its objective function. Not only (7) is difficult to handle, but we would also have
the problem that freeing the ū variables would yield nonlinear expressions. This difficulty disappears in (9)
where the ū appear as r.h.s. coefficients and can be freed without destroying linearity.

We will only consider pricing problems expressed as LP problems. Hence we may assume that (6) can be
expressed for instance as

max
∑
h∈H

γh zh∑
h∈H

α1
ih zh ≤ ūi i ∈ I∑

h∈H

α2
kh zh ≤ βk k ∈ K

zh ≥ 0 h ∈ H,

(10)

to obtain a compact reformulation of (2), it is just matter of plugging the condition
∑
h∈H γh zh ≥ 0 together

with the constraints in (10) into (2) in place of the constraints
∑
i∈I A

j
i ui ≤ cj , j ∈ J , so that (2) becomes

max
∑
i∈I

bi ui∑
h∈H

γh zh ≥ 0∑
h∈H

α1
ih zh ≤ ui i ∈ I∑

h∈H

α2
kh zh ≤ βk k ∈ K

ui ≥ 0, zh ≥ 0 i ∈ I, h ∈ H.

(11)

We stress again that, whereas ū in (10) is constant, u in (11) is variable. We call (11) the compact reformulation
of (2). Solving (11) is equivalent to solving (2). Since we are interested in the primal variables in (1) we are
interested also in the dual of the compact dual (11). Not surprisingly, this last problem is very close to the
original problem and it usually corresponds to a reinterpretation of the original problem (1), most of the
times as a special flow problem. In this paper we will show several examples of this construction. It may also
happen that these two problems are actually the same problem. This is particularly true if the large-scale
LP corresponds to an original continuous small LP problem. In this case we just get back the original small
LP. We show also an example of this situation since it gives an idea of how the general procedure works.

We recall that it is essential that the pricing problem can be formulated as a mathematical programming
problem for which strong duality holds. This enables expressing the minimum of the pricing problem as the
maximum of its dual and it is this problem which replaces the original constraints.

If the large-scale LP problem has exponentially many rows, like (2), the same technique applies. In
this case we need to detect if ū, optimal for a restricted number of inequalities J̄ , is also feasible for the
whole set J . This problem is called separation and leads to finding the so called cutting inequalities. If the
separation problem can be expressed as an LP, then the previous considerations apply in order to replace
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the exponentially-many constraints by a compact set of constraints. The resulting LP is a compact extended
formulation of the original model.

3 A common feature for path problems

One of the most common features in the examples we are going to present consists in having columns Aj

corresponding to paths in an undirected graph G = (V,E). It is convenient to have a common notation for
all these problems.

We assume that V = [n] and denote each edge e ∈ E also by the pair {i, j} identifying the edge. If the
graph is directed we denote each edge e ∈ E also by the ordered pair (i, j). Although {i, j} is a non-ordered
set, we prefer to have a standard representation of the edge by the ordered pair {i, j} with i < j. This
convention is useful when we have to implicitly consider a directed version of the graph and we have to
replace the edge {i, j} with the edges (i, j) and (j, i).

In the sequel, the following computations will appear several times. We find it convenient to present them
here as a general framework. It is well-known that a shortest path problem with non-negative lengths δe
from a source s ∈ V to a destination t ∈ V can be expressed as a linear program, namely

max yt − ys
yj − yi ≤ δe e = {i, j} ∈ E
yi − yj ≤ δe e = {i, j} ∈ E.

(12)

Therefore, if we need to constrain all paths between a source s and a destination t to be not shorter than a
stated amount ν, this condition can be expressed as

yt − ys ≥ ν
yj − yi ≤ δe e = {i, j} ∈ E
yi − yj ≤ δe e = {i, j} ∈ E.

(13)

As we will see later, the constraints (13) will be typically embedded in an LP problem, where both the
threshold ν and the lengths δe can be the sum of a variable and a constant part, i.e., ν = u + f and
δe = ve + ge with u and ve variables. Then (13) becomes

ys − yt + u ≤ −f
yj − yi − ve ≤ ge e = {i, j} ∈ E
yi − yj − ve ≤ ge e = {i, j} ∈ E.

(14)

Note that the y variables will appear only in (14) within the LP problem. By taking the dual of this LP,
let us denote as ζ the dual variables associated to the constraint ys − yt + u ≤ −f and by ξ+

ij and ξ−ij the
variables associated to the second and third set of constraints respectively. Then, among other constraints,
the following constraints (associated to the y variables) are present in the dual:∑

j>s:{s,j}∈E

(ξ+
sj − ξ

−
sj)−

∑
j<s:{j,s}∈E

(ξ+
js − ξ

−
js) = ζ

∑
j>i:{i,j}∈E

(ξ+
ij − ξ

−
ij)−

∑
j<i:{j,i}∈E

(ξ+
ji − ξ

−
ji) = 0 i ∈ V \ {s, t}

∑
j<t:{j,t}∈E

(ξ+
jt − ξ

−
jt)−

∑
j>t:{t,j}∈E

(ξ+
tj − ξ

−
tj) = ζ

ξ+
ij , ξ

−
ij , ζ ≥ 0 {i, j} ∈ E

(15)
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The constraints (15) define a flow of value ζ from s to t. On each arc the flow is ξij := ξ+
ij − ξ

−
ij and obeys

flow conservation in each node except the source and the destination. For ease of notation, let us denote as
Φ(s, t, ζ) the feasible set of flows for (15), so that, instead of explicitly writing down (15) we simply write
ξ ∈ Φ(s, t, ζ).

4 Max Flow

In this section we show a very simple example of the general compactification procedure. For this example
no new insight is gained for the problem, because we will eventually get exactly the problem we started from.
This happens in this case because the exponential formulation of the problem is not combinatorially richer
than the usual polynomial formulation.

It is well known that the Max-Flow problem can be formulated in term of paths connecting the source
to the sink. Let P be the set of such paths and P ∈ P be a generic path. Let xP be the flow on the path
P . A set of flows is feasible if the sum of flows crossing a particular edge does not exceed the edge capacity.
The problem can be formulated as the following model with exponentially many columns:

max
∑
P∈P

xP∑
P∈P:e∈P

xP ≤ ce e ∈ E

xP ≥ 0 P ∈ P.

(16)

The dual of (16) is
min

∑
e∈E

ce ue∑
e∈P

ue ≥ 1 P ∈ P

ue ≥ 0 e ∈ E.

(17)

Hence dual feasibility amounts to computing shortest paths with edge lengths ue and requiring that each
path must be not shorter than 1. By applying the general framework of the previous section we get the
compact version of (17)

min
∑
e∈E

ce ue

ys − yt ≤ −1
yj − yi − ue ≤ 0 e = {i, j} ∈ E
yi − yj − ue ≤ 0 e = {i, j} ∈ E
ue ≥ 0 e ∈ E

(18)

whose dual is turn
max ζ

ξ ∈ Φ(s, t, ζ)
|ξe| ≤ ce e ∈ E

which is exactly the ‘normal’ formulation of a Max-Flow problem. In this case the exponential and the
compact (i.e., the normal) formulations are equivalent in the sense that they have the same optimal value.
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This should be no surprise since the Max-Flow problem is a continuous polynomial problem. The question
becomes more interesting when a combinatorial problem has a stronger formulation via an exponential
model which can embed in the constraint matrix part of the combinatorial structure. In this case a primal
compact formulation may be a more useful model than a normal approach based only on binary variables.
The examples in the next sections will illustrate this possibility.

