
XCheck: a Platform for Benchmarking XQuery Engines
L. Afanasiev1, M. Franceschet1,2, M. Marx1, and E. Zimuel1,2

1University of Amsterdam 2Università “Gabriele D’Annunzio”
{lafanasi,francesc,marx,zimuel}@science.uva.nl

Abstract

XCheck is a tool for assessing the relative per-
formance of different XQuery/XPath engines by
means of benchmarks consisting of a set of XML
queries and a set of XML documents. Given a
benchmark and a set of engines, XCheck runs
the benchmark on these engines and produces
highly informative performance output. The cur-
rent version of XCheck contains the most popular
XQuery and XPath benchmarks and the following
four XQuery engines: Galax, Qizx/open, Saxon
and MonetDB/XQuery. XCheck’s design makes
it easy to add new engines and new benchmarks.

1 Introduction
The essential role of benchmark tools in the development
of XML query engines, or any type of data management
systems for that matter, is well established. Benchmarks
allow one to assess a system’s capabilities and help deter-
mine its strengths or potential bottlenecks. The two main
reasons to do XQuery benchmarking are (1) correctness
check (does the output of engine X conform to the W3C
standard?) and (2) relative performance testing (how well
does engine X1 perform, in terms of processing speed and
memory use, compared to engines X2. . . Xn?).

Running a benchmark by hand is tedious and time con-
suming. Even more so, when benchmarking the relative
performance of several engines, one has to keep track of
many system and engine parameters and the output is usu-
ally a huge amount of raw data that is difficult to interpret.
A software tool is needed

1) to help XML query engine developers evaluate the
performance of their processor and compare it with
other implementations.

2) to enable XML researchers to more easily experiment
their ideas, such as, a new optimization technique or
the impact of language features.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 32nd VLDB Conference,
Seoul, Korea, 2006

3) to help XML users compare and choose a query en-
gine that performs well on their data.

This motivated us to create XCheck. The main goal of
XCheck is to automate all the tasks involved in benchmark-
ing XML query engines, except for the creative aspects of
designing benchmarks and interpreting the results. XCheck
is also meant to minimize the technical effort of the last
task. We have implemented a platform that allows one to
execute performance benchmarks on several query engines
and helps in analyzing their relative performance. Ease of
adding new engines and new benchmarks was an important
constraint on XCheck’s design.

XCheck already hosts all XCheck supported
Benchmarks
XMach-11 [5]
XMark [13]
XPathMark [9]
X007 [7]
XBench [14]
Michigan [12]

Table 1.

XQuery related benchmarks, and
several engines: Saxon [10],
Galax [8], Qizx/open [4], and
MonetDB/XQuery [11].

This abstract is organized as
follows. Section 2 describes
the design, architecture and us-
age of XCheck. Section 3 relates
XCheck to other XML bench-
marking platforms. Section 4 de-
scribes our planned demonstration.

2 System description
In this section we describe the design, architecture and us-
age of XCheck, which will be delivered under the GNU
General Public License. XCheck focuses on performance
benchmarks, as opposed to correctness benchmarks. Thus,
the benchmarks do not need to specify correct answers.
Nevertheless, XCheck helps to detect incorrect answers by
performing a comparison of the size of the answers given
by the different engines.

The main idea behind the design of XCheck is that a user
can learn most from comparing the performance of differ-
ent engines on many benchmarks. Thus adding engines
and benchmarks had to be easy, and the output should be
directed towards relative performance.

XCheck works in two phases. During the running
phase, it executes a given performance test on a given set of
query processors and produces detailed evaluation data, in-
cluding diverse processing times and environment parame-
ters. In the data analysis phase, XCheck performs statisti-
cal analysis and performance measures on the data obtained
during the running phase. The output of the data analysis

1XMach-1 is designed for a multi-user scenario with a query through-
put under time constrains measure. XCheck executes only its single-user
case.



Figure 1: XCheck architecture

phase is a collection of high-level evaluation data presented
in different formats (tables, plots, rankings).

The general process flow of XCheck is depicted in Fig-
ure 1. In this figure, BENCHMARK is an XML file
specifying the experiment (which engines, which queries,
which documents). The labels TIMES, STATISTICS and
PLOTS denote the raw measurements, the analyzed data
and the created data plots, respectively. Data analysis and
creating plots is optional and can also be done in a lat-
ter stage, combining raw data from several experiments, if
needed.

