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Certificates of optimality for minimum norm biproportional apportionments
Paolo Serafini

Abstract. Computing a biproportional apportionment that satisfies some given properties may require a high degree
of mathematical expertise, that very few voters can share. It seems therefore that the voters have to accept the
electoral outcome without any possibility of checking the validity of the stated properties. However, it is possible in
some cases to attach to the computed apportionment a certificate which can guarantee the voters of the validity of
the apportionment. This type of investigation has been first proposed in [18]. In this paper we pursue the same line
of approach and show that a certificate can be produced and easily checked by a layman for apportionments that
minimize either an L1- or an L2-norm deviation from given quotas.

1 Introduction

In a recent paper [18] the question was posed of how to ‘guarantee’ the voters that the seats assigned by the
competent authority to parties and constituencies are consistent with certain properties the apportionment
is claimed to satisfy.

The question was originated by the fact that usually electoral systems have to rely on complex mathemat-
ical procedures to find an apportionment. Indeed, naive and ‘easy to understand’ procedures may generate
inconsistencies and anomalies [3, 10–13]. On the other hand transparency of the electoral machinery is a
fundamental property because not only the citizens should be able to easily check the correctness of the
seat assignments (Principle 1 in the so-called “Erice Decalogue” [19]) but also the electoral authority in first
place.

In [18] the following dilemma was stated: ‘Which is better? To have simple, but unsound electoral laws,
or sound, but complex ones?’ The proposed way out of the dilemma was: ‘Leave to a mathematically so-
phisticated algorithm the task of producing a sound solution, but attach to it a certificate of guarantee, that
is, describe a simple procedure whereby anybody can check, through some elementary operations, that the
solution output by the algorithm indeed satisfies all the requirements sought for.’

What we mean is that this ‘anybody’ does not need to be a mathematician who only can understand how
the mathematical principles are embodied in an algorithm, nor a computer scientists who only can verify the
correctness of the algorithm implementation. Only an elementary knowledge of mathematics and the ability
of understanding simple mathematical arguments should be required for the verification procedure.

The specific electoral system addressed by [18] was the biproportional apportionment problem that min-
imizes an L∞-norm deviation from given quotas (this type of apportionment has been fully investigated in
[17]). In that paper it was shown that it is possible to attach to an apportionment a certificate of guarantee
that anybody can check with only an elementary knowledge of mathematics.

Choosing a different norm leads usually to a different apportionment (see for instance [16] for a review).
It is matter of the law-maker to choose a particular measure of deviation. In case a norm different from the
L∞-norm is adopted, it would be interesting to see whether also different norms are amenable to a certificate
and a checking procedure.

In this paper we continue the type of investigation started in [18] and show that a similar certificate can
be indeed attached also to apportionments satisfying different measures of deviation from given quotas. In
particular we consider the Controlled rounding procedure [4], i.e., an L2-norm minimization within quotas,
and the L1-norm minimization (without restrictions).

This is possible because these minimization problems, although requiring integrality of the apportionment,
do satisfy the strong duality property of mathematical programming. Hence verification is simply a strong
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duality check. The problem we are concerned with in this paper is to make this check easy to be understood
and carried out without any knowledge of duality properties nor of the mathematics of optimization problems.

Of course we assume that readers of this paper are acquainted with linear programming and duality
properties. Therefore we take these concepts for granted. Otherwise a comprehensive reference, among many
others, can be found in [7].

The paper is organized as follows. In Section 2 we formally define the problem we are dealing with. In
Section 3 we provide some explanations of what we intend for certificate. Then in Section 4 we build a
certification scheme for the Controlled rounding procedure [4], i.e., an L2-norm minimization without quota
violation, and in Section 5 we do the same for the L1-norm minimization. One example is provided in Section
6 to illustrate in detail the proposed certification. Conclusions follow in Section 7.

