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Abstract: The goal of this paper is to provide a systematic and unifying introduction to relational
database theory, including some of the recent developments in database logic programming. The
first part of the presentation covers the two basic components of the relational data model: its
specification component, that is the database scheme with dependencies, and its operational com-
ponent, that is the relational algebra query language. The choice of basic constructs, for specifying
the semantically meaningful databases and for querying them, is justified through an in-depth in-
vestigation of their properties. Some important research themes are reviewed in this context: the
analysis of the hypergraph syntax of a database scheme and the extensions of the query language
using deduction or universal relation assumptions. The subsequent parts of the presentation are
structured around the two fundamental concepts illustrated in the first part, namely dependencies
and queries. The main themes of dependency theory are implication problems and applications to
database scheme design. Queries are classified in a variety of ways, with emphasis on the connec-
tions between the expressibility of querv languages, finite model theory and logic programming.
The theory of queries is very much related to research on database logic programs, which are an
elegant formalism for the study of the principles of knowledge base systems. The optimization of
such programs involves both techniques developed for the relational data model and new meth-
ods for analysing recursive definitions. The exposition closes with a discussion of how relational

database theory deals with the problems of complex ob jects, incomplete information and database
updates.
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1 Introduction
1.1 Some Motivation and Historical Remarks

The practical need for efficient manipulation of large amounts of structured information and the
basic insight that “data should be treated as an integrated resource, independent of application pro-
grams” led to the development of database management as an important area of computer science
research. Database research has had a major impact on software systems and computer science in
general; it has provided one of the few paradigms of man-machine interaction which is both of a
very high level, akin to programming in logic, and computationally efficient. Database theory grew

as the theory corresponding to and directly influencing a number of database management system
(pBMS) implementations.

Database technology presents the theoretical community with challenging research questions,
which can be classified into three broad categories: problems of relational database theory, problems
of transaction processing and problems of access methods. The unity of research in these dissimilar
areas has been provided by the database management systems themselves, which are large inte-
grated software systems addressing issues in all three areas. Of the three facets of database theory,
relational theory is the one more closely identified with the field. It is also the subject of our
presentation and it may be viewed as an important application of mathematical logic to computer
science problems. The emphasis of the other two facets of database theory is on algorithms and
data structures; and these are outside the scope of our exposition.

For a view of the subject in its entirety we refer the reader to [Ulll], an advanced textbook
on databases, and to [KorS], an introductory level one. Relational database theory is the topic of
[Mail], a monograph which can be used to fill in many of the proofs omitted here. Transaction
processing, e.g., database concurrency control and recovery, has many connections to the theory
of operating systems and to distributed algorithms. We recommend two recent monographs in
this area: [Pap] for the theoretical development and [BerHG] for a more applied treatment. The
last branch of this threefold classification, the study of access methods, is the area closest to the
theory of data structures and is best reviewed in that context. Its distinguishing characteristic is
an emphasis on large volumes of structured data residing in secondary storage; see [Ull1].

The pioneering work of E.F. Codd, in the early 1970’s, offered both the theoretical and practical
communities an elegant, well-motivated and appropriately restricted computational paradigm for
database management: the relational data model. Much of the systems effort in the 1970’s was
devoted to efficient implementations of this approach; a largely successful endeavor which has made
relational DBMS’s a database technology standard. For historical perspectives on the relational data
model and on the interplay of theory and practice we recommend [Cod5], [Sel], and [UlI3].

The relational data model is the cornerstone of relational database theory, which was to a large
extent developed by analysing and enriching this original kernel. In this framework, a database
is a set of (finite) relations interpreting a set of nonlogical relation symbols, the database scheme.
Relations are manipulated using the “procedural” relational algebra query language or its equivalent
“declarative” relational calculus. The duality of algebra and calculus is based on an algebraization of
first-order definitions. The addition of recursion (via fixpoints or equivalently via deduction) to first-
order definitions leads to more expressive query languages, which are related to logic programming.
Database query programs have been studied extensively. Their optimization based on “compile-
time” transformations and efficient “run-time” evaluation is crucial, if one is to map a high level
programming paradigm into a computationally feasible one.

The querying capability of the relational data model (i.e., the definition of functions from
databases to databases) is complemented by a capability for specification of “the legal” databases
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(i.e., the definition of sets of databases). This allows constraining the databases under consideration
and, consequently, expressing more knowledge about the objects represented. Codd defined func-
tional dependencies as a useful device for this purpose. Dependencies, in general, are semantically
meaningful and syntactically restricted sentences of the predicate calculus that must be satisfied
by any “legal” database. Their presence remedies some of the semantic poverty of relations, e.g.,
with pure relations one has trouble representing the fact that some relationships are one-to-one or
one-to-many. Studies of the decision problem and other computational properties of dependencies
have been motivated by questions of good database scheme design. Interestingly, they have also
contributed to basic research in mathematical logic.

Theoretical research on the relational data model itself attained a certain degree of maturity in
the late 1970’s and early 1980’s. The efficiency and robustness provided by the relational DBMS’s
of the 1970’s opened the way to more ambitious goals. Current research on logic and databases
aims at developing logic programming into a database tool of comparable efficiency. Here the
term knowledge base is appropriate given the potential new applications. This has brought the
logic programming and database communities into closer contact and has stimulated new research
directions for theoretical computer science. For a historical perspective on the relationship between
the two fields we recommend [GalM}, [GalMN], [MaiW], [Min1], and [Min2].

In order to highlight the unity of the subject, we structure our presentation around the two
basic concepts of dependencies and queries. This allows us to introduce the current work on logic
and databases as the natural evolution of the first investigations into the relational data model.

For more details on dependencies and queries, we recommend the surveys [FagV] and [Cha2]
respectively. We stress the contributions of database theory to mathematical logic and, in particu-
lar, to finite model theory; see [Gurl, Gur2]. Space limitations do not allow a detailed examination
of many interesting questions. Fortunately, we can refer the reader to a number of additional re-
cent surveys: [Var8| for dependency theory, [JarK] for relational algebra optimization, [BanR] for

database logic program evaluation, [Kan2] for queries and parallel computation, and {Imm4) for
queries and the expressibility of logics.

Despite its elegance, relational theory does not give satisfactory answers to many database
problems. This is, in part, the price one has to pay for the simplicity of the relational data model.
For example, it is often easier to define hierarchical structures directly, than indirectly through
dependencies. In order to represent and manipulate complez objects one can extend the data-type
relation; this is usually done by introducing set and tuple constructors. We discuss some of the work
on complex objects and recommend [Hul2] for a recent survey of this area, as well as [HulK] for
further readings on semantic data models. We also discuss two other issues of practical significance:
querying incomplete information databases and updating a database, i.e., coping with uncertainty
and with dynamic change. In both cases relational database theory offers interesting solutions.

Relational formalisms for DBMs’s have the advantage of being “value-oriented” [Ull3]. That
is, a clear separation is achieved between the logical and the physical description of the data and
access is specified at the logical level by value. This is also in the spirit of logic programming. At
present, there is a growing interest in alternative “ob ject-oriented” approaches, e.g., see [Ban2).

“Object-oriented” approaches emphasize the organization of the data into inheritance hierar-
chies of meaningful abstract data-types: objects that encapsulate both the data and the operations for
accessing it. There is a fair amount of ongoing experimentation in object-oriented DBMS’s. Some
of this work realizes earlier semantic data model proposals. Some of it may be viewed as design
of programming languages with types that persist beyond the scope of programs. What is the
right formal model for the object-oriented framework is an interesting open question. It’s solution
will (most probably) combine elements of relational database theory and of the theory of abstract



data-types.

1.2 A Roadmap of the Contents

A brief description of the material is now in order.

A detailed overview of the relational data model is contained in Section 2. After some basic
definitions, in Section 2.1, we attempt to clarify the two choices made: of query language and
dependencies. Section 2.2 is a three part justification of relational algebra based on: (I) its equiv-
alence to the relational calculus, (IT) its low computational complexity, and (III) its potential for
query optimization via the homomorphism technique. The three part argument for functional de-
pendencies, in Section 2.3, has analogous goals and is based on: (I) the elegant axiomatization of
these special sentences, (II) their polynomial-time computational properties, and (III) the preser-
vation of many of these properties when other semantically meaningful statements are added. The
attribute notation is a particular feature of relational database theory; the database scheme is a
hypergraph on a set of attributes. In Section 2.4, we illustrate some of the advantages of this
notation. Hvpergraph acyclicity is a simple to test syntactic condition on the database scheme,
which implies a host of interesting semantic properties for the database. We take a critical look
at the limitations of the relational data model in Section 2.5. We describe two extensions to the
basic framework: deductive and universal relation data models. We argue why these extensions are
related and comment on the wealth of analysis about them. |

Dependency theory is the subject of Section 3. The classification of dependencies in Section 3.1
focuses on some important classes of statements and on the main computational question: testing
for dependency implication. This problem is closely related to the decision problem in logic. In
Section 3.2, we examine database scheme design: from (I) defining schemes with desirable semantic

properties such as independence, to (II) listing normal form schemes that have these properties and
are also constructible.

In deductive and universal relation data models, dependencies assume (indirectly) some of the
functionality of query languages. In Section 4 we come back to the study of extensions of the
relational data model, but through a direct investigation of the expressive power of query language
primitives. The classification of queries in Section 4.1 proceeds: (I) along the lines of computational
complexity. and (II) based on the expressibility of logics over finite structures, fixpoint logics in
particular. An important and robust class of queries are the fixpoint queries, which correspond to
the functions expressible in many database logic programming formalisms. Their analysis is at the
heart of the topical interest in knowledge bases. In Section 4.2, we identify some of the emerging
themes in this area: (I) logic programs without function symbols but which may have negation
(we call them recursive rules), (II) optimization of recursive rules via the stage function technique,
and (III) basic “top-down” versus “bottom-up” tradeoffs in recursive rule evaluation. We close our
discussion of queries, in Section 4.3, with references to the work on complex object data models.

Section 5 is a discussion of how relational database theory deals with incomplete information
and updates. These are topics that have attracted a fair amount of attention. Unfortunately, they
do not seem to fit in as tidy a framework as queries and dependencies. These two topics, together

with the open questions of query and dependency theory, account for much of the ongoing research
in relational database theory.

References to the literature are given in the text and there are additional bibliographic comments

at the ends of sections. As with any presentation of this type, the choice of material has to be
selective and the list of references is by no means comprehensive.



2 The Relational Data Model

2.1 Relational Algebra and Functional Dependencies

We start with some definitions and notation t22! are basic in database theory. We then introduce
the syntax and the semantics of relational algebra and of functional dependencies.

Let U be a countably infinite set of attributes. We denote attributes using capital letters from
the beginning of the alphabet, A, B,C,A;,..., and capital letters from the end of the alphabet,
X,Y,Z,X4,..., to denote sets of attributes. We usually do not distinguish between attribute A

and attribute set {A}. Notation XY is a convenient shorthand for the union of attribute sets X
and Y. Thus, ABC denotes the attribute set {4, B,C}.

Every attribute A has an associated set of values A[A], called A’s domain. The domain is the
set of values A, the union of the domains of all the attributes. A is countably infinite and disjoint
from U. We denote values using small letters, a,b,c,q;,..., from the beginning of the alphabet.
Throughout our exposition we fix 4 and A, moreover, we assume that A = A[A] for each A in

U. This is for notational simplicity only; under some weak technical conditions, the theory can be
developed for any A[A]’s (see Remark 2.1.4).

The following definitions highlight the clean distinction made in the relational data model
between relation schemes and relations (the latter are sometimes called relation instances or states
in the literature). This distinction parallels the one in mathematical logic between the syntactic
concept of vocabulary of relation symbols and the semantic concept of structure over this vocabulary.

Definition 2.1.1: The universe U is a finite subset of /. A relation scheme R is a subset of U. A
database scheme D over U 1s a set of relation schemes with union U.

Definition 2.1.2: Let D be a database scheme over U, R a relation scheme and X a subset of
U. An X-tuple t is a mapping from X into A, such that each A in X is mapped to an element of

A[A]. A relation r over R is a finite set of R-tuples. A database d over D is a set of relations; one
relation over each relation scheme of D.

We omit the qualifications (over ...) in the above definitions when they are clear from the
context; also we use tuple instead of X-tuple if X is understood. We use D, Dj,..., for database
schemes and R, R,,..., for relation schemes. We denote tuples by t,t1,..., relations by r,rq,...,
and databases by d,di,...: finally, we use the notation a(r) for the relation scheme of relation r
and a(d) for the database scheme of database d. A relation r over R is represented in figures by a
“table” with “columns” named with the attributes of R and with the tuples as “rows”.

Note that in database theory we define a relation (a database) to be a finite set. There are situ-
ations where it is useful to adopt a more liberal view and allow unrestricted relations (unrestricted

databases) i.e., both finite and infinite sets of tuples. In these cases, we will explicitly use the term
unrestricted.

Remark 2.1.3: Attribute notation is the norm in database theory literature and is quite useful.
In Section 2.4, we will see some of its advantages. A relation scheme R, such that |R| = n for
some integer n > 0, and a relation symbol in logic, with arity n, are very similar concepts. The
only minor difference is whether to use attributes or numbers to name “columns” of relations. The
choiceis largely a matter of convenience and there is the obvious translation based on some arbitrary
ordering of the attributes. Hence, notation R is the only symbol used here in an overloaded fashion,
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which is always disambiguated by the context. We use R either as a relation scheme, or as a relation
symbol, or as a relation variable.

We first define the operaticnal component of the relational data model. This is the relational
algebra query language proposed by Codd in [Codl]. The programs of this language are algebraic
expressions, which denote mappings between databases called queries. The language is based on
a small number of primitive operations on relations, which we now describe as follows. In clause
(1) we have the scheme restrictions required of the argument relation schemes and the scheme of
the result relation; in clause (2) we have the semantics of each operation. It is easy to see that these

operations are well defined on relations, i.e., the result is a relation provided the scheme restrictions
are satisfied.

Let t be an X-tuple and Z a subset of X, then the projection of t on Z, denoted t[Z], is the
restriction of the mapping t on Z.
Projection 7x(r) is the projection of r on X.
1. X Coa(r) and a(rx(r)) = X.
2. mx(r) = {t[X]):t€r}.
Natural Join ry X r; is the (natural) join of ry and rs.
1. no scheme restriction and a(r1 X r2) = a(r1) U a(r2).
2. 11 M7y = {t:tis a(r) U a(ry)-tuple, such that t[a(r1)] € r1 and t[a(r2)] € r2}.
Union r, Ury is the union of r; and r,.
1. o(ry) = arp) and a(r, Ura) = a(r1).
2. 7‘1U7‘2={t1te7‘1 01‘t€7‘2}.
Difference r; — r, is the difference of r; minus r,.
1. a(r) = a(r2) and a(r) — r2) = a(r1).
2.ry—rp={t:teryand t & ra}.
Selection ¢4-p(r) is the selection on r by A = B.
1. A,B € a(r) and a(sa=g(r)) = a(r).
2. ca=p(r) = {t:t € r and t[A] = t[B]}.
Renaming gg4(r) is the renaming in 7 of 4 into B.

1. A€ afr), B € a(r) and a(epa(r)) = (a(r) - {A}) U {B}.
2. 9ja(r) = {t: for some t' € r, t[B] = t'[A] and t[C] = t'[C] when C # B }.

A feature that we have omitted from our relational algebra is constants, that is, symbols rep-
resenting the elements of the domain. The presence of constants does not affect the essentials
of database theory and they can always be added with a certain degree of notational difficulty,
see [ChaH1, ChaH2]. We use query languages without constants throughout our exposition; ex-
cept in Section 4.2.II1 where we study algebraic properties of the selections on constants, ¢4=,.



(The symbol ¢ is used for selection, since the more familiar symbol o will be used to denote a
dependency).

Remark 2.1.4: Note that renaming allows the introduction of attributes not in a(r); this is
important for the algebraization theorem of the next section. We could have defined the operations
without scheme restrictions, by making the result empty if the restrictions are violated (see [Chal)).
The conventions we have chosen instead are quite common in the literature and do not affect any
of the theorems. In the scheme restriction for renaming, by our assumption about the domain,
A=A[A]=A[B]. In general, a technical condition is used for the set & of attributes (see [ImiL1]):
“For each attribute A, there is an infinite sequence of attributes A,, A,, ..., with the same attribute
domain as A. These are the attributes A can be renamed into.”

Definition 2.1.5: Let D = {Ry,...,Rn} be a database scheme, then the relational algebra ez-

pressions over D are the expressions E generated by the following grammar, sub ject to the scheme
restrictions.

E = Ry|...|Rmlnx(E)(EXE)[(EUE)|(E — E)lsa=5(E)lepja(E)

It is clear that one may represent a relational algebra expression over D as a tree, i.e., the parse
tree of its generation. Each internal node of this tree is labeled by a relational operation and each
leaf by a relation scheme of D over universe U. For each expression there is an associated relation
scheme a(F), easily determined from the scheme restrictions. (Note that, because of renaming,
there might be attributes in a(E) that are not in U). The symbols of a relational expression are

syntactic symbols, e.g., R; is a relation variable. These symbols are interpreted in the following
intuitive way.

A relational algebra expression E over D denotes a function from databases over D to databases
over {a(E)}. This (total) function is defined via a “bottom-up” evaluation of the parse tree of E.
On input database d over D associate: (1) with each leaf of the tree with label R, the relation r over
R of d, and (2) with each internal node of the tree, the result of its label operation with argument
relations the relations associated with its successor nodes. The output E(d) is the database of one
relation associated with the tree’s root.

If d consists of one relation r, we use the abbreviation 7’ = E(r) for {r'} = E(d) = E({r}). Let
us illustrate Definitions 2.1.1, 2.1.2 and 2.1.5 with an example.

Example 2.1.6: Consider database scheme D = {R}, where the universe U is the same as the
relation scheme R = AB. One can think of relation r over R (the only relation in our database
d over D) as a directed graph. This graph has no isolated nodes, its arcs are the tuples of r and

its nodes are the unary relation (i.e., set) m4(r) Unpg(r). Let E, E,, E;, and E3 be the relational
algebra expressions:

E =R, Ey = 9pjalecia(R)), E; =(RMppga(ec|a(R)))
E3 = (RU ppic(Tac(R ™ opja(ocia(R)))))

Note that R is used as a relational variable and all these expressions are subezpressions of Ej,
i.e., their parse trees are subtrees of its parse tree.
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rfA|B|n|B|C|rn|A|B|C|rsiA|B
a4y | a2 ay | a2 a4y | a2 | as ay a2

az | as az | as az | az | a4 az | as

az | a4 az | aq ay 1 asz | a4 as | a4

ap | as a) | a3 ay | as

az | a4

a) | a4

Figure 1: The relations of Example 2.1.6

Let r be as in Figure 1, then we have r = E(r). Also, r; = Ei(r), for i = 1,2,3, the other
relations in Figure 1. Note how renaming just manipulates the relation scheme, how join works
and how duplicates are eliminated when projection or union are performed. To see the intuitive
meaning of these expressions let us examine r3 = E3(r). For any relation r, the relation r3 consists
of those pairs of nodes < a,b > of the graph represented by r, such that there is a directed path of
one or two arcs from a to b. O

Definition 2.1.7: Let E}, F; be relational algebra expressions over D such that a(F)) = a(E,).
We say that E; is contained in E,, denoted E; C. F,, if for all databases d over D we have that

every tuple in F)(d) is also in Fy(d). We say that F, and F, are equivalent. denoted E; =, F,, if
E, C. E; and F, C,. F; hold.

It is possible to define other relational operations, besides Projection, Join, Union, Difference,
Selection and Renaming. For instance, one can define Intersection as the obvious set theoretic
intersection on relations with the same scheme. However, Join on relations with the same scheme
does exactly that. For alarge repertoire of relational operations, e.g., Cartesian-Product, Equi-Join,
Division, we can just use an equivalent expression built from the basic set of operations we chose.
Another such example is Select with conditions that are propositional, (i.e., V, A, -,) combinations
of atoms of the form A = B. For detailed expositions of relational algebra we refer to any of the
standard database textbooks, e.g., [Mail, Ull1].

Relational operations and relational algebra expressions can be defined as above (verbatim) for
unrestricted relations. This allows us to define, as in Definition 2.1.7, unrestricted containment
and unrestricted equivalence, which we will carefully distinguish from containment and equivalence.
Testing for expression containment and equivalence are central computational problems for expres-
sion optimization. The unrestricted notions imply the finite ones (since for them d ranges over
finite and infinite databases), but they are not necessarily the same. Let us see why.

Testing for containment is co-recursively enumerable (co-r.e.), by going through all possible
inputs (i.e., all finite d’s) and simultaneously checking for noncontainment via the bottom-up eval-
uation. But testing unrestricted containment is recursively enumerable (1.e.), by reducing it to the
validity of a sentence of the first-order (f.0.) predicate calculus with equality [End] and using the
Godel completeness theorem. For this reduction one can use the correspondence between relational
algebra expressions and f.o. formulas from Section 2.2.1. Thus, equality of the finite and unrestricted
notions would imply decidability; the problems would be r.e. and co-r.e. and therefore recursive.

This equality is not true in general because: unrestricted containment and equivalence of rela-
tional expressions are undectdable. This can be shown to follow from the undecidability of validity
of f.o. sentences. For the undecidability of unrestricted containment of special subclasses of rela-
tional expressions see [ImiL1], [HenMT]. Containment and equivalence of relational expressions are



also undecidable; this can be shown using the undecidability of validity over finite structures of
[Tral.

For many cases of interest, we have equality of the finite and unrestricted notions and thus
decidability. For instance, one such case is for the expressions built using only Projection and Join,
the class of project-join expressions. Database theory has developed around properties of project-

join expressions. Here is an example, which highlights some important project-join containment
properties.

Example 2.1.8: The operation of join is assoctative and commutative. Therefore, if ry,...,7, are
relations respectively over Ry,..., R,;, then the join r; X ... X r, is unambiguously defined. One
property of this join is that 7p (M {r; : 1 £ 7 < m})Crj,for1<j<m.

Let D = {R;,...,R,} be a database scheme, whose relation schemes have union R. If ris a
relation over R we call the set of relations {7g,(7),...,7R,(r)} a (full) decomposition of r, and we
denote it by 7p(r). We use M np(r) for X {7g,(r): 1 < ¢ < m}. An important property that holds
for decompositions is that: for all 7, r CX wp(r).

If » =X 7p(r) holds then 7 has a lossless decomposition over D, else it has a lossy decomposition.
The idea here is that by decomposing relation r into its projections we lose no information when

the decomposition is lossless, because then we can get the original relation back by joining the
projections. The importance of lossless decompositions was identified in [AhoBU, Ris].