The same result can be found by showing that the projection onto the u subspace of the polyhedron
defined by (18) is the polyhedron defined by (17). See Theorems 4.6 and 4.7 in [17].

5 Bin Packing

The Bin Packing problem was the first problem to be solved by a column-generation technique [25, 26]. The
problem can be formulated as follows. There are n types of items. For each i ∈ [n], there are mi items of type
i, and each of them has integer size si > 0. We have to fill all items into bins of integer capacity K by using
the minimum number of bins. According to [25, 26] the problem can be formulated as the optimal choice
of a set of ‘filling patterns’. A filling pattern is a way of filling a bin with some items so that the capacity
constraint is satisfied. Essentially, a filling pattern is a feasible solution of an integer knapsack problem with
capacity K (with the additional requirement, usually automatically satisfied, that a filling pattern cannot
have more than mi items of type i). Let J be the index set of all filling patterns. We represent the j-th filling
pattern by a vector aji , with the meaning that the filling pattern has aji items of type i. By its definition,
the vector aji satisfies ∑

i∈[n]

si a
j
i ≤ K.

Then the model is the following
min

∑
j∈J

xj∑
j∈J

aji xj ≥ mi, i ∈ [n]

xj ≥ 0 integer j ∈ J.

(19)

The dual of (19) is
max

∑
i∈[n]

mi ui

∑
i∈[n]

aji ui ≤ 1, j ∈ J

ui ≥ 0 i ∈ [n].

(20)

Pricing a column of (19), i.e., detecting a violated inequality in (20), is carried out by solving the knapsack
problem

max
∑
i∈[n]

ūi zi

∑
i∈[n]

si zi ≤ K

zi ≥ 0 integer i ∈ [n]

(21)



10

and checking whether the optimal value of (21) is greater than one. Strong duality does not hold for (21).
However, the dynamic-programming recursion of the knapsack problem (21) can be written as the following
LP problem of pseudo-polynomial size,

min yK − y0

yk − yk−1 ≥ 0, 1 ≤ k ≤ K,
yk − yk−si ≥ ūi si ≤ k ≤ K, i ∈ [n]

(22)

so that the maximum in (21) has the same value as the minimum in (22). Hence the constraints
∑
i∈[n] a

j
i ūi ≤

1, j ∈ J , are equivalent to the constraints in (22) plus the constraint yK − y0 ≤ 1. Then (20) can be
reformulated as

max
∑
i∈[n]

mi ui

yK − y0 ≤ 1
yk − yk−1 ≥ 0, 1 ≤ k ≤ K,
yk − yk−si − ui ≥ 0, si ≤ k ≤ K, i ∈ [n],
ui ≥ 0.

(23)

The constraints in (23) can be expressed as constraints on a directed graph G(V,E) where V = {0, 1, . . . ,K}
and E consists of the arcs (k − 1, k), for k ∈ [K], and (k − si, k) for si ≤ k ≤ K, i ∈ [n]. We call the arcs
(k − 1, k) of type 0 and the arcs (k − si, k) of type i. The size of this pseudo-compact formulation is n+K
variables and at most nK constraints.

The drawback of (23) is that it does not provide a direct information on the actual primal variables, i.e.,
on how the bins are filled. Moreover, it is the dual of a relaxed formulation and it seems difficult to use (23)
in a branch-and-bound search. Therefore, it is convenient to compute the dual of (23). By using the notation
introduced in Section 3 the dual is

min ζ

ξ ∈ Φ(0,K, ζ)
K∑
k=si

ξik ≥ mi i ∈ [n]

ζ ≥ 0, ξ0k ≥ 0 k ∈ [K]
ξik ≥ 0 si ≤ k ≤ K, i ∈ [n].

(24)

The problem (24) is the compact equivalent of (19). It is a special flow problem on G with flow ξ0k on
type-0 arcs and flow ξik on type-i arcs. There are additional constraints not typical of flow problems because
they go across several arcs, i.e.,

∑K
k=si

ξik ≥ mi. The meaning of ξik > 0 is that one item of type i is put into
ξik bins increasing the filled quantity in each of these bins from the value k − si to the value k. The flows
ξ0k correspond to one unit of empty space and enter whenever a bin is not fully filled. A solution of (24)
can be decomposed into paths from 0 to K. Every path is a filling pattern, and its flow value corresponds
to the number of times the pattern is used. The problem (24) has been proposed by [14] (see also [15])
and its equivalence to the original column generation model has been proved through the Dantzig-Wolfe
decomposition technique.

The advantage of this formulation with respect to (23) is that it is possible to impose the integrality
requirement directly on the variables ξ.
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Fig. 2. Flow compact models for Bin packing

As an example, let us consider an instance with n = 6, K = 11, m = (30, 20, 10), s = (3, 5, 7). The graph
is shown in Figure 2(a), where all arcs are assumed directed from the lower-indexed node. The solution
obtained via (24) is shown in Figure 2(b). In this simple example the solution is integer without imposing
integrality and the flow can be uniquely decomposed into three filling patterns: (1, 0, 1) to be used 10 times,
(2, 1, 0) 10 times and (0, 2, 0) 5 times, for a total of 25 bins. Note that the total bin space 25 × 11 = 275 is
equal to

∑
imi si = 260 plus the total flow of the arcs of type 0.

6 Max-Cut

Let G = (V,E) be a graph and let we, e ∈ E, be positive weights. The Max-Cut problem is defined as the
problem of finding the cut of maximum weight. It is well-known [3, 20] that the Max-Cut problem can be
modeled as:

vA = max
∑
e∈E

we xe

x(C) ≤ |C| − 1, C ∈ C
xe ∈ {0, 1} e ∈ E

(25)

where C is the set of odd circuits of G. An equivalent formulation considers the removal of edges so that the
resulting graph is bipartite.

v′A = min
∑
e∈E

we xe

x(C) ≥ 1, C ∈ C
xe ∈ {0, 1} e ∈ E.