2 Problem statement

The biproportional apportionment problem (BAP) is the following problem. There is a set M of electoral
constituencies and a set N of parties. Before the elections each constituency i ∈M is assigned ri seats, with
H =

∑
i∈M ri being the house size. After the elections each party j ∈ N is assigned pj seats in the house

according to the votes received at national level. Let vij be the votes received by party j in constituency i.
From these data one has to compute the number xij of seats to be assigned to party j in constituency i such
that: ∑

j∈N

xij = ri, i ∈M,
∑
i∈M

xij = pj , j ∈ N, xij = 0 if vij = 0

and the seats xij are as proportional as possible to the votes vij . Clearly this requirement needs a formal
specification. The way this is done leads to different approaches in the literature.

Basically there are two approaches to BAP. One approach is based on characterizing proportionality via
a set of axioms and finding the unique apportionment that satisfies them [1, 2, 14, 8, 5, 6]. Another approach
is based on finding an apportionment that minimizes a measure of deviation from given quotas [4, 15–17].

In this paper we consider the latter approach. We recall that quotas represent an ideal apportionment
with just the integrality requirement relaxed. Perhaps the most important quotas are the so called fair share
quotas introduced by [1] which meet the proportionality axioms for fractional apportionments. The fair share
quotas are defined via multipliers λi > 0 and µj > 0 such that

qij = λi vij µj

and ∑
j∈N

qij = ri, i ∈M,
∑
i∈M

qij = pj , j ∈ N

A full characterization of fair share quotas can be found in [1, 2, 9]. Sometimes different quotas are used in
real electoral systems (e.g. Italy, Belgium) like the so called regional quotas:

qij =
vij∑

k∈J vik
ri, j ∈ N, i ∈M

Regional quotas have the disadvantage that in general
∑

i∈M qij 6= pj (but clearly
∑

j∈N qij = ri). On the
other hand they offer the advantage that quotas in one constituency are independent of the votes in another
constituency and this can be perceived as a desirable feature when autonomy of different constituencies has
to be preserved.
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No matter how quotas are defined the minimization approach consists in finding the apportionment that
minimizes the quantity ‖x − q‖. In [18] the possibility of a certificate for an L∞-norm was investigated. In
this paper we pursue the same goal for the L2- and the L1-norm. More exactly, we consider the L2-norm with
the added requirement that the apportionment respects the quotas, i.e. xij ∈ {bqijc , dqije}, the so-called
Controlled rounding method [4] while for the L1-norm we do not have any restriction.

3 The meaning of ‘certificate’

Let us call ‘Solver’ the person who actually solves BAP and claims that the computed apportionment is the
one that makes minimum the following quantity∑

ij

|xij − qij |p (1)

where p = 1 or p = 2 according to the choice.
Let us call ‘Verifier’ the person who has to check the validity of this claim. To this aim the Solver has

to provide the Verifier also with a certificate, that, together with the apportionment, allows the Verifier to
carry out the check.

The idea of a ‘certificate’ is clearly borrowed from the definition of the class NP in computational
complexity. However, beside proving the claim, we also require that the verification procedure be simple
enough to be carried out by a person with an elementary knowledge of mathematics.

Indeed we only require the Verifier to be able to carry out ordinary sums and subtractions and to know
the meaning of |a|, bac, dae and 〈a〉 (the fractional part) for a given number a (notions that can be easily
learned on the spot). The Verifier has to make these computations on the solution and on the certificate.

The certificate consists of |M | + |N | numbers ui, i ∈ M , and wj , j ∈ N . Equipped with these numbers
and following a simple argument which will presented in the next section the Verifier makes a computation
and at the end of it he/she has to conclude that the apportionment is indeed the one that minimizes (1).

It will be clear to the readers that the certificate is nothing but the dual variables of the problem and that
the verification procedure is just a check of the complementarity condition. However, we have to keep in mind
that the Verifier is not supposed to know anything about linear programming and duality properties. Hence
we have to provide the Verifier with simple yet convincing arguments which mimic the complementarity
conditions. This is the aim of the next two sections.