In relational algebra expression notation, we have the following containments, i.e., these are
identities: (1) R C.X wp(R), see above, and (2) X 7p(X mp(R)) =X mp(R), idempotence. [J

We now turn to the specification component of the relational data model, the functional de-
pendency (fd for short). This type of constraint can be thought of as a generalization of “keys-
of-records”. It was originally identified by Codd in [Cod2]. A tuple of a relation represents a
relationship among certain values, but by itself it does not provide any information about the na-
ture of this relationship. For example, it would be useful to know that only relations representing
functional relationships are acceptable. This is exactly what the addition of fd’s accomplishes.

Definition 2.1.9: Let R be a relation scheme and X,Y be subsets of . An expression of the
form X — Y is called a functional dependency over R (f{d over R). The fd ¢ = X — Y is satisfied
by relation r over R, when: for all tuples t1,¢3 in 7, if t;[X] = t5{X] then ¢;[Y] = t5[Y]. Relation r
satisfies a set & of fd’s if r satisfies all the fd’s in T.

A set X of fd’s over R can be viewed as a semantic specification of a set of databases over
database scheme {R}. That is, ¥ specifies the set of databases satisfving . Relations that do not
satisfy some ¢ in ¥ cannot be “possible worlds” of the application being modeled. We denote this
specification as the pair < {R},X >. This basic specification mechanism is developed in the theory
of dependencies, through extensions and variations of fd’s. As we shall see, fd’s can be represented

as sentences of the f.o. predicate calculus with equality. Moreover, they have many interesting and
qualitatively different representations.

Example 2.1.10: Let R be ABC. Consider the relation r over a{r) = R in Figure 2. It is
easy to verify that r satisfies the set of fd’s * = {A — B,B — C,C — B} and that it does not
satisfy the fd’s B — A,BC — A. To see an intuitive application of this example: think of A
as EMPLOYEE, B as DEPARTMENT and C as MANAGER in a COMPANY database. Every employee
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r| A | B|C
al|l bl c
ad|lb|ec
all bl CI

Figure 2: The database of Example 2.1.10

works in a unique department, every department has a unique manager and every manager directs
a unique department. [J

Two general concepts have emerged from the definitions and examples. A mapping between
databases can be described by an expression of a query language. For these expressions testing
containment is a fundamental problem. A set of databases can be specified by a database scheme
coupled with dependencies. In the last example of this section let us indicate how containment
equations can be used instead of dependencies. This theme is developed in [YanP], which is an
in-depth study of project-join expression containments.

Example 2.1.11: The pair < {ABC},{A — B} > specifies the set of relations as follows: FF.D =
{7 : rover ABC and satisfying A — B }. Using containment we can also specify a set of relations
CN = {r: r over ABC and satisfving E(r) C E’(r) }; where E,E’ are the following relational
algebra expressions over R = ABC with a(F) = a(E’') = BB/,

E = mgp/(maB(R) X 7 4p/(0BB(R))), E' =cp=p/(E)

A simple argument suffices to show that the two sets of relations FD and CN are identical.
This technique can be generalized to any set of fd’s. OO

Additional Bibliographic Comments 2.1.12: The definitions of the relational data model and
the insight that they can be used as a foundation of database management are due to Codd {Cod1,
Cod2, Cod3, Cod4, Cod5]. The best known early pioneer of the idea of relations as databases is
Childs [Chi]; see [Ul13] where some of the prehistory of the field is investigated.

Relational algebra, as indicated in {ImiL1], can be studied as a cylindric algebra. There has been
a great deal of work on the subject of cylindric algebras, much of it by Tarski and his school, see
[HenMT)] for a standard exposition. Even in this well studied mathematical setting, the problems
and the solutions of database theory are often novel. This is because of the practical motivation
and the emphasis on computational complexity and on finite structures. Database theory has also
contributed directly to the theory of cylindrical algebras, e.g., the cylindric lattices of [{Cos3]. I

2.2 Why Relational Algebra?

Our goal in this section is to demonstrate that, the choice of relation as the only data-type and of
manipulating this data-type only via the relational algebra operations is by no means ad-hoc.

2.2.1 Algebra = Calculus

The relational algebra query language is a typical “procedural” programming formalism. The basic
observation of Codd [Cod1] is that this “procedural” language has a very natural “declarative”
counterpart, the relational calculus query language.
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For the purposes of this presentation it suffices to describe the relational calculus in an informal
but intuitive fashion. As we mentioned in Remark 2.1.3 relation scheme R and relation symbol
R are similar concepts, modulo an orcering of the attributes. Under this simple translation the
database scheme {R;,..., R} becomes a vocabulary of relation symbols. "We further assume that
V is a countably infinite set of variables, disjoint from the attribute set & and the value set A (we
denote variables using z,y,2,21,...). For a detailed treatment of the relational calculus we refer
to [Mail], which uses relation schemes and to [Ull1], which uses relation symbols.

The formulas of the f.o. predicate calculus with equality over vocabulary {R;,..., Ry} are built
out of: atomic formulas of the form z = y and Ri(z;...2Zn;),1 < ¢ < m (where R; has arity n; > 0)
using the propositional connectives V,A,~ and quantifiers Vz,3z. Free and bound variables are
defined in the standard fashion [End]; sentences are formulas without free variables. Let us denote
by ¢(z1,-..,zn) a f.0. formula with exactly n distinct free variables zi,...,z,.

There is a connection at the definition level between database theory and finite model theory.
If d is a database then the set of values that occur in d is finite, let us call it §. (To be technically
consistent with mathematical logic if d is empty 6 = {a} for some fixed value a. In fact we could
develop the theory using as the domain é some superset of the values occurring in d, see Section
4.1.) Thus, given database d over {R;,...,R,,} we have a finite f.o. relational structure < §,d >.

Let ¢(z;,...,2,) be a formula as above, let d be a database whose relations are interpreting the
relation symbols {R;,...,Rn}, let § be as above and let a,,...,a, be values from 6 interpreting
the n variables z4,...,2,, respectively. We can define satisfaction of ¢(a;,... ,a;l) by < é,d > in
the standard f.o. fashion [End]; it is denoted by < 6,d >|= ¢(ai,...,as).

Definition 2.2.1: A relational calculus expression F over {R;,...,Rn}, with a(F) = R, is an
expression of the form {R,z1,...,2, : ¥(Z1,...,2,)}, where R is a relation symbol of arity n > 0
and ¢ is a f.o. formula with exactly n distinct free variables. F' defines a function from databases
over {R;,..., R} to databases over {R} as follows: on input database d, with set of values §, the
output F(d) is the database consisting of the relation {a1...an :< §,d >F ¢(as,...,an)}.

Query language expressions, in general, are used to denote functions of some type: from
databases over {Ri,...,Rn} to databases over {R}. Using Definition 2.1.7 we can define con-
tainment and equivalence for expressions of the same type, e.g., E =, F for a relational algebra
expression E and a relational calculus expression F. Hence, when we mention expression equiva-
lence or containment we will imply that the types of the expressions are the same. Similar comments
apply to unrestricted equivalence and containment.

Theorem 2.2.2: Every relational algebra expression can be translated, in time polynomial in its
size, into an equivalent relational calculus expression. Every relational calculus ezpression can be
translated, in time polynomial in its size, into an equivalent relational algebra erpression.

The proof of this theorem, known as Codd’s theorem [Cod1, Cod3}, is by structural induction
on algebra and calculus expressions. The arguments are simple, but the theorem has great practical
significance. The efficient translation of calculus into algebra reveals a “procedural” evaluation for
the function defined “declaratively” by a calculus expression. The expressive power of other query
languages can be assessed, based on whether they can express or not all the calculus or algebra
queries. We will use the term PTIME language equivalent for the two conditions of Theorem 2.2.2.
So, relational algebra and relational calculus are PTIME language equivalent.

For an example, the relational expression F3 from Example 2.1.6 is equivalent and unrestricted
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equivalent to the relational calculus expression: {R',z,y : R(zy) Vv 32(R(zz) A R(zy))}.

Let d be an unrestricted database. The satisfaction < A,d >k ¢(ay,...,a,), is defined as
in the finite case, only A is used instead of é and a,...,a, are from A. If we keep the syntax
of relational calculus, but use A instead of § for the semantics, we have: the relational calculus
with unrestricted domain. This is a query language for unrestricted databases, because the outputs
could be infinite even for finite inputs. To see this, consider {R',z : " R(z)}, where if the input is
finite the output is infinite because negation is with respect to A.

Remark 2.2.3: For the relational calculus with unrestricted domain there is a theorem analogous
to 2.2.2: The relational calculus with unrestricted domain and the relational algebra with “com-
plement” are PTIME language unrestricted equivalent. In this case we have to extend relational
algebra on unrestricted databases with the operation of complement: -(r) = {t : t € r}, where

a(~(r)) = a(r). Both these query languages are over unrestricted databases, so we use unrestricted
equivalence.

There is one flaw with the relational calculus. For some expression F it might be possible
to find a database input d, such that the output is different in the relational calculus from the
relational calculus with unrestricted domain. In these cases F' is called domain dependent and
using A instead of § matters, e.g., in F' = {R',z : =R(z)}. If no such databases d exist, then F is
called domain independent. Domain independent formulas have been proposed as a class of “well
formed” relational calculus expressions. The rationale here is that: when one evaluates a domain

dependent formula one usually computes all of §; this can be wasteful even if feasible and should
be avoided if possible.

Unfortunately, the class of domain independent formulas is not recursive [Dip, Var2]. Fortu-
nately, they have recursive subclasses for which Theorem 2.2.2 can be refined. One example, are the
safe formulas of [Ull1]. For these one can show: The relational calculus, the safe relational calculus
and the relational algebra are all PTIME language equivalent [Mail, Ulll]. Note that domain inde-
pendent formulas are defined semantically, whereas safe formulas are defined syntactically. Another
interesting fact is that: given a relational calculus expression F' and a database d, it is decidable
if the output is the same in the relational calculus and in the relational calculus with unrestricted
domain, see [AylGSS].

Codd’s theorem can be specialized to subsets of the relational calculus and algebra. The positive
ezistential calculus of [ChaH2) consists of the relational calculus expressions built with 3,Vv,A, = but
without V, -. The relational algebra without difference consists of the relational algebra expressions
built using all the defining operations of the algebra, except for Difference.

Theorem 2.2.4: The positive ezistential relational calculus and the relational algebra without
difference are PTIME language equivalent.

Additional Bibliographic Comments 2.2.5: Kuhns in [Kuh] was among the first to propose
using the predicate calculus as a database query language. Codd’s theorem originally appeared in
[Codl, Cod3] for an algebra and a calculus with constants, comparators (<), and with variables in
the calculus ranging over tuples. We presented a pure version of these languages (without constants
or <) and a domain as opposed to a tuple relational calculus.

Let us comment on the relationship between Codd’s theorem and cylindric algebras. A version
of this theorem was known early on in the logic community, e.g., [ChiT, TarT]. It is used to
show Tarski’s Algebraization Theorem, see {[HenMT]. Tarski’s Algebraization Theorem provides a
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more general “algebraization” of the f.o. predicate calculus with equality: because the data-types
manipulated are not restricted to be relations and the properties of the operations are specified

equationally. However, it was only after Codd’s seminal papers that the practical implications of
this work became clear.

Theorem 2.2.2 should be properly viewed as one instance of a theorem scheme. For example,
an analogous theorem holds for a relational algebra with aggregate operations [Klul], e.g., with
operations maz, min, etc. Similar theorems can be shown for other data models, see [AbiBe, DahM,
KupV1]. In the area of complex object data models algebraization has been a central theme, see
[Hul2] for a survey and [HulS, KupV2, ParV, Vgu] for recent developments in the area. Algebra
= calculus theorems can be shown for subsets of the predicate calculus as in Theorem 2.2.4. For
instance, an algebra for the f.o. predicate calculus without equality can be found in [Chal].

The notion of domain independent formulas is due to Fagin in [Fag6| (the definition used here
is a variation of the original one). We refer the reader to [Fag6] for a review of a number of
syntactically defined sets of formulas, that can be used instead of the safe formulas of [Ulll]. A
recent analysis of domain independence can be found in [VgeT]. O

2.2.I1 LOGSPACE Data Complexity

We assume some familiarity with complexity classes for sequential computation such as the classes
LOGSPACE, NLOGSPACE, PTIME, NP (NPTIME), PHIER, PSPACE, EXPTIME, with.the class NC for
parallel computation, and with the notion of logspace-completeness in a complexity class; see

the surveys [GarJ, Coo]. All these classes are properly contained in EXPTIME. The following
containments (C) are conjectured to be proper (C).

LOGSPACE C NLOGSPACE C NC C PTIME C NPTIME C PHIER C PSPACE C EXPTIME

Fagin’s work in [Fagl] was crucial in establishing the first link between computational complexity
and finite model theory (and thus database theory) through a logical characterization of Np. We
will return to this subject in Section 4, where we examine a whole spectrum of possible query
languages; see also the survey [Imm4]. In this subsection, we introduce the basic definition of data
complexity from [ChaH2] and we examine the data complexity of relational algebra queries.

Query language expressions denote queries, i.e., functions from databases to databases. What
is the computational complexity of these functions? Let us assume that a database d. represented
in some standardized binary encoding, has size |d|. This size typically dominates, by many orders
of magnitude, the size of a query expression and is therefore the asymptotic parameter of interest.
In other words, we may assume that the query expression E has size bounded by some constant,
since we can exhaustively analyze it before we apply it to the database.

Definition 2.2.6: The data complezity of the query denoted by expression E is the computational
complexity of testing membership in the set { < t,d > : tuple ¢ is in F(d) }. We say that a query
is in a computational complexity class if its membership problem is in this class; and that it is
logspace-complete in this class if its membership problem is.

The following observation complements the effective translation of Theorem 2.2.2, by empha-
sizing that the evaluation can be performed efficiently with respect to the database. Given the
potential large size of the database, PTIME algorithms are the only “reasonable” ones. Among
them, NC algorithms are “preferable” because they facilitate the use of parallel processing.

Theorem 2.2.7: Relational algebra or calculus queries are in LOGSPACE.
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Note that LOGSPACE C NC, so this theorem states that there is a lot of potential parallelism
in relational algebra queries. Much of the work on access methods realizes this promise, e.g.,
very efficient join algorithms for external storage. To prove Theorem 2.2.7 one uses the relational
operatior semantics and the fact that the width of the tables processed is fixed. The data complexity
for many query languages, both declarative and procedural, is determined in [Var5].

There is a price to pay for the low data complexity. This is the limited expressive power of
relational algebra or calculus. Let r be a relation representing an undirected graph and Trans(r)
its transitive closure. The transitive closure query maps r to Trans(r), for all 7.

Theorem 2.2.8: The transitive closure query is not ezpressible in relational algebra or calculus.

For unrestricted relations this theorem is still true and has an easy proof using the Compactness
Theorem of first-order logic [End]. Unfortunately, compactness and other useful properties fail
when attention is restricted to finite structures only [Gurl, Gur2]. Theorem 2.2.8 was first shown
in [Fag2), in a stronger form using Ehrenfeucht-Fraisse game techniques. The stronger form is: it
is not possible to characterize connected graphs using a monadic eristential second-order sentence
over finite structures (i.e., the second order quantifiers are over monadic relations, they form a

prefix of the sentence and they are all existential). Other proofs appear in [AhoU, ChaH2, Gai,
GaiV, Imm1].

Additional Bibliographic Comments 2.2.9: Theorem 2.2.8 has been generalized to certain
classes of queries, [BeeKBR, Cos4]. Ajtai and Gurevich have recently announced that it holds
for all “unbounded Datalog programs” (see Section 4.2.IT1). The difficulty here is the finiteness

assumption, that requires the development of tools to replace the Compactness Theorem of first-
order logic.

Data complexity is not the only measure of interest. If we assume that the query expression is
part of the input then we have the notion of ezpression complezity. Vardi has shown in [Var5] that
expression complexity is typically one exponential higher than data complexity. The expression
complexity of project-join expressions is further investigated in [Cos1l, HonLY, MaiSY].

From these investigations one can infer that: relational operations are less structured than
common integer operations, exponentiation included. This is because. for relational algebra ex-
pressions, intermediate results of a computation can be much larger than both inputs and outputs.
Circuits of relational operations are compared to Boolean circuits in {Yan2]. O

2.2.ITI Query Optimization and Homomorphisms

The procedural nature of a query language facilitates the “compile-time” optimization of programs.
Query optimization has been used to implement the relational data model in a reasonably efficient
fashion, e.g., [AstEtal, SelEtal, WonY]. In these implementations, a relational algebra expression
is algorithmically transformed into an equivalent expression, that is better by some measure of

complexity. The subject of query optimization flourished in the 1970’s and is still an active area of
research; see [JarK] for a survey.

Two optimization ideas occur most often in the literature. We summarize them in the two
bullets below. The rationale for these is as follows. The join has been identified as the most
expensive relational operation and its cost grows with the size of the argument relations. Thus, it

is preferable to apply it on relations after these have been reduced in size through selection. Also,
it pays to perform as few joins as possible.
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e This is the algebraic rewriting of expressions, with emphasis on the propagation of selections
before the joins [AhoU]. An early use of this idea appears in [Pal]. A companion problem,
usually solved by dynamic programming, is to find the best order of join evaluations in an
expression X {r; : 1 < i < m}.

o This is the minimization of the total number of joins.

We will defer the first idea to the context of more powerful query languages in Section 4.2.III.
Here, we focus on the second one, which reveals the importance of homomorphism techniques for

expression containment and database theory in general. Let us proceed with the formalization of
the second question.

The set of variables V can be partitioned into disjoint subsets, one for each attribute in U.
Each attribute A corresponds to V[A4] = {z,z1,z2,...}; = the lexicographically first one of these
variables is called distinguished and the others nondistinguished. We also extend the notion of a
tuple from a mapping into A to a mapping into AUV.

Definition 2.2.10: A tableau T over relation scheme R is a set of R-tuples, such that if tuple ¢ is
in T then t[A] is in V[A]. The target relation scheme o(T) of T is the set {A : for some t in T, t[A]
is distinguished }. The summary tr of T is the a(T')-tuple of its distinguished variables.

For examples of tableaux see Figure 3, Example 2.3.12. These examples appear in Section 2.3,
in order to emphasize the intimate connections between tableaux and dependencies.

There are two ways of thinking about tableaux. (1) The first way is to consider them as relations
over R with domain V. In this case we can think of 7} C T5 as a set inclusion between two relations
over the same scheme R. (2) The second way of thinking about tableaux is as expressions of the
tableau query language. A tableau T denotes a (total) function from relations over R to relations
over a(T) as follows. A valuation h is a mapping from V into A; valuation A can be extended to
tuples componentwise. On input relation r over R the output T'(r) is a relation over a(T'), where:

T(r) = {h(tT) : h is a valuation such that h(t) is in r for each tuple t of T }.

As expressions tableaux define mappings from one relation databases to one relation databases.
Expression equivalence and containment in this case are denoted by T; C. T and Ty =, T, where
we must have o(T}) = a(T3).

A subtle point is that C and C,. are different concepts. In fact, if T} C T, and a(Ty) = a(T3)
then Ty C. T); this is no coincidence.

A homomorphism h from Ty to T3 is a mapping from V into V such that: (1) h(z) = z for z
distinguished, and (2) A(Ty) C T for h(T1) = {h(t) : t tuple in T}, h extending componentwise }.

For example, if Ty C T, then there is a homomorphism defined by the identity mapping from T
to itself as part of T,. Note the similarity of definition between a valuation and a homomorphism,
it is easy to see that a homomorphism composed with a valuation is a valuation. Using composition
and both interpretations of tableaux one can show a simple, but central fact in database theory:

Theorem 2.2.11: For two tableauz Ty, T, with the same summary we have that, T, C. Ty iff there
ts @ homomorphism from Ty to Ts.

The homomorphism technique was first developed for conjunctive queries in [ChaM]. Conjunc-
tive queries are a superset of tableau queries; see Remark 2.2.15 below. The basic results for tableau
optimization (Theorems 2.2.11-2.2.13) are from [AhoSU1, AhoSU2]. The following two theorems
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illustrate the possible optimizations of relational expressions, using the tableau as a tool. To illus-
trate the expressive power of the tableau language we consider project-join relational expressions.

There are tableau queries that cannot be expressed as project-join ones; see [YanP] for the pracise
expressive power of tableaux.

Theorem 2.2.12: For every project-join erpression over { R} there is an equivalent tableau T over
R constructed recursively as follows: (1) if E = R then T is the tableau with one R-tuple of all
distinguished variables, (2) if E = wx(E1) and Ty is the tableau of E; then T is obtained from
T by changing each distinguished symbol z in V[A] such that A ¢ X into a new nondistinguished
symbol, and (3) if E = (E; W E;) and T\, T, are the tableauz of Ey, E, then T is the union of the
sets of tuples of Ty, T>.

Theorem 2.2.13: Each tableau T has a minimal subset of its tuples Ty, equivalent to T. This
Tmin is unique up to renaming of the nondistinguished symbols. If T is the tableau of the project-

join ezpression E then the Tomin above is the tableau of a project-join ezpression equivalent to E
with a minimum number of joins.

Tableau minimization is NP-complete. This follows from the results of [ChaM)]. Tighter bounds,
e.g., for project-join expressions, are derived in [AhoSU1, AhoSU2] as well as syntactic constraints
on tableaux under which the problem can be solved in PTIME. Thus, in general, to minimize the
number of joins one might have to examine all homomorphims from T to T’; this is not as bad as
it sounds because T is an expression and not a database.

Theorem 2.2.11 can be extended from a single tableau to sets of tableaux, all with the same

summary. The output for such a set of tableaux is the union of the outputs of the single tableau
queries. The following is from [SagY].

Theorem 2.2.14: {T2,...,Tom} Ce {T11,....T1n} iff for each T;,1 < j < m, there ezists a
T1i,1 < i < n, such that Ty; Ce Ths.

Remark 2.2.15: As expressions, tableaux have typed variables and a single relation input. We
say that they are typed and untagged, where tags would correspond to multiple relation inputs.
The above development can be carried-out for untyped variables and many relation inputs; such
an expression is called an untyped and tagged tableau and is essentially the same as a conjunctive
query of [ChaM]. The typed untagged case is particularly important in the theory of dependencies.
On the other hand, unions of untyped tagged tableaux express the positive existential queries (see
Theorem 2.2.4). This easily follows from putting positive existential formulas in disjunctive normal
form. A consequence is that there is an algorithm for testing positive existential query containment.

