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Star Partitions on Graphs
G. Andreatta, C. De Francesco, L. De Giovanni, P. Serafini

Abstract. Given an undirected graph, a star partition is a partition of the nodes into subsets with at least two nodes so that the
subgraph induced by each subset has a spanning star. Star partitions are related to well-known problems concerning domination
in graphs and edge covering. We focus on the Constrained Star Partition Problem (CSP) that asks for finding a star partition of
given cardinality. The problem is new and presents interesting peculiarities. We explore the relation between the cardinalities of
star partitions and domatic bipartitions, showing that there are star partitions of any cardinality between minimum and maximum
values, and that a similar but weaker result holds for domatic bipartitions. We study the computational complexity of different
versions of star partition and domatic bipartition problems, proving that most of them, in particular CSP, constrained domatic
bipartition and balanced domatic bipartition, are NP-complete. We also show that star partition problems are polynomial on trees
and, more generally, on bounded treewidth graphs. We introduce an integer linear programming formulation that defines a polytope
containing all the star partitions of a graph, showing that its vertices have only integral components for trees, which implies that
linear programming can be used to solve weighted star partition problems on trees.

1 Introduction

A star is a tree that has at most one node of degree greater than one. We say that a star is proper if it contains at least
two nodes. In a star with three or more nodes, we say that the node with degree greater than one is the center of the
star. The center of a star with two nodes is any arbitrarily chosen node.

Given an undirected graph G = (V,E), a star partition is a partition of V into subsets so that the subgraph induced
by each subset has a spanning proper star. In the present paper we study the cardinality of star partitions, defined as the
number of parts in the partition of V . In particular, we focus on the Constrained Star Partition Problem (CSP) defined
as follows: given an undirected graph G = (V,E) and a positive integer s, find, if it exists, a star partition of cardinality
s. Graphs considered in this paper are assumed to be undirected and without isolated nodes, if not differently stated,
since no star partition exists for graphs with isolated nodes. Star partitions and their cardinalities have been brought to
our attention while working on the problem of finding an optimal shift scheduling of pharmacies (see e.g. Andreatta
et al. (2015)).

There is a vast literature devoted to graph partitioning: see, for instance, the recent book by Bichot and Siarry Bi-
chot and Siarry (2011) and the references therein, and the review by Andreatta et al Andreatta et al. (2016a). However,
to the best of our knowledge, a few papers in the literature deal with node partitioning based on stars. In Baidari et al.
(2012) the subgraph induced by each part of the node partition has to be a star (rather than to have a spanning star)
and, moreover, singletons can take part in the partition (whereas we just allow proper stars). Maravalle et al Maravalle
et al. (1997) consider the problem of optimally partitioning a tree into a prescribed number of subtrees.

Star partitions have also relations to other well-known problems concerning domination in graphs, in particular
dominating sets and domatic bipartitions, and minimal edge covers. In Section 2, we will discuss these relations
and highlight the differences with respect to CSP. In Section 3, we will prove that, given a graph, there are star
partitions of any cardinality between the minimum and the maximum, and that a similar but weaker property holds
for domatic bipartitions. In Section 4, we show that the decision version of CSP is NP-complete and we state other
complexity results for related problems concerning dominating sets and domatic bipartitions. As a corollary, we will
solve a question about the complexity of Balanced Location Partitioning problem, left open in Andreatta et al. (2015).
Section 5 focuses on bounded treewidth graphs and, in particular, on trees, showing that finding star partitions for any
cardinality is polynomial. Section 6 introduces an Integer Linear Programming formulation to describe the set of all
the star partitions of a graph, and proves that its associated polyhedron has integral vertices for trees. The concluding
Section 7 gives some final remarks.
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2 Relations and differences with other known problems

In this section, we show that finding a star partition of minimum or maximum cardinality is related to well stud-
ied problems concerning edge covering and domination in graphs, whereas CSP has peculiarities coming from the
cardinality constraint.

A subset E ′ ⊆ E is an edge cover of G if E ′ spans all the nodes in V . A minimal edge cover is an edge cover that is
minimal with respect to inclusion. The edge cover number is the size of a minimum cardinality edge cover of G and it
is usually denoted by β ′(G) West (2001).

Proposition 1 Given a graph G = (V,E), finding a maximum cardinality star partition is equivalent to finding a
minimum cardinality edge cover.

Proof. The connected components of any minimal edge cover are proper stars, since paths of length three or more are
not allowed by minimality. Moreover, given a star partition, there are one or more spanning proper stars induced by
each part. Therefore, a star partition induces one or more spanning forests whose connected components are proper
stars. Hence, there is a one-to-one correspondence between these spanning forests and the minimal edge covers of the
graph. For any minimal edge cover C⊂ E and related star partition Σ , we have |C|= |V |−|Σ |. Therefore, maximizing
|Σ | is equivalent to minimizing |C|, and we can obtain a maximum cardinality star partition from a minimum cardinality
edge cover, and vice versa. ut

A subset V ′ ⊆V is dominating if each node of G is either in V ′ or it is adjacent to some node in V ′. The domination
number is the minimum size of a dominating set of G and is denoted by γ(G) West (2001).

Lemma 2 For any graph G without isolated nodes, the minimum cardinality of a star partition is equal to the domi-
nation number γ(G).

Proof. Given a graph G = (V,E), a subset S ⊂ V and a node v ∈ S, we say that v has an external private neighbor
with respect to S if there exists a node u ∈V \S such that (u,v) ∈ E and (u,w) /∈ E, for any w ∈ S \{v}. As shown in
Bollobas and Cockayne (1979), for any graph without isolated nodes there exists a minimum cardinality dominating
set D every node of which has an external private neighbor. In other words, any node v ∈ D dominates at least one
node u that is not dominated by any other node in D. Therefore, we can build a star partition Σ of G by considering,
for each v ∈ D, the proper star centered in v and including the external private neighbors of v. Remaining dominated
nodes can be associated to any arbitrarily chosen adjacent node in D. We have |Σ | = |D| = γ(G) and, hence, γ(G) is
an upper bound for the minimum cardinality of a star partition of G. Furthermore, γ(G) is also a lower bound since,
given any star partition of G and a spanning star for each of its parts, the set of the star centers is a dominating set of
the same cardinality as the star partition. ut

Proposition 3 Given a graph G = (V,E) without isolated nodes, finding a minimum cardinality star partition is
equivalent to finding a minimum cardinality dominating set.

Proof. Given a minimum cardinality star partition, consider a spanning star for each part of the partition: the set
containing the star centers is dominating and, by Lemma 2, it has minimum cardinality.