4 A certificate for the Controlled rounding apportionment

In the Controlled rounding procedure [4, 16] the apportionment xij must satisfy xij ∈ {bqijc , dqije}. Hence
the problem may be rephrased by saying that one has to compute a binary matrix yij ∈ {0, 1} that must
satisfy the constraints∑

i∈M

yij = pj −
∑
i∈M

bqijc =: p̃j , j ∈ N,
∑
j∈N

yij = ri −
∑
j∈N

bqijc =: r̃i i ∈M

and the apportionment is given by xij = bqijc + yij . The Verifier is therefore given a ‘table’ y of zeros and
ones, with the property that in row i there must be r̃i ones and in column j there must be p̃j ones. A table
satisfying this property is said to be feasible.



4

The proof that the solution provided by the Solver is indeed the optimal one consists of the following
arguments which we may divide into four steps. Of course the Verifier has to be convinced of the logical
validity of each step.

The very first step the Verifier has to understand is that an apportionment can be framed as a feasible
table y of zeros and ones, once we have already assigned bqijc seats. Plainly speaking, for the pairs (i, j)
where there is a one, qij has to be rounded up and for the pairs (i, j) where there is a zero, qij has to be
rounded down.

In the second step the Verifier has to understand that there is a ‘cost’ in assigning a one to the (i, j)
entry in the table instead of leaving the zero. According to (1), leaving the zero corresponds to a deviation
from the quotas given by

(qij − bqijc)p = (〈qij〉)p

whereas putting a one corresponds to a deviation from the quotas given by

(dqije − qij)p = (1− 〈qij〉)p

Hence the difference between putting a one and leaving a zero, i.e., the ‘cost’ cij of putting a one, is

cij := (1− 〈qij〉)p − (〈qij〉)p (2)

which, for both p = 1 and p = 2, is
cij = 1− 2 〈qij〉

It is evident that the cost can be negative, in which case putting a one gives a premium, whereas it gives a
penalty when it is positive.

At this point it should be be clear to the Verifier that the apportionment x yields the minimum value of
(1) if and only if the table y is the one which yields the minimum value of

∑
ij cij yij . Hence the Verifier has

to check this second claim.
To this purpose the third step for the Verifier is to understand that the problem is just the same if the

costs in one row are all increased (or decreased) by the same quantity. Since the number of ones to be put
in a row is invariant for all feasible tables, the costs of all feasible tables change by the same quantity and
therefore the optimal table for the original costs must be optimal also for the modified costs. The same
observation is valid for the columns.

Therefore, if the Solver provides numbers ui and wj , the optimal table for the costs (which we clearly
recognize as the reduced costs)

c′ij = cij − ui − wj

is also optimal for the original costs cij .
The fourth step the Verifier has to understand is the following argument: if, for a given table y (not

necessarily feasible), in each place where there is a one the cost is null or negative and in each place where
there is a zero the cost is null or positive, then there can be no better table. Indeed the minimum value of
the expression ∑

i,j

cij yij

for any value of yij ∈ {0, 1}, disregarding the constraints
∑

i yij = p̃j and
∑

j yij = r̃i, is attained for yij = 1
if cij < 0 and yij = 0 if cij > 0. If cij = 0, yij can be either one or zero. If, in addition, these values do
satisfy the sum constraints, then they are necessarily the best table and the apportionment xij = bqijc+ yij

is optimal.



5

Of course we do not expect that the costs (2) and the table y given by the Solver satisfy this property.
However, if the apportionment is the optimal one it is always possible to modify the costs into the reduced
costs c′, in such a way that the property is satisfied. The existence of values ui and wj such that y is optimal
if and only if

cij − ui − wj < 0 =⇒ yij = 1, cij − ui − wj > 0 =⇒ yij = 0 (3)

is guaranteed by the complementarity theorem of linear programming. We stress the fact that the Verifier
has to know nothing about this theorem and strong duality properties, let alone linear programming.

Summing up, the Solver gives the Verifier the table y and the numbers ui e wj , that constitute the
certificate. The Verifier has only to be convinced that a table y optimal for the costs cij yields an optimal
apportionment with respect to (1), and that a table optimal for the costs cij is also optimal for the costs c′ij
(independently of the values ui and wj) and finally that the conditions (3) guarantee optimality.