(26)

Clearly vA + v′A =
∑
e∈E we also for the relaxed versions. Both problem (25) and (26) can be solved by con-

straint generation by a simple separation procedure introduced by [29] which can yield a violated inequality.
We shall focus on (26). The separation procedure requires defining the graph Ĝ = (V ′ ∪ V ′′, Ê), where V ′

and V ′′ are copies of V and the edge set Ê is

Ê = {{i′, j′′} : i′ ∈ V ′, j′′ ∈ V ′′, {i, j} ∈ E} ∪
{{i′′, j′} : j′ ∈ V ′, i′′ ∈ V ′′, {i, j} ∈ E} .
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We may develop a compact extended formulation, as explained in Section 2. Let yk(i′) and yk(i′′) be the
optimal dual variables of a shortest path problem in Ĝ from k′ ∈ V ′ to i′ ∈ V ′ and to i′′ ∈ V ′′ respectively.
The compact extended formulation of (26) is then (see [37])

min
∑
e∈E

we xe

yk(k′′)− yk(k′) ≥ 1, k ∈ V
yk(i′) − yk(j′′) ≤ x{i,j} {i, j} ∈ E, k ∈ V
yk(j′′) − yk(i′) ≤ x{i,j} {i, j} ∈ E, k ∈ V
yk(j′) − yk(i′′) ≤ x{i,j} {i, j} ∈ E, k ∈ V
yk(i′′) − yk(j′) ≤ x{i,j} {i, j} ∈ E, k ∈ V
xe ∈ {0, 1} e ∈ E

(27)

with 4nm+n inequalities and 2n2 +m variables. The dual of (27) is a multi-commodity flow problem with
flow ξki′j′′ on {i′, j′′} and ξkj′i′′ on {j′, i′′}

max
∑
k∈V

ζk

ξk ∈ Φ(k′, k′′, ζk) k ∈ V∑
k∈V

|ξki′j′′ |+ |ξkj′i′′ | ≤ we e = {i, j} ∈ E.

(28)

This is a particular type of multi-commodity min-cut problem on the graph Ĝ. From each node k′ there is
a flow ζk to k′′. The sum of these flows must be maximized, taking into account a special capacity bound
which is present jointly on the arcs {i′, j′′} and {i′′, j′}. The problem (28) is the compact equivalent of the
dual of (26), that tries to find a set of odd circulations with maximum total flow within the capacity bounds
we. The variables ζk identify the odd circulations.

We may compare (25) with the following well-known binary LP model which has four constraints for
each possible triple of nodes.

vB = max
∑
e∈E

we ze

zij ≤ zik + zjk i < j, k 6= i, k 6= j, i, j, k ∈ V
zij + zik + zjk ≤ 2 i < j < k, i, j, k ∈ V
zij ∈ {0, 1} i < j,

(29)

By using projection techniques (see the simple proof in [17]) this model can be also derived from

vC = max
∑
e∈E

we xe

x(F )− x(C \ F ) ≤ |F | − 1, F ⊂ C, |F | odd, C ∈ C
xe ∈ {0, 1}

(30)

where C is the set of circuits in G. Not only vA = vB = vC , but also the relaxations (25), (29) and (30) have
the same value thus providing the same strength in the branch-and-bound search. This result can be also
found in [37] and [42].
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Basically we have two compact extended formulations for the max cut problem. The formulation (29)
has a number of constraints O(n3) and so it cannot be used on graphs with many nodes. The model (27)
has a number of constraints O(mn) and so it is a viable alternative if the graph is sparse.

7 Independent Set

Given a graph G = (V,E), and weights wi for i ∈ V , an independent (or stable) set is a set S ⊂ V of nodes
no two of which are adjacent, and its weight is defined as w(S) :=

∑
i∈S wi. The Maximum Independent Set

problem calls for determining a maximum-weight independent set, and can be formulated by a binary LP
model with variables xi associated to the nodes of the graph:

max
∑
i∈V

wi xi

xi + xj ≤ 1 {i, j} ∈ E
xi ∈ {0, 1} i ∈ V.

(31)

This model yields a very weak LP-relaxation bound, but it can be strengthened by the addition of the
exponentially many clique-inequalities

x(K) ≤ 1 K ∈ K (32)

where K is the set of all cliques in G, and of the exponentially many odd-cycle inequalities

x(C) ≤ |C| − 1
2

C ∈ O (33)

where O is the set of all odd cycles in G [16]. While constraints (32) have no polynomial-time separation
algorithm, constraints (33) can be separated in polynomial time [24] via a reduction to the shortest path
problem on the auxiliary graph Ĝ, much in the same way as for odd-cycle inequalities for Max-Cut in
Section 6.

Let yk(i′) and yk(i′′) be the optimal dual variables of a shortest path problem in Ĝ from k′ ∈ V ′ to
i′ ∈ V ′ and to i′′ ∈ V ′′ respectively. The compact extended formulation of the Independent Set Problem
with odd-cycle inequalities is then

max
∑
i∈V

wi xi

xi + xj ≤ 1, {i, j} ∈ E
yk(k′′)− yk(k′) ≥ 1, k ∈ V
yk(i′) − yk(j′′) ≤ 1− xi − xj {i, j} ∈ E, k ∈ V
yk(j′′) − yk(i′) ≤ 1− xi − xj {i, j} ∈ E, k ∈ V
yk(j′) − yk(i′′) ≤ 1− xi − xj {i, j} ∈ E, k ∈ V
yk(i′′) − yk(j′) ≤ 1− xi − xj {i, j} ∈ E, k ∈ V
xi ∈ {0, 1} i ∈ V

(34)

with 4nm+n+m inequalities and 2n2 +n variables. This formulation is equivalent, under a transformation
of variables, to the one in [17] (Sec. 6.4) obtained by using projection techniques.
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(a) An example graph (b) The solution of the Dual

Fig. 3. Independent Set Problem

The dual of (34) is the compact equivalent of the dual of the exponential formulation with odd-cycle
inequalities. It is again a special multi-commodity flow problem on Ĝ with flow ξki′j′′ on {i′, j′′} and ξkj′i′′ on
{j′, i′′}

min
∑
{i,j}∈E

ηij +
∑
k∈V

(
− ζk +

∑
{i,j}∈E

|ξki′j′′ |+ |ξkj′i′′ |
)

ξk ∈ Φ(k′, k′′, ζk) k ∈ V∑
{i,j}∈δ(i)

(
ηij +

∑
k∈V

|ξki′j′′ |+ |ξkj′i′′ |
)
≥ wi i ∈ V.

(35)

This problem can be interpreted as follows: in Ĝ there are flows ζk from k′ to k′′. These flows can be
decomposed into paths and circulations. Among the circulations there may be present small circulations
i′ → j′′ → i′. In addition there are edge variables ηij > 0. These three quantities may be viewed in G as
follows: the paths in Ĝ are associated to odd cycles in G whereas the small circulations in Ĝ are associated
to edges in G, as are the variables ηij > 0. Hence the problem (35) is equivalent to find a cover of G by using
odd cycles and edges. Each odd cycle has twice the value of the corresponding flow, each edge associated to
a small circulation has twice the value of the circulation and each edge associated to ηij > 0 has value ηij .
The cover must be such that for each node the sum of the cycle and edges values must be at least equal to
the node weight. The objective consists in finding a minimum cover, taking into account that the cost of an
odd cycle C is its value times (|C| − 1)/2 and the cost of the edges are equal to their values.