Vice versa, let D be any minimum cardinality dominating set of G. The following procedure builds a minimum
cardinality star partition of G.
Step 1: Define a partition of V such that each part contains exactly one dominating node in D and dominated nodes are
associated to any arbitrarily chosen adjacent node in D.
Step 2: If each part contains at least two nodes, then the partition of V is a star partition. Otherwise, consider a part of
the partition of V containing exactly one node, say d. Node d belongs to set D and, by hypothesis, it is not isolated in
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G. Node d is not adjacent to any dominating node in D, otherwise D \ {d} would be a dominating set, contradicting
the minimality of D. Furthermore, node d is not adjacent to a node v ∈V \D belonging to a part containing only two
nodes, say v and u, otherwise the set D\{d,u}∪{v} would be a dominating set with cardinality strictly smaller than
|D|. Therefore, node d must be adjacent to a node v ∈V \D belonging to a part that contains at least three nodes. By
moving node v from its part to the part of d, we get a new partition of V with same cardinality |D|. The number of
parts containing exactly one node is decreased by one.
Step 3: repeat Step 2 on the new partition until each part contains at least two nodes, i.e. the partition of V is a star
partition.
The cardinality of the obtained star partition is |D|= γ(G) and, by Lemma 2, it is minimum. ut

Proposition 1 establishes relations between the cardinalities of minimal edge covers and star partitions. While
minimum size edge covers are well studied, no literature is devoted, to the best of our knowledge, to a constrained
version of the problem and, hence, to CSP.

Finding a minimum size dominating set is also a well-known problem. However, Proposition 3 exploits properties
of minimum cardinality dominating sets and relates to minimum cardinality star partitions, whereas it does not apply
to star partitions of arbitrary cardinality and, hence, it cannot be directly used to solve CSP.

The study of star partitions with arbitrary cardinality has strong connections with domatic bipartitions. A domatic
bipartition is a partition of V into two dominating sets B and W (see e.g. Cockayne and Hedetniemi (1977); Garey and
Johnson (1979)). We define the cardinality of a domatic bipartition as min{|B|, |W |}.

Given a graph G = (V,E) and an integer number p, the Constrained Domatic Bipartition Problem asks to find
a domatic bipartition, if it exists, of cardinality p. Andreatta et al. in Andreatta et al. (2016) fully investigated this
problem on trees.

Given a star partition Σ of a graph G = (V,E), it is straightforward to associate one or more domatic bipartitions,
whose cardinalities can be related to Σ as follows. Let ηi be the number of nodes in the i-th part of Σ and consider, for
each part, a spanning proper star. We color each star such that it has a white center and black leaves (white star), or a
black center and white leaves (black star). Let B (resp. W ) be the set of black (resp. white) nodes: it is easy to see that
B and W configure a domatic bipartition of G having cardinality min{|B|, |W |}.

Let Sb and Sw be the set of indexes corresponding to, respectively, black and white stars, and let nb be the number
of black nodes. The following relation holds:

nb = |Sb|+ ∑
i∈Sw

(ηi−1) = |Sb|+ |Sw|+ ∑
i∈Sw

(ηi−2)

and so

nb = |Σ |+ ∑
i∈Sw

(ηi−2). (1)

By choosing Sw = /0 (i.e. all stars are black) we get nb = |Σ |, and, by choosing Sb = /0 (i.e. all stars are white) we get
nb = |V |− |Σ | and in both cases we have a domatic bipartition of cardinality |Σ |. Between these two extremes we can
get those values nb that result from (1) by all possible choices of Sb and Sw. We observe that not all integer values
between |Σ | and |V |−|Σ | are feasible for nb in general and therefore all feasible domatic bipartitions cardinality values
are in general not contiguous integer numbers (we will come back to this important point in Section 3). For instance,
consider the graph in Figure 1 where there is only one star partition: it has two parts and each part includes four nodes.
The values ηi−2 are {2,2}. Hence, from (1), we can color nb ∈ {2,4,6} black nodes and obtain domatic bipartitions
of cardinality 2, 4 and 2 respectively. In the figure the cases nb = 2 and nb = 4 are shown, the case nb = 6 can be
obtained from nb = 2 by switching colors.



4

Fig. 1. A graph and two domatic bipartitions with two and four black nodes resp.

Let us now start from a domatic bipartition with |B| = nb. By choosing all the edges (u,v) such that u ∈ B and
v ∈W , we have an edge cover, that can be made minimal, and therefore we find a star partition Σ . Since in each part
there is at least one black node, we have |Σ | ≤ nb.

Notice that this construction provides us with a procedure to build a minimum cardinality star partition from a
minimum cardinality dominating set D, as an alternative to the one described in the proof of Proposition 3. Indeed,
since the complement of a minimal (with respect to inclusion) dominating set is dominating as well Ore (1962), D
and V \D configure a domatic bipartition of minimum cardinality γ(G). The star partition Σ obtained by applying the
above construction to this domatic bipartition has |Σ | ≤ |D|= γ(G) and, by Lemma 2, Σ is a minimum cardinality star
partition.

Notice also that Lemma 2 can be obtained from the relations between the number of black nodes in a domatic
bipartition and the cardinality of a star partition discussed above.

3 The contiguity property

Given a graph G = (V,E), recall that the minimum cardinality of a star partition is equal to the domination number
γ(G). We denote by µ(G) the maximum cardinality of a star partition of G. By the proof of Proposition 1, µ(G) =
|V |−β ′(G), where β ′(G) is the edge cover number. We will prove that G has a star partition of cardinality s, for any
integer s between γ(G) and µ(G).

Given a set V ′ ⊆ V , denote by G(V ′) the subgraph of G induced by V ′. Observe that, for any part P ⊆ V of a star
partition of G, the choice of a spanning star for G(P) may be not unique: if v ∈ P is the center of any such spanning
star, we say that v is a feasible center of G(P).

Observation 4 Given a graph G = (V,E) and a spanning subgraph H = (V,E ′), E ′ ⊆ E, any star partition of H is
also a star partition of G.

Lemma 5 Given a graph G = (V,E) and an edge e ∈ E such that the graph G− = (V,E \{e}) has no isolated nodes,
we have γ(G)≤ γ(G−)≤ γ(G)+1.