We admit that the four steps we have listed are not amenable to a person without any mathematical
background. However, they do not require any specific knowledge of some particular branch of mathematics,
just a minimum acquaintance with logical reasoning, and therefore can be carried out by an acculturated
layman.

5 A certificate for L1-norm minimal apportionments

A similar certificate, slightly more complicated, can be given also for apportionments that minimize the
L1-norm, without the constraint of non violating the quotas.

In this case we need three tables y1, y2 and y3. The tables are constrained as follows

y1
ij ∈ {0, 1, . . . , bqijc} , y2

ij ∈ {0, 1} , y3
ij ∈ {0, 1, 2, . . .} . (4)

Furthermore,
if y1

ij < bqijc then both y2
ij = 0 and y1

ij = 0,

if y2
ij = 0 then y1

ij = 0.
(5)

In other words y2
ij can be positive only if y1

ij is equal to its maximum value bqijc and y3
ij can be positive

only if y2
ij = 1 (and a fortiori also y1

ij = bqijc). The apportionment is given by

xij = y1
ij + y2

ij + y3
ij

Note that each y3
ij in (4) is implicitly upper bounded by min {ri, pj} − dqije. The rationale behind the

constraints (4) and (5) is that the number of seats xij is formed by first assigning a positive value to y1
ij up

to the bound bqijc if necessary. If xij has to be greater than bqijc then the additional seat is taken care of
by y2

ij . Finally if xij has to be greater than dqije the extra seats are taken care of by y3
ij .

There are costs associated to the three tables induced by the objective function∑
ij

|xij − qij | (6)

The costs are evaluated as follows. If xij = 0 the apportionment value is qij , as from (6). Starting from zero
and up to the value bqijc each additional seat assigned to the pair (i, j) decrements the cost by 1. Indeed, if
xij ≤ bqijc we have

c1ij = |xij − qij | − |xij − 1− qij | = (qij − xij)− (qij − xij + 1) = −1
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Since xij ≤ bqijc we have xij = y1
ij and therefore the cost c1ij has to be attributed to y1

ij . Once there are
bqijc seats for the pair (i, j) (whose cost qij − bqijc is taken care of by the value y1

ij = bqijc) an additional
seat, which corresponds to setting y2

ij = 1, costs

c2ij = | dqije − qij | − | bqijc − qij | = 1− 2 〈qij〉 (7)

and the cost c2ij has to be attributed to y2
ij . Then, once xij = dqije (whose cost 1− 〈qij〉 is taken care of by

the value y1
ij = bqijc and y2

ij = 1) each additional seats costs 1, as can be seen from

c3ij = |xij + 1− qij | − |xij − qij | = (xij + 1− qij)− (xij − qij) = 1

and the cost c3ij has to be attributed to y3
ij .

Now the invariance on the number of seats to be apportioned is related to the three tables together. Hence
the problem is not changed if the costs c1ij , c2ij and c3ij are simultaneously increased or decreased by the same
quantity in a particular row i. The same is true if the costs are simultaneously increased or decreased by the
same quantity in a particular column j. Therefore the Verifier has to understand that, given values ui and
wj , the costs can be modified into the reduced costs

c′1ij = −1− ui − wj , c′2ij = 1− 2 〈qij〉 − ui − wj , c′3ij = 1− ui − wj

without modifying the problem, i.e., leaving invariant the optimal apportionment.
Finally the Verifier must be convinced that the tables y1, y2 and y3 are optimal for the costs c′1, c′2 and

c′3 respectively (and therefore also for the costs c1, c2 and c3) if

c′1ij < 0 =⇒ y1
ij = bqijc , c′1ij > 0 =⇒ y1

ij = 0

c′2ij < 0 =⇒ y2
ij = 1, c′2ij > 0 =⇒ y2

ij = 0

c′3ij < 0 =⇒ y3
ij = ri − dqije , c′3ij > 0 =⇒ y3

ij = 0

(8)

The reason is clear and is based on the same arguments as for the Controlled rounding procedure: the best
possible tables (disregarding the sum constraints) are the ones whose entries are at the upper bound in
correspondence of a negative cost and at the lower bound in correspondence of a positive cost. If the tables
obey the sum constraints and the constraints (4) and (5) they necessarily constitute the best apportionment.