See in Figure 3(a) a graph with weights indicated near the vertices and in Figure 3(b) the dual cover
of the graph. The maximum independent set is given by the vertices 4 and 6 for a total weight of 10. The
optimal solution of (35) is η14 = 3; ζ1 = 0 and no flow associated; ζ2 = 0.5 with flow

ξ2
2′4′′ = 0.5, ξ2

4′′5′ = 0.5, ξ2
5′6′′ = 1.5, ξ2

6′′5′ = 1

ξ2
6′′3′ = 1.5, ξ2

3′6′′ = 1, ξ2
3′2′′ = 0.5.

This flow is decomposed into the path 2′ → 4′′ → 5′ → 6′′ → 3′ → 2′′ with value 0.5 and the two small
circulations 5′ → 6′′ → 5′ of value 1 and 3′ → 6′′ → 3′ of value 1. The path is associated to the odd cycle
(2, 4, 5, 6, 3) in G of value 1 and the small circulations are associated to the edges (5, 6) and (3, 6) in G both
with value 2; ζ3 = 0 with no flow associated; ζ4 = 0 but there is small circulation ξ4

4′5′′ = ξ4
5′′4′ = 0.5 which

is associated to the edge (4, 5) with value 1; ζ5 = ζ6 = 0 with no flows associated.
The constraints at the vertices are satisfied and the objective value is

3 + 0.5 · 4 + 2 + 2 + 1 = 10
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8 TSP - Subtour inequalities

The (symmetric) traveling salesman problem (TSP) is perhaps the most famous combinatorial problem in the
literature. An undirected graph G = (V,E) with nonnegative lengths de on the edges is given. A hamiltonian
tour is a cycle visiting each node in V exactly once. We want to determine the hamiltonian tour of smallest
length.

The standard IP formulation for the TSP problem is based on binary variables xe for each edge e ∈ E.
There are degree constraints x(δ({i})) = 2, for each i ∈ V , that force each node to be entered and exited
exactly once by a feasible solution. Furthermore, in order to avoid subtours from a solution [19], there are
Ω(2n) subtour inequalities x(δ(S)) ≥ 2, for each S ⊂ V , where δ(S) is the set of edges in the cut induced by
S.

The standard way of separating the subtour inequalities is via a min-cut problem, which can be solved
polynomially [44]. A slightly slower separation procedure is to solve (n − 1) maximum flow problems (see,
e.g., [18]). Namely, for a fractional solution x∗, each edge e is assigned a capacity interval [−x∗e, x∗e]. Since
it is enough to consider only sets S 6= V such that 1 ∈ S, there are no violated constraints if and only if the
maximum flow from 1 to each other vertex in V has value at least 2.

Define variables ξkij to represent the flow, possibly negative, on the arc {i, j} corresponding to the max-
flow problem from 1 to k, for all k ∈ V \ {1} and {i, j} ∈ E. Let us assume conventionally that a flow from i
to j with i < j is positive. We have then the following compact extended formulation of the TSP where the
max-flow constraints replace the subtour inequalities [12]:

min
∑
e∈E

de xe∑
e∈δ({i})

xe = 2 i ∈ V

∑
j

ξk1j ≥ 2 k ∈ V \ {1}

∑
j>i

ξkij =
∑
j<i

ξkji k ∈ V \ {1}, i ∈ V \ {1, k}

− xij ≤ ξkij ≤ xij k ∈ V \ {1}, {i, j} ∈ E
xe ∈ {0, 1} e ∈ E.

(36)

In (36) there are mn variables and n2 − n+ 1 + 2m (n− 1) constraints.

9 Minimum routing cost trees

The Minimum Routing Cost Tree (MRCT) is the following network–design problem [32, 45, 22]. We are given
an undirected weighted graph G = (V,E) in which the length of an edge e = {i, j} is denoted as de. A pair
of vertices is an edge of the complete graph Kn = (V,Q). For a spanning tree T and a pair {i, j} ∈ Q of
vertices, d(i, j, T ) is the length of the unique path connecting i and j in T . The routing cost of T is defined
as r(T ) :=

∑
{i,j}∈Q d(i, j, T ). We want to determine a spanning tree of minimum routing cost.

For each pair q = {i, j} ∈ Q, we denote by Pq the set of simple paths in G between i and j. Conventionally,
for each pair {i, j} ∈ Q, a path starts in i < j. Let P = ∪q∈QPq. For each path P ∈ P, we let dP :=

∑
e∈P de.
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The MRCT problem is formulated [22] as an integer program with decision variables zP , P ∈ P, used to
select a path between each pair of vertices and xe, e ∈ E, used to select the tree edges. The constraints are
such that, in a feasible solution, the set {e ∈ E |xe = 1} defines a tree. The ILP model is the following:

min
∑
q∈Q

∑
P∈Pq

dP zP∑
P∈Pq

zP ≥ 1 q ∈ Q

−
∑

P∈Pq :e∈P
zP + xe ≥ 0 e ∈ E, q ∈ Q∑

e∈E
xe = n− 1

zP ≥ 0, xe ≥ 0 integer.

(37)

Let uq, veq and w be the dual variables associated to the three groups of constraints in (37). The columns
to be generated are those corresponding to the variables xP and are associated to violated dual constraints
uq −

∑
e∈P veq ≤ dP , that can be rewritten as

∑
e∈P (veq + de) ≥ uq. Hence a pricing algorithm [22], consists

in finding, for each pair q = {i, j}, the shortest i–j path in E, with respect to the costs (veq + de), and
checking if it is shorter than uq.

Let yqk, for k ∈ V and q ∈ Q, represent the length of the shortest i–k path. The compact extended
formulation of the dual of (37) (see [12]) is

max
∑
q∈Q

uq + (n− 1)w

uq − yqj + yqi ≤ 0 q = {i, j} ∈ Q, i < j

− veq + yqh − y
q
k ≤ de q ∈ Q, e = {h, k} ∈ E

− veq + yqk − y
q
h ≤ de q ∈ Q, e = {h, k} ∈ E∑

q∈Q
veq + w ≤ 0 e ∈ E

uq ≥ 0, veq ≥ 0.

(38)

The size of the compact extended formulation is n (n−1) (m+1)/2+1 variables and n (n−1) (2m+1)/2+m
constraints. This compact dual, however, does not provide a direct information on the routing tree. To this
aim, we compute the dual of (38), which is the following compact equivalent of (37)

min
∑

{h,k}∈E

dhk
∑
q∈Q
|ξqhk|

ξq ∈ Φ(i, j, 1) q = {i, j} ∈ Q
|ξqhk| ≤ xe q ∈ Q, {h, k} = e ∈ E∑
e∈E

xe = n− 1.

(39)

This model turns out to be a min-cost multi-commodity flow problem with an additional constraint. For
each pair {i, j} one unit of flow must go from i to j. On every arc e, a capacity xe is available for each flow.
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Furthermore, the total capacity in the network is limited and must be equal to n− 1. In an integral solution
the value of xe is either 1 or 0 and clearly the objective measures the routing cost.

10 Steiner trees

The Steiner Tree Problem can be stated as follows: given a graph G = (V,E), V = [n], costs ce > 0 for each
arc e ∈ E, and a subset T ⊂ V of terminal nodes, find a minimum-cost tree spanning all nodes in T . The
nodes V \ T may or may not be spanned by the tree. Nodes in V \ T spanned by an optimal tree are called
Steiner nodes.