Removing the typing does not affect any of Theorems 2.2.11-2.2.14. Untyped tableau queries
T’ are monotone, that is for all relations ry,r2 we have that r; C r, entails T'(r;) C T'(r2). In
addition, for a tableau T and for all relations r we have that r C T'(r); because there is always a
homomorphism from T to the identity tableau (one tuple of all distinguished variables). Typing
does, however, account for some additional special structure. A good source for the many properties
that result from typing is [FagMUY].

Additional Bibliographic Comments 2.2.16: The homomorphism technique is related to sub-
sumption techniques, that have been used since the early 1970’s to determine the equivalence of
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logic programs. The algorithmic analysis was developed as part of database theory. We recommend
[Mah)] and [Sag6] for discussions of this technique for logic programming applications.

Tableaux can be extended to include constants and other features such as inequalities [Klu2].
They can be defined over databases that satisfy dependencies. This rich topic was initiated in
[AhoSU1, AhSUZ2] for fd’s. Containment in the presence of another common type of dependencies,
inclusion dependencies (see Section 3), has been examined in [JohK, KanCV]. O

2.3 Why Functional Dependencies?

The study of dependency theory began with the introduction of fd’s in [Cod2] and grew into a
rich topic, interesting in its own right. In this section we present the fundamentals of dependency
theory using fd’s and some of their extensions, and we defer generalizations and applications to
Section 3. We would like to emphasize that this choice is not only for reasons of exposition. Fd’s
are the most relevant dependencies from a practical standpoint. Also, most of the fundamental
concepts were introduced and are best illustrated in this restricted context.

Throughout this section we assume one relation scheme with fd’s defined on it.

2.3.1 Dependency Implication and its Axiomatization

The following definition of implication applies to dependencies in general.

Definition 2.3.1: Let ¥ be a set of dependencies and o a single dependency. We say that ¥
implies 0, L |= o, if every unrestricted database that satisfies ¥ also satisfies o; & finitely implies
o, L |=¢ o, if every database that satisfies & also satisfies 0.

The importance of finite implication in database theory first became apparent in Bernstein’s
work [Ber]. As we shall see below, finite implication and implication coincide for fd’s, as they
often do in dependency theory. Although finite implication is the relevant notion from a practical

standpoint, implication is also important because it is closely related to unsatisfiability of logical
sentences.

Definition 2.3.2: Two sets of dependencies £, X’ are equivalent if they are satisfied by the same
set of databases. In this case we say that T is a cover for L’ and vice-versa. If T is a cover of ¥’
and is also a subset of £/, then we say it is a contained cover.

Clearly, ¥’ is redundant if it has a contained cover T that is a proper subset of it, because ¥ is
a more economical specification equally expressive as ¥'.

To come back to finite implication, it is easy to see that: £ and I’ are equivalent iff £ ¢ o’
for all o’ in &' and £’ |=¢ o for all o in I. For fd’s we can use |= instead of =y, since these are the
same. Testing if £’ is redundant can be similarly reduced to finite implication.

Example 2.3.3: As was observed by Nicolas [Nic], fd’s can be represented as sentences of the f.o.
predicate calculus with equality. Let us demonstrate how this is done for universe ABC and the fd
o0 = A — B. The vocabulary in the predicate calculus will be {R}, where the arity of R is 3 and A
corresponds to the first argument of relation symbol R etc. The fd o is expressed by the sentence:

Yo = VaVyVaVy V21 (R(zyz) A R(zyi21)) = (¥ = y1)
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It follows from the definition of fd’s that the set of finite relational structures satisfying ¢, and
the set of relations satisfying o are the same. This is also true for unrestricted relations. Similar
arguments show that any set of fd’s can be expressed by a set of sentences of the f.0. predicate
calculus with equality. Note, however, that the database notation for fd’s is often preferable,
because it is less cumbersome to use and it intuitively captures the meaning of fd’s[J

The identification of a dependency ¢ with a sentence ¢, is true for fd’s and for many other
dependencies. One of its consequences is the reduction of dependency (finite) implication to the
(finite) unsatisfiability problem of f.o. logic. Let £ = {oy,...,04}, then ¥ [=(5) o iff we have that
the sentence s, A ... A pg, A, is (finitely) unsatisfiable.

Recall that a sentence is (finitely) unsatisfiable if it has no (finite) models. Also, unsatisfiability
for the f.o. predicate calculus with equality is r.e., by the Gédel Completeness Theorem, and finite
unsatisfiability is co-r.e., by enumerating and testing all finite structures. From unsatisfiability
we can infer finite unsatisfiability, from finite satisfiability we can infer satisfiability and from
implication we can infer finite implication (but the converses do not always hold). From this
discussion it follows that if a set of dependencies is identified with a set of sentences, for which
satisfiability and finite satisfiability coincide, then dependency implication and finite implication
coincide and are decidable. This happens to be the case for fd’s.

Theorem 2.3.4: For fd’s finite implication and implication are the same and decidable.

The following argument for this theorem is somewhat of an overkill, since the theorem can be
shown without an excursion into satisfiability. However, it is quite instructive since it may be used
for many nontrivial extensions of fd’s. Let us look at the structure of the sentence @4, A.. . A, A,
in the fd case. This can be written as a 3*V*-sentence, that is a sentence in prenex normal form
whose quantifier prefix consists of a string of 3 followed by a string of V. This is known as a sentence
of the initially extended Bernays-Shénfinkel class, for which satisfiability and finite satisfiability
coincide [DreGJ.

Implication is a semantic notion, which is commonly studied using the syntactic device of a
formal system or aziomatization. An axiomatization (for a set of dependencies in general) consists
of axiom schemes and inference rules. A derivation of a dependency ¢ from a set of dependencies
¥ is a sequence of dependencies 0y,...,0, such that 0,, = o and each o; in the sequence is either
a member of ¥, or an instance of an axiom scheme, or follows from preceding o;’s in the sequence
via an instance of an inference rule. For an example see formal system FD below.

We denote the existence of a derivation of ¢ from ¥ by ¥ + 0. We say that a formal system +
() is sound for (finite) implication if T+ o (£ +; o) entails T = 0 (T |=5 0); and it is complete
f¥kE=o(Zf=y0)entails ¥ o (T kj o).

Formal systems for fd implication and finite implication were first studied by Armstrong [Arm)].
His original system was slightly different from the sound and complete system FD, which we use
here. FD consists of one axiom scheme and two inference rules. If ¥, o are dependencies over R
then any subset of R can be substituted for X,Y and Z. It is also an example of a k-ary system
for k = 2, because each inference rule has at most two antecedents.

FDr reflexivity axiom scheme: F X —
FDt transitivity inferencerule: X - Y andY - Z+- X - 7
FDa augmentation inference rule: X - Y +FXZ -YZ
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Theorem 2.3.5: The system FD is sound and complete for (finite) implication of fd’s.

Let us comment on the proof. Soundness of a formal system for implication entails soundness
for finite implication (the converse is not true for all dependencies) and it is usually straightforward
to show. Completeness for finite implication entails completeness for implication (the converse is
not true for all dependencies) and it is typically the harder property to show. For this direction
one usually examines the combinatorics of derivations and, if ¢ is not derivable from X, then one
constructs a counterexample database satisfying ¥ and falsifying 0. See [Mail, Ulll, Var8] for
standard expositions of the counterexample construction.

A closer examination of the FD system reveals that, to derive ¢ from I, one need only restrict
attention to derivations with attributes in £ and o¢. This observation and Theorem 2.3.5 are an
alternative proof of Theorem 2.3.4.

Let us close this subsection with some additional properties of fd’s. Fd’s are domain independent
sentences, as defined in Secton 2.2.1. This is important, because testing for their satisfaction does
not depend on whether A or § is used.

Let £ be a set of dependencies from some class of dependencies £*. The closure of £ over £*
are all dependencies in this class implied by L; it is denoted by ¥*. We say that an unrestricted
relation is an Armstrong relation if it satisfies all dependencies in £% and simultaneously falsifies

all those in £* — £*. An interesting property for the set of {d’s over a fixed universe is that there
exists a finite Armstrong relation for fd’s.

Additional Bibliographic Comments 2.3.6: The first complete and sound axiomatization for
fd’s is from [Arm], but rules for fd’s and some of their properties appeared early on in [DelC]. The
concept of Armstrong relation is due to Fagin from [Fag6]; research on these relations is surveyed
in [Fag5). Their structure for fd’s is examined in [BeeDFS] and their existence for more general
statements is investigated in [Fag6]. They have been used as a tool for “database design by example”
in [ManR].

The expressive power of fd’s as a specification mechanism is examined in [Hull, GinZ]. For

other “global” dependency questions different from implication. such as the existence of Armstrong
relations, see [Var3). O

2.3.II1 PTIME Computational and Algebraic Properties

The computational complexity of fd implication was considered by Beeri and Bernstein in [BeeB],
who demonstrated that implication can be performed optimally in linear-time. This required a more
detailed analysis than the decidability property, which follows from the equality of implication and
finite implication.

Let ¥ be a set of fd’s over the universe, A, B attributes and X,Y sets of attributes from the
universe. It is not hard to see that every f{d X — Y is equivalent to the set of f{d’s {X — B: B € Y'}.
Let us define closure(X,X) = {A: L E X — A}. Given £, X.Y, if we can compute closure(X,X)
then, clearly, we can decide the fd implication ¥ |= X — Y in the same amount of time. The
following theorem and algorithm are due to Beeri and Bernstein [BeeB]. The algorithm can be
made to run in linear-time with the appropriate data structures.

Theorem 2.3.7: (Finite) implication of fd’s is in linear-time.
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procedure closure( X ,X)
ATRLIST := X ; FDLIST := % ;
repeat
erase all occurrences of attributes in ATRLIST
from the left-hand sides of fd’s in FDLIST ;
for each ® — Y on FDLIST do
ATRLIST := ATRLISTU Y

until no new attributes are added to ATRLIST in repeat loop
return closure := ATRLIST
end

Extensive use of this algorithm has been made in database scheme design. From Definition 2.3.2
recall the notions of cover and contained cover for fd’s. Such covers are minimum if they contain the
minimum number of fd’s possible. As shown in [Mai2], it is possible to compute minimum covers of
fd’s in quadratic-time. An algorithm for minimum contained covers is presented in [BeeB], where
it is also shown that this computational task is NP-complete.

Theorem 2.3.8: AMinimum covers of fd’s can be computed in PTIME and minimum contained covers
in NP, but deciding if there is a contained cover with less than k fd’s, for a given k, is NP-complete.

In the previous subsection we established that every fd o (every set of fd’s ¥) can be associated
with a sentence ¢, (a set of sentences ¢g). From the relationship of dependency (finite) implication
and (finite) unsatisfiability it follows that: ¥ |=(4) o iff o5 =(5) o, where the second =y is (finite)
implication for sentences of the f.o. predicate calculus with equality. This is not the only relationship
with mathematical logic; fd’s have a number of elegant algebraic properties.

The Problem of Dependency Implication for Two Tuple Relations: The counterexample
relation in the proof of Theorem 2.3.5, that is used for showing completeness, may be chosen to have

only two tuples. Thus, for fd’s one can show that: ¥ =5 o iff £ |=; o, where |=2 is dependency
implication over two-tuple relations. [

The Problem of Implication for Propositional Horn Clauses: One need not go to the f.o.
predicate calculus with equality to represent fd’s, it suffices to consider propositional Horn clauses.
Without loss of generality, we have fd’s with single attribute right-hand sides.

Now translate attribute A into a propositional constant A, translate fd ¢ = A,... 4, — A
into a propositional Horn clause prop, = A; A...A Ap = A, and a set of fd’s ¥ into the obvious
set of propositional Horn clauses propg. One can show that: ¥ |=(y) o iff props |= prop,, where
the second = is propositional sentence implication. The converse of this reduction also holds, i.e.,
propositional Horn clause implication is immediately reducible to fd implication. Thus, Horn clause
implication can be decided in linear-time. O

The Generator Problem for Finitely Presented Algebras: Let I be a finite set of generators
(function symbols of arity 0) and O a finite set of operators (function symbols of arity > 0). A
(ground) term 7 is built out of I' U O in the standard f.o. fashion and a (ground) equation eq is a
statement the form 7 = 7/. Equations are thus sentences of the f.o. predicate calculus with equality
over vocabulary I' U O and they are satisfied by structures over this vocabulary, called algebras,
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according to the semantics of the calculus. If egy is a finite set of equations and eq, an equation
then the implication eqs |= eq, is defined as in the caclulus.

The uniform word problem for fin‘'ely presented algebras is the problem of deciding egs |= egs,
given a finite set of equations egy and an equation eq,. The generator problem for finitely presented
algebras is defined as follows: on input (1) a finite set of equations egs over TUO, (2) an element 7
of T', and (3) a subset I of I, decide if there exists a term 7 over I' U O such that eqz |=v = 7. If
the answer is yes we denote this by Generator(egz,v,[’). Both the uniform word problem and the
generator problem are shown to be in PTIME in [Koz]. For the generator problem the algorithm of
[Koz] is a generalization of the [BeeB] algorithm for fd closure and was independently derived.

To see the relationship of fd closure with the generator problem, translate each attribute A of
the universe into a generator A. Translate each fd 0 = A;... A, — A into eg, that is the equation
A = fs(A1...Ax), and a set of fd’s into the obvious finite set of equations eqy. The universe has
become the set of generators and the function symbols for the fd’s in ¥ (one per fd) form the set
of operators. One can show that: & |=(s) X — A iff Generator(egz,A4,X). O

The Uniform Word Problem for I'-Semilattices: A T'-semilattice is an algebra < A,®,T >,
where A is a nonempty set, the carrier of the algebra, ® is a binary associative commutative
idempotent operation on the carrier, and T is a finite set of named elements of the carrier. It is a
finite [-semilattice if the carrier is finite. A (ground) term 7 built out of operator ® and generators
I'is interpreted over a ['-semilattice in the natural way; the meaning of 7 is the element of the carrier
computed by interpreting © as the binary operation and I as the corresponding named elements of
the carrier. A (ground) equation leq has the form 7 = 7’ and is satisfied by a I'-semilattice if 7 and
7’ have the same meaning in this semilattice. We say that a set of equations legy (finitely) implies
equation leq,, denoted legy |=’( n leg,, if every (finite) I'-semilattice that satisfies every equation
in leqy also satisfies equation leq,. Note that this is a uniform word problem. But the algebra is
no longer finitely presented, because the presentation consists of leqy together with associativity
commutativity and idempotence axioms for ©. These properties are expressible using equations
with variables, i.e., nonground equations.

To see the relationship with fd implication, translate each attribute A of the universe into a
generator A, translate each fd 0 = Ay... A, — A into leq, which is the equation A; ©®...0 A, 0O A
= A, 0...0 A,, and a set of fd’s ¥ into the obvious set of equations legs. One can show that:

T k=5 o iff legs |=éf) leg,. It is also true that finite implication and implication are the same over
I'-semilattices. O

We have seen six qualitatively different formulations of fd implication, which we summarize
below. In all these statements finite implication and implication coincide.

Theorem 2.3.9: Let T be a set of fd’s and o be fd X — A then: T |=(5) 0 iff T |=2 0 iff ox =5 ¥o
iff propx = prop, iff Generator(egs, A, X ) iff legx |=éf) leq,.

Additional Bibliographic Comments 2.3.10: The connection of fd’s, two-tuple implication
and propositional logic was first identified by Fagin. It has been extended to the class of functional
and multivalued (see Section 2.3.11I) dependencies in [SagDPF).

The connection of fd’s and generator problems was established in [CosK1], where it was also
extended to the class of functional and inclusion dependencies (see Section 3), in two ways. One of
these extensions holds for implication and the other for functional and unary inclusion (see Section
2.3.111) dependency finite implication.
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The connection of fd’s and I'-semilattices is part of the “folklore” of database theory. It has been
extended to the class of partition dependencies and I'-lattices in [CosKS]. A T-lattice < A,®, 8, >
has two operations @ and @, such that < A,©,® > is a lattice and T’ are named elements of A.
A partition dependency is defined as an equation between ground terms over ®, ¢ and elements of
I'. A partition dependency can be interpreted as a statement about relations over the universe and
it generalizes the functional dependency. As shown in [CosKS], because of the lattice semantics,
there are certain partition dependencies which are not expressible using f.o. sentences; despite this,
partition dependency implication is in PTIME and is the same as finite implication. [J

2.3.111 Functionality, Decomposition and Inclusion

Decomposing a relation r over R into a set of relations over D = {R1,...,Rm} WithR = U = U2 R;
(i.e., computing 7p(r) = {7R,(r),...,7R,.(7)} as in Example 2.1.8) is a technique commonly used
in storing, querying and updating data. One can think of “the world” as being relation » and of
np(r) as its convenient representation.

The set of “possible worlds” is specified by < {U},Z >, where ¥ is a set of dependencies over
U. This simplifying framework is known as the pure universal relation assumption, where U is the
universe, 7 is a universal relation satisfving £, and < {U},% > denotes the set of universal relations
satisfying X.

A (full) decomposition 7p is thus a function from < {U},L > into the set of databases over
D. The least one could require of this function is that it be injective, i.e., one-to-one. This would
guarantee that it has a left inverse, called the reconstruction function, from the range of 7p onto
< {U},Z >. The existence of the reconstruction function allows a decomposition without loss of
information, since: “the parts can be put together again to form the original whole”. This is called
the representation principle in [BeeBG]J, an early and good survey of database scheme design. A
desirable candidate for the reconstruction function is the join of the relations over D. Note that
join reconstruction is a desirable feature, but it does not always follow from injectiveness [Var4],
additional conditions might be required.

Decomposition 7p is lossless if for all r in < {U},E > we have that r =X 7p(r). If a decom-
position is lossléss then it is easy to see that it is injective and that join reconstruction is possible.
One of the first results in database theory involved conditions for lossless decompositions into two
parts, in the presence of one fd [DelC, Heal.

By taking U, R; = R C U (C instead of =) it is possible to express embedded decomposition
properties of the universal relation (instead of only full ones). To describe embedded lossless de-
compositions we add assertions to our dependency language of the form: for all r, mp(r) =X np(r),
(note that 7wp(r) CX 7p(r) is a tautology). These are typed statements, in the sense that they
only involve comparisons of values of the same attribute; this is a similarity with fd’s.

Statements about embedded lossless decompositions are natural integrity constraints. The
importance for database scheme design of two-part full lossless decompositions, called muitivalued
dependencies, and of two-part embedded lossless decompositions, called embedded muitivalued
dependencies, was identified early on in [Del, Fag3] and [Zan1]. Multi-part lossless decompositions,
called join and embedded join dependencies, were first defined and studied in {[AhoBU] and [Ris].

Inclusion dependencies, first identified in [CasFP], are another useful class of statements about
relational databases. Here we concentrate on unary inclusion dependencies, the simplest (and most
common) inclusion dependencies. For example, they can be used to express referential integrity and
I1SA constraints. To describe them it suffices to add assertions to our dependency language of the
form: for all r, 74(r) C mg(r). They are unlike fd’s, because they are untyped. Also, unlike fd’s,
they can be used as constraints between two different relations in a more general multi-relational
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setting.

In the following definition we summarize the additions, motivated by decomposition and inclu-
sion properties, to our repertoire of dependencies.

Definition 2.3.11: Let D be a database scheme whose m > 2 relation schemes have union R C U,
where U is the universe. Embedded join dependency (ejd) ™ [D] is satisfied by relation r over U if
7r(r) =X mp(r). It is called: a join dependency (jd) if R = U; an embedded multivalued dependency
(emvd) if m = 2; a multivalued dependency (mvd) if R = U and m = 2. The mvd X [{XY, X Z}]

with Z = U — XY is denoted by X—— Y. Unary inclusion dependency (uind) A C B is satisfied
by relation r over U if m4(r) C mg(r).

Tableau notation (recall Section 2.2.II1) is often used in the context of fd’s and ejd’s. Every ejd
o =X [D] is associated with a tableau T,, which is the one equivalent to the expression X 7p(U)
(see Theorem 2.2.12). Soits summary is an R-tuple of distinguished variables, where R C U. Every
fd 0 = X — Y is associated with a tableau T,, which is the one associated with the mvd X— Y.

Note that for both fd’s and jd’s the summary of the associated tableau is a U-tuple of distinguished
variables.

Clearly, every mvd, jd and emvd is an ejd. Also, every mvd is an emvd and a jd. The following
example illustrates most of these definitions.

Example 2.3.12: Let U = ABCA’ and let fd AA’ — C, ejd X [{AB, AC}] and uind C C B be
the dependencies specifying the “legal” universal relations.

The relation r in Figure 3 satisfies the three dependencies. The two tableaux of Figure 3

correspond to the f{d AA’ — C and to the emvd X [{AB, AC}] respectively. The first tableau also
corresponds to to the mvd AA’— C or X [{AA'C,AA'B}).

One may think of this situation as an INTERESTS universal relation, where A stands for NAME,
B for 108, C for sPORT and A’ for SEASON. The fd asserts that SEASON and NAME functionally
determine SPORT (each person does one sport each season). The ejd is an emvd, which can be
interpreted as follows: every value of NAME is associated with a set of values of JOB and a set of
values of SPORT and these two sets are independent of each other. That is, if tuples abe.ab;¢; arein
the projection of the universal relation on NAME J0B SPORT then tuple abe; 1s also in this projection.
Intuitively, NAME embedded multivalued determines 10B and SPORT, which are independent of each
other. The uind asserts that every SPORT is someone’s JOB (there are professional athletes in each
sport).

It is possible to express these dependencies using sentences of the f.o. predicate calculus, with
equality for the fd and without equality for the emvd and uind. We list these sentences. One should

note the presence of the 3 quantifiers for the emvd and uind, this is an important difference from
the fd.

fd :VaVy VaVz'VyVz (R(zy122") A R(zyz12")) = (2 = 1)
emvd : VzVyVz V2| Vy V2Vl (R(zyz127) A R(zy1275)) = JziR(zyzzh)

utnd : VI1VI2V$3VI4R(I1I2I3I4) = 3y1 3y23y3R(y1$3y2y3E
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Figure 3: The relation and tableaux of Example 2.3.12

Remark 2.3.13: Of course, where one draws the line for dependencies is an educated, but some-
what arbitrary choice. As we shall see in Section 3, fd’s and ejd’s are typical cases of the larger class
of embedded implicational dependencies (eid’s), which were identified by a number of researchers
independently as the natural closure of fd’s and ejd’s [BeeV5, BeeV6, Fag6, YanP). Eid’s are unire-
lational and typed, but can be generalized to the multirelational and untyped case; this closure is
refered to generically as embedded dependencies in [FagV], and this is where we will draw the line
in Section 3. Inclusion dependencies (ind’s) are among the most studied embedded dependencies
that are not eid’s; uind’s are special ind’s that are also not eid’s. As sentences of the f.o. predicate
calculus with equality, embedded dependencies have quantifier prefix V*3*. They are called full de-

pendencies if the quantifier prefix is only V*. The full eid’s are called full implicational dependencies
(fid’s); fd’s and jd’s are fid’s.