6 Examples

Let us assume that the electoral data are

v =


10356 6997 8380 11040
16547 4165 9987 10710
1697 4493 13880 12043

24465 27132 28203 19594
42350 575 6451 4476

 , r =


16
20
16
21
27


p = ( 36 17 25 22 )
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For these data the fair share quotas are (all figures in this section are displayed rounded to three decimal
digits)

q =


3.769 3.914 3.655 4.662
6.990 2.705 5.056 5.249
0.692 2.818 6.788 5.702
4.187 7.138 5.784 3.891

20.361 0.425 3.717 2.497


Suppose we want to find the best apportionment with respect to the fair share quotas according to the
Controlled rounding procedure. So the Solver produces the following apportionment

x = bqc+ y =


3 3 3 4
6 2 5 5
0 2 6 5
4 7 5 3

20 0 3 2

 +


1 1 0 1
1 1 0 0
1 1 1 0
0 0 1 1
0 0 1 1

 =


4 4 3 5
7 3 5 5
1 3 7 5
4 7 6 4

20 0 4 3


together with the certificate

u = (−0.144 0 −0.410 0 0 ) , w = ( 0.025 −0.227 −0.166 0.007 )

To check that it is indeed the best apportionment the Verifier first computes the costs, according to (2)

c =


−0.538 −0.829 −0.310 −0.323
−0.980 −0.409 0.888 0.502
−0.385 −0.637 −0.575 −0.403

0.626 0.724 −0.569 −0.781
0.278 0.150 −0.434 0.007


Then by using the certificate the Verifier computes the reduced costs

c′ =


−0.419 −0.458 0 −0.185
−1.005 −0.182 1.054 0.495

0 0 0 0
0.601 0.951 −0.403 −0.788
0.253 0.377 −0.268 0


It remains to check that wherever c′ij > 0 we have yij = 0 and wherever c′ij < 0 we have yij = 1. Since this
is true the Verifier has the proof that the apportionment is optimal.

Let us now suppose that we want to find the best apportionment with respect to the regional quotas for
the L1-norm without the constraint of non violating the quotas. The regional quotas for the same electoral
data are

q =


4.506 3.044 3.646 4.804
7.992 2.012 4.824 5.173
0.846 2.239 6.916 6.000
5.169 5.732 5.959 4.140

21.233 0.288 3.234 2.244


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So the Solver produces the following apportionment

x = y1 + y2 + y3 =


3 3 3 4
7 2 4 5
0 2 6 6
5 5 5 4

21 0 3 2

 +


0 1 1 1
0 1 1 0
0 1 1 0
0 1 1 0
0 1 0 0

 +


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



x =


3 4 4 5
7 3 5 5
0 3 7 6
5 6 6 4

21 1 3 2


together with the certificate

u = ( 0.477 0.477 0. 0.477 0.477 ) , w = (−1.477 0.523 −0.769 −1. )

The Verifier first checks that the tables y1, y2 and y3 are consistent with the constraints (4) and (5). Then
the Verifier computes the costs c2 according to (7) (c1 and c3 are predetermined), as

c2 = 1− 2 〈q〉 =


−0.012 0.911 −0.292 −0.607
−0.984 0.977 −0.647 0.654
−0.691 0.523 −0.831 0.999

0.662 −0.465 −0.917 0.720
0.534 0.423 0.531 0.512

 ,

Then the Verifier computes the reduced costs

c′1 =


0 −2.000 −0.708 −0.477
0 −2.000 −0.708 −0.477

0.477 −1.523 −0.231 0
0 −2.000 −0.708 −0.477
0 −2.000 −0.708 −0.477



c′2 =


0.988 −0.089 0 −0.084
0.016 −0.023 −0.355 1.177
0.786 0 −0.062 1.999
1.662 −1.465 −0.625 1.243
1.534 −0.577 0.824 1.035