Proof. Since, by Observation 4, any star partition of G− is also a star partition of G, γ(G)≤ γ(G−).
Let Σ be a minimum cardinality star partition of G and e = (u,v). If u and v belong to different parts of Σ , then Σ is
also a star partition of G− and γ(G) = γ(G−). Otherwise, let P be the part of Σ containing both u and v.
If there is at least one spanning star S of G(P) that does not contain e, S is also a spanning star of G−(P) and
γ(G) = γ(G−). Otherwise, e belongs to all the spanning stars of G(P) and we distinguish the following three cases.

Case 1: P = {u,v}.



5

We recall that u and v are not isolated in G− by hypothesis, that is, there exist t,w∈V \P such that (u, t),(v,w)∈E \{e}
(possibly t = w). Let Pt and Pw be the parts of Σ containing, respectively, t and w. We consider the following subcases.
Case 1.1: both t and w are feasible centers of, respectively, G(Pt) and G(Pw).
We have t 6= w, as otherwise a star partition of G with cardinality |Σ |−1 could be obtained by moving u and v to part
Pt = Pw and removing part P, contradicting the minimality of Σ in G. Moreover, Pt = Pw, as otherwise a star partition of
G with cardinality |Σ |−1 could be obtained by moving u to part Pt and v to part Pw and removing part P, contradicting
the minimality of Σ in G. Hence, a star partition Σ− of G− can be obtained from Σ by moving u to Pt = Pw and w to
P. Since |Σ−|= |Σ |, we have γ(G−) = γ(G).
Case 1.2: one node between t and w, let it be t without loss of generality, is a feasible center of G(Pt), and w is not a
feasible center of G(Pw) (possibly Pt = Pw).
Notice that |Pw| ≥ 3, as otherwise w would be a feasible center of G(Pw). A star partition Σ− of G− can be obtained
from Σ as follows: move u from P to Pt ; move w from Pw to P. Since |Σ−|= |Σ |, we have γ(G−) = γ(G).
Case 1.3: neither t nor w are feasible centers of G(Pt) and G(Pw) respectively.
As observed above, we have |Pt | ≥ 3 and |Pw| ≥ 3.
If t = w, then a star partition Σ− of G− can be obtained from Σ by moving t = w to P, so that |Σ−|= |Σ | and we have
γ(G−) = γ(G).
If t 6= w and Pt 6= Pw, a star partition Σ− of G− can be obtained from Σ as follows: remove part P, remove t from Pt
and w from Pw; create a new part containing u and t; create a new part containing v and w. Since |Σ−| = |Σ |+1, we
have γ(G−)≤ γ(G)+1.
The same argument holds if t 6= w, Pt = Pw and |Pt | ≥ 4.
If t 6= w, Pt = Pw = P′ and |P′|= 3, a star partition Σ− of G− can be obtained from Σ by moving t from P′ to P and v
from P to P′. In this case, |Σ−|= |Σ |, and γ(G−) = γ(G).
This completes the proof of Case 1.

Case 2: |P| ≥ 3 and G(P) has exactly one spanning star S.
Notice that the center of S is either u or v. Without loss of generality, let u be the center and recall that v is not isolated
in G− by hypothesis: let (v,w) ∈ E \{e}, and Pw the part of Σ containing w.
We start by considering the subcase Pw 6= P. If w is a feasible center of G(Pw), then we can move v from P to Pw
and obtain, from Σ , a star partition of G− of cardinality γ(G), that is γ(G−) = γ(G). Otherwise, as observed above,
|Pw| ≥ 3, and we can obtain from Σ a star partition for G− by moving v and w to a new star, so that γ(G−)≤ γ(G)+1.
If Pw = P, then |P| ≥ 4, as otherwise w would be adjacent in G to all the nodes of P, configuring a spanning star for
G(P) that does not contain e, whereas we are considering the case where e belongs to all the spanning stars of G(P).
Hence, we can move v and w to a new part, obtaining from Σ a star partition for G− showing that γ(G−)≤ γ(G)+1.

Case 3: |P| ≥ 3 and G(P) has at least two spanning stars.
Since e belongs to both stars, either u is a leaf and v the center, or vice versa. One star must thus be centered in u (star
Su) and the other in v (star Sv). Notice that |P| ≥ 4: indeed if P = {u,v,w}, then w is adjacent in G to both u and v.
Hence the star centered in w spans G(P) and does not contain e, which contradicts the hypothesis that e belongs to all
the spanning stars of G(P). In particular, there are at least two distinct nodes a and b in P\{u,v}, adjacent to both u
and v. We can thus obtain a star partition Σ− of G− from Σ as follows: remove u and a from P; create the new part
{u,a}. Since |Σ−|= |Σ |+1, we have γ(G−)≤ γ(G)+1. ut

Theorem 6 (Contiguity Property for star partitions) Any graph G = (V,E) without isolated nodes has star parti-
tions of any cardinality between γ(G) and µ(G).

Proof. Let F be a spanning forest of G obtained by considering a maximum cardinality star partition of G and, for
each part P, picking a spanning star of G(P). Since the components of F are proper stars, F has no isolated nodes and
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a unique star partition, and therefore γ(F) = µ(F) = µ(G). The forest F can be obtained from G by a sequence of
single edge removals, giving rise to a sequence of graphs G = G0, G1, . . . , Gk = F , where, for each i = 1, . . . ,k, Gi is
obtained from Gi−1 by removing one edge. We observe that any graph Gi spans the node set of the original graph G
and has no isolated nodes. For each graph Gi, consider a minimum cardinality star partition Σi and obtain a sequence
σ = (Σ0, . . . ,Σk) of star partitions, with |Σ0| = γ(G) and |Σk| = γ(F) = µ(G). By Observation 4, star partitions in σ

are also star partitions of G, and, by Lemma 5, |Σi−1| ≤ |Σi| ≤ |Σi−1|+1, for every i = 1, . . . ,k. Therefore, σ contains
star partitions of any cardinality between γ(G) and µ(G). ut

We have already observed that the minimum cardinality of a domatic bipartition is γ(G) and, by definition, the
maximum cardinality is at most b|V |/2c. Given the close connection between star partitions and domatic bipartitions,
we may wonder whether the contiguity property also holds for domatic bipartitions, that is, whether there exists a
domatic bipartition of any cardinality between the minimum and the maximum values.

The answer is negative in general as shown by the counterexample in Figure 1: the graph has domatic bipartitions
of cardinality 2 and 4 but it is easy to check that no domatic bipartition of cardinality 3 exists.

From the contiguity property for star partitions (Theorem 6), and observing that, from (1) with Sw = /0, a domatic
bipartition with the same cardinality of a star partition always exists, we obtain the following corollary.