For notational simplicity, let us suppose 1 ∈ T . Let Pj be the set of paths from 1 to j with j ∈ T . Let
T ′ = T \ 1. We model the problem as in the previous section by introducing decision variables zP , used to
select a path between 1 and j ∈ T and xe, e ∈ E, used to select the tree edges. The constraints are such
that, in a feasible solution, the set {e ∈ E |xe = 1} defines a tree.

min
∑
e∈E

ce xe∑
P∈Pj :e∈P

zP ≤ xe j ∈ T ′, e ∈ E

∑
P∈Pj

zP ≥ 1 j ∈ T ′

xe ≥ 0, integer e ∈ E
zP ≥ 0 P ∈ Pj , j ∈ T ′.

(40)

Note that an optimal solution of (40) is necessarily a tree and there is no need to impose the constraint∑
e∈E xe ≤ n− 1. Let vej and uj be the dual variables associated, respectively, to the first and second set of

constraints in (40). The pricing problem consists in solving shortest path problems for each j ∈ T ′ with arc
lengths vej . By writing the conditions for an optimal path, the dual compact extended model is

max
∑
j∈T ′

uj

yjj − y
j
1 ≥ uj j ∈ T ′

yjh − y
j
k ≤ v

hk
j j ∈ T ′, (h, k) ∈ E

yjk − y
j
h ≤ v

hk
j j ∈ T ′, (h, k) ∈ E∑

j∈T ′

vej ≤ ce e ∈ E

vej , uj ≥ 0 P ∈ Pj , j ∈ T ′

(41)

with yjh being the shortest distance from 1 to h with lengths vej . The model (41) has |T ′| (n+m+ 1) + 1 =
O(nm) variables (by assuming that |T ′| is linearly related to n) and |T ′| (2m+1)+m = O(nm) constraints.
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The dual of (41), i.e., the compact equivalent of (40), is

min
∑
e

ce xe

ξj ∈ Φ(1, j, 1), j ∈ T ′

|ξje | ≤ xe j ∈ T ′, e ∈ E.

(42)

The intepretation of this flow problem is similar as for MRCT problem. A unit of flow must be sent from
one terminal node to all other terminal nodes, thus assuring connectivity. A capacity (independent of each
flow) is available on each arc. Its use implies a cost and we want to minimize the total cost.

In case T = V the Steiner tree problem becomes the well known Minimal Spanning Tree problem, which
is polynomial. The convex hull of the incidence vectors of spanning trees is a polyhedron with facets given
by x(S) ≤ |S|−1, for each S ⊂ V plus the equality x(V ) = |V |−1. Hence, this is an exponential formulation
which admits the compact extended formulation (42), which is the same as the one in [17] Sec. 4.3 when
T = V .

11 Bounded-degree spanning trees

The Bounded-degree Minimum Spanning Tree problem consists in finding a minimum-cost spanning tree
with node degrees bounded by a given number. A similar problem consists in finding a spanning tree whose
maximum node degree is minimum (among all spanning trees). We show the exponential and compact models
for the second problem only since there is no difficulty in doing the same for the first problem.

As in Section 10, let Pj be the set of paths from 1 to j with j ∈ V \ 1, zP be decision variables to select
a path P ∈ Pj between 1 and j and xe be variables selecting the edges e ∈ E of the tree. Let r be a variable
denoting the maximum degree in the spanning tree. The ILP model for this problem is similar to (40) with
the following differences: V replaces T , the objective function is r and, in addition, there are inequalities∑
e∈δ(i) xe ≤ r, i ∈ V with corresponding dual variables wi. Also in this case the pricing problem consists

in solving shortest path problems for each j ∈ V \ 1 with arc lengths vej . By exploiting the conditions for an
optimal path, the dual compact extended model is

max
∑
j∈V \1

uj

yjj − y
j
1 ≥ uj j ∈ V \ 1

yjh − y
j
k ≤ v

hk
j j ∈ V \ 1, {h, k} ∈ E

yjk − y
j
h ≤ v

hk
j j ∈ V \ 1, {h, k} ∈ E∑

j∈V \1

vej ≤ wh + wk e = {h, k} ∈ E

∑
i∈V

wi = 1

vej , uj , wi ≥ 0

(43)

with yjh shortest distance from 1 to h with lengths vej . The model (43) has (n− 1) (n+m+ 1) + 1 = O(nm)
variables and (n− 1) (2m+ 1) +m = O(nm) constraints. The dual of (43), i.e., the compact equivalent of
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the original problem, is

min r

ξj ∈ Φ(1, j, 1), j ∈ V \ 1
|ξje | ≤ xe j ∈ V \ 1, e ∈ E∑
e∈δ(i)

xe ≤ r.

The intepretation of this flow problem is very close to that for the Steiner tree problem. A unit of flow must
be sent from one node to all other nodes, thus assuring connectivity. On each arc there is available a capacity
which induces a node capacity as the sum of the capacities of all incident arcs. The largest node capacity
has to be minimized.

12 Cycle packing

A well-known optimization problem consists in finding a cycle packing of maximum cardinality in a graph
G = (V,E). There exists both a directed and an undirected version of this problem. The problem can be
naturally modeled as the following large-scale binary LP problem [11]

max
∑
C∈C

xC∑
C∈C:e∈C

xC ≤ 1 e ∈ E

xC ∈ {0, 1} C ∈ C

(44)

with C the set of cycles in G. The pricing can be carried out by finding a cycle of minimum weight, with
weights given by the optimal duals ūe in (44). We consider here the undirected case. We leave to the reader
the directed case which can be approached via a bipartite matching problem much in the same style as the
problem we will face in the next section.

A minimum cycle in an undirected graph can be found as follows. First compute, for each {h, k} ∈ E, a
shortest path Phk, not containing the edge {h, k}, between h and k. Then form the cycles Chk := {h, k}∪Phk
and take the minimum among these cycles. For the minimum cycle to be not shorter than 1, we can impose
constraints involving variables yhki , {h, k} ∈ E, i ∈ V , that lead to the following compact extended of the
dual of (44)

min
∑
e∈E

ue

yhkh − yhkk + uhk ≥ 1 {h, k} ∈ E
yhki − yhkj + uij ≥ 0 {h, k} ∈ E, {i, j} ∈ E \ {h, k}
yhkj − yhki + uij ≥ 0 {h, k} ∈ E, {i, j} ∈ E \ {h, k}
ue ≥ 0 e ∈ E.

(45)
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The size of this formulation is nm + m variables and m (2m − 1) constraints. The dual of (45), i.e., the
compact equivalent of (44), is

max
∑

{h,k}∈E

ζhk

ξhk ∈ Φ(k, h, ζhk) {h, k} ∈ E
ζhk +

∑
{i,j}∈E\{h,k}

|ξijhk| ≤ 1 {h, k} ∈ E

The interpretation of this flow problem is as follows: for each edge {h, k} a flow ζhk is starting from one
endpoint (say h) moving on the network, without using the edge {h, k}, and ending in k. This flow is actually
a circulation of value ζhk passing through the edge {h, k}. On each edge the sum of all circulations must not
exceed 1.