Here we focus on ejd’s, fd’s and uind’s in order to stress the existence of PTIME computational
properties. For these statements implication can be expressed as an unsatisfiability problem of a
f.o. sentence, whose quantifier prefix is 3*¥*3*. (The argument is similar as in the fd case, only
the last existential quantifiers must be added). For fd’s and jd’s this sentence has quantifier prefix
3*v*. Thus finite implication and implication coincide and are decidable for fd’s and jd’s; this need
not be the situation in the presence of either ejd’s or uind’s.

We use N for the input size to a dependency implication problem. Let us first examine testing
a decomposition for losslessness, given a set of fd’s. It is easy to show that: full decomposition
7p is lossless iff the jd X [D] is implied by the given set of fd’s. Also, here finite implication and
implication coincide. The first algorithm for this problem used O(N*) time and was described in
[AhoBU]. It was improved in [LiuD] and [DowST]; the best current bound from [DowST} is based
on the operation of congruence closure and is O(N2log? N/logk) time and O(N2k) space for k a
parameter with 1 < k < N. The proof also applies to an embedded decomposition, i.e., an ejd
as the implied statement. The results were extended in [KanCV] to finite implication (in O(N?3)
time) and implication (same bounds as [DowST]) of a ejd by a set of {d’s and uind’s. As shown in
[CasFP] finite implication and implication differ in the presence of fd’s and uind’s.

Theorem 2.3.14: Finite implication and implication of an ejd by a set of fd’s and uind’s do not
coincide, but are both in PTIME.

In this theorem, it is important that the domains of attributes be unbounded, since two-tuple
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relations no longer characterize the implication problems. If some domain has only two values then
implication of a jd by a set of fd’s is NP-complete, [Kan1].

An important technique grew out of the algorithm -f [AhoBU] for testing lossless joius. This
algorithm was extended in [MaiMS] to antecedent statements being fd’s and jd’s and named the
chase. The chase can be further extended into a semi-decision procedure for embedded dependency
implication and an exponential decision procedure for full dependency implication, see [BeeV5,
BeeV6] for the general setting. In its most general form it is similar to resolution with paramodula-
tion and it uses a correspondence between tableaux and embedded dependencies. For the ind chase
we refer to [JohK]. But we should note that equational forms of reasoning seem more natural for
ind problems [CosK1, CosK2, Cos2, Mit]. Let us describe the chase for jd’s and fd’s from [MaiMS].

In [MaiMS] it is also shown that the chase procedure below is Church-Rosser, i.e., its result is
unaffected by nondeterministic choices in its steps. Note that, procedure chase(X,0) is a decision
procedure, since it always terminates. From its description one can see that no new symbols are

generated during the computation and this fact accounts for the termination. It runs in exponential
time.

procedure chase(X,0)
input ¥ a set of fd’s and jd’s, o a fd or id ;
T := T,, where T, is the tableau associated with o ; success := false ;
repeat
if ¢’ is a fd in ¥ such that relation T }& o/, because t[A] # t'[A]
then replace all occurrences of one of ¢t[A],t'[A] by the other
keep the distinguished symbol if one is such or else
keep the lowest subscript nondistinguished symbol
if o’ is a jd in X such that relation T }£ ¢’ because T #M np(T)
then replace relation T' by relation X 7p(T")
until no further modifications of T are possible;
ifeisfd X - Y
then success := true if all nondist. vars for Y in T, became dist. in T;
if o is jd ™ [D]
then success := true if the summary of T, is a tuple of T
output if success = true then X |=(4) o else X |£(4) 7 ;
end

Using properties of the chase it is possible to show a number of positive results. These we
summarize in Theorem 2.3.15, which complements Theorem 2.3.14. The simultaneous presence of
fd’s and uind’s makes finite implication and implication different. but they are still both decidable
and sometimes efficiently so. We state the theorem using the more general embedded implicational
dependencies (instead of ejd’s and fd’s) and full implicational dependencies (instead of jd’s and
fd’s); see Remark 2.3.13. The results for ejd’s, jd’s and fd’s only are from [MaiMS, MaiSY, Var6),
for eid’s and fid’s only are from [Varl], and the addition of uind’s is from [KanCV].

Theorem 2.3.15: (1) Implication and finite implication of an eid or uind from a set of fid’s and
uind’s do not coincide, but are both in EXPTIME. (2) Implication and finite implication of a mvd,
fd or uind from a set of fid’s and uind’s do not coincide, but are both in PTIME.

Unfortunately, the precise complexity of the ejd implication problems is still open. The only
known lower bounds are Np-hardness ones, [BeeV1, BeeV2, BeeV4, MaiSY]. For a discussion of the
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open questions see [FagV]. For example, it was shown in [FisT] that: testing whether a set of mvd’s
implies a jd is NP-hard.

One way of understanding implication is through the development of complete and sound formal
systems for it, e.g., the system FD tfor fd’s. Such formal systems are often nontrivial to construct,
particularly in the presence of jd’s, see [BeeV2, BeeV4, Sci2]. Also, unlike for fd’s, no complete
and sound k-ary system (for some fixed k) might exist. For example, it was shown in [CasFP] that
this is the case for many fd and ind implication problems, including fd and uind finite implication.
This is also a difficulty for emvd implication, see [ParP, SagW]|.

In the restricted world of mvd’s, fd’s and uind’s (i.e., the only ejd’s allowed are mvd’s) the
situation is almost ideal. All implication problems are efficiently solvable and have sound and
complete formal systems that are simple.

The first sound and complete formal system for fd’s and mvd’s appeared in [BeeFH]; here we give
a slightly modified version MFD from [Var8]. Mvd and fd implication was solved in O(N*) in [Bee]
and these bounds were improved in [Gal, HagIlTK, Sagl]; the best current bound is O(N log V)
from [Gal]. This computational behavior is due in large part to the algebraic properties of what is
called in [BeeFH] a dependency basis. The results were extended in [KanCV] to also include uind’s,
with an overhead of O(N?3) for finite implication and of O(N log N) for implication.

We summarize the known results in Figure 4. Namely, the complexities of the implication
problems together with sound and complete formal systems for these problems. We have already
seen system FD = { FDr, FDa, FDt }. To these rules we add a number of rules and use the following
convention in Figure 4: MD = { MDc, MDa, MDd }, MFD = FD U MD U { MFDt, MFDi }, etc. We also
note when finite and unrestricted notions are equal. All the rules that follow are 2-ary ones. The

only exception is the last set of “cycle rules”, where we have one cycle rule for each odd positive
integer k.

MDc complement axiom scheme: F X — U — X

MDa augmentation inference rule: X — Y+ XZ— YZ

MDd difference inference rule, where Y N Z =0: X— Y and Z— Y1 F X— Y -1
MFDt translation inference rule: X — Y FX— Y

MPFDi intersection inference rule, where Y NZ =¢: X— YandZ —NFX =Y NY;
UDr reflexivity axiom scheme: - 4 C 4

UDt transitivity inferencerule: AC Band BCCFACC

UFDe 0 interaction inference rule: ) — A and BCA+FAC Band® — B

CD one cycle inference rule each for odd positive integer k:
Ao nd A1 andAg Q A1,...,Ak_1 — Ak and Ao g Ak F
A1 — Ag and A1 C Ag, ..., A — Ai_1 and Ax C Ap

The efficient solution for mvd. fd and uind problems provides a convenient pause in our excursion
into dependency theory. The next logical step is the investigation of emvd’s, which motivated many
of the generalizations examined in Section 3. The implication problems for emvd’s are the major
open questions in dependency theory. No upper or lower bounds are known for these problems
beyond the trivial ones (even the NP-hardness bounds for ejd’s do not apply to emvd’s).

Open Problem 2.3.16: Are emvd implication and finite implication decidable?
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L_Zo [ FE |k [ F [ Fr |

fd O(N) = D | =F
mvd O(NlogN) | = ML =+
uind O(N) = UD =+
mvd,fd O(NlogN)| = MFD =+
mvd,uind { O(NlogN)| = MUD =+
fd,uind O(N) O(N3) | uFD | CuUFD
mvd,fd,uind | O(Nlog N) | O(N3) | UMFD | CUMFD

Figure 4: Mvd, fd, uind implication problems

2.4 On Hypergraphs and the Syntax of Database Schemes

With a database scheme D or a jd X [D] or a decomposition 7p we can associate a hypergraph.
Hypergraphs, like undirected graphs, consist of a finite set of nodes (in this case the attributes in D)
and a finite set of sets of nodes or edges (in this case the relation schemes of D); where we assume

that each node belongs to some edge. The many applications of hypergraph theory to database
theory illustrate the use of attribute notation.

Most graph notions, such as paths or connectivity, immediately carry over to hypergraphs.
Unlike graphs, however, hypergraphs have a number of inequivalent notions of “acyclicity”. The
acyclicity we examine here is the first one proposed in the context of database theory [BeeEtal].
It is also known as a-acyclicity, to distinguish it from other variants examined in [Fag7]. There is
a large number of combinatorial characterizations of acyclicity [BeeFMY, FagMU], many of which
have applications in database theory. Here we use the operational definition based on the GYo
reduction, independently identified in [Gral] and [YuO].

Definition 2.4.1: Database scheme D, jd X [D], decomposition 7p and hypergraph D are acyclic
if hypergraph D can be reduced to the empty set by some sequence of applications of the following

two rules: (1) if an edge is a subset of another edge then delete it, and (2) if a node belongs to
precisely one edge then delete it.

Testing Definition 2.4.1 is clearly in PTIME. As shown in [TarY], this can be done optimally
in linear-time. An example of an acyclic hypergraph is given pictorially in Figure 5. Note that
a subset of its edges form a cvclic hypergraph; this behavior is somewhat counterintuitive and
does not occur for v-acyclicity [Fag7]. Despite such anomalies, acyclic database schemes are well
motivated from a semantic point of view, e.g., see [Lie, KifB|.

An attractive feature of acvclicity, from a computational point of view, is that a number of
NP-hard questions involving jd’s or decompositions can be resolved in PTIME, provided the input is
acyclic. Following the exposition of [FagV], we present three such questions. The first is about jd’s,

the second about decompositions, and the final one about database schemes and the pure universal
relation assumption,

A jd is acyclic iff it is equivalent to (i.e., it implies and is implied by) some set of mvd’s. This
is one of the characterizations of acyclicity from [FagMU)}. From [BeeFMY] it follows that, given
an acyclic jd then an equivalent set of mvd’s can be found in PTIME. The converse, given a set
of mvd’s finding an equivalent jd or reporting that none exists, was shown in [GooT] also to be
in PTIME. There is an interesting consequence. Recall that testing implication of a jd by a set of
mvd’s is NP-hard [FisT], but testing implication of an acyclic jd by a set of mvd’s is in PTIME. To

28



Q

Cl

Figure 5: An acyclic hypergraph

see this use the [FagMU] characterization, the [BeeFMY] PTIME construction and mvd implication.
In summary we have the following.

Theorem 2.4.2: (1) A jd is acyclic iff there ezists a set of muvd’s equivalent to it.
(2) Given an acyclic jd, an equivalent set of mvd’s can be constructed in PTIME.
(3) Given a set of mvd’s, finding an equivalent jd or that none ezists is in PTIME.
(4) Implication of an acyclic jd from a set of mvd’s is in PTIME.

As shown in [Var4] about decompositions, injectiveness (See Section 2.3.III) does not always
entail that the reconstruction function is the join. This is the case when the dependencies are jd’s
and fd’s and the decomposition is in two relation schemes [BeeV7, CosP]. In fact, the results of
[BeeV7] are for the more general case of fid’s (see Remark 2.3.13) and acyclic decompositions. In
[KanCV] it is shown that uind’s can be added without changing the theorem.

Theorem 2.4.3: Let the possible universal relations < {U},Z > be determined by a set & of
fid’s and uind’s over U, and let the decomposition wp be acyclic, then: (1) if mp is injective

the reconstruction function is the join, and (2) testing if mp 1is injective is equivalent to testing
Y 4 [D] and is in PTIME.

We say that a database d = {r1,...,7,} over D is join consistent or is the projection of a
universal relation if there is a relation r, such that 7p(r) = d = {r,...,7m}. In other words, the
pure universal relation assumption states that all databases over D are join consistent. This isonly a
simplifying assumption. Not all databases are join consistent, as one can see from simple examples.
Another problem is that, given a d over D testing whether it is join consistent is NP-complete, see
[HonLY].

A less restrictive assumption about a database d = {ry,....7,,} over D is that it is pairwise
consistent. Namely, every two relations r;,; over R;, R; respectively agree on their common
attributes R; N R;, i.e., TpnRr;(r:) = WRinR].(rj), for 1 < 7,7 < m,. An equivalent way of defining
pairwise consistency is requiring every database {r;,r;},1 < 4,7 < m, to be join consistent. Every
join consistent database is pairwise consistent, but not conversely. Pairwise consistency can be
expressed using inclusion dependencies. It is easy to see that pairwise consistency can be tested in
PTIME. From [BeeFMY] we have the following characteriztion of acyclicity.
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Theorem 2.4.4: (1) If database scheme D is acyclic, then any database over D that is pairwise
consistent is also join consistent. (2) If database scheme D is not acyclic, then there is a pairwise
consistent database over D which is not join consistent. (3) Given database d over acyclic D,
testing whether d is join consistent is in PTIME.

Additional Bibliographic Comments 2.4.5: [Yanl] contains a large number of problems solv-
able in PTIME in the presence of acyclicity. Acyclicity is a very useful tool for query optimization.
This has led to an investigation of query evaluation based on the semi-join operation, e.g., [BerC,
BerG, GooS1, GooS2, GooS3, SagS2]. Acyclicity in the presence of fd’s is the topic of many stud-
ies, e.g., [LavM@G, Sac, SacMM, SagS1]. Various forms of acyclicity defined in [Fag7] were further
examined in [AusDM, DatM, GrhR]. Finally, acyclicity has been used in database scheme design
and in the context of universal relation data models. (J

2.5 On Logic and the Semantics of Databases

We have, until now, used one basic paradigm: that the database is a finite f.0. relational structure.
This model theoretic approach is not the only one possible. In fact, a proof theoretic approach might
be more appropriate for issues beyond the capabilities of the relational data model, such as the
problems of incomplete information and updates that we address in Section 5.

Let us reexamine our basic premise, that the database is the semantics. Instead, we can view
databases as f.o. theories of a very special form, called extended relational theories by Reiter in
[Rei3]. A f.o. theory is a set of sentences of the f.o. predicate calculus with equality, over some
vocabulary of constant and relation symbols. For the relational data model this point of view
is equivalent to our original premise. An advantage of databases as structures is the natural
development of the rich repertoire of algebraic techniques that we have already seen. On the other
hand, a fresh point of view may lead to other important data models.

We discuss two such types of data models: deductive and universal relation data models. Our

exposition highlights the fact that: at a fundamental level these data models share many ideas,
even if they have been developed separately.

The study of data models based on f.o. theories is known as the area of deductive databases.
Research in this area was greatly influenced by an early collection of papers on the subject [GalM]
and many of the original advances are surveyed in {[GalMN]. Recently, there has been much work
on databases and logic programming, that is related to deductive databases, see [Min2]. There
is an intimate connection between deductive databases and the study of query languages beyond
relational algebra, in particular, database logic programs. This has been demonstrated in [ChaH3]

and is emphasized in [Min2]. We therefore chose to examine these subjects together, in some detail,
in Section 4.

In this section we set up the f.o. theory framework for the relational data model. Modifications
of this framework lead to nontrivial extensions, both from the point of view of query language
expressive power and in terms of representation power for incompletely specified data. We also
focus on the weak universal relation assumption and its relationship to deductive databases. Given
the expressive power of the f.o. theory point of view, the historical choice of the terminology “weak”

is rather unfortunate (its justification is that as an assumption it is weaker than the pure universal
relation assumption).
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2.5.]1 Deductive Data Models and First-Order Theories

Consider a vocabulary consisting of relation symbols {Ry,...,R,} and of a countably infinite
set of constant symbols C. This set C and the set of values A we put into one-to-one and onto
correspondence, i.e., a in C corresponds to a in A. A finite f.o. theory 0 is a finite set of sentences
of the f.o. predicate calculus with equality over this vocabulary.

Consider a standard proof system for the f.o. predicate calculus with equality [End]. The
consistency of a theory is the proof theoretic property, that not all sentences are provable using
. the theory and the standard proof system. It is well known that consistency is the proof theoretic
analog of satisfiability: a finite f.o. theory is consistent iff it is satisfiable [End]. So, let F' be an
expression of the relational calculus as in Definition 2.2.1: {R,zy,...,Zn : @(Z1,...,25)}. Then
the new framework results from defining F(6) as follows:

F(O) = { {ai...an :a; appears in 0,1 < i< n,0 |=f ¢(a1,...,a,)} if 6 consistent
(6) = e g - ;
0 if 8 inconsistent

Note that |=; is finite implication of sentences, and not satisfaction by a finite model as in
Definition 2.2.1. This approach is best exemplified by the work of Reiter, e.g., [Reil, Rei2, Rei3]. It
has been called proof theoretic, because, under certain sufficient conditions for the sentences, finite
implication |=y may be replaced by provability . )

Thus, the tuples of F(8) correspond to all the variable assignments verifying ¢ (or the facts)
that we can prove from 6 in first-order logic. This conservative approach towards what is true, i.e.,
facts are true only if they can be proven, is known as the closed world assumption [Reil]. Now let
us try to relate this new approach to the relational data model.

If d is a database we will construct a finite f.o. theory 84 called an eztended relational theory. This
64 is constructed from d using the union of four sets of axioms AT, UN, DO, CO. We use shorthand

Z for z,,...,z, and @ for a,,...,a,, where n is determined from the context and equality £ = @ is
componentwise,.

AT A sentence R(@) for each R-tuple @ in d.
UN A sentence a # a’ for each pair of distinct values a,a’ occurring in d.
DO A sentence Vz(z = a3 V...V z = a;) if the values occurring in d are exactly {a;,...,ax}.

CO A sentence VI(R(Z) = (£ =a, V...V Z = &;), for each symbol R, where the R-tuples in d are
exactly {@),....d;}. If j = O this sentence is YZ(=R(Z)).

The axioms AT (atomic facts) just express the tuples as ground atoms; the axioms UN (unique-
ness) just express that different symbols are different objects; and the axioms Do (domain closure)
and co (completion) guarantee that 8, defines a unique model d, modulo automorphisms on C.

If d is a database and ¥ a set of dependencies then F(6; U X) has the following two properties.
(Definition 2.2.1 is used for F(d) and ER stands for extended relational theory).

ER1 F(6,UX) = F(8y) = F(d) if d satisfies &
ER2 F(6,UZX) =0 if d does not satisfy &

Note, how in these properties the problem of testing if d satisfies L is separated from computing
F(d). The facts that can be proven from 8;U Y are the same as the result of querying the database
according to Definition 2.2.1.
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Remark 2.5.1: If we assume that ¥ = () and only a subset of the UN axioms are present, then
we have a situation of incomplete information. There is a bound on the database domain and
the tuples of the relations. However, not all constant symbols need represent distinct values. The
uniqueness of the model of ; is lost, i.e., there might be many “possible worlds”. In this case, the
definition of F'(f;) above has been used to provide semantics for querying incomplete information
databases, see [Var9, Rei3].

One way to model incomplete information is to omit some of the axioms of an extended relational
theory. In Remark 2.5.1 we deleted some of the UN axioms. An interesting situation arises when
we have dependencies and we delete some of the co axioms.

Let us assume that the vocabulary of relation symbols is {R;j,...,Rmn}. We are given an
extended relational theory 83, without the CO azioms for some of the relation symbols, and a set
of dependencies ¥ over this vocabulary. Sentences ;U X form a deductive database. The theory

0 represents the known facts about the application; £ can be used to derive other true facts as
follows:

Definition 2.5.2: If d is a database and § = 85U ¥ is a deductive database and R is a relation
symbol in its vocabulary then R denotes the query,

R[d,%] = {a1...a, :a; appearsin 0,1 <i<n,0 =5 R(a;...a,)} if 6 éonsistent
T 0 if 8 inconsistent

Note that this definition gives us a data model. Relations (extended relational theories) are
manipulated via a query language implicitly defined by k. This language makes little distinction
between dependency satisfaction and finite implication. For example, a calculus query F(d) can be
expressed using a deductive data model by incorporating F’s definition into X, provided that the
set of dependencies allowed is sufficiently expressive.

Example 2.5.3: Let R be a binary relation symbol and 8¢ be an extended relational theory over
R without the co axiom for R, where r is a directed graph without isolated nodes. Trans(r) is the
transitive closure of r, which is not expressible in relational calculus, see Theorem 2.2.8. It is not
hard to see that R[r,{c}] = Trans(r), where,

o =VzVyVz(R(zz) A R(zy)) = R(zy)O

Deductive data models are parameterized by the possible syntax of the dependencies of X. In
Example 2.5.3 the dependencies belong to the language of universally closed Horn clauses. The
query language, implicitly defined by |=¢ for such Horn clauses, is known as Datalog [ChaH3, MaiW]
and we will examine it in Section 4 in some detail. We will also find universally closed Horn clauses
as natural dependencies, called rule dependencies, that generalize jd’s in Section 3. This Horn form
of ¥ is sufficient to guarantee that, the semantics based on Definition 2.5.2 are the same as the
minimal Herbrand model semantics for the deductive database seen as a logic program, see [Apt,
AptV, Min2].

Syntactic classes for ¥ can be used to define query languages that are more expressive than
relational calculus; see Example 2.5.3 and Theorem 2.2.8. We believe, however, that the study of
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these formalisms is best conducted as a study of query languages. This allows for a clean separation
between issues of querying and of checking integrity of the database. We thus refer the reader to
Section 4, where we study expressibility in various logics as opposed to the properties of deduction.

2.5.I1 Universal Relation Data Models and First-Order Theories

One of the original motivations for introducing the relational data model was to free the programmer
from the need to procedurally specify how the data should be accessed; the so-called “navigation
problem”. When programming at the level of abstraction of relational algebra, the programmer
need not worry about the access paths within the data structures that implement relations; the
so-called “physical navigation problem”. Nevertheless, “logical navigation” is still necessary. Even
in the declarative relational calculus one has to specify how to connect various relations (but with
less effort than in the algebra). Universal relation data models emerged through the work of many
researchers, whose goal was to further simplify “logical navigation”.