Corollary 1. Any graph G = (V,E) without isolated nodes has domatic bipartitions of any cardinality between γ(G)
and µ(G).

The corollary allows us to identify two cases for which the contiguity property for domatic bipartitions holds.

Proposition 7 If G = (V,E) admits a perfect matching, then the maximum cardinality of a domatic bipartition of G is
|V |/2 and the contiguity property for domatic bipartitions holds for G.

Proof. A perfect matching of G corresponds to a star partition of cardinality |V |/2. Therefore µ(G) = |V |/2 and the
statement directly follows from Corollary 1. ut

Proposition 8 If G = (V,E) admits an edge cover whose connected components have at most two edges, then the
maximum cardinality of a domatic bipartition of G is b|V |/2c and the contiguity property for domatic bipartitions
holds for G.

Proof. Let C⊆ E be an edge cover according to the hypothesis. C is clearly minimal and corresponds to a star partition
Σ , with γ(G)≤ |Σ | ≤ µ(G). Each part includes two or three nodes. If there are no parts having three nodes, then C is a
perfect matching and the thesis follows from Proposition 7. Otherwise, we apply (1) to obtain domatic bipartitions of
different cardinalities. To this end, let us consider, for each part, its spanning star and the related center. We can color
each star either black or white: a black star has black center and white leaves and vice versa for a white star. Let Sb
and Sw be the sets of, respectively black and white stars. We recall that ηi is the number of nodes of the i-th star of Σ

and we observe that, for stars with three nodes, ηi−2 = 1. Hence domatic bipartitions of any cardinality between |Σ |
and b|V |/2c can be obtained by coloring white a suitable number of three-nodes stars. ut

4 Computational complexity issues

We have seen in the previous section that star partitions satisfy the contiguity property. Clearly, deciding whether a
graph admits a star partition of cardinality s has an obvious negative answer if s > µ(G) and an obvious positive
answer if s = µ(G). Since µ(G) can be computed in polynomial time, the case s≥ µ(G) is polynomial and we are left
with assessing the computational complexity for the case s < µ(G). Because of the contiguity property there is not
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much difference in deciding whether there exists a star partition of cardinality s < K or s = K for an assigned constant
K.

The question is different for domatic bipartitions of given cardinality p. We have seen that there are graphs for
which the contiguity property for domatic bipartitions holds for any value between γ(G) and b|V |/2c. However, in
general, we do not know whether there are domatic bipartitions of cardinality p for µ(G) < p ≤ b|V |/2c. For the
particular value p = µ(G) the problem of deciding whether there exists a domatic bipartition of cardinality p can be
solved in polynomial time whereas, as we show below, the same problem is hard both for values lower than µ(G) and
for values higher than µ(G). This difference makes it necessary to analyze the problem of finding domatic bipartitions
of given cardinality by specifying the range for p.

Let us formally state the problems we are considering in this paper as the following decision problems.
Minimum Star Partition (MSP): Given a graph G = (V,E) and an integer s, does there exist a star partition of G with
cardinality at most s?

Constrained Star Partition (CSP): Given a graph G = (V,E) and an integer s, does there exist a star partition of G with
cardinality exactly s?

Note that CSP as stated above is the decision version of the search problem stated in Section 1. We use the same
acronym for both problems. This should raise no ambiguity because we use the decision version only in this section.
Minimum Dominating Set (MDS): Given a graph G = (V,E) and an integer K, does there exist a dominating set D⊂V
of cardinality at most K?

Minimum Domatic Bipartition (MDB): Given a graph G = (V,E) and an integer p, does there exist a domatic biparti-
tion of G of cardinality at most p?

Constrained Domatic Bipartition (CDB): Given a graph G = (V,E) and an integer p, does there exist a domatic
bipartition of G of cardinality p?

Balanced Domatic Bipartition (BDB): Given a graph G = (V,E) and an integer K ≥ 0, does there exist a domatic
bipartition (B,W ) of V such that ||W |− |B|| ≤ K?

Notice that BDB is equivalent to deciding whether there exists a domatic bipartition having cardinality at least
(|V |−K)/2.

It is known that MDS is NP-complete (Garey and Johnson (1979) p. 190). Since a minimum dominating set and
its complement constitute a domatic bipartition Ore (1962), MDB is also NP-complete.

Theorem 9 MSP is NP-complete.

Proof. The thesis is an obvious consequence of Proposition 3, stating the equivalence between MSP and MDS. ut

Theorem 10 CSP is NP-complete for s < µ(G).

Proof. We transform MSP to CSP. If there exists a star partition of cardinality at most s < µ(G), by the contiguity
property there exists also a star partition of cardinality exactly s. The converse implication is trivial. ut

Theorem 11 CDB is NP-complete for p < µ(G).

Proof. We transform MDB to CDB. If there exists a domatic bipartition of cardinality at most p < µ(G) in G, by
Corollary 1 there exists also a domatic bipartition of cardinality exactly p. The converse implication is trivial. ut

Theorem 12 BDB is NP-complete.
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Fig. 2. The graph G with the critical domatic bipartition

Proof. We transform MDB for a graph G with constant p < µ(G) into BDB on a graph G with constant K equal to p.
Let n be the number of nodes in G. The graph G consists of G, a node w appended to an arbitrary node u of G and a
set T of n− p+1 nodes appended to w (refer to Fig. 2). The graph G has n+1+n− p+1 = 2(n+1)− p nodes.

(=⇒) Assume that there exists a domatic bipartition (B,W ) in G of cardinality at most p, i.e., with 1 ≤ |B| ≤ p
and n− 1 ≥ |W | ≥ n− p. The bipartition (B′,W ′) = (B∪T,W ∪{w}) in G is domatic and n− p+ 2 ≤ |B′| ≤ n+ 1,
n≥ |W ′| ≥ n− p+1, so that 2− p≤ |B′|− |W ′| ≤ p and ||B′|− |W ′|| ≤ p.

(⇐=) Now assume there exists a domatic bipartition (B′,W ′) in G such that −p ≤ |W ′| − |B′| ≤ p. Necessarily
either T ⊂ B′ and w ∈W ′ or T ⊂W ′ and w ∈ B′. Without loss of generality, we may assume the former case. The
bipartition (B′,W ′) in G induces a bipartition (B′∩V,W ′∩V ) = (B,W ) in G.
The bipartition (B,W ) is not necessarily domatic. It is not domatic only in the critical case in which u and w are in
different subsets of the bipartition of G and all neighbor nodes of u in G are in the same subset as u. The critical case
is shown in Fig. 2.
We have |B|= |B′|−n+ p−1 and |W |= |W ′|−1 so that

|W |− |B|= |W ′|−1−|B′|+n− p+1≥ n−2 p.