13 Alternating cycle decomposition problem

In this section we present a problem derived from a computational biology application [10]. A graph G =
(V,E) is given with arcs partitioned into two classes which we may call ‘colors’, say black and white. The
graph has the property that, in each node, the number of black incident arcs is equal to the number of
white incident arcs. An alternating cycle is a cycle made of edges alternating the two colors and not strictly
containing a cycle that alternates the two colors. If there are no edge repetitions, the alternating cycle is
called genuine, and we denote by C0 the set of genuine alternating cycles. If there are edge repetitions the
alternating cycle is called spurious, and we denote by C1 this set of cycles. Let C := C0 ∪ C1. An alternating
cycle decomposition is a set of disjoint genuine alternating cycles, i.e., each edge is present in at most
one alternating cycle. The alternating cycle decomposition problem consists in finding a decomposition of
maximum cardinality. This problem is NP-hard [8]. A natural set packing 0-1 LP model is the following

max
∑
C∈C0

xC∑
C∈C0:e∈C

xC ≤ 1 e ∈ E

xC ∈ {0, 1} C ∈ C0.

(46)

Pricing the columns can be carried out by solving a perfect matching problem on an auxiliary non-bipartite
graph [10]. In principle, the theory presented in this paper could be applied to this particular pricing since
matching problems do have dual problems for which strong duality holds. However, LP formulations of
matching problems require an exponential number of inequalities and this rules out the possibility of a
compact formulation.

In [10] a weaker LP model is presented for the alternating cycle decomposition problem which calls for a
simpler pricing problem. The weaker set packing 0-1 LP model is the following

max
∑
C∈C

xC∑
C∈C

µe,C xC ≤ 1 e ∈ E

xC ∈ {0, 1} C ∈ C

(47)
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where µe,C is equal to the number of times the arc e is traversed by the cycle C. We note that the 0-1
linear programs (46) and (47) are equivalent since only genuine alternating cycles can have xC = 1 in (47).
However, the linear relaxations (46) and (47) are different. The possibility of fractional values for xC allows
for spurious cycles to be present in the solution of (47). The dual of (47) is

min
∑
e∈E

ue∑
e∈E

µe,C ue ≥ 1 C ∈ C

ue ≥ 0 e ∈ E.

(48)

Hence, pricing calls for finding an alternating cycle of minimum weight with weights given by the optimal
dual variables ūe of the master problem. A minimum alternating cycle can be found by the following con-
struction [10]. An auxiliary bipartite graph Ĝ = (V ′ ∪V ′′, E′ ∪E′′) is defined where V ′ and V ′′ are copies of
V . An arc e′ = {i′, j′′} ∈ E′, i′ ∈ V ′, j′′ ∈ V ′′, exists in Ĝ if there exists a node k ∈ G such that {i, k} ∈ E
is white and {k, j} ∈ E is black. Let us denote this set of intermediate nodes as K(i, j). These edges receive
weights mink∈K(i,j) ūik + ūkj . Moreover, there exist edges {i′, i′′} ∈ E′′ for each i ∈ V . These edges receive
zero weight. If we exclude the perfect matching E′′, let us call it ‘trivial matching’, each perfect matching in
Ĝ corresponds to one or more alternating cycles in C and a minimum alternating cycle in C corresponds to
a minimum perfect matching. Since the trivial matching has zero weight, it is indeed the absolute minimum
matching. Hence, if we want to find a minimum alternating cycle we have to explicitly exclude the trivial
matching. This is straightforward if we solve the matching problem via ILP by adding the constraint∑

i∈V
z(i′, i′′) ≤ n− 1

to the usual LP formulation of a bipartite matching problem with variables z(i′, j′′) ∈ {0, 1} for each
{i′, j′′} ∈ E′∪E′′. However, adding this constraint destroys the total unimodularity property of the bipartite
matching constraint matrix, so that strong duality is lost.

Hence we have to resort to a more complex construction in which we have to carry out n pricing problems
by excluding from Ĝ each arc {i′, i′′} in turn. Let E′′h be the edge set E′′ with the edge {h′, h′′} removed.
Each pricing problem is therefore solved by the following LP problem

min
∑

{i′,j′′}∈E′

min
k∈K(i,j)

(ūik + ūkj) z(i′, j′′)

∑
j′′∈V ′′:

{i′,j′′}∈E′∪E′′
h

z(i′, j′′) = 1 i′ ∈ V ′

∑
i′∈V ′:

{i′,j′′}∈E′∪E′′
h

z(i′, j′′) = 1 j′′ ∈ V ′′

z(i′, j′′) ≥ 0 {i′, j′′} ∈ E′ ∪ E′′h
whose dual is

max
∑
i′∈V ′

y(i′) +
∑

j′′∈V ′′

y(j′′)

y(i′) + y(j′′) ≤ ūik + ūkj k ∈ K(i, j), {i′, j′′} ∈ E′

y(i′) + y(i′′) ≤ 0 {i′, i′′} ∈ E′′h .
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These constraints, for all h ∈ V , have to be inserted into (48) so that the compact extended model of (48) is

min
∑
e∈E

ue∑
i′∈V ′

yh(i′) +
∑

j′′∈V ′′

yh(j′′) ≥ 1 h ∈ V

yh(i′) + yh(j′′) ≤ uik + ukj k ∈ K(i, j), {i′, j′′} ∈ E′, h ∈ V
yh(i′) + yh(i′′) ≤ 0 {i′, i′′} ∈ E′′h , h ∈ V
ue ≥ 0 e ∈ E.

(49)

This formulation has 2n2 +m variables and at most n2 (n−1)2/4+n (n−1)+n+m constraints. The O(n4)
comes from all possible alternating paths of two arcs. An exact count of all alternating paths leads to the
formula

∑
i∈V d

W
i dBi with dWi the degree of vertex i for the white edges and dBi for the black edges.

Again, we need the dual of (49), i.e., the compact equivalent of (46), to retrieve the cycles and possibly
imposing integrality on the corresponding variables. The dual, obtained after modifying (49) by multiplying
all variables yh(i′) by -1, is again a special multi-commodity flow problem on the bipartite graph G′ modified
to have multiple parallel arcs (i′, j′′)k for each k ∈ K(i, j). For each h ∈ V there is a flow ξhikj on the arc
(i′, j′′)k and a flow ξhi on the arc (i′, i′′). The flow ξhh is set to 0. All nodes in V ′ are sources of a flow ζh

and all nodes in V ′′ are sinks of a flow ζh. The flow ξhikj originates from these sources. The arcs (i′, i′′) have
unbounded capacity and there is no upper bound on ξhi , There are no capacity bounds on the arcs (i′, j′′)k
either but the flows ξhikj have a peculiar constraint. The arc (i′, j′′)k is associated to the two edges {i, k} and
{k, j} in E and the flow ξhikj is ‘counted’ both for the edge {i, k} and for {k, j} and it is the edges {i, j} ∈ E
which have a unity capacity bound. Hence the capacity bounds are∑

h∈V

∑
k∈V

ξhijk ≤ 1, {i, j} ∈ E

∑
h∈V

∑
k∈V

ξhkij ≤ 1, {i, j} ∈ E

The objective function is the maximization of
∑
h ζ

h.