The ideal goal is to use the attribute notation and the hypergraph structure of database schemes,
as a query language that is more declarative than relational calculus. Instead of using a relational
calculus expression F (from databases over D to databases over {a(F)}) just use a(F). The hope
is that the database scheme structure and the dependencies have enough information for the system
to automatically choose some F by using a(F'). This of course involves thoughtful database scheme
design and might work only for some expressions F'.

We have already seen the pure universal relation assumption, first proposed as a simplifying
assumption about database scheme design. The set of possible worlds are specified as < {U},X >
and only databases that are decompositions of such universal relations are considered. A potential
problem is that many databases are not decompositions of any universal relation. Even testing
whether there exists a universal relation r such that the given d is a decomposition of r is NP-
complete, [HonLY].

These difficulties have led to the formulation of an alternative assumption, the weak universal
relation assumption. This assumption, instead of the existence of a universal assumption, postulates
the existence of a weak universal relation. A very good exposition of the subject can be found in
[MaiUV]. In our definitions we limit ¥ to the full dependencies of [FagV] (see also Section 3). For
the embedded ones we refer to [MaiUV].

Definition 2.5.4: Let d = {r),...,r»} be a database over D = {R;,...,Rn} with universe U
and ¥ be a set of full dependencies. A relation 7 over U is a weak universal relation for d w.r.t. T
if: (1) r satisfies ¥, and (2) r; C 7g,(r),1 < i < m. Each subset X of U denotes the query:

X[d,%) = ({nx(r) : v is a weak universal relation for d w.r.t. I}

Note that this definition gives us data models, which are parametrized by the class of depen-
dencies of which ¥ is a subset, e.g., fd’s or jd’s together with fd’s etc. Relations are manipulated
and a query language is provided: queries are specified implicitly from the attribute set X, the
dependencies ¥ and the intersection condition.

Let us determine the precise relationship of universal relation data models with deductive data
models. The vocabulary we use has one relation symbol X for each subset X of U and the constant
symbols C from the previous subsection. We build a finite f.o. theory 8%, as the union of four sets of
sentences AT, UN, IN, cN. The first two sets AT, UN are the same as for extended relational theory
64 (see Section 5.2.1). The sentences IN express that for each X the relation over X is a subset of
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the projection on X of the weak universal relation. The sentences CN express the converse, that
for each X the projection on X of the weak universal relation is a subset of the relation on X. Let
us illustrate these conditions by example, where U = ABC and X = AB.

IN For U = ABC,X = AB include the sentence VzVy3zX(zy) = U(zyz).
CN For U = ABC,X = AB include the sentence VzVyV2U(zyz) = X(zy).

An important observation from [MaiUV] is that, if we consider theory 6} instead of 65 in
Definition 2.5.2 then we get the X{d,Z] of Definition 2.5.4. Namely, if § = 8} U X then:

X[d, 5] = {@1...a, : a; appears in 0,1 < i< n,0 |=f X(a1...a,)} if @ consistent
T 0 if @ inconsistent

One difference from deductive databases is the availability of a rather large vocabulary of
relation symbols X, namely all the subsets of U. This is to facilitate “logical navigation”. Another
difference is the special emphasis in universal data models on ¥’s consisting of fd’s. With fd’s
query evaluation has a distinctly different flavor than other deductive database query evaluation
techniques, e.g., the ones for T consisting of rule dependencies.

The two obvious questions arise from Definition 2.5.4. (1) How does one test consistency, in
this case the existence of some weak universal relation of d w.r.t. . (2) How does one evaluate
X|[d,X]. Since the two characterizations we have are not procedural, there could be an infinite
number of candidate weak universal relations of which we need to compute the intersection.

Fortunately, there is a naive but procedural method to answer these questions. The equivalence
of the following method with Definition 2.5.4 is shown in [MaiUV, Sag2]:

(i) Construct a representative universal relation for database d; this consists of the tuples of d
padded with uniquely occurring special symbols called nulls that turn these tuples into U-tuples.

(ii) This representative universal relation is viewed as a tableau and is chased by the depen-
dencies in X, using a generalization of the chase from Section 2.3.III. Since ¥ consists of full
dependencies this procedure terminates. If two non-nulls are equated then d,% are inconsistent
else they are consistent.

(iii) If d, ¥ are consistent then X|[d, X] is the projection on X of the result of the chase, restricted
to tuples without nulls.

A consequence is that query evaluation becomes dependency implication, where the represen-
tative universal relation is viewed as the dependency inferred. The following theorem is from [Hon]
for fd’s and from [GraMV] for other dependencies. For embedded dependencies, the chase may not
terminate and the various questions become undecidable.

Theorem 2.5.5: Under the weak universal assumption, testing consistency of d and T and evalu-

ating X[d,X], when X is a set of fd’s, are both in PTIME. They are EXPTIME-complete, when ¥ is
a set of full dependencies.

Constructing and chasing the representative universal relation is not particularly efficient. There
has been a great deal of work on better procedural query evaluation methods, e.g., [Gra2, MaiRW,
MaiUV, Men, Sag2, Sag3, Sag4, Sag5, Yanl, Yan2]. The goal of these efforts is, given ¥, X and
D to find a relational algebra expression E over D such that: for all databases d over D we have
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E(d) = X[d,X]. This would reduce the query in the universal data model to a relational algebra
query. Such an F need not always exist. If an E exists we call ¥, X, D algebraic.

It is easy to see that, the transitive closure query of Example 2.5.3 can be computed in a
universal relation data model, one just needs U = AB and a single full dependency; so this case
is not algebraic. There are algebraic cases where E exists and can be computed efficiently, for
example if ¥ is one jd [Sag2, Yan1]. For this case, with X extended to a positive existential query
instead of just a projection, see [Yan2].

The algebraic cases (where the difference relational operation is excluded) are characterized in
[MaiUV] by a property of the chase procedure, i.e., termination in a fixed number of steps for any
d. This property is called uniform boundedness of the chase. There are instances where uniform
boundedness can be decided: if ¥ is a set of fid’s without equality and X = U, see [Sag5].

Let us close this section with yet another application of dependency implication. We would like
to compare the pure and the weak universal relation assumptions. One desirable condition is that:
if the pure assumption holds then we get the same result by projecting from the universal relation
as we do by following the semantics of Definition 2.5.4. Formally we want that: for all  satisfying &
and such that d = mp(r) we have mx(r) = X[d, X]. In [MaiUV] this is shown to be true iff £ }=; o,
where o is a projected-join dependency (pjd) and relation r satisfies o if 7x(X mp(r)) = 7x(r).

Additional Bibliographic Comments 2.5.6: Weak universal relations have also been used to
model incomplete information [Vas]. The weak universal relation assumption can be modified to
capture the fine distinctions between values present but unknown, and values whose presence is
even unknown [AtzB, CosKS]. Semantics based on set partitions are proposed for the weak universal
relation assumption in [CosKS], this shows the close connection between universal relation models
and the deductive data models of [Spy]. O

3 Dependencies and Database Scheme Design
3.1 Dependency Classification

In this section we try to classify the many dependencies that have been examined in the literature.
We follow the classification framework of embedded dependencies from [FagV]. We highlight the
importance of three subclasses of these dependencies: embedded implicational dependencies [BeeV5,
BeeV6, Fag6, YanP), inclusion dependencies [CasFP), and rule dependencies [ChaH3, GallMN]. We
outline some of the decidability and complexity bounds on their implication problems.

Definition 3.1.1: An atom is a formula of the form R(z,..., 2;), a relational atom, or is a formula
of the form 21 = z2, an equality atom; where 21, ..., z; are not necessarily distinct variables and R is
arelation symbol of arity j > 0. Let (z1,...,z,) and ¥(y1,...,Ym) be two nonempty conjunctions
of atoms, such that z1,...,zx,7 > 1 and y1,...,ym,m > 1 are the distinct variables appearing in
these conjunctions respectively. An embedded dependency is a sentence of the f.o. predicate calculus
with equality of the following form:

Vzi...Vepp(z,...,20) = J21. .. 3269 (Y15 - - 1 Ym)

where {z1... 2k} ={y1.- - Ym} — {Z1... 20 }.

A set of embedded dependencies ¥ is satisfied by a database d, if d satisfies each sentence in
3, where the relation r7; of d interprets R; etc. Note that embedded dependencies are satisfied
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by a database with empty relations and that each embedded dependency is a domain independent
sentence. Also a set of dependencies ¥ can be written as a sentence in prenex normal form with
quantifier prefix V*3*. In the definition above conjunction ¢ is called the body and conjunction
1 the head of an embedded dependency. Without loss of generality, “the equality symbol need
only occur in the head % and only between variables that also appear in the body ¢”; we will
hence assume that this well-formedness condition about equality is true. There are five common
restrictions on embedded dependencies that give us five classes of dependencies.

The full are those without 3 quantifiers.

The unirelational are those with one relation symbol only.
The 1-head are those with a single atom in the head.

The tuple-generating are those without the equality symbol.

AN G

The equality-generating are full, 1-head, with an equality atom as head.

For full dependencies, being 1-head is not a constraining assumption, since each full dependency
can be replaced by an equivalent set of full 1-head dependencies. One can always replace an embed-
ded dependency by a set of tuple-generating dependencies and equality-generating dependencies,
see [Varl]. Within this five-fold classification three special subclasses of dependencies have been
identified for their practical significance. ;

Unirelational Typing and Eid’s: Let R be the relational symbol for the unirelational case.
Partition the sets of variables into sets corresponding to the arguments of R. A unirelational
dependency is typedif (1) its equality atoms are between two variables both from a set corresponding
to some argument of R, and (2) its relational atoms have in each argument of R a variable from
the set corresponding to that argument. The embedded dependencies that are typed unirelational
are called embedded implicational dependencies (eid’s). They were identified, independently and
in a variety of formalisms, as the natural closure of many sets of dependencies, [BeeV5, BeeV6,
Fag6, YanP]. The full, 1-head eid’s are called full implicational dependencies (fid’s). In Section
2.3.I11 we have already encountered functional, join, multivalued dependencies (fd’s, jd’s, mvd’s)
all examples of fid’s. Other examples of 1-head eid’s that we have encountered in Section 2.3.III
are embedded join, embedded multivalued dependencies (ejd’s, emvd’s). All these examples, with
the exception of fd’s, are tuple-generating. The tuple-generating, 1-head eid’s are called embedded
template dependencies (etd’s), [SadU]. Each etd can be described by a tableau; its tuples describing
the body and its summary describing the single head atom, where the existentially quantified
variables of the head are those distinguished variables missing from the summary. Note that, for
dependency satisfaction we are not only interested in the tableau mapping, but in the database
being closed under this mapping. When the summary of the tableau has all the distinguished
variables then we have full template dependencies (ftd’s); we have encountered such fid’s without
= in Section 2.5.II. At the end of Section 2.5.I1 we also saw a subclass of etd’s containing the ejd’s,
these are the projected-join dependecies (pjd’s) of [MaiUV]. Finally, the fd’s with | X| = |Y| = 1 are
called unary fd’s. O

Multirelational Constraints and Ind’s: Inclusion dependencies (ind’s) are all embedded de-
pendencies, such that: the head is one relational atom with no multiple occurrences of variables
and the body is one relational atom with no multiple occurrences of variables. For example,
VazVyVzRy(zyz) = 32'Ry(yz2') is an ind. Ind’s, defined in {CasFP], are very useful in describing
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multirelational constraint’s, e.g., “referential integrity constraints”. Note that ind’s are tuple-
generating, 1-head, but may involve more than one relation symbol and may be untyped. We have
already encountered unary inclusion dependencies (uind’s) for a single relation in Section 2.3.III.
Uind’s may be defined, in the obvious way, for many relation symbols. The results of Section 2.3.II1
extend to the multirelational case as long as uind’s are the only multirelational statements. There
~is notational simplicity in denoting single relation uind’s as A C B. To extend this notation for
ind’s one must be careful and sequences instead of sets of attributes must be used. If R;, R, are
relation schemes, < X > a sequence of k distinct attributes of R; and < Y > a sequence of k
distinct attributes of R,, then R; < X >C Ry <Y > is an ind, and every ind can be represented
in this fashion. For the previous example, this notation would give us R; < AB >C R; < BA >
where Ry = ABC and Ry, = ABA’. If k = 1 we have uind’s, k = 2 binary ind’s etc. O

Deduction and Rule Dependencies: The full, 1-head, tuple-generating dependencies are called
rule dependencies or rules for short. We have already mentioned in Sections 2.5.1-1I how rules may
be used for querying in deductive and universal relation data models. They play an important
part in the area of database logic programs [ChaH3, GalMN]. The analysis and optimization of
these programs use many techniques from dependency theory, e.g., [CosK3, Sag6]. A rule may be
represented by an untyped tagged tableau with a summary that is full and can have repetitions of
variables (see Remark 2.2.15). Ftd’s are a special case of rules; for example, the results of [Sag5]
for ftd’s apply to unirelational and typed database logic programs. O )

We have already defined the problems of finite implication and implication of dependencies in
Definition 2.3.1. For each class of dependencies we have a special case of these implication problems.
For example: an instance of eid implication consists of a set of eid’s £ and an eid o, the question
is whether ¥ |= o and all these eid’s are over one relation symbol R (but there is no a-priori bound
on the arity of R).

As we described in Section 2.3.III (finite) implication for a class of embedded dependencies can
be identified with (finite) unsatisfiability for a class of sentences in prenex normal form with quanti-
fier prefix 3*V*3*. For full dependencies this quantifier prefix becomes 3*V* and, as a consequence,
finite implication and implication are the same and decidable. In fact, this decision problem is
in EXPTIME by a chase decision procedure for full dependencies. One corollary is that rules can
be checked algorithmically for certain redundancies. For embedded dependencies the situation is
qualitatively different: finite implication and implication need not coincide.

The typing in eid’s entails a large degree of structure, e.g., algebraic properties such as the
faithfulness under direct product of [Fag6]. Eid implication can also be axiomatized [YanP], [BeeVS§].
There is an elegant semi-decision procedure for eid implication that generalizes the fd-jd chase
[BeeV5]. Unfortunately, finite implication and implication are different even for etd’s and, as
shown independently, in [BeeV3, ChaLM] they are undecidable. These undecidability bounds were
strengthened to pjd’s independently in [GurL, Var7]. The following two theorems summarize our
current understanding about eid implication problems. The first is from [ChalL.M] and the second
from [GurL, Var7].

Theorem 3.1.2: Finite implication and implication of fid’s coincide and are EXPTIME-complete.

Theorem 3.1.3: Finite implication and implication of eid’s do not coincide and are both undecid-
able even for pjd’s.
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The first result about ind’s was that, despite the fact that ind’s are not full, finite implication
and implication coincide. Theorem 3.1.4 is from [CasFP], where ind implication is also axiomatized.

Theorem 3.1.4: Finite implication and implication of ind’s coincide and are PSPACE-complete.

The implication problems for ind’s alone and for ind’s together with fd’s have a qualitatively
different flavor from the eid problems. For example, as illustrated in the axiomatizations of [Mit]
and [CosK1, CosK2], equational formal systems are better suited for studying ind and fd implication
than is the chase. The chase is still useful, but generally hard to reason about. A careful analysis of
the chase in [JohK] suffices to show that implication of an eid from a set of ind’s is PSPACE-complete.
A sufficient condition for the termination of the chaseis ind acyclicity [Sci3]. Finite implication and
implication of fid’s and acyclic ind’s coincide; but there are exponential lower bounds for acyclic
ind’s with fd’s [CosK1] and even for acyclic ind’s alone implication is NP-complete [CosK2].

As we have seen in Section 2.3.III, uind’s and fid’s interact in an interesting fashion, [KanCV].
Fid and uind finite implication and implication differ, but are both decidable (Theorem 2.3.15).
For fd’s, mvd’s and uind’s all decision questions are in PTIME (Figure 4).

Unfortunately, the good properties of ind’s alone, or uind’s and fid’s, or acyclic ind’s and fid’s
do not extend to the general case. The following theorem was shown independently in [ChaV, Mit].

Theorem 3.1.5: Finite implication and implication do not coincide and are both undecidable even
for unary fd’s and binary ind’s.

The relevance of undecidability results, and of other complexity lower bounds, depends on
whether arbitrary instances of an implication problem correspond to “real world” situations, see
[Scil, Sci3] for studies of this issue. Pairwise consistency (see Section 2.4) is a natural universal
relation assumption, that is expressible using ind’s across relations. Let the only dependencies
within relations be unary fd’s. The ufd-graph consists of a node for each attribute of each relation
scheme and of an arc < R.A,R.B > for each unary f{d A — B of R. Unary fd’s and pairwise
consistency interact in a surprisingly nontrivial fashion. The following is from [Cos2, CosK1].

Theorem 3.1.6: Implication of unary fd’s in the presence of pairwise consistency is undecidable.
If the ufd-graph is acyclic, finite implication and implication of ufd’s in the presence of pairwise
consistency coincide and are decidable.

There are a number of technical implication problems that remain open, particularly for finite
implication of eid’s with ind’s. For example decidability is open for, (1) finite implication of an
eid from a set of ind’s [JohK], (2) finite implication of uind’s, fd’s and emvd’s [KanCV], or (3)
finite implication of ufd’s in the presence of pairwise consistency — Theorem 3.1.6 is for implication.
However, the remaining outstanding question is emvd (finite) implication (2.3.16). Dependency
theory is a well developed subject, which matured in the late 1970’s and early 1980’s. Much of
the current attention is directed towards rule implication problems, because of their relationship
to database logic program optimization.

Additional Bibliographic Comments 3.1.7: There are some classes of dependencies that do
not fit in the embedded dependency framework, e.g., in [Var4] arbitrary f.o. sentences are used
as dependencies, the embedded dependencies are generalized further in [Cos3], the afunctional
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dependencies of [DebP] are not embedded ones, and the partition dependencies of [CosKS] are not
f.o. expressible (see 2.3.10).

The concept of eid’s generalized and unified much of the early work on dependency theory, e.g.,
[GinZ, GrnJ, MenM, Nic, ParJ, ParP, SadU, SagW]. See [FagV] for the history and the relationship
between these eid subclasses. Recent results on special ind and fd implication problems can be found
in [CasV, Cos2, CosK1, CosK2, JohK, KanCV, LavMG]. O

3.2 Database Scheme Design

The principal issue in database scheme design can be summarized in the following fashion: replace
a specification < {U},X >, of universal relations r satisfying dependencies ¥ over U, by a good
specification < D,¥’ >, of multirelational databases d = {ry,...,r,} satisfying dependencies %’
over D = {R;,...,R,}, where U = U7, R;. The goal is to replace r by d, where d = 7wp(r)
and 7p is a decomposition (see Section 2.3.III). The intended use of this decomposition is twofold,
both for querying and updating the database. We use the notational conventions of this paragraph
throughtout this section.

Database scheme design is more of an art than a science. However, certain general principles
and crisp mathematical questions have emerged as a result of this endeavor. There are a number
of standard expositions [KorS, Mail, Ulll] and an early survey [BeeBG], where we refer the reader
for design-rule motivations such as the elimination of update anomalies. Instead we focus on two

topics: (I) what is a good decomposition 7p of < {U},Z >, and (II) what are the most common
normal forms for < D, X' >.

In (I) we assume that T consists of a set of full dependencies. Theorems 3.2.1, 3.2.2 and
Definition 3.2.3 can be extended to embedded dependencies verbatim, if we also allow unrestricted
relations. In (II) we limit ourselves further to fd’s and jd’s, since these are the dependencies
commonly examined in the context of normalization.

3.2.]1 Independent Schemes

The least one can require of a decomposition is that it be injective, i.e., one-to-one. In Section
2.3.111 we have already encountered this requirement, called the representation principle. It is also
useful that the reconstruction operator, whose existence is implied by injectiveness, be the join.
Although the representation principle does not imply join reconstruction, this is so in important
special cases, e.g., Theorem 2.4.3.

Let us first assume the pure universal relation assumption and the desirability of injectiveness
and join reconstruction. Theorem 3.2.1, from [BeeRi, MaiMSU], reduces these requirements to a
dependency implication problem. There is an analogous semantic statement if we assume the weak
universal relation assumption, Theorem 3.2.2 from [MaiUV] (see also end of Section 2.5.1I): let r be
a universal relation satisfying £ and d = wp(r) then we want the query U[d, X] to give us back .
Both theorems highlight the importance of having the join dependency ™ [D] as part of the design
requirements.

Theorem 3.2.1: Let ¥ be a set of full dependencies over U. Decomposition Tp is injective over
< {U},Z > with join as the reconstruction operation iff & =X [D].

Theorem 3.2.2: Let ¥ be a set of full dependencies over U and mp a decomposition. For all
universal relations r satisfying ¥ we have that r = Ulrp(r),X] iff T =X [D].
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Decomposing a universal relation into parts is certainly useful from a storage minimization
point of view. But it may be wasteful from a querying standpoint. This is an instance of a classical
time-space tradeoff. Under the pure universal relation assumption we might have to perform
the expensive reconstruction of the universal relation in order to answer a query. Under the weak
universal relation assumption we might have to do the same for the representative universal relation;

much of the research on querying weak universal relations has focused on avoiding representative
relation based evaluation.

Let {ry,r2} be a decomposition of r and {r},75} be a decomposition of ', where r, ' are uni-
versal relations satisfying ¥.' Another desirable property of decompositions is that the components
T1,7T2,71, 75 do not depend on each other; in the sense that {ry,75} and {r}, 72} are also decomposi-
tions of universal relations that satisfy the given dependencies. This condition, called the separation
principle, would facilitate integrity and therefore database updating, by limiting integrity checks
to the parts instead of the whole. Unfortunately, under the pure universal assumption there are
conditions on the whole that one cannot circumvent, e.g., that the parts are projections of a single
relation.

Let us formalize the separation principle under the two universal relation assumptions. The sets
of databases over D called PGSAT and WGSAT consist of those databases that are decompositions
of universal relations satisfying 3, under the pure and weak assumptions respectively. The G in
PGSAT, WGSAT stands for global.

PGSAT = {d : Ir = £,Vr’ € d we have 7' = np/(r)}
WGSAT = {d: 3r |= Z,Vr' € d we have r’' C rp/(7)}

Inverting the quantification order we get larger sets PLSAT and WLSAT, where L stands for local.
In these sets, every relation is a piece of some decomposition of a universal relation satisfying ¥
and these relations are put together into databases with only one additional guarantee. The only
additional guarantee about the databases is made in the second argument of the intersection. For

the pure assumption we require join consistency. For the weak assumption the analogous statement
is always true.