Since |W |+ |B|= n we get |B| ≤ p.
If (B,W ) is domatic, we have found a domatic bipartition of cardinality at most p. If it is not domatic, then, as observed,
u ∈ B and all neighbors of u in G are in B. Hence the bipartition (B”,W”) = (B\{u},W ∪{u}) obtained by switching
u from B to W is domatic. In this case |B”| ≤ p− 1 and we have found a domatic bipartition of cardinality at most
p. ut

We note that the proof of NP-completeness of problem BDB implicitly considers only K ≥ 1. We wonder whether
the same complexity result holds also for K = 0, i.e., for a perfectly balanced bipartition. The answer is affirmative
as we next show but another proof is required. This proof makes use of the same trick of the previous proof but with
different parameters and needs the contiguity property.

Theorem 13 BDB for K = 0 is NP-complete.

Proof. We transform CDB for a graph G with constant p < µ(G) and n nodes into BDB by building a graph G that
consists of G, a node w appended to an arbitrary node u of G and a set T of n− 2 p+ 1 nodes appended to w (refer
again to Fig. 2). The graph G has n+1+n−2 p+1 = 2(n− p+1) nodes.
Assume that there exists a domatic bipartition (B,W ) in G of cardinality p, i.e., with |B| = p and |W | = n− p. Now
the bipartition (B∪T,W ∪{w}) in G is domatic and |B∪T |= |W ∪{w}|= n− p+1, i.e., it is perfectly balanced.
Now assume there exists a domatic bipartition (B′,W ′) in G with |B′| = |W ′|. Let, without loss of generality, T ⊂ B′

and w∈W ′. This bipartition in G induces a bipartition (B′∩V,W ′∩V ) = (B,W ) in G with |B|= p and |W |= n− p. As
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in the previous proof, this bipartition is not necessarily domatic. If it is domatic we have found a domatic bipartition
in G with cardinality p. If it is not domatic then the new bipartition (B\{u},W ∪{u}) obtained by switching u from
B to W is domatic. Now |B\{u}|= p−1. By the contiguity property there exists a domatic bipartition of cardinality
p. ut

Theorem 14 CDB is NP-hard for p > µ(G).

Proof. BDB can be solved by calling an algorithm for CDB a polynomial number of times, with p taking values from
d(|V |−K)/2e to b|V |/2c. Since this is a Turing reduction from BDB to CDB and BDB is NP-complete (Theorem 12),
it follows that CDB is NP-hard. ut

4.1 Results on Balanced Location Partitioning problem

The result of NP-completeness for BDB allows to finalize the discussion on Balanced Location Partitioning problem
defined in Andreatta et al. (2015), closing the only missing tile with regard to the computational complexity of the
various location partitioning problems discussed in that paper. We recall the following definitions:

Location Partitioning (LP): Given a set F of facilities and a set C of customers, distances di j ≥ 0 for all i∈C and j ∈ F ,
an integer H ≤ |F |, a number L, is there a partition of F into subsets J1,J2, . . . ,JH , such that ∑1≤h≤H ∑i∈C min j∈Jh di j ≤
L?

Balanced Location Partitioning (BLP): Given a set F of facilities and a set C of customers, distances di j ≥ 0 for
all i ∈ C and j ∈ F , an integer H ≤ |F |, a number L, is there a partition of F into subsets J1,J2, . . . ,JH , such that
|Jh| ∈ {b|F |/Hc,d|F |/He} for any h ∈ {1, . . . ,H}, and ∑1≤h≤H ∑i∈C min j∈Jh di j ≤ L?

Both problems can be further specialized according to the assumptions on the distances di j and on the customer
and facility sets. Andreatta et al Andreatta et al. (2015) considered the following three versions of the problems, in the
order of decreasing generality:

(a) the distances di j are nonnegative;
(b) the customers locations and facilities are two subsets (not necessarily disjoint) of the nodes of a given graph and

the di j are measured on the shortest paths with respect to nonnegative edge lengths;
(c) as in (b) but the two subsets coincide and include all the nodes of the graph.

The computational complexity of these problems has been extensively studied in Andreatta et al. (2015), where
the following result has been proven.

Proposition 15 (Andreatta et al. (2015)) Both LP and BLP are NP-complete for all three versions if H ≥ 3. Both
LP and BLP are NP-complete for versions (a) and (b) if H = 2. LP, version (c), is polynomial if H = 2.

The only open case in Andreatta et al. (2015) is BLP, version (c), with H = 2. For ease of the reader, we reformulate
the problem as follows.

Balanced Location Partitioning, version (c), H = 2 (BLPc2): Given a graph G = (V,E) with nonnegative edge lengths
that define distances di j ≥ 0, i, j ∈V , and a number L, is there a bipartition of V into two subsets J and V \J, such that
|J|= b|V |/2c and ∑i∈V (min j∈J di j +min j/∈J di j)≤ L?

Theorem 16 BLPc2 is NP-complete.
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Proof. We transform BDB, with constant K = 0 if |V | is even and K = 1 if |V | is odd, into BLPc2 by using the same
graph, taking unitary edge lengths and setting L = |V |.
For any balanced domatic bipartition (J,V \ J) we have (actually this is true for any domatic bipartition, even if not
balanced)

∑
i∈V

(min
j∈J

di j +min
j/∈J

di j) = |V |= L.

Conversely let (J,V \ J) be a balanced bipartition such that

∑
i∈V

(min
j∈J

di j +min
j/∈J

di j)≤ |V |= L.

Since min j∈J di j = 0 and min j/∈J di j ≥ 1 if i ∈ J and similarly min j/∈J di j = 0 and min j∈J di j ≥ 1 if i /∈ J, we have

|V | ≥ ∑
i∈V

(min
j∈J

di j +min
j/∈J

di j) = ∑
i/∈J

min
j∈J

di j +∑
i∈J

min
j/∈J

di j ≥ |V |

that implies
min
j/∈J

di j = 1, i ∈ J, min
j∈J

di j = 1, i /∈ J,

or in other words that each node in J is adjacent to a node in V \ J and also each node in V \ J is adjacent to a node in
J. Hence the bipartition is balanced and domatic. ut

5 Star Partition problems on trees and bounded treewidth graphs

The relations between star partitions and other known problems, in particular minimum edge cover and minimum
dominating set, allow us to solve star partition problems in polynomial time for trees and, more generally, bounded
treewidth graphs. We recall that the class of bounded treewidth graphs includes trees, forests, series parallel graphs,
pseudoforests, cactus graphs, outerplanar graphs, Halin graphs etc. Some NP-complete problems can be solved in
polynomial time when restricted to bounded treewidth graphs. For the definition and properties of bounded treewidth
graphs see e.g. Diestel (2016).