 ,

c′3 =


2.000 0 1.292 1.523
2.000 0 1.292 1.523
2.477 0.477 1.769 2.000
2.000 0 1.292 1.523
2.000 0 1.292 1.523


Finally the Verifier can check that the conditions (8) are met and therefore the apportionment is optimal.
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7 Conclusions

In this paper we have tried to solve the conflict between accuracy and transparency for the computation of
biproportional apportionments in case the apportionment has to satisfy a minimum deviation from assigned
quotas. A mathematical procedure to find the best apportionment has to be necessarily complex and only
expert mathematicians can design the correct procedure and produce the required apportionment. These
procedures, not only are too complex to be written down in an electoral law, but they can raise doubts
on the validity of the final outcome not only for the vast majority of people that are not familiar with
mathematical techniques but also for the authority that has the legal power to confirm the validity of the
apportionment.

It is therefore mandatory to provide the possibility of checking the solution without repeating the compu-
tation but only with a simple computation requiring elementary mathematics and a basic reasoning. Trying
to find this kind of checking was the subject of the paper [18] which dealt with apportionments minimizing an
L∞-norm deviation. In this paper we have continued the investigation extending the possibility of checking
also to L1- and L2-norm deviation.

Since the related mathematical programming problems turn to have the strong duality property, the
check is indeed possible and is essentially based on the complementarity relations. Obviously the layman is
not required to have this deep mathematical knowledge. Our challenge was to rephrase strong duality and
complementarity conditions in a down-to-earth way with a minimum of mathematical background.

As observed in [18] “the adoption of a certificate of guarantee in presence of complex electoral rules which
cannot be easily replicated by the layman, may result in better quality electoral systems without prejudice
of transparency.”

References

1. M. Balinski and G. Demange: An axiomatic approach to proportionality between matrices, Mathematics
of Operations Research, 14, 700–719 (1989).

2. M. Balinski and G. Demange: Algorithms for proportional matrices in reals and integers, Mathematical
Programming, 45, 193–210 (1989).

3. M.L. Balinski and V. Ramı́rez: Mexican Electoral Law: 1996 version, Electoral Studies, 16, 329–349
(1997).

4. L.H. Cox and L.R. Ernst: Controlled rounding, INFOR—Information Systems and Operational Research,
20, 423–432 (1982).

5. N. Gaffke and F. Pukelsheim: Divisor methods for proportional representation systems: An optimization
approach to vector and matrix apportionment problems, Mathematical Social Sciences, 56, 166–184
(2008).

6. N. Gaffke and F. Pukelsheim: Vector and matrix apportionment problems and separable convex integer
optimization, Mathematical Methods of Operations Research, 67, 133–159 (2008).

7. F.S. Hillier and G.J. Liebermann: Introduction to operations research. Mc Graw Hill (2010).

8. S. Maier and F. Pukelsheim: Bazi: A Free Computer Program for Proportional Representation Ap-
portionment. Preprint Nr. 042/2007. Institut für Mathematik, Universität Augsburg, 2007. Internet:
www.opus-bayern.de/uni-augsburg/volltexte/2007/711/ (2007).



10

9. B. Kalantari, I. Lari, F. Ricca and B. Simeone: On the complexity of general matrix scaling and entropy
minimization via the RAS algorithm, Mathematical Programming, Series A, 112, 371–401 (2008).

10. Pennisi A.: The Italian bug: a flawed procedure for bi-proportional seat allocation, in: B. Simeone, F.
Pukelsheim (eds), Mathematics and democracy: Recent advances in voting systems and collective choice,
pp. 151-166, Berlin, Springer (2006).

11. Pennisi A., F. Ricca, B. Simeone: Malfunzionamenti dell’allocazione biproporzionale di seggi nella riforma
elettorale italiana. Dipartimento di Statistica, Probabilità e Statistiche Applicate, Università La Sapienza,
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