PLSAT = {d : Vr' € d,3r |= & we have ' = rp/(r)} N {d : 3V’ € d we have r' = mp:(7)}
WGSAT = {d: Vr' € d,3Ir |= T we have ' C 7p/(r)} N {d : Ir,Vr’ € d we have ' C 7pi(r)}

We clearly have PGSAT C PLSAT and WGSAT C WLSAT. The separation principle can be for-
malized as surjectiveness conditions PGSAT = PLSAT and WGSAT = WLSAT, respectively.

Definition 3.2.3: Given < {U},X >, where I is a set of full dependencies and D a database
scheme over U, then D is independent under the pure (weak) universal relation assumption if:
(1) Z |=X [D], and (2) PGSAT = PLSAT (WGSAT = WLSAT).

Independence was first proposed in [Ris] for X a set of fd’s and for D having two relation schemes.
It was extended to many relation schemes in [BeeRi, MaiMSU] and generalized further to full
dependencies in [Var4]. In all this work the pure assumption is postulated, also injectiveness and
surjectiveness are shown equivalent to ¥ =X [D] and surjectiveness. Independence under the weak
assumption is from [GraY].
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Let us now limit attention to ¥’s that are sets of fd’s. An important computational notion for
testing separation is that: “the relation schemes of D must embed a cover for £.” We say that: D
embeds a cover for T if there is dependency preservation as follows.

Let D = {Ry,...,Rn} and % be the closure of & under fd-implication, then 7g,(Z+),1 <
i < m, are the fd’s of Lt with attributes exclusively from R;. Dependency preservation occurs
when ¥ and U, 7R, (X7) are equivalent sets of fd’s. It is easy to see that dependency preservation
is decidable, but it is more involved to show that it is decidable efficiently for fd’s. The efficient
dependency preservation test of [BeeH] (Theorem 3.2.4) can be used to determine independence

under the pure assumption (Theorem 3.2.5). This has be extended by [GraY] to an independence
test under the weak assumption (Theorem 3.2.5).

Theorem 3.2.4: Testing if a database scheme embeds a cover for a set of fd’s is in PTIME.

Theorem 3.2.5: Testing if a database scheme and a set of fd’s are independent is in PTIME, under
both the pure and the weak universal relation assumptions.

Additional Bibliographic Comments 3.2.6: There has been a fair amount of work on querying
independent schemes under the weak assumption, e.g., [AtzC, ChnH, ChoM, GraY, ItolK, Sag4].

Injectiveness and ¥ =X [D] can be used in-lieu of each other provided we~also require sur-
jectiveness, [Var4]. For a comparison of these two and other conditions (which are inequivalent
without surjectiveness) we refer to [AroC, BeeMSU, Mail]. O

3.2.11 Normal Form Schemes

Most of design has dealt with fd’s, mvd’s and the more general jd’s; we thus limit ¥ here to a set
of fd’s and jd’s. We can use the chase algorithm of Section 2.3.III to construct £+, the closure of
¥ with respect to fd-jd-implication.

The designer is faced with the task of replacing a specification < {U},E¥ > by the multiple
specifications < {R;},%; >,1 < i < m, where D = {Ry,...,Rn} is a database scheme over U
and ¥; is as follows. ¥; = np,(T1), that is T; consists of those fd’s and jd’s implied by ¥ whose
attributes are from R;,1 < i < m. Note that X; is closed under fd-jd-implication.

A number of normal forms have been proposed for < {R;},E; >,1 < ¢ < m. These are
conditions on each individual < {R;},X; >. Normal forms guarantee less “redundancy” and fewer
“update anomalies”, [BeeBG]. In the previous subsection we outlined some properties that would
make a decomposition into mm normal forms desirable. One would like that for these normal forms
the decomposition 7p is lossless. In addition, if possible, one would like that D is independent with
respect to X.

The first normal form 1-NF corresponds to our definition of relation, so it is satisfied by any
< {R;},Z; >. Non 1-NF databases have relations whose values are not indivisible, e.g., values could
be sets, tuples, relations etc. Non 1-NF databases have been studied as part of complex object data
models (Section 4.3). For further normal forms we need some preliminary definitions.

A most important concept for database scheme design is that of a key of R;: “a subset X of R; is
a key if X — R; is in ¥; and no proper subset of X has this property”. Keys capture the essential
relationships between attributes. The maintenance of key integrity constraints is supported by
most database systems.

Zi(keys) is the set of fd’s X — R; in I;, where X is a key.
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A nontrivial dependency is one that does not hold in all databases, i.e., it is not implied by the
empty set of dependencies. X — Y over R is trivial iff Y is a subset of X. X—— Y over R is
trivial iff either Y is a subset of X or the union of Y and X is R. We can now define third normal

form (3-NF), from [Cod1]. 2-NF is a weaker normal form that is subsumed by 3-NF [Cod1, Ull1], so
we omit it in our presentation.

Let X; be a set of fd’s over R;, closed under fd-implication.

3-NF < {R;},X; > is in 3-NF if for each nontrivial fd X — A in X; we have that either X contains
a key of R; or that A is an attribute of a key of R;.

Given a < {U},X >, where I is a set of fd’s, it is possible to construct < {R;},%; >, 1 <
i < m, all in 3-NF, such that the decomposition is independent under the pure assumption, (by
losslessness and dependency preservation). For ¥ a set of fd’s, dependency preserving 3-NF’s were
first constructed in [Ber], in PTIME, using a method called synthesis. It is possible to also satisfy
the lossless join condition, again in PTIME, [BisDB, Osb).

Most database systems support integrity maintainance for keys. Thus, if in a normal form we
limit ¥; to the dependencies implied by X;(keys), integrity maintainance will be easier to implement.
This is one reason for trying to remove the last condition of 3-NF: “A is an attribute of a key of
R”. .

The Boyce-Codd normal form (BC-NF) was first defined in [Cod3] for fd’s. We present two
equivalent definitions from [Fag3] of BC-NF for fd’s and jd’s. From these definitions it is clear that
BC-NF implies 3-NF. The fourth normal form (4-NF) is from [Fag3], for which we also provide two

equivalent definitions. The project-join normal form (P1-NF) is the strongest normal form for fd’s
and jd’s from [Fag4].

Let X; be a set of fd’s and jd’s over R; closed under fd-jd-implication.

BC-NF < {R;},%; > is in Bc-NF if for each nontrivial f{d X — Y in X; we have:
X contains a key of R;.

4-NF < {R;},X; > is in 4-NF if for each nontrivial mvd X— Y in X; we have:
X contains a key of R;.

The following two equivalent definitions of BC-NF and 4-NF naturally lead to the definition of
PJ-NF.

Let ¥; be a set of fd’s and jd’s over R; closed under fd-jd-implication.
BC-NF < {R;},X; > is in Bc-NF if for each fd o € T; we have I;(keys) |= o.
4-NF < {R;},X; > is in 4-NF if for each mvd o € ¥; we have Z;(keys) = o.
PJ-NF < {R;},X; > is in PI-NF if for each jd o € E; we have X;(keys) |= 0.

PI-NF => 4-NF => BC-NF => 3-NF = 2-NF => 1-NF, see [Fag3, Fag4]. Moreover, using depen-
dency implication and successive lossless decompositions into two parts, it is possible to transform
< {U},% > losslessly into < {R;},X; >,1 <1 < m which can be in any of these normal forms.

Unfortunately, even BC-NF is sometimes too strong a condition. Testing if a given scheme is
in BC-NF is NP-hard [BeeB]. This implies that constructing such normal forms can be inefficient in
the size of ¥. Things are even worse when independence is sought, because dependencies are not
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necessarily preserved. There are sets of fd’s X, such that no database scheme D exists which is in
BC-NF and independent with respect to £, under the pure assumption.

Is there an ultimate normal form? The definition of PI-NF was further generalized in [Fag4] to
the domain-key normal form. The semantic definition of domain-key normal form is analogous to
the one for Pi-NF, where ¥; might include arbitrary constraints, including bounds on the domain
sizes. In [Fag4], this semantic definition was shown to correspond to a formalization of the absence
of update anomalies, and thus represent the ultimate normal form. PI-NF retains the advantage

of being constructible via successive lossless decompositions. The generality of domain-key normal
form is at the expense of constructibility.

Additional Bibliographic Comments 3.2.7: Third normal form is extended in [LinTK] to
eliminate certain redundancies across relations. Database design has been combined with various
types of acyclicity, e.g., [GooT, KifB, YuaO]. A normal form for nested relations appears in [OzsY].

Testing for BC-NF is not the only natural Np-hard problem that arises in scheme design with
fd’s. Finding a minimum size key of a relation scheme with fd’s is NP-complete [LucO]. O

4 Queries and Database Logic Programs
4.1 Query Classification

The study of mappings from databases to databases, or queries, is essential in order to understand
the limitations and the possible extensions of the relational data model.

We have already established the central role of relational algebra or calculus queries, also referred
to as f.o. queries. It is important to distinguish between the queries themselves as mappings and
the relational algebra expressions E(-) or calculus expressions FY(.), that are programs denoting
these mappings. We have also investigated tableaux expressions T'(-), which define a proper subset
of the f.o. queries; see [ChaH2]. On the other hand we have seen that the transitive closure query
is not a f.o. query. Interestingly, using a deductive or a universal relation data model it is possible
to express transitive closure via a program R[-,X] or X[, X], where X is a set of rule dependencies

In this section we present a systematic view of the classes of queries that are most common in
database theory. For this we follow the general classification of [Cha2].

4.1.I The Computable Queries and their Data Complexity

The first natural question in this context is to delimit the queries that one can conceivably compute.
For this let us think of the database d over D as a finite relational structure (6,71,...,7y), where
6 is a finite set containing the set of values § appearing in the database. (This is a more liberal
view of what constitutes the database domain, than the use of § in Section 2.2.IT). We are clearly
interested in computable mappings between finite relational structures.

Computability for unrestricted relational structures has been extensively studied in mathemat-
ical logic, e.g., [Mos], but the emphasis has been on infinite models. The finite case is qualitatively
different, even if the syntactic concepts are the same, see [Gurl, Gur2]. In fact, the study of
database queries has directly contributed to our understanding of the theory of finite models.

The class of computable queries is defined by Chandra and Harel in [ChaH1]. It captures
three basic intuitions. First, that the query has to be a partial recursive function f from finite
relational structures to finite relational structures. Second, that for each d = (§,7y,...,7r), the
values appearing in f(d) are in §. Finally that, isomorphic inputs should be mapped to isomorphic
outputs. The third restriction is because relations are unordered collections of tuples; therefore the
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in [ChaH2] to define a class of computable queries, the fizpoint queries FP. Fixpoint queries are
an important extension of f.o. queries. They have been studied extensively through universal and
deductive data models and, more recently, through database logic programs. QPTIME properly
contains FP, since computing the parity of the database domain is not in FP. There are fixpoint
queries that are logspace-complete in PTIME and thus most probably not in QNC. This is an
important distinction from f.o. queries, since much of the efficiency of the relational data model is
due to the large degree of potential parallelism inherent in f.0. queries (Theorem 2.2.7).

The relationship between complexity classes and various logics has been investigated in detail;
see the survey [Imm4]. Many of the results in the area assume the ability to test for <, which is
a special relation that linearly orders the database domain. This change in the rules of the game
is certainly possible, since strings are used to represent values and strings are usually equipped
with lexicographic order. Also, the ability to test for < can add to the expressive power of the
language. The presence of < has allowed the comparison of a variety of extensions of f.o. logic (e.g.,
especially when the resulting data complexity is in PTIME [Imm3]) by identifying expressibility
with computational complexity. On the other hand, < is not a particularly intuitive programming
construct.

Most of the analysis of fixpoint queries, within database theory, does not assume the presence
of <. However, its addition has an interesting effect on expressibility: the queries with PTIME data
complezity are precisely the queries expressible by firpoint formulas over finite structures with <.
This was shown independently in [Imm2], [Saz], and [Var5]. In the proofs, all PTIME computations
are simulated using < (not only the computations satisfying condition (3) of Definition 4.1.1). An
interesting open issue is to design a language for exactly QPTIME.

Additional Bibliographic Comments 4.1.2: The data complexity of many query languages
(both procedural and declarative) is determined in [Var5]. Two more measures are defined in
[Var5], expression complexity and expression + data complexity. They correspond, respectively, to
asymptotic growth in the program only and in both program + data. These measures are typically
one exponential higher than data complexity.

The finer structure of f.o. queries is examined in [ChaH2], where a query hierarchy is built based
on the alternation of first order quantifiers in a calculus expression F(-).

A large repertoire of programming language constructs can be added to relational algebra
and the expressive power of the resulting query languages is examined in [Chal]. Various looping
constructs, in particular, lead to interesting query classes, see [ChaH2, Chal, Cha2, AbiV1, AbiV2].
Nondeterminate queries that are relations, as opposed to functions, are studied in [AbiV1, AbiV2],
as part of an investigation of update languages. Programming formalisms for fixpoint queries are
also examined in [HarK, LakM]. O

4.1.1T The Fixpoint Queries

Transitive closure can be expressed by the addition to relational calculus of least fixpoint equations,
see [AhoU]. If R, is interpreted as a directed graph then this graph’s transitive closure is the
least, under subset ordering, interpretation of R; that satisfies the following equation among query
expressions: Ry(zy) = Ro(zy) Vv Fz(R2(z2) A Ry(2y)).

The right-hand side of this equation is a f.0. formula that is monotone and positive in R;. In
general, let ¢(Z; R1) be a f.o. formula, where 7 is its vector of distinct free variables of size n; > 0
and R, is a relation symbol of arity n;. This formula ¢(Z; Ry) might have other relation symbols
occurring in it, but we highlight R; because it will be on the left-hand side of the equation, (i.e.,
it will be a variable).
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answer to a query should not be affected by the implementation details of how this set is stored,
i.e., which is the first tuple etc. More specifically, any automorphism on the input structure should
leave the output unchanged; this has also been proposed in [AhoU, Banl, Par]. The isomorphism
requirement is the natural generalization of the automorphism requirement. Let us be more precise.

Consider two databases over D, say d = (6,7y,...,7) and &’ = (6',7},...,r".). These databases
are isomorphic if there is a bijection h : § — &', that extends componentwise to tuples and is such
that for all i,1 < i < m,t € r; = h(t) € r} and ¢’ € ! = h~Y(') € ri. The isomorphism h is
denoted by d «" d', and is called an automorphismif d = d'.

Definition 4.1.1: Let D be a database scheme and R a relation scheme such that |R| = n. A
computable query from D to {R} is a function f, which on input database d = (6, ry,...,ry) over
D has output database f(d) over {R} such that:

(1) f is partial recursive,

(2) f(d) = (8,r), where r C &,

(3) if d & d' then f(d) = f(d').

It is easy to see that f.o. queries are computable and that the transitive closure query is com-
putable. Therefore, not all computable queries are f.o. ones. A programming language is proposed
in [ChaH1] for the computable queries. This is an extension of relational algebra, where the cru-
cial new features are a while looping construct and variables that can be assignea relations of any
arity. A different programming language with the same expressive power is proposed in [AbiV1].
Unbounded arity variables are replaced there by the ability to create new values. Necessary and suf-
ficient conditions on programming language constructs in order to express the computable queries
is an interesting research issue.

Computable queries can be classified according to their data complexity (see Definition 2.2.6).
Thus, class QPTIME consists of the computable queries with PTIME data complexity. Note that
there is a difference between all queries with PTIME data complexity and QPTIME queries, the latter
must satisfy the isomorphism condition of Definition 4.1.1. Similarly, we have computable queries
for other complexity classes, (i.e., QLOGSPACE, ... ). It is shown in [ChaH2] that, under some weak
technical condition (complexity class closure under many-one logspace reducibility), the various
computable query classes defined this way are related to each other as the complexity classes. For
example, QLOGSPACE = QPTIME iff LOGSPACE = PTIME.

As we saw in Theorem 2.2.7 f.o. queries are contained in QLOGSPACE. There are, however,
simple queries in QLOGSPACE that are not f.o. queries, e.g., computing the parity of the database
domain [ChaH2]. Thus, we have the following inclusions, where the containments (C) are strongly
conjectured to be proper (C):

F.0. C QLOGSPACE C QNLOGSPACE C QNC C QPTIME C

C QNPTIME C QPHIER C QPSPACE C QEXPTIME C COMPUTABLE

There are close connections between second order logic, interpreted over finite structures, and
this query classification. As is shown in [Fagl]: the queries in QNPTIME are precisely the queries
ezpressible by ezistential second order formulas over finite structures (these formulas consist of a
prefix of existential second order quantifiers followed by a f.o. formula). A closely related result
was independently shown in [JonS]. The connection to second order logic was extended in [Sto]:
the queries in QPHIER are precisely the queries expressible by second order formulas over finite
structures. For other connections to second order logic we refer to [Lei).

A natural (infinitary as opposed to second order) extension of the f.o. predicate calculus with
equality is fixpoint logic, also known as the p calculus [Mos]. This was used as a query language
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Formula ¢(Z; R1) is monotone in Ry when: given any database d over all the relation symbols
of ¢(Z; R1) except Ry, then for all 7,7’ relations over Ry, r C 7' entails {¢": ¢(&;7)} C {C: ¢(&:7')}
where the € are vectors of size ny of values from the domains of d, r,7'.

A sufficient condition for the monotonicity of ¢(Z; R;) in R; is that every occurrence of R; in this
formula is under an even number of negations. In that case we say that (Z; R,) is positive in R;.
Every monotone in R; f.o. formula (viewed as a query expression) is unrestricted equivalent to some
positive in R, f.o. formula. This is known as Lyndon’s lemma in model theory. Thus, the syntactic
condition of positivity, which is easy to test, matches the semantic condition of monotonicity for
unrestricted databases. Unfortunately, the transformation from monotone to positive is not effective
because, testing for monotonicity is undecidable in both the unrestricted and finite cases, [Gurl]. A
surprising fact for finite structures is that monotone in R; f.o. formulas are more expressive (viewed
as query expressions) than positive ones. The following is from [AjtG]:

Theorem 4.1.3: For finite structures, there is a monotone in Ry f.o. formula that is not equivalent
to any positive in Ry f.o. formula.

For formulas ¢(%; R;) monotone in R;, the equation R; = ¢(Z; R;) has a least fixpoint solution
on any database d over all the relation symbols of ¢(Z;R1) except R;. This follows from the
Tarski-Knaster Theorem. The least fizpoint of ©(Z; Ry) on d, denoted 7o, can be be evaluated in
an unbounded but finite number of stages (by the finiteness of d) as follows:

ro = 0,741 = {CT: ¢(& 1)}, 70 = Uiori.
If o(Z; R,) is neither positive nor monotone in R; it is still possible to define a solution for
equation R; = ¢(Z; R;) using inflationary semantics. The inflationary (or inductive) fixpoint of

@(Z;R1) on d, denoted 7., can be be evaluated in an unbounded but finite number of stages as
follows:

ro=0,ri41 = i U{C: o(& 1)}, Too = Ui>oTi.
The inflationary fixpoint of ¢(Z; R;) on d is the same as the least fixpoint of (¢(Z; R1)V R1(Z))

on d. Also, the inflationary and the least fixpoint on d coincide if ¢(Z; R;) is monotone. In both
the above fixpoint constructions it is easy to see that: r; C ;41,1 > 0.

The fizpoint queries FP are defined in {ChaH2] using fixpoint formulas. Informally, fixpoint
formulas are obtained recursively using the f.o. constructors 3,V,V,A,~ as well as a fixpoint con-
structor 4. The constructor p binds a relation symbol R; appearing free in a fixpoint formula
and is applicable only when R; appears positively in this formula, i.e., under an even number of
negations. The semantics of uR1%(Z; R1) on d are the same as the least fixpoint of ¥(Z; R,) on d,
(where, recursively, ¥(Z; R;) is a fixpoint formula). We refer to {ChaH?2] for the detailed definitions.
We omit them here because by Theorem 4.1.5 below one application of u suffices.

Given Theorem 4.1.3, one might consider the set of fixpoint formulas, formed under the pos-
itivity restriction on the applicability of , as a somewhat arbitrary choice. By keeping the least
fixpoint semantics, but making the applicability of 4 more liberal (u applicable to all monotone
formulas) one can define a set of queries FM. Of course in this case it is undecidable to test when
u is applicable. By adopting the inflationary semantics, one can remove all restrictions on the
applicability of u and define a set of queries FI. It follows from the definitions that Fp C FM C FI.
The following theorem from [GurS] testifies to the robustness of FP; we stress the finiteness because
the theorem is not true for unrestricted databases.

Theorem 4.1.4: For finite structures, FP = FM = FI.
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In [Imm2}, Immerman showed another surprising result, also not true for unrestricted databases:
the complement, with respect to the database domain, of the least fizpoint of a fo. formula on a
database can be expressed as the least fizpoint of some other formula on this database. In fact,
fixpoint formulas have equivalent normal forms where the u constructor is applied only once, [GurS,
see also Imm?2]. This normal form has been recently simplified in [AbiV2], where it is shown that the
V constructor is unnecessary. The fixpoint queries can be expressed taking inflationary fixpoints of
ezistential f.o. formulas and their projections. Thus, we need to consider only inflationary fixpoints

of f.o. formulas with an 3* quantifier prefix and - limited to the matrix; see also [Remark Section
6 of Gur2).

We summarize the above discussion in Theorem 4.1.5 using a formalism that is closer to database
logic programs. We use a system of equations for which we define simultaneous least and inflationary
fixpoints on databases. These equations are mutually recursive. We could have eliminated the
mutual recursion and have a single equation, as is done with fixpoint formulas. This elimination
imposes certain technical restrictions on the vocabulary in [Imm?2] and is why # is used in [ChaHZ2].
The use of a system has two advantages: it is close to the notation used for database logic programs
and it leads to the definition of equation width.

Let us therefore consider a system of equations R; = ¢;(&i; R1,...,Rm), 1 < i < m, where each
@i(Zi; Ry, ..., Ry) is a f.o. formula, Z; is its vector of n; distinct free variables and R; is a relation
symbol of arity n; > 0. The equation width is the maximum n; for 1 < ¢ < m. The notation
emphasizes the fact that the left-hand sides are the relation variables (they need not occur in each
right-hand side). A database d interprets all the relation symbols occurring in the right-hand sides
except for Ry,..., Ry. Theinflationary fixpoint of a system of equations on d is defined analogously
to the inflationary fixpoint of one equation on d; only a sequence of databases dy,...,d, must be
used instead of a sequence of relations rg,..., 7w, [ChaH3]. If the ¢;(Zi; R1,...,Rn), 1 < i < m,
are monotone in Ry,...,R,, the same can be done for the least fixpoint on d.

Theorem 4.1.5: For finite structures, each fizpoint query can be expressed as the projection on R
of the inflationary fizpoint of R; = ¢i(Zi; Ry, ..., Rn), 1 < i < m, where each ¢;(Z;; Ry,...,Rn)
in this system of equations is an existential f.o. formula.