Lemma 17 A minimum cardinality star partition can be found in linear time on bounded treewidth graphs.

Proof. Finding a minimum dominating set on a bounded treewidth graph G = (V,E) can be done in O(|V |) Alber and
Niedermeier (2002). By applying the procedure in the proof of Proposition 3, a minimum dominating set is transformed
into a minimum cardinality star partition in O(|V |). ut

Lemma 18 A maximum cardinality star partition can be found in polynomial time on any graph and in linear time on
trees.

Proof. Finding a maximum matching on any graph G = (V,E) can be done in O(|V |1/2|E|) in general Micali and
Vazirani (1980) and in linear time on trees Savage (1980). The maximum matching can be transformed into a mini-
mum edge cover in O(|V |), by adding an edge for each unmatched node. By Proposition 1, a minimum edge cover
corresponds to a maximum cardinality star partition. ut

Corollary 2. The decision version of CSP can be solved in polynomial time on bounded treewidth graphs and in linear
time on trees.
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Proof. The result comes directly from Lemma 17, Lemma 18 and the contiguity property for star partitions stated in
Theorem 6. ut

Theorem 19 The problem of finding a star partition of any cardinality can be solved in polynomial time on bounded
treewidth graphs G = (V,E), and in O(|V |2) on trees.

Proof. Following the proof of Theorem 6, a star partition of any possible cardinality can be found through the fol-
lowing steps. First, we determine a maximum cardinality star partition of G and a related spanning forest F = (V,E ′),
which can be done in O(|V |1/2|E|) by Lemma 18. We then find a minimum cardinality star partition in O(|V |) by
Lemma 17. If the cardinalities of the maximum and minimum star partitions are equal, then the procedure stops. Oth-
erwise we update G by removing one edge in E \E ′, we find a minimum cardinality star partition of G, and we iterate
until G = F . We observe that if the treewidth of the original graph is bounded by constant k, then the treewidth of any
graph considered at each iteration is bounded by the same k, since they are obtained by removing edges Diestel (2016).
Therefore, each iteration takes O(|V |) time by Lemma 17. Since the number of iterations is O(|E|− |E ′|) = O(|E|),
the overall procedure is O(|V ||E|) and, in particular, O(|V |2) on trees. ut

6 An Integer Linear Programming formulation for star partitions

In this section we will introduce an Integer Linear Programming (ILP) formulation to describe the set of all star
partitions of a graph, define the star partition polytope associated to the formulation and investigate its integrality. We
say that a polytope is integral if all its vertices have only integral components.

Let us consider an undirected graph G = (V,E) and, for every node i ∈V , let N(i) be the set of nodes adjacent to
node i.

We associate a binary variable yi to each node i ∈ V , with yi equal to 1 whenever node i is a star center, and a
binary variable xi j to each ordered pair i ∈V and j ∈ N(i), with xi j equal to 1 whenever node i is a leaf of a star with
center in node j. Then the following ILP formulation represents all star partitions of G:

∑
j∈N(i)

xi j + yi = 1 i ∈V, (2)

xi j ≤ y j j ∈ N(i) and i ∈V, (3)

yi ≤ ∑
j∈N(i)

x ji i ∈V, (4)

xi j ≥ 0 j ∈ N(i) and i ∈V, (5)
xi j ∈ Z j ∈ N(i) and i ∈V. (6)

Equations (2) state that each node i is either a star center or a leaf of some star, inequalities (3) state that node j must
be a star center if node i is a leaf of j, and inequalities (4) compel each star to be proper. Notice that y j ≥ 0 follows by
(3) and (5), and conditions (2) and (6) imply that all variables are less than or equal to 1 and that yi are integral.

We already noticed that, for any given star partition of G, there are one or more spanning forests such that each
connected component is a star and spans a part of it. There is a one-to-one correspondence between the set of all these
spanning forests of G and the set of all the solutions of (2–6). As a consequence, any star partition of G corresponds
to one or more solutions of the proposed model, and each feasible solution defines a star partition of G.

The equality
∑
i∈V

yi = s (7)
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can be included in the formulation to ask for star partitions with exactly s stars.
Through equalities (2) restated as

yi = 1− ∑
j∈N(i)

xi j for all i ∈V, (8)

the model can be refined obtaining the following alternative formulation, where only variables xi j appear:

xi j + ∑
k∈N( j)

x jk ≤ 1 j ∈ N(i) and i ∈V, (9)

∑
j∈N(i)

(xi j + x ji)≥ 1 i ∈V, (10)

xi j ≥ 0 j ∈ N(i) and i ∈V, (11)
xi j ∈ Z j ∈ N(i) and i ∈V. (12)

The cardinality constraint (7) turns into

∑
i∈V

∑
j∈N(i)

xi j = |V |− s. (13)

We say that each inequality (9) is an arc-constraint associated with the ordered pair of nodes i j, and each inequality
(10) is a node-constraint associated with node i.

The two formulations are equivalent, i.e., they have the same solution set, since one can be obtained from the other
through a sequence of pivot operations. From now on, we will focus on the second formulation and we will consider
only xi j variables, since the values of yi variables are fixed by (8).

Given a graph G, let Q(G) be the star partition polytope defined by inequalities (9–11). Q(G) is the projection of
the polytope defined by (2–5) onto the space of variables xi j. Given an integer s, we also define the polytope Qs(G) as
the intersection of Q(G) with the set of solutions of the cardinality constraint (13).

6.1 Integrality of the star partition polytopes on paths

The matrix associated to the linear relaxation of formulation (2–7) is a 0,±1 matrix, that is, all its entries are in
{0,+1,−1}, and the matrix associated to the linear relaxation of (8–13) is a 0,1 matrix. A 0,±1 matrix is totally
unimodular if every square submatrix has determinant equal to 0, +1 or −1. We recall that a 0,1 matrix has the
consecutive ones property if, after a possible permutation of the columns, the ones appear consecutively in each row.
It is well known that consecutive ones property implies total unimodularity.

Lemma 20 If the graph G is a path, then the constraint matrix of formulation (9–11) and (13) is totally unimodular.