14 Robust Knapsack

The Robust Knapsack Problem (RKP) is described as follows: there are given n items of value vj , j := 1, . . . , n
and an integer m ≤ n. For each item j a nominal weight wj is given. The weight of each item can be increased
by a quantity wj ≥ 0 to the weight wj +wj . The knapsack capacity is K. A subset J ⊂ [n] is feasible if, for
any subset S ⊂ J of cardinality at most m, the following inequality is satisfied∑

j∈J
wj +

∑
j∈S

wj ≤ K

This is equivalent to saying that a subset J is feasible if and only if the previous inequality is satisfied for
S = J if |J | ≤ m and, if |J | > m, for the subset S ⊂ J consisting of the m items in J with the largest wj .
The RKP consists in finding the feasible subset J with largest value.



23

The RKP was first introduced in [6] in a more restricted version. The given formulation is due to [40]. The
RKP is clearly NP-hard. It is also weakly NP-hard as the normal Knapsack problem since a pseudopolynomial
dynamic programming algorithm is available [41]. For a recent survey see also [41].

The following ILP model to solve the Robust Knapsack problem was proposed in [7]

max
∑
j∈[n]

vj xj

∑
j∈[n]

wj xj +
∑
j∈[n]

tj +mr ≤ K

tj + r ≥ wj xj j ∈ [n]
xj ∈ {0, 1}, tj ≥ 0, r ≥ 0 j ∈ [n].

(50)

Later a branch-and-cut model was developed by [23] who noted that robustness can be enforced to a normal
knapsack model via the following robustness cuts∑

j∈[n]

wj xj +
∑
j∈S

wj xj ≤ K, ∀S ⊆ N : |S| ≤ m. (51)

We will now show how the model (50) is nothing but the compact extended formulation of the large-scale
LP using constraints (51). Given the current solution x∗, the separation of robustness cuts is straightforward
and it can be solved also by the following LP problem

max
∑
j∈[n]

(wj x∗j ) zj∑
j∈[n]

zj ≤ m

zj ≤ 1 j ∈ [n]
zj ≥ 0 j ∈ [n]

(52)

and asking whether the optimal value is not larger than K −
∑
j∈[n] wj x

∗
j . The dual of (52) is the following

LP
min mr +

∑
j∈[n]

tj

r + tj ≥ wj x∗j j ∈ [n]
r ≥ 0, tj ≥ 0 j ∈ [n]

(53)

and the feasibility condition for x∗ requires mr+
∑
j∈[n] tj ≤ K −

∑
j∈[n] wj x

∗
j . Hence we may replace (51)

with these constraints and get, after ‘freeing’ the values x∗j ,

max
∑
j∈[n]

vj xj

mr +
∑
j∈[n]

tj ≤ K −
∑
j∈[n]

wj xj

r + tj ≥ wj xj j ∈ [n]
r ≥ 0, tj ≥ 0, xj ≥ 0 j ∈ [n]

(54)

which is exactly the model (50).
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15 Job-Shop

In the job-shop problem, a set M of m machines and a set J of n jobs are given. Every job j ∈ J consists
of a sequence of n(j) operations Oj1 → · · · → Ojk → · · · → Ojn(j) and each operation Ojk has to be processed
without preemption on the machine µ(j, k) with a known processing time q(j, k) > 0. Let L bet the set of all
operations, and ` = |L| =

∑
j∈J n(j). A feasible schedule of the jobs in J is a set of completion times t(j, k)

associated to each operation Ojk such that: (i) the job precedence relations of the operations are respected
and (ii) operations associated to the same machine do not overlap in time. It is not excluded that a machine
can process more than one operation for the same job. The time t(j, n(j)) is the completion time of the job
j.

The job-shop problem considered in [36] has a total cost given by the sum of the costs for the single jobs.
The cost of a job is given by a generic function

fj : R→ R ∪ {+∞}, t 7→ fj(t) (55)

which assigns a penalty to the completion time t. The function fj(t) takes on value +∞ when its argument
t is an infeasible completion time for job j (e.g., because of release dates, deadlines, ecc.). Hence the cost of
a feasible schedule is defined as the following separable objective function∑

j∈J
fj(t(j, n(j))). (56)

To solve this type of job-shop problem, a column-generation model is defined based on scheduling patterns.
A scheduling pattern p defines, for each operation k of a job j, its starting time sp(j, k) and its ending time
tp(j, k). Let t(p) := tp(j, n(j)) be the completion time of the last operation of job j for the pattern p. The
cost of a pattern is given by

c(p) = fj(t(p)). (57)

This model requires the definition of a value T̄ for the time horizon. Let us denote by P j the set of patterns
for job j with t(p) ≤ T̄ . To each pattern p in P j , an (mT̄ )-dimensional binary vector ap is associated, with
m fields of length T̄ , one for each machine h ∈M . The t-th entry of the h-th field aph,t is 1 if and only if the
operation of the job which must be executed by machine h is being processed in the time slot [t− 1, t].

A binary variable xp is associated to each pattern p of P j , with the meaning that xp = 1 if and only if
the job j is scheduled according to the pattern p. Then the job-shop problem with total cost objective may
be formulated as the following binary LP:

min
∑
j∈J

∑
p∈P j

c(p)xp∑
p∈P j

xp = 1 j ∈ J

∑
j∈J

∑
p∈P j

aph,t xp ≤ 1 h ∈M, t = 1, . . . T̄

xp ∈ {0, 1} p ∈ P j , j ∈ J.

(58)

Let us denote by u(j) and v(h, t) ≤ 0 the dual variables of (58). The pricing problem can be solved for each
job j by a forward dynamic-programming procedure (see [36] for details). Let V (k, t) represent the minimum
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reduced cost of a pattern consisting of the first k operations and completing the k-th operation within t.
Initialize V (0, t) := 0 for each t and the other values as V (k, t) := +∞. The values V (k, t) can be recursively
computed as

V (k, t) = min{V (k, t− 1), V (k − 1, t− q(k)) + fjk(t)−
t∑

τ=t−q(k)+1

v̂(µ(k), τ)} (59)

where the two terms in the above expression represent the minimum reduced cost of patterns which complete
the k-th operation before t and exactly at time t, respectively. As a consequence, for any time t, the minimum
reduced cost of a pattern p ∈ P j with t(p) ≤ t is given by V (n(j), t)− û(j).

The dynamic-programming recursion formula (59) allows rewriting the dual of (58) in a pseudo-compact
extended way as shown in detail in [36]. The size of this formulation is (`+m) T̄ + n variables and 2 ` T̄ + n
constraints. In turn its dual, i.e., the compact equivalent of (58), is a particular flow problem, defined on the
following network G = (N,E). The node set N is given by

N =
{

(j, k, t) : j ∈ J, 0 ≤ k ≤ n(j), 0 ≤ t ≤ T̄
}
.