Example 4.1.6: First, let us illustrate inflationary fixpoints of systems of equations using a system
that fails to compute the complement of the transitive closure.

Ry (zy) = ~Ry(zy)

Rg(a:y) = 32R3($y) \% (R3($z) A Rz(zy))

Given d a database over {R3} (the input graph), let 7o, 7. be the projections on R;, R, of the
inflationary fixpoint on d. Then rg = 7§ = @ and r] = (the input graph) and r; = (all possible
pairs of nodes). In fact, v, = (the transitive closure of the input graph) and r,, = (all possible
pairs of nodes).

The following system (from [AbiV2]) succeeds in computing the complement of the transitive
closure, given an input graph as a database over {Rs}. The semantics used are inflationary.

Ry (zy) = 32’3y~ Ra(zy) A Rs(z'y') A ~Ra(2'y)

Ry(zy) = 32'3y'32'Ry(zy) A Ra(2'2") A Ry(2'y) A ~R4(2'y')

R3(zy) = R4(zy)

R4(zy) = 32zRs(zy) V (Rs(z2) A Rya(zy))

The idea is that, as the transitive closure is inserted in R4 by the successive stages of the fixpoint
construction it is also copied in R2 and R3. The copying is one stage behind the transitive closure
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construction in R4 and its last stage is copied in R3 but not R2. By finiteness there is a last stage!
Only then are tuples inserted in R,, those that have not been inserted in R4. [

Additional Bibliographic Comments 4.1.7: The equational formalism used in Theorem
4.1.5 is identical with the language Datalog™ defined in [KolP] and [AbiV2]. The existence and
uniqueness of least fixpoints of existential f.o. formulas is studied in [KolP], from the point of view
of computational complexity.

The fixpoint queries are further classified in [ChaH2] according to fizpoint width. Although
some progress has been made in understanding the properties of fixpoint width [Gai], there are still
many open questions. The fixpoint width of [ChaH2] differs from the equation width used above
and in [BeeKBR, Der, Mos]; the difference is in the treatment of mutual recursion. For some recent
results on equation width see [AfrC, DubM]. O

4.2 Database Logic Programs

The semantics, the optimization and the evaluation of database logic programs are some of the
most active research topics in database theory today. This activity is bound to render obsolete
any attempted survey of the area. There are, however, strong ties to other more mature topics,
such as the theory of dependencies and the theory of queries. We outline the state of the field by
emphasizing these connections. ;

In database logic programs, Datalog™ and the fixpoint queries play the role that relational
calculus and the f.o. queries play in the relational data model. Datalog, a sublanguage of Datalog™,
has received most of the attention in terms of program optimization and evaluation. This is
analogous to the importance of positive existential programs in the relational data model. Most of
this work has direct applications to the development of new efficient knowledge base systems.

4.2.1 From Datalog to Datalog™

Datalog and Datalog™ Syntax: The vocabulary of a Datalog(™) program H is the set of relation
symbols occurring in H. It is partitioned into: the intensional database symbols 1DB’s {R1,...,Rm}
and the extensional database symbols EDB’s D = {R;,41, ..., Rk} (we also call the EDB’s D the set
of input relation symbols). The IBD symbol R, is called the output relation symbol.

H consists of Datalog(™) rules, where every rule has a head and a body. Only IDB’s occur in the
heads of rules and every IDB occurs in the head of some rule.

Each Datalog™ rule is of the form R(Z) :— ¢. (1) The head R(Z) consists of R an IDB of arity
n > 0 and of a vector Z of variables. Without loss of generality we can take ¥ = zy... the vector of
the first n distinct variables, in some standard ordering of the variables (i.e., heads are normalized).
(2) The body ¢ is a list of equality atoms, relational atoms and negations of such atoms. This list
is terminated by a point (.) and the atoms are separated by commas (,). The variables in Z must
occur in ¢.

Datalog rules are Datalog™ rules without any negated atoms in their bodies. O

Datalog and Datalog™ Fixpoint Semantics: Given Datalog(") program H, construct the
following formula for each IDB R;,1 < i < m: let ¢;(Z; Ry,...,Ry) be the disjunction of the bodies
of all rules with head R;(Z), where each body is a conjunction of its list of atoms prefixed by
existential quantifiers for all variables except Z. That is, we have changed in the bodies comma (,)
into and (A), point (.) into or (V), and have existentially quantified variables not in the head.
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We form the system S(H) of equations: Ri(Z) = ¢i(Z; R1,...,Rm), 1 < i < m.

Let d be a database over input symbols D, i.e., over the vocabulary except {R;,...,Rn}. f H
is a Datalog™ program, then S(H) has an inflationary fixpoint on d (see Section 4.1.IT), moreover
all ¢;’s are f.o. existential. If H is a Datalog program then the R;’s appear only positively in the
right hand sides of the equations and S(H) has a least fixpoint on d (see Section 4.1.IT), which by
monotonicity is the same as the inflationary fixpoint.

On input database d over D the output of H is the projection on R; of the inflationary fixpoint
(or the least fixpoint in the case of Datalog) defined by S(H) on d. [J

It is clear that Datalog queries are Datalog™ queries, which in turn are fixpoint queries. We
have assigned fixpoint semantics to Datalog and Datalog™ programs. Such fixpoints semantics can
be computed using the standard Tarski construction (see Section 4.1.IT). This construction is also
known as naive bottom-up evaluation and can be viewed as an “operational semantics” for database
logic programs.

Note the similarity of Datalog notation with the Prolog programming language syntax and the
differences in their “operational semantics”. The Datalog rules (negation is excluded here) are
Horn clauses {End}, when one views (:—) as (<) and (,) as (A) and (.) as (V). Recall that there
are no negations in the bodies of Datalog rules. In the Horn clause case there is a fundamental fact
from logic programming [Apt, AptV]: that least fizpoint semantics coincide with minimum model
semantics. So let us present the Datalog minimum model semantics.

Datalog Minimum Model Semantics: Given a Datalog program H and a database d over D,
the minimum model M(d, H) is defined as follows. The Herbrand base of d and H is the set of all
possible ground relational atoms (i.e., relational atoms with values substituted for the variables)
that can be constructed using the vocabulary of H and the values in d. The Herbrand base is finite
since d and H are finite.

M(d, H) is the least, under set inclusion, subset of the Herbrand base containing d and satisfying
each rule of H interpreted as a universally closed Horn sentence. That is, in each rule (:—) is

changed into (<) and comma (,) into (A) and all the variables of the resulting Horn clause are
universally quantified.

On input database d over D the output of H is the projection on R; of M(d,H).

Theorem 4.2.1: The least fixpoint and the minimum model semantics of a Datalog program
coincide.

It is clear that rule dependencies are Datalog rules. There are only minor differences in conven-
tions of notation, e.g., in Datalog rules instead of having repeated variables in the head we use =
in the body. That is the only nontrivial use of = that we make in Datalog and can be eliminated
with repeated variables. We have avoided using impure features in Datalog, such as # [ChaH3] or
constants in the rules. This is in keeping with our definition of relational calculus without constants
and with our use of systems of equations to express mutual recursion. It is simple to add constants
to the rules. As long as these constants are added to the Herbrand base, all the definitions gener-
alize in the straightforward fashion. If the only negations are inequalities in the bodies we have @
sublanguage of Datalog™ called Datalog?”.

Datalog queries are a proper subset of the fixpoint queries, because of the absence of negation.
They are incomparable with the f.o. queries, because of the ability to express transitive closure in
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Datalog, but they have many interesting properties. They contain the positive existential queries,
for which the homomorphism technique was originally developed. On the other hand, it is easy to
see that Datalog™ queries are exactly the fixpoint queries (see Theorem 4.1.5).

Querying in deductive and universal relation data models with rule dependencies can be re-
formulated as querying with Datalog. The chase may now be viewed as an evaluation algorithm.
Consider the input database d as a set of untyped tagged tableaux that are chased using the rules
of program H as tuple-generating rule dependencies (see [GraMV]). The result of the chase is the
minimum model M(d, H). Note that, in the construction of least fixpoints in Datalog and of infla-
tionary fixpoints in Datalog™, a particular order of rule applications is used. A fine point is that, by
the Church-Rosser property of the chase, the order of rule applications is immaterial for Datalog.
However, it is significant for Datalog™. Finally, as we shall see, another use of the chase algorithm
is for the optimization of Datalog programs.

Example 4.2.2: Let us rewrite the systems of Example 4.1.6 in Datalog™ notation. The first
system becomes the following set of rules. Note that the second and third rule form a Datalog
program for the transitive closure.

Ri(zy) — ~Ra(zy).

Ro(zy) — Ra(zz), Ra(zy).

Ra(zy) :— Ra(zy).

The second system becomes the following set of rules.
Ri(zy) — - Ra(zy), R3(2'y’), ~Ra(2'y').

Ro(zy) - — Ra(zy), Ra(z’'2"), Ry(Z'y'), " Ry(z'y').
R3(zy) :— Ra(zy).

Ry(zy) :— Rs(zz), R4(2y).

Ry(zy) — Rs(zy). O

Both sets of rules in this example are what is known as stratified. Their IDB’s can be partitioned
into a linearly ordered set of strata, such that: (1) a positive atom R’(Z) is in the body of a rule
with head R(Z) iff the stratum of R’ is less or equal than the stratum of R, and (2) a negative
atom - R'(Z) is in the body of a rule with head R(Z) iff the stratum of R’ is strictly less than the
stratum of R. In Example 4.2.2, the ordered strata for the first set of rules are < {R,},{R;} > and
for the second set of rules < {R4, R3},{R2},{R1} > or < {R4},{R3,R2},{R1} > could be possible
ordered strata.

Stratified sets of rules can be assigned least fixpoint semantics [ChaH3] or equivalent minimum
model semantics [AptBW)] by evaluating the strata bottom-up and constructing the least fixpoint
for a lower stratum before going on to a higher one. The particular linear order chosen is immaterial
and, in addition, within each stratum a Church-Rosser property applies for the evaluation of rules
just like in Datalog. Thus, the stratified evaluation of certain Datalog™ programs can be used
to define the class of stratified queries. Note that in Example 4.2.2, both sets of rules express
the complement of the transitive closure, when they are evaluated in a stratified way. Under

the inflationary semantics only the second set of rules computes the complement of the transitive
closure.

Stratified queries have been proposed as a natural and implementable means of introducing
negation into database logic programs, see [AptBW, Chali3, Naq, Vgel]. They properly contain
both Datalog and f.o. queries. Operationally they are related to Clark’s negation as failure principle
for general logic programs, [Cla].
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A difficulty with this approach is that, the number of strata in a stratified program is bounded.
Using the inflationary semantics of Datalog™ it is possible to simulate an unbounded number of
strata. As shown in [Dah, Kol] the stratified queries are a proper subset of the fixpoint queries.
Let P.E. be the positive existential queries, S-DATALOG the stratified queries etc.

Theorem 4.2.3: For finite databases, DATALOG and F.O. are incomparable and we have,
P.E. = (DATALOG N F.0.) C (DATALOG U F.0.) C S-DATALOG C DATALOG™ = FP C QPTIME

This theorem summarizes our understanding of the expressibility of negation. One point in the
theorem must be further clarified. It is easy to see that P.E. C (DATALOG N F.0.). For unrestricted
databases P.E. = (DATALOG N F.0.), by a compactness argument. It has been recently claimed by
Ajtai and Gurevich that it also holds in the finite case (see [Cos4] for special cases).

Additional Bibliographic Comments 4.2.4: The introduction of negation into logic programs
has been a major topic of research. We have limited our exposition to negation in database
queries and stressed the properties of negation in finite model theory. We refer to [Apt, Min2]
for more information on negation and minimal models. We refer to [Vge2] for some recent results
on minimum model semantics, that also deal with inflationary fixpoints. O

4.2.IT Query Optimization and Stage Functions

We have defined minimum model and, equivalent, least fixpoint semantics for Datalog programs
(programs for short in this subsection). An alternative and useful way of presenting the construction
of least fixpoint semantics is via derivation trees.

A ground atom t is in the minimum model M (d,H) iff there is a derivation tree for t from d
and H. A derivation tree for t is a tree, where each node of the tree is labeled by a ground atom
such that: (1) each leaf is labeled by a tuple of d; (2) for each internal node there is a rule of H,
whose variables can be instantiated so that the head is the label of that node and the body is the
set of labels of its children; and (3) the root is labeled by ¢.

The depth of a derivation tree is the length of its longest path and its size is the number of
nodes. Derivation trees are descriptions of computations of special alternating Turing machines
associated with each database logic program, [UllVg, Kan2]. They are particular to Datalog and
are commonly used to analyse logic programs.

Definition 4.2.5: Let H(d) be the output of program H on input database d. The stage function
of H is &(n, H) = max{{(d, H) : where |d| < n and |d| is the size of d in a fixed binary encoding}
where £(d, H) = min{i : for each t in H(d) there is a derivation tree of depth <1 }.

Stage functions are a major topic in [Mos], where they are defined for unrestricted databases.
The name stage function is used, because £(d, H) is the first iteration of the naive bottom-up
evaluation, by which all the output has been constructed. After this iteration the output does not
change, even if other ground atoms are added to the minimum model. Stage functions can also
be defined for Datalog™ programs, using this intuition about iterations and the construction of
inflationary fixpoints.

Recall that, by convention, the input symbols are the EDB’s and the output symbol is an 1pB. If
H is a program let program H have the same set of rules, but all the vocabulary as output symbols.
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We use the term program stage function of H for £(n,H). If a H has only a single IDB then we
have that ¢(n, H) = £(n, H).

The distinction between IDB’s and EDB’s is somewhat artificial, and is based on the fact that the
IDB’s are initialized to @ in the iterative construction of fixpoints. It is possible to define uniform
least and inflationary fixpoint semantics, by initializing the 1DB’s as arbitrary relations. Then
the vocabulary of H, the output and the input symbols are all the same. Under these uniform
semantics, we have the uniform stage function of H, denoted £(n,H). An interesting special case
are single rule programs or sirups: they consist of a single rule and are given the uniform least
fixpoint semantics [Kan2]. So they have a single IDB and the uniform stage function.

Let us relate the stage functions of a program H. The equation width of H is the largest arity of
an 1DB in H. It is easy to show that for all n, £(n, H) < &(n, H) < &(n, H). and &(n, H) = O(log n*),
where k is the equation width of H. Programs with equation width 1 are called monadic, 2 binary,
etc. Note that programs can have arbitrary arity EDB’s occurring in the bodies of the rules.

Example 4.2.6: There are some other classes of Datalog programs, that have been investigated.
One example are linear programs: in the bodies of the rules of these programs there can be at most
one IDB occurrence. Another example are chain programs [UllVg]: their syntax greatly resembles
that of context free grammars. Recall that the semantics for sirups are uniform (i.e., all relation
symbols are initialized to arbitrary nonempty relations).

Program Hj is a linear, chain, binary sirup known as the “same generation” program:
Ri(zy) — Ra(zz), R1(z7'), R3(Z'y).

Program H; is a nonlinear, chain, binary sirup known as the “ancestor” program :
Ry(zy) :— Ri(z2), Ry1(zy)-

Note the difference of the ancestor program from the uniformly interpreted sirup H’,
Ri(zy) :— Ra(zz), Ra(zy).

H; expresses the same query as the program consisting of the two rules:

Ry(zy) :— Ri(22), Ry(2y). Ra(zy) :— Rao(zy).

Program H, is a nonlinear, monadic sirup that is not a chain. It expresses the “path accessibility
problem”. This is the prototypical logspace-complete problem in PTIME discovered by Cook:
Ri(z) :— Ra(y), R1(2), Ra(zy2).

Program Hj is a sirup whose uniform stage function is O(1):

Ri(zy) :— Ra(z), R1(2y). O

The conventions on output and uniformity lead to many notions of containment for two programs
with the same input and output symbols. The containment that we have previously encountered
for other query languages has a direct analog for Datalog programs, called containment. We use
the term program containment when the output symbols are all symbols and the term uniform
containment under the uniform semantics. The first basic observation is that: all the kinds of
containment are the same as their unrestricted containment counterparts. It is a special feature of
Datalog that containments and unrestricted containments coincide and are therefore co-r.e. The
second observation is that: uniform containment => program containment => containment, but the
converses need not hold.

Using context free language theory, one can show that program containment and containment
are undecidable (ITY -complete) even for linear, binary, chain programs [CosGKV, Shm]. Using
regular language theory, even for nonchain programs, one can show that all the kinds of containment
are decidable for monadic programs [CosGKV]. The important connection of program rules and
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rule dependencies becomes clear when we consider uniform containment. It was first noted in
[CosK3] for full template dependencies (ftd’s) and in [Sag6] for all rules that, uniform containment
is the same as rule dependency implication and therefore EXPTIME-complete. Therefore, the chase
is useful as a Datalog program optimization technique. The many possible notions of equivalence
between logic programs are investigated in [Mah].

Theorem 4.2.7: Program H is uniformly contained in program H' iff the set of rule dependencies
H is implied by the set H'.

The presence of recursion in the language generates new questions, beyond containments. The
most fundamental of these questions is whether recursion is bounded. As shown in [GaiMSV] un-
decidablity of recursion boundedness can be translated into undecidability for most other questions
concerning recursion. Interestingly, the first bounded recursion definitions and uses appeared for
universal models [MaiUV] and deductive data models [MinN].

Definition 4.2.8: A program H is bounded if £(n,H) = O(1), it is program bounded if £(n, H) =
0(1), and it is uniformly bounded if &(n, H) = O(1).

Program H3 in Example 4.2.6 is uniform bounded. Clearly: uniform boundedness = program
boundedness = boundedness, but the converses need not hold. From the definition one can see that
undecidability of uniform boundedness automatically translates into undecidability for program
boundedness etc. Also, that decidability of boundedness implies decidability of all the other kinds.

Boundedness, and all the other varieties as well, imply that the query expressed by the program
is a positive existential query and therefore a f.o. query. It is also true that uniform unboundedness,
and all the other varieties as well, imply that the query expressed by the program is not a positive
existential query [NauS]. If we allowed unrestricted databases then, by a compactness argument,
unboundedness implies non f.o. expressibility. For databases this has been recently claimed by
Ajtai and Gurevich. It is true because of Datalog’s special features. For Datalog™ the situation is
different, as Kolaitis has observed, there is an unbounded Datalog™ program which is f.o. expressible
over finite structures.

Another example of the special character of Datalog from [CosK3] is a gap theorem: uniform
unboundedness implies £(n, H) = Q(logn).

Boundedness is decidable for various subclasses of Datalog programs. This was first demon-
strated in [loa, Naul], for subclasses of linear programs with PTIME decision procedures. For chain
programs, testing for boundedness becomes testing for context free language finiteness. For full
template dependencies uniform boundedness is shown decidable in [Sag5]. In this case (without loss
of generality [FagMUY]) the program is a sirup and uniform boundedness in NP-hard. Boundedness
is shown decidable for monadic programs in [CosGKV]; regular language theory is used to analyze
the decidability and the complexity of all monadic-boundedness problems. Other decidable cases
appear in [Nau$, Varll].

Unfortunately, boundedness is an undecidable property for Datalog programs in general. This
was shown for uniform boundedness of linear, single IDB, 7-ary programs and for program bound-
edness of linear, single IDB, 4-ary programs in [GaiMSV]. Even boundedness of linear, single IDB,
binary programs is undecidable [Var11].

Uniformity is not the only assumption, under which the complexities of noncontainment and
‘boundedness differ. Whereas program boundedness is r.e. (£9-complete) [GaiMSV], boundedness
is even harder (£9-complete), [CosGKV]. This is because of the possible final projection. Thus,
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Theorem 4.2.9: Uniform boundedness is undecidable, even for linear, single IDB, sevenary pro-
grams. Program boundedness is undecidable, even for linear, single IDB, binary programs. Bound-
edness is decidable for monadic programs, for chain programs and for ftd programs.

For the case of a single IDB and a single recursive rule there has been some recent progress.
This is slightly more general than sirups, because of the possibility of nonrecursive initialization
rules. If the recursive rule is linear then it generalizes both [Ioa, Naul]. Recently, undecidability
has been claimed, by Abiteboul, if the recursive rule is nonlinear and decidability has been claimed,
by Plambeck and Vardi, if the recursive rule is linear. Sirup uniform boundedness is still open; an
NP-hardness lower bound is known [Kan2].

A definite decidability - undecidability boundary is emerging, even if many questions remain
unresolved. The complexity bounds are still not tight for the monadic case. The effects of adding
constants to programs are only partly understood, [Varl1]. This is also true about the effects of
equalities and inequalities in the rule bodies, e.g., monadic, single IDB boundedness is undecidable
for Datalog# but uniform boundedness in this case is open, [GaiMSV]. Undecidability proofs todate
use the fact that rules may be disconnected, see [CosGKV]; for the connected case there are only
NP-hardness lower bounds, [Varii].

Open Problem 4.2.10: In which cases is boundedness decidable? In particular, what is its status
for sirups and for connected programs?

Unbounded stage functions have also been analysed. Some Datalog queries are logspace-
complete in PTIME. They are, in a worst case sense, inherently sequential and are not in QNC,
unless NC = PTIME. If testing for linear order is not a primitive of the query language, then it is
possible to derive unconditional lower bounds for these queries. For example, the following theorem
follows from [Imm1].

Theorem 4.2.11: Any Datalog™ program H ezpressing “path system accessibility” has §(n,H) =
Q(log* n), for each fized k > 0.

On the other hand, queries in QNC have a lot of inherent parallelism. For example, linear
programs express such queries; this is one reason why so much attention has been given to linear
program evaluation. Determining if a program expresses a query in QNC is undecidable [UllVg,
GaiMSV], but can be decided in special cases, e.g., for chain sirups [AfrP].

Sufficient conditions for detecting implicit parallelism have been proposed. A semantic condition
on the size of derivation trees proposed in [UllVg| has the interesting property that (although it is
not effectively testable) if it is true for a given program H then H can be transformed automatically
into an equivalent H' which is naively bottom-up evaluated in O(logn) stages and is thus in QNC.

Theorem 4.2.12: Let H be a program, such that every t in H(d) has a polynomial size derivation
tree. Then H can be transformed into an equivalent H', such that £(n,H') = O(logn).

Additional Bibliographic Comments 4.2.13: Membership in Nc, given the condition of
Theorem 4.2.12, follows from [Ruz]. The more interesting consequence is that H can be transformed
into H' such that §(n, H') = O(logn); this represents a dynamic version of the parallel algorithm
technique proposed in [MilR]. Theorem 4.2.12 is extended in [Kan2].
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An interesting application is the existence of a nonlinear chain program expressing a QNC query,
that is not expressible by any linear chain program [UllVg] or by any linear program [AfrC].