Proof. Since the graph is a path, the matrix associated to constraints (9–11) and (13) satisfies the consecutive ones
property: this can be seen by associating indexes from 1 to |V | to the nodes in the path such that node i is adjacent
to node i+ 1 (i ∈ {1, . . . , |V | − 1}), and by lexicographically ordering variables xi j. Since consecutive ones property
implies total unimodularity, the thesis follows. ut

Proposition 21 If the graph G is a path, then both the polytopes Q(G) and Qs(G) are integral.

Proof. The assert directly follows from Lemma 20 and the integrality of the right-hand-sides of (9–11) and (13). ut
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The integrality property also holds for the linear relaxation of formulation (2–7).

Proposition 22 If the graph G is a path, both the polytope associated to (2–5) and the one associated to (2–5) and
(7) are integral.

Proof. By the same arguments as for Lemma 20, the matrix associated to constraints (8–11) and (13) is totally uni-
modular and can be transformed into the matrix of constraints (2–5) and (7) by pivoting operations. Since pivoting
preserves totally unimodularity Schrijver (1986), the assert follows. ut

6.2 Integrality of the star partition polytopes on trees

Lemma 20 does not hold for trees, as shown by a star with three leaves: the corresponding constraint matrix of
formulation (9–11) is not totally unimodular. Moreover, the polytope Qs(G) is not necessarily integral if the graph G
is a tree. For instance, consider the tree T ′ obtained from a path of length 8 by appending a node adjacent to the central
node. The tree T ′ admits star partitions having cardinality equal to 3, 4 and 5. The polyhedron Q4(T ′) has 16 fractional
vertices and 8 integral vertices. Nevertheless, in the following we will prove that the star partition polytope Q(T ) of
any tree T is integral.

First notice that formulation (9–11) for polytope Q(G) is a linear system of the following type:
A1 x≤ 1
A2 x≥ 1
x≥ 0

where both A1 and A2 are 0,1 matrices, A1 x ≤ 1 are set packing inequalities and correspond to arc-constraints (9),
A2 x≥ 1 are set covering inequalities and correspond to node-constraints (10).

A circulant is a 0,1 square matrix with two ones per row and per column, that does not contain any proper
submatrix with the same property. A circulant is odd if its order (i.e., the number of rows and columns) is odd. A 0,1
matrix is balanced if it does not contain any odd circulant. This notion was first introduced by Berge Berge (1970). It is
known that the family of 0,1 balanced matrices strictly contains all the 0,1 totally unimodular matrices. The following
result is due to Fulkerson, Hoffman and Oppenheim Fulkerson et al. (1974).

Proposition 23 (Fulkerson et al. (1974)) The polytope defined by the linear system
A1 x≤ 1
A2 x≥ 1
A3 x = 1
x≥ 0

is integral if

A1
A2
A3

 is a 0,1 balanced matrix.

We are going to prove that, if the graph is a tree T , then the coefficient matrix A of formulation (9–11) is balanced
and therefore the polytope Q(T ) is integral by Proposition 23.

Let T = (V,E) be a tree. For convenience, we define a directed graph G = (V,EG ) with the same node set as T ,
and two arcs i j and ji in EG for each edge (i, j) ∈ E. Each arc i j ∈ EG corresponds to a variable xi j and to a column in
matrix A.
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Let AC be any circulant in matrix A. Rows and columns of A can be permuted so that the circulant AC takes the
following form: 

1 1
1 1

. . . . . .
1 1

1 1

 .

Let m be the order of AC. The columns in AC correspond to an ordered set of arcs (α1, . . . ,αm), with the property
that both arcs αi and αi+1 (for any i = 1, . . . ,m−1) appear in a same constraint, and therefore they share at least one
common extreme node. This property also links arcs αm and α1.

By ignoring the orientations, the arcs (α1, . . . ,αm,α1) induce an edge-circulant, that is an ordered set of edges in
T , with the property that consecutive edges share at least one node. Let Tsupp be the support graph of the edge-circulant
induced by AC. Graph Tsupp is a subgraph of T and is connected, hence, it is a subtree.

Lemma 24 The graph Tsupp is a path.

Proof. We prove that Tsupp does not contain any node of degree 3. For nodes with higher degree, the proof follows
similarly.
By contradiction, assume that Tsupp has three edges e1 = (v1,v4), e2 = (v2,v4) and e3 = (v3,v4), all incident in node
v4 of degree three.
For each pair ei, e j of edges in {e1, e2, e3} (i 6= j), there is a corresponding row in AC that contains two 1, one in
a column corresponding to an arc associated with ei, the other in a column corresponding to an arc associated with
e j. These three rows correspond to three arc-constraints, because node-constraint given by node v4 would imply the
presence of three 1 in the corresponding row of AC, and any other node-constraint given by a generic node v 6= v4
could not have two 1 in the columns corresponding to e1, e2 and e3, since any node (except for v4) is incident in at
most one of the edges e1, e2 and e3.
Each edge ei may correspond to arc viv4 or to arc v4vi. We distinguish two cases, whether there is at least one edge ei
corresponding to arc viv4, or each edge ei corresponds to arc v4vi.

Case 1: there is at least one edge ei corresponding to arc viv4.
Without loss of generality let edge e1 correspond to arc v1v4. The constraint relating edges e1 and e2 is an arc-constraint.
Therefore, edge e2 must correspond to arc v4v2, and arcs v4v3 and v4v1 cannot be in the columns of AC. Hence, e3
corresponds to arc v3v4. Then, the constraint relating edges e1 and e3 cannot exist, since it would be an arc-constraint
relating two arcs both entering in node v4.

Case 2: each edge ei corresponds to arc v4vi.
The constraint linking arcs v4v1 and v4v2 is an arc-constraint induced by an arc uv4, with node u not belonging to Tsupp.
Then, this constraint should also involve arc v4v3, and the corresponding row in AC should have three entries equal to
1. ut

Theorem 25 Given a tree T = (V,E), the corresponding coefficient matrix A in formulation (9–11) is balanced.

Proof. We will prove that any circulant in matrix A is of order two. Therefore A does not contain any odd circulant
and it is balanced.
Let AC be a circulant in matrix A and Tsupp the related support path. If Tsupp contains only one edge (i, j), then the
columns of AC correspond to arcs i j and ji and AC is a circulant of order two. Otherwise, let i be a leaf of Tsupp and
let (i, j) and ( j,k) be edges in Tsupp.
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In the following, we consider all the arc-constraints and node-constraints where variables xi j or x ji appear. These
constraints are subdivided in six classes, according to the variables they involve. The constraints (rows of A) are
referred to by indicating the arcs (columns of A) having a 1 in that row. Only arcs related to edges in Tsupp are
indicated. The list of classes follows:

(c1) i j, ji, jk (arc-constraint given by arc i j)
(c2) i j, ji (arc-constraint given by arc ji or node-constraint given by node i)
(c3) i j, ji, jk, k j (node-constraint given by node j)
(c4) ji, jk, k j (arc-constraint given by arc k j)
(c5) i j (arc-constraints given by any arc hi, for all h /∈V (Tsupp))
(c6) ji, jk (arc-constraints given by any arc h j, for all h /∈V (Tsupp)).