The nodes can be partitioned into levels L(j, k), j ∈ J and 0 ≤ k ≤ n(j) where each level L(j, k), k > 0,
contains a node (j, k, t) for each possible completion time t of the k-th operation of j and each level L(j, 0)
contains a node (j, 0, t) for each possible starting time of the first operation.

The graph contains arcs of two types denoted as E0 and E1 and defined as

E0 :=
{

((j, k, t− 1), (j, k, t)) : j ∈ J, 0 ≤ k ≤ n(j), 0 < t ≤ T̄
}

E1 :=
{

((j, k − 1, t− q(j, k)), (j, k, t)) : j ∈ J, 0 < k ≤ n(j), 0 ≤ t ≤ T̄
}
.

Then E = E0 ∪E1. The network G has n connected components, one for each job. In the network there are
n source-sink pairs. The sources are the nodes sj := (j, 0, 0, ) and the sinks are the nodes dj := (j, n(j), T̄ ).
The idea is to send one flow unit from each source sj to each sink dj . If the flow is integral it gives rise to a
path sj → dj which can be interpreted as a scheduling of the job j.

Let ξ0(j, k, t) be the flow associated to the arc ((j, k, t − 1), (j, k, t)) ∈ E0 and let ξ1(j, k, t) be the flow
associated to the arc ((j, k − 1, t− q(j, k)), (j, k, t)) ∈ E1.

Each arc (j, k−1, t−q(j, k)), (j, k, t)) ∈ E1 is also associated to the machine µ(k), so that we may partition
E1 into subsets E1(m) for each machine m. Let E1(m, t) the set of arcs (j, k − 1, t′ − q(j, k)), (j, k, t′)) in
E1(m) such that t′ − q(j, k) < t ≤ t′. The machine constraints require the total flow on the arcs E1(m, t) to
be bounded by 1. In conclusion, the compact equivalent of (58) is

min
∑

(j,k,t)

fjk(t) ξ1(j, k, t)

ξj ∈ Φ(sj , dj , 1) j ∈ J∑
e∈E1(m,t)

ξje ≤ 1 m ∈M, 0 ≤ t ≤ T̄ .

16 Protein fold comparison

A protein consists of a sequence of residues, also called amino acids, linearly arranged along its backbone. In
the aqueous solution in which it naturally occurs, the protein quickly folds into a very compact form fully
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determined by the sequence of its amino acids. The folding is often indicative of the protein’s function and
hence it is valuable to have an abstract description that captures the important features of this folding. One
such description is the protein’s contact map.

A contact map is a graph whose vertices are the residues of the protein. The vertex set is linearly ordered
by the order in which the residues occur on the backbone. There is an edge between two vertices whenever
the distance between the residues in the folded protein is smaller than a certain threshold (e.g., 5 Å). Any
two such residues are said to be in contact.

In order to compute the similarity of two contact maps, one can use the contact map overlap (CMO)
measure [27]. Given two proteins, their CMO is found by determining the best alignment (i.e., a particular
type of matching) of the residues of one proteins with those of the other. The value of an alignment is given
by the number of pairs of residues in contact in the first protein which are aligned with pairs of residues that
are also in contact in the second protein. The optimal alignment has maximum value, so that the CMO is
the largest number of common contacts.

The contact map overlap problem can be formally stated as follows: given two graphs G1 = (V1, E1) and
G2 = (V2, E2) in which the vertices are linearly ordered, find two isomorphic, edge-induced, subgraphs such
that (i) the isomorphism map between the vertices of the two subgraphs is monotonic (i.e., if a vertex i is
mapped to a vertex j, then no vertex following i can be mapped to vertex preceding j) and (ii) the number
of edges in each subgraph is maximum. A monotonic isomorphism between the vertices of two subgraphs is
also called a non-crossing alignment.

An IP formulation of CMO is the following [35]. Let V1 = [n1] and V2 = [n2], and denote each edge e in
E1 or E2 by an ordered pair (u, v), with u < v. Define binary variables xij , for i ∈ V1 and j ∈ V2, representing
the alignment lines, i.e., the pairs of residues aligned in the two proteins. Furthermore, let zef be binary
variables that are set to 1 whenever two contacts e ∈ E1 and f ∈ E2 are in common for an alignment. Let
M denote the collection of all sets of mutually incompatible alignment lines (i.e., each element F of M is
a set of lines, and, for any l′, l′′ ∈ F , with l′ 6= l′′, there is no feasible alignment containing both l′ and l′′).
The IP formulation is then:

max
∑

(i,j)∈E1
(u,v)∈E2

z(i,j)(u,v)

∑
(i,j)∈E1

z(i,j)(u,v) ≤ xiu,
∑

(j,i)∈E1

z(j,i)(u,v) ≤ xiv i ∈ V1, (u, v) ∈ E2

∑
(u,v)∈E2

z(i,j)(u,v) ≤ xiu,
∑

(v,u)∈E2

z(i,j)(v,u) ≤ xiu u ∈ V2, (i, j) ∈ E1

∑
[i,j]∈F

xij ≤ 1 F ∈M

x, z ∈ {0, 1}.

(60)

The constraints
∑

[i,j]∈F xij ≤ 1, F ∈M, are called clique inequalities. The name comes from considering a
conflict graph for the alignment lines. In this graph, every alignment line [i, j] is a vertex, and two alignment
lines are connected if they are not compatible. A clique in in the conflict graph is then a set of mutually
incompatible alignment lines.

The LP (60) can be solved in polynomial time thanks to a separation algorithm for the clique inequalities
which calls for the longest path in a directed grid of size n1 × n2 [38]. The nodes of the grid correspond to
alignment lines of the CMO. Each node (i, j) of the grid is given a weight, equal to xij . The length of a
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path in the grid is the sum of the weights of the path nodes. The most violated clique inequality is found
by taking the longest path in R from (1, n2) to (n1, 1) and checking if its length is greater than 1. As we
have seen this kind of constraints can be easily embedded into (60). Let yij be the length of the longest path
from (1, n2) to (i, j). Then the compact extended reformulation of (60) is obtained by replacing the clique
inequalities with the constraints (see [12, 13])

yn1,1 ≤ 1
y1,n2 = x1,n2

yi,j − y(i−1),j ≥ xij i ∈ V1 \ {1} , j ∈ V2

yi,j − yi,(j+1) ≥ xij i ∈ V1, j ∈ V2 \ {n2}

(61)

The size of this formulation is 2n1 n2 +m1m2 variables and 2 (n1m2 + n2m1 + n1 n2)− (n1 + n2) + 2,
where mi = |Ei| for i = 1, 2.

17 Conclusions

Compact formulations can often provide a valid alternative to exponential formulations that require separa-
tion and/or pricing procedures. We have surveyed several examples of problems for which compact formu-
lations have been proposed in the literature. Furthermore, we have described new compact models for other
problems.
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