It is possible to use the techniques of parallel computational complexity to analyse not only
database logic programs, but logic programs in general. These programs contain f.o. terms (not
only variables and constants) and the primitive operation for their evaluation is unification [Rob].
Term unification is in linear time [PatW], but is also logspace-complete in PTIME [DwoKM, Yas]
and only restricted cases are known to be in NCc [DwoKS]. O

4.2.111 Query Evaluation and Selection Propagation

Up to this point we have outlined much of relational database theory without making use of
constants and, in particular, of the selection operation ¢4—, from relational algebra with constants.
We now examine such selections, in order to discuss one query optimization technique that is of
great practical significance.

As we mentioned in Section 2.2.III “performing the selections before the joins” is a recurrent
theme of relational algebra optimization. It is, in principle, always possible to perform selection
propagation for a f.o. query. This is typically done by rewriting the parse tree of a relational
expression and propagating the selections to its leaves. It is usually accompanied by a dynamic
programming analysis of the order of join computations. Query evaluation is commonly performed
in two phases: (1) a “compile-time” phase, when selection is propagated to the leaves and the order
of joins is planned and (2) a “run-time” phase , when the database is accessed. Of course there is
a whole spectrum of possibilities, within this “compile-time” and “run-time” classification.

Selection propagation into logic programsis one of the fundamental issues in the implementation
of database logic programs, because of its impact on efficiency. In this more general setting the
query language is Datalog™ (usually Datalog) with constants, instead of the less expressive relational
algebra with constants. The importance of this issue and the first partial solutions for database
logic programs were proposed in {Ull2] and [HenN].

We refer to [BanR] for a survey and performance comparison of the various evaluation methods,
which use selection propagation. As in the f.o. case, query evaluation can be divided into “compile-
time” and “run-time” phases. However, many proposals have been made, where these phases are
interleaved. It is also typical to use seminaive bottom-up evaluation instead of naive bottom-up
evaluation, where in the seminaive case the Tarski construction is performed in such a way that
the work at iteration : is not duplicated by the work at iteration ¢ + 1.

We illustrate the formal setting of Datalog with constants using a simple example; syntax and
semantics are intuitive generalizations of the constant free case.

Example 4.2.14: Consider the program with constant a,

Ri(z) :— Ra(azx).

Ry(zy) :— Ra(zz), R3(zy).

Ry(zy) :— Ra(zy).

The input is a directed graph represented by a relation over Rz, and the output (over R;) is the
set of nodes z, such that < az > is in the transitive closure of the input. A bottom-up evaluation
of this program corresponds to a computation of all pairs reachability and then a restriction to

the nodes reachable from a. The following program is equivalent (R; is no longer needed) but its
bottom-up evaluation corresponds to a single source reachability computation from source a.

R;i(z) :— R1(2), R3(2z).
Ry(z) :— Rz(az). O
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Naive or seminaive bottom-up evaluation are ways of constructing the output to a query, that
do not take advantage of selections until the minimum model has been constructed. On the con-
trary, the typical Prolog interpreter would produce the output in “top-down” fashion by reasoning
backwards from the selection. Between these two extremes, there is a whole spectrum of evaluation
stategies. These are based on a tradeoff between “bottom-up” and “top-down” evaluation. In
Example 4.2.14: the second program is produced from the first program via “top-down” reasoning
about their equivalence, then it is evaluated via a “bottom-up” method.

As illustrated in [BanR] many other possibilities exist, depending on which optimizations are
applied and on whether they are performed at “compile-time” or “run-time.” Many of the algo-
rithms are expressed in algebraic terms, i.e., as relational algebra expressions together with while
constructs. In some cases, arithmetic operations are used to control the number of iterations.

The first sufficient conditions for commuting recursion, in the form of a least fixpoint operator,
and selection were introduced by Aho and Ullman in [AhoU]. This approach does not consider other
possibilities of equivalence transformations on the program, beyond a straightforward rewriting of
the selection operation into the recursion. The magic set strategy of [BanMSU] adopts a more
general view of selection propagations. Assume that a relation is defined via a Datalog program
and that a selection is applied to this relation; (in Prolog terminology a relation is defined using
a Prolog program without function symbols and a variable in the goal is bound to a constant).
The magic set strategy propagates the information about the selection by computing magic sets
of values, which are then used to prune useless rule applications in a “bottom-up” method. The
magic sets themselves are computed using rules that are less costly than the original rules.

The following example illustrates the magic set strategy, as a program optimization applied
at “compile-time.” The “same generation” program is translated into a different, but equivalent,
program. This is accomplished by adding atoms to the bodies of already existing rules (typically
with binary IDB’s). These atoms are of the form magic(z) and are computed using less costly rules,
(typically with monadic 1DB’s). For the details of the transformation we refer to [BanMSU] and for
an interpretation of it using quotients of context free languages to [BeeKBR].

Example 4.2.15: Consider the following version of the “same generation” program,

Ry(z) :— Ry(az).

Ry(zy) :— Ra(zz2), R4(zy).

Ry(zy) :— Rs(zz2), Ra(22"), Re(2'y).

Think of R3(zz) as z is-child-of z and of R4(2'y) as 2’ is-parent-of y. The Ry(zy) stands for
z belongs in same-generation-as y and R; contains all those z in a’s generation. The magic set

transformation produces an equivalent program, where the new monadic IDB MAGIC restricts the
application of the old rules to whenever z is instantiated as an ancestor of a.

Ry(z) :— Rz(az).

Ry(zy) :— Ra(zz), R4(2y), magic(z).

Ra(zy) :— Ra(z2), Ra(22"), R4(2'y), magic(z).
magic(a) :—

magic(z) :— magic(y), Rz(yz). O

Evaluation based on counting path lengths of ground tuples has been proposed in [BanMSU]
and is refined in [SacZ], where it is combined with magic sets. One restriction is that input relations
must be acyclic directed graphs. This use of countingis a departure from the pure Datalog context,
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but it is justified by the considerable gain in performance of magic counting [SacZ], [MarPS). Even
specific programs, such as the program of Example 4.2.15, are challenging computational questions
when the evaluation is allowed to use counters [HadN] and the inputs are arbitrary relations with
cycles.

An important issue in this area is the development of a framework in which the plethora of
evaluation methods can be analysed and compared. The capture rule framework of [Ul12] allows the
combination of these methods, provided they have a minimum degree of modularity. A systematic
treatment of the methods is attempted in [BeeRa).

The propagation of selections is formalized in [BeeKBR] as the problem of: finding an equivalent
program of smaller equation width. This formulation allows boundedness to be used as an analytical
technique. It also indicates some fundamental differences from selection propagation for f.o. queries.

For chain Datalog program H, selection propagation corresponds to a regularity condition
[BeeKBR] on the language L(H). This L(H) is generated from the rules of H, without the vari-
ables, as context free grammar productions taking the EDB’s as terminals and the IDB’s as nonter-
minals. If the regularity condition holds, as in the program of Example 4.2.14, then it is possible
to decrease the equation width. If the regularity condition does not hold, as for example in the
program of Example 4.2.15, it is not possible to decrease the equation width, even if some heuristic
improvements are possible. The analysis of [Nau2] may be viewed as defining regularity conditions
for nonchain programs. The regularity condition of [Nau2] allows for a clean comparison between
a variety of evaluation methods.

“Top-down” evaluation strategies are closer to the spirit of Prolog interpreters. Their analysis
presents many nontrivial computational questions, even when the only function symbols are con-
stants. The simplest question here is termination, which is trivially true for “bottom-up” methods.
The price to pay for the clever “top-down” propagation of selection information is the possibility of
nontermination for these methods. In some cases it is possible to analyse the program and decide
termination [AfrEtal, Mor, UllVa).

Much of the query evaluation literature is concerned with linear database logic programs. One
reason for this is that, queries defined this way are in QNC and consequently have large amount of
potential parallelism. An important question is how to efficiently use many processors to evaluate
such queries in parallel. The core combinatorial problem is: source-sink reachability in directed
graphs [Kan2, Ull3]. This problem is known to be in Nc. For undirected graphs, a linear number of
processors suffice in order to achieve O(log? n) parallel time on most parallel computation models.
(This makes the processor-time product O(nlog? n), which is close to the O(n) product for the one
processor case). For directed graphs, the best processor-parallel time product for NC algorithms
is O(n*), identical with the sequential time bounds for » by n matrix multiplication. (There is a
increase from the O(n) product for the one processor case).

Open Question 4.2.16: Are there processor efficient NC algorithms for source-sink directed
reachability?

Additional Bibliographic Comments 4.2.17: For some new, interesting, general program
transformations we refer to [RamSUV, Sar].

We refer the reader to [BanR| for an extensive bibliography of evaluation methods. Here we only
present a sample from a currently active area of research. It is important to stress that many of the

evaluation methods form integral parts of new logic database systems, e.g., [MorUV, BeeNRST,
TsuZ].

A question related to the termination of various evaluation methods is that of safety for database
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logic programs. This is analogous to safety for relational calculus, only now fixpoints add a new
dimension to the problem, [KifRS, SagV]. O

4.3 Query Languages and Complex Object Data Models

An important aspect of the relational data model and of its logic programming extensions is their
simplicity. Relations are the only data-type. They are the common denominator, which facilitates
the comparison and the analysis of many query formalisms. Semantics are introduced using depen-
dencies, which are (as we have seen) closely related to queries. Despite the elegance of the theory,
relations are flat structures and the representation of hierarchical database structures via relations
is sometimes forced. It is often simpler to deal explicitly with more complex data-types, than to
express them indirectly using dependencies.

There has been wide interest in hierarchical database structures. Of particular interest are those
built using finite tuple and set constructors. These constructors are the basis for defining a large
repertoire of data-types. Instances of these data-types are manipulated using query languages that
are extensions of relational algebra and calculus.

The first proposal to generalize the relational data model by removing the 1-NF assumption was
made by Makinouchi [Mak]. Algebras have been proposed for nested (i.e., non 1-NF) relations, e.g.,
[AbiBe, AbiBi, JaeS, KupV1, RotKS, SchS, ThoF]. These are usually based on the two operations
NEST and UNNEST introduced by [JaeS]. A early higher order calculus (but no algebra) is contained
in [Jac]. First order calculi can be found in [Abibe, KupV1, RotKS]. A good survey of the area is
[Hul2).

The expressive power of relational algebra can be significantly extended by the addition of a
power set operator (first considered in [KupV1]). It is shown in [AbiBe] that transitive closure
can be expressed by an algebra extended with the powerset. It is interesting to consider looping
constructs, least fixpoint constructs etc in the context of nested relation algebras, see [GysV]. Most
of these enrichments of nested relation algebras turn out to have the same expressive power as the
algebra with the powerset operator in [AbiBe]. As shown in [ParV], if the inputs and outputs are
1-NF relations, if there is no powerset operation or looping construct etc, and if the intermediate
results are nested relations then, the expressive power of many of these formalisms is still that of
relational algebra.

Algebra = calculus theorems are shown in both [KupV1] and [AbiBe]. The calculus of [KupV1]
has many similarities with recursive rules, whereas the one in [AbiBe] is a more intuitive extension
of the relational calculus. The two settings are somewhat different in terms of their data-types:
both have set,tuple and union types and [KupV1] also allows recursive types (but only for inputs).
Also, object identifiers are present in [KupV1]; these can be thought of as pointers to values. Both
settings are generalized in [AbiK].

Another basic idea, that has been explored recently, is to use levels of nesting of the powerset to

classify queries. In this way, queries can be classified into hierarchies going beyond PHIER-queries.
See [HulS, KupV2] for the detailed formulation and results.

Much recent attention has been devoted to complex object models, with logic-based query
languages, e.g., [AbiBe, BanK, BunDW, KupV1]. In this context the tuple constructor leads to
first order terms, which can be manipulated using term unification or matching (see Comments
4.2.13). This is a significant step towards full integration of databases and logic programming.
On the other hand, adding the set constructor leads to nontrivial extensions of conventional logic
programming.
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Incorporating sets into database logic programs is a promising research direction [AbiGr, BanK,
BeeNRST, Kupl, Kup2, ShmTZ]. The solution proposed in [ShmTZ] makes use of the difference
between data and expression complexity. For a comparison of the various proposed solutions we
refer to [Kup2).

An important distinction that can be made in complex ob ject languages is whether the language
can be statically type checked or not. For example, this is possible in [AbiBe, AbiGr, KupV1, Kup2],
but not in [BanK]. The key is the separation of scheme and instance, which is present in database
languages but not in logic programming languages like Prolog.

Interestingly, it is possible to have a simple generalization of most complex object models with
a language that: (1) has set, tuple, union, and recursive types for both input and output, (2) can
be statically type checked, and (3) has full computational capabilities. An example is the language
IQL of [AbiK], which is based on recursive rules and object identifiers.

Complex object data models, semantic data models [HulK], and the more recent object-oriented
data models are all efforts to circumvent the semantic limitations of relations. A variety of new
applications require languages, that are much closer to full programming languages than are the
current database query languages, [Ban2]. The most challenging open question in this area is the
development of an elegant, mathematical model to serve as a foundation for the object-oriented
database experimental efforts.

5 Discussion: Other Issues in Relational Database Theory

There are database problems orthogonal to the issues addressed in the theories of dependencies
and queries. We close our presentation with two such issues: incomplete information and database
updates.

These are important in a wider context. A theory of incomplete information should be a theory
of “knowledge”, with many formal connections to modal logics. Updates are an example of dealing
with “dynamic change”, a problem that has motivated much of the research in the area of the logics
of programs. Here, we limit ourselves to formulations and solutions that have a distinctly database
character.

5.1 The Problems of Incomplete Information

The implicit assumption of the relational data model is that the database is a completely determined
finite structure. Reiter’s work on first order theories as databases makes explicit the implicit
assumptions about the relational data model, [Reil, Rei2, Rei3].

To deal with incomplete information we need representations of sets of “possible worlds”, i.e.,
the identification we have been making of a database with a single “possible world” must be relaxed.
Consequently, the syntax itself of the database must be used as a specification. This was done in
Section 2.5 with extended relational theories for the complete information case, with deductive and
universal relation models, and with relaxing the uniqueness axioms (Remark 2.5.1).

In terms of what is a “possible world”, there is a fundamental distinction between open and
the closed extensions of relations. Open extensions are best exemplified by the weak universal
relation assumption, i.e., we know some tuples completely and any containing universal relation
is a “possible world”. A closed extension is a conservative open extension, i.e., it is an open
extension that consists only of tuples whose existence we can infer. A detailed comparison of the
two approaches, based on computational complexity, is made in [Var10).
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The first order logical framework can be augmented to express facts about the uncertainty itself.
This has been done through the addition of modal operators, e.g., for possibility or certainty, see
[Lev, Lipl, Lip2).

For the rest of this section, we focus on various algebraic mechanisms for modeling uncertainty.

The most commonly used one is the mechanism of null values. Their presence changes the basic
data type of relation as follows.

A Codd table ([Cod4]) is the result of replacing some occurrences of values in a relation by
distinct variables, called null values. A condition ¢ is a propositional (V,A,~) combination of
equality atoms ¢ = y or * = ¢, where z,y are variables and ¢ is a value. Conditions may be
associated with Codd table T in two ways: (1) a global condition @ is associated with the whole
of T, and (2) a local condition ¢, is associated with a tuple t of T, (if no association is specified the
default is the trivial true condition z = z). A conditional table T is a Codd table T with associated
global and local conditions, see [ImiL.2]. One can visualize a conditional table as the rows of an
untyped tableau with constants, together with a column of conditions.

A valuation h is a function from variables to values, that naturally extends to tuples and Codd
tables by defining h(c) = ¢, for each value ¢. A condition is satisfied or falsified by A in the obvious
way. A conditional table 7 (with Codd table T) represents the set of relations:

Tret = { v : thereis a h |= pr and 7 consists of the tuples A(t) for which A = ¢, }.

Why are conditional tables an interesting representation? Codd tables are-a simple way of
generalizing relations. Between them and conditional tables there is a large repertoire of repre-
sentations, [AbiKG]. For example, the first order theories in [Var9] can be represented using a
Codd table and a conjunctive global condition. In [Grh] global conditions are used to describe
dependency satisfaction. The chase may be applied to conditional tables [Grh, Mail]. The most
important reason is that: there is a closure theorem for conditional tables, which allows simple and
semantically meaningful querying of incomplete information databases. (One has to expand Codd
tables with local conditions in order to realize this closure, [ImiL.2, AbiG]). According to these
semantics, the output is a representation of all the possibilities in the following fashion.

If T is a conditional table (without global condition) and E a relational algebra expression, then
from E and T it is possible to construct another T' conditional table (without global condition)
such that: T, = E(T,q) = {E(r): 7 € T,e}.

There is a large volume of work on querying incomplete information databases. The goal of
most of this research has been to determine the correct semantics of applying a program to an
incomplete information database. Closure conditions are one desirable alternative. They often lead
to variants of the relational operations with which to process null values. For example, one common
problem is how to extend the M operation to relations with null values. We refer to [ImiL2] for
many more references on the sub ject.

Many of the proposed algorithms focus on the certain tuples, i.e., tuples contained in all “possible
worlds”, as opposed to describing all possibilities. We encountered this conservative approach,
when we examined querying in deductive and universal relation data models. When querying for
the certain tuples: an algorithm is sound if it produces certain tuples only and it is complete if it
produces all the certain tuples.

Unfortunately, it is often the case that completeness implies an exponential increase in data
complexity. This was was first shown in [Var9] and further investigated in [AbiKG]. Thus, the sound
algorithms in [GrnM, Rei3, Var9] trade completeness for efficiency. There is one important special
case, where things are ideal. This was identified in [Var9] and in [ImiL2] for positive existential
queries.
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To derive the certain answers to a second order positive query on a Codd table with a satisfiable
conjunctive global condition it suffices to: (1) incorporate the equality atoms in the table, (2) ignore
the inequality atoms, and (3) proceed as if the table were a relation.

The null values we have been discussing are “values present but unknown”, sometimes con-
strained through conditions. Other kinds of null values, e.g., “values whose presence is unknown”,
have been studied in [Zan2].

Many ideas from mathematical logic have been proposed as modeling tools for uncertainty (e.g.,
three-valued logic) but their applicability is hard to assess. In summary, for the representation and
querying of incomplete information databases there are many partial solutions but no satisfactory
full answer. In part this is because, the further away we move from the relational data model the
fewer analytical and algebraic tools are available and the more we have to rely on general-purpose
theorem-proving heuristic techniques.

5.2 The Problems of Database Updates

Database manipulation languages have primitives for both querying and updating relations. The
characteristic that distinguishes database updating from updating the state in more general pro-
gramming languages is the simplicity of the changes made. Tuples are only inserted, deleted or
values modified in the one underlying relation data-type. It is possible to study these operations in
the context of both algebra-like and calculus-like query languages. These investiéations span lan-
guage definition [AbiV1, AbiV2], program optimization {AbiV3], dependencies [Via] and incomplete
information [AbiG].

A first order theory approach to updates was initiated in {[FagUV] and elaborated in [FagKUV].
The semantics of insert, delete for first order theories is formulated in terms of sets of these theories.
The broader logical framework and novel notions, such as equivalence that is preserved under
common updates or equivalence forever, illustrate new challenges to database theory. Algorithmic
problems in this setting are resolved in [Win1]; see [Win2] for an overview.

Although broader than the practical use of updates in many database systems, the above
concepts are more specialized than a direct use of some form of dynamic logic [Har]. For two recent
applications of dynamic logic to database logic programs see [ManW, NagK].

We close our exposition with the view update problem. This is a problem that combines in-
complete information with update issues. It is a challenging problem in general, which has been
elegantly formalized in relational database theory.

View Updates: Individual users often want to deal only with part of the information of the
database. This is why database systems provide the view facility. The user would like to query and
update the database view in blissful ignorance of the underlying database.

In database systems, a view is generally implemented by storing its definition, i.e., some program
in a query language supported by the system. Thus, querying is done by composing the query on the
view with the view definition. Sometimes things are simplified further by precomputing and storing
the view as a relation, called materializing the view. Updating a view is much more challenging. A
tuple insertion in or deletion from the view may make the underlying database inconsistent (“no
possible world”) or ambiguous (“many possible worlds”).

A first attempt at resolving these ambiguities was made in {[DayB]. An elegant semantic solution
was proposed in [BanS], which is quite independent of the relational data model and stated in terms
of mappings.
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Figure 6: View update semantics

A view f, and an update on this view f, are both mappings of the appropriate types (from the
database scheme to the view scheme and from the view scheme to itself respectively). How can f,
be translated into a database update f, (of type from the database scheme to itself)? The basic
insight of [BanS] here is that of a complementary view f,s of f,, where the mapping from databases
d to databases < f,(d), f,»(d) > must be injective. This mapping is denoted by f,x,.

A view can have many complementary views; choosing one that must remain constant assigns
unambiguous semantics to a view update.

This is because the database can be reconstructed from the updated view and the constant
complement; (recall the theory of decompositions from Section 3.2.I). Once a complementary view
is chosen, translating under this constant complement amounts to finding a database d’ such that:
(1) fu(d) = fu(fu(d)) = fuu(d) and (2) f(d') = foi(d). If such a d’ exists then by injectiveness it
is unique. The update mapping f, is translatable iff such a d’ exists for any d; (the independent
two-part decompositions from Section 3.2.1 are a sufficient condition for translatability). If f, is
translatable then its translation is f, = v_xlv’ 0 fuvxu!-

[BanS] and [CosP] describe additional properties of this approach, in particular for families of
updates closed under composition. The semantics of [BanS] are depicted pictorially in the com-
muting diagram of Figure 6. They are a clarifying (even if initial) step in resolving a challenging
problem. Their complexity, for the simplest possible set of dependencies (fd’s) and views (projec-
tions), is examined in [CosP]. In many cases the computational complexity of a full implementation
of view updates is prohibitive. Much of the recent work, e.g., [GotPZ, Kel, KelU, Winl, Win2),
has concentrated on feasible algorithmic approximations.

6 Conclusions

Queries and dependencies are major themes, which we have used to present relational database
theory. A number of problems remain unresolved. Among the crisp and perhaps hard mathematical
problems that have emerged we have highlighted: dependency implication (2.3.16), recursive rule
boundedness (4.2.10) and parallel computation (4.2.16) questions.

In the area of logic and databases, we are only beginning to understand the possible uses of
negation and the large variety of evaluation methods. Much remains to be done on the subjects of:

62



complex objects, incomplete information, and database updates. Finally, developing the founda-
tions for object-oriented database languages will (most likely) involve new conceptual contributions,
that use the theory of abstract data-types.
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