Observe that class (c2) contains exactly two constraints, and that the listed constraints (c5) cannot appear in the
circulant, since the corresponding rows would have a single 1. Each of classes (c1), (c3) and (c4) contains a single
constraint. If two constraints of the same class ((c2) or (c6)) correspond to rows of AC, then AC has two equal rows,
yielding a circulant of order two, which, by definition of circulant, must coincide with AC. Hence, in the following,
we may assume that the set of constraints corresponding to rows of the circulant AC contains at most one element in
each class.
Let us distinguish two cases, according to whether arc i j is in the circulant or not.

Case a: arc i j is in the circulant AC.
Then exactly two constraints among the ones listed in classes (c1), (c2) and (c3) must be in the circulant.
If also arc ji is in AC, then both these two constraints contain a 1 in column i j and a 1 in column ji, yielding a circulant
of order two which, by definition of circulant, must coincide with AC.
If arc ji is not in AC, then the listed constraints (c1) and (c3) appear in AC, arc jk must belong to the circulant, and
these two constraints in columns i j and jk yield a circulant of order two as above.
Therefore, in this case, only circulants of order two are possible, either corresponding to arcs i j and ji or corresponding
to arcs i j and jk.

End of Case a

Case b: arc i j is not in the circulant AC.
Therefore, arc ji must be in AC and the listed constraints (c2) cannot appear in the circulant, since the corresponding
rows would have a single 1. Exactly two among the listed constraints (c1), (c3), (c4) and (c6) must be in the circulant.
If the circulant has order larger than two, then other two variables besides ji are in the circulant such that one appears
in one of these two constraints and the other does not. These two variables could only be jk and k j, but then at least
one row in AC would contain at least three 1, since the only constraints containing arc k j are in (c3) and (c4), and they
both contain arcs jk and ji.
Therefore, also in this case, only circulants of order two are possible, either corresponding to arcs ji and jk or corre-
sponding to arcs ji and k j.

End of Case b

Summarizing, only circulants of order two are possible. Therefore, the matrix A does not contain any odd circulant,
and hence it is balanced. ut

Theorem 26 Given any tree T , the star partition polytope Q(T ) is integral.

Proof. The proof directly follows from Proposition 23 and Theorem 25. ut
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An alternative proof of Theorem 26 is available in Andreatta et al. (2016b). It is by induction on the number of
nodes of the tree T and uses the properties of vertices.

We may wonder if Theorem 26 can be extended to arbitrary graphs. Unfortunately, the answer is negative, as
follows from the following remark.

Remark 1. Theorem 26 does not hold on arbitrary graphs, not even on bounded treewidth graphs. A counterexample
is the graph corresponding to a circuit with four nodes. The graph belongs to the class of series-parallel graphs, a
subfamily of bounded treewidth graphs with treewidth equal to 2. The star partition polytope of a circuit with four
nodes has, among others, the fractional vertex defined by xi j =

1
3 for all i ∈V and j ∈ N(i).

Remark 2. Given a weighted graph G = (V,E), let w j be a weight associated with node j ∈ V and wi j be a weight
associated with the ordered pair (i, j), for j ∈ V and i ∈ N( j). We can associate a weight to any star partition Σ of G
as follows. For each part P of Σ , consider one of its spanning stars and let j be its center. The weight of this star can
be set equal to the sum of the center weight w j and the weights wi j of all the ordered pairs (i, j) with i ∈ P\{ j}. The
weight of the part P can be defined as the minimum among the weights of all its spanning stars, and the weight of a
star partition is the sum of the weights of its parts. By Theorem 26, finding a minimum weight star partition is solvable
in polynomial time on trees.

7 Conclusions

We have defined the star partition of an undirected graph and we have considered problems related to its cardinality.
Although finding a star partition of minimum or maximum cardinality is strongly related to well-known problems in
graph theory, namely minimum dominating set and minimum edge cover, the constrained version presents interesting
peculiarities and relations to domatic bipartitions. Hence, we have focused on CSP, where a star partition of prescribed
cardinality has to be found. We have seen that star partitions can be obtained from domatic bipartitions and vice versa.
Starting from a given star partition (resp. domatic bipartition), the analyzed transformation allows obtaining domatic
bipartitions (resp. star partitions) of different cardinalities: we have investigated the relations among them and, in
particular, we have characterized the possible cardinalities of domatic bipartitions resulting from a given star partition.

CSP satisfies the contiguity property, that is, a graph has always star partitions of any cardinality between the
minimum and the maximum values. Some examples show that the same property does not hold in its full form for
domatic bipartitions. However the transformation cited above and the contiguity property for CSP guarantee that
domatic bipartitions exist for any cardinality between the minimum value and the maximum star partition cardinality,
whereas, for larger values, the same property does not necessarily hold.

The contiguity property has also important consequences on the computational complexity of the problems consid-
ered in this paper. In particular, it allows proving that CSP is NP-complete, as a direct consequence of the complexity
of the minimum dominating set problem. In addition, Constrained Domatic Bipartition problem turns out to be NP-
complete for any cardinality lower than the maximum star partition cardinality. Furthermore, we have proven that
the balanced version of the domatic bipartition problem (where the difference between the cardinalities of the two
dominating subsets is small) is also NP-complete. As a by-product, we have closed the complexity analysis of another
partitioning problem on graphs, the Location Partitioning problem (Andreatta et al., 2015), showing that this problem
is also NP-complete for the balanced case with two parts. We have noticed that the star partition problems are poly-
nomial on trees, as one may expect from the complexity of domination on this class of graphs, and also on the larger
class of bounded treewidth graphs.

Towards the study of more general star partition problems, we have characterized the star partitions of a graph
through an integer linear programming formulation. We have shown that the vertices of the related polytope have only
integral components in case of trees and that the same property holds for CSP if we further restrict to paths. These
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results imply that linear programming can be used to efficiently find star partitions having minimum weight on trees
with node and edge weights. The solution of weighted star partition problems on more general graphs is the object of
future research.
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