In the following, we describe the running and data anal-
ysis phases in more detail.

2.1 Running phase

Input The input of an experiment run on XCheck consists
of: (i) a list of XQuery engines; (ii) a list of benchmark doc-
uments, or the commands to generate the documents if a
document generator is available; (iii) a list of queries of the
benchmark, or the commands to generate the queries if a
query generator is provided. For each engine, for each doc-
ument, XCheck runs all provided queries. This is imple-
mented by leaving empty the argument of the fn:doc()
function in the queries. XCheck will fill them with the
appropriate file names. This design is sufficient to repre-
sent all XQuery benchmark published so far, including the
multi-document scenario benchmarks.2
Engine adapter design At the core of XCheck is a plug-
gable engine adapter design. There are many types of
XML query engines, with different architectural design and
running scenarios, implemented in different programming
languages. The platform calls each engine with a fixed in-
put (query, set of documents) and receives a fixed output
(query answer, several processing times, error messages).

2 XMach-1 and two of the XBench benchmarks (TC/MD and DC/MD)
are multi-document scenario benchmarks, i.e. a query is executed against
a big collection of documents at once. For these benchmarks we use only
one input document containing the list of the documents in the collection.
Before each query execution, the input document is queried and a resulting
sequence of document nodes is transmitted to the query as input.

Figure 2: Total execution time for each query

This is implemented via adapters which work as wrappers
for the engines. In such way, XCheck can test any query
engine as soon as an adapter for the engine is available.

There are two ways of implementing an adapter. If the
engine is a command line executable, then an adapter is an
XML document containing engine execution instructions
and engine output description. XCheck processes this doc-
ument and executes the instruction indicated there. Other-
wise, a specific engine adapter in the form of a command
line executable has to be implemented.

It is often desirable to measure the times taken by in-
dividual processing steps, such as, document processing
time, query compilation time, query execution time, and
result serialization time [3]. Measuring these times might
be difficult or impossible, unless the engine provides this
information. In such cases, XCheck captures these times
and analyzes them.
Measurement accuracy Besides the times that the engines
report, XCheck itself measures the total execution time, re-
ported in CPU time. To reduce the possibility of unreliable
results, XCheck executes each experiment a configurable
number of times and outputs the average times, together
with the standard deviation. We experienced that 3 runs
are sufficient to obtain standard deviations which are less
than 2% of the mean time. Moreover, XCheck records the
hardware configuration of the machine on which it runs.
Error and crash handling Two types of errors might oc-
cur during the engine execution. The first type is an error
produced and handled by the engine, such as static and dy-
namic query processing errors. The second type, typically
an engine crash, is handled by the platform. XCheck treats
both types and provides informative output to the user.

Finally, a pseudo-correctness test is implemented by
comparing the size of the output of the different engines
and producing a warning in case of large divergences.
Output The default output consists of an XML document
containing the total query execution times, the processing
times provided by the engines themselves, and an error
messages if a query fails, grouped by engines, documents
and queries. It also contains the total benchmark run time
and the configuration of the testing environment. A more



Figure 3: Query execution time for each document

readable HTML verstion of this information is also pro-
vided. Optionally, XCheck saves the query answers. An-
other optional output of the platform is a big set of possible
graphs displaying the data. The Gnuplot code for generat-
ing these graphs is also provided, so that the user can easily
edit and modify the graphs.
Example As an example, we run the XMark benchmark
on the following XQuery engines: SaxonB 8.6.1, Galax
0.5.0, Qizx/open 1.0, and MonetDB/XQuery 0.10. The in-
put query set consists of the 20 XMark queries, and the
document set consists of 7 documents corresponding to
the scaling factors3 0.016 to 1.024 of size 1.80 MB to
113.99 MB, respectively. For each engine, for each doc-
ument, every query was run four times. The times re-
ported are the mean of the last three executions. The
full output of XCheck on this example is accessible at
http://staff.science.uva.nl/∼zimuel/xmark.htm.

Figure 2 gives a first impression of the relative perfor-
mance of the four engines, by showing the total execution
times for each engine for each query on one specific docu-
ment. Notice that Galax crashes on queries Q11 and Q12
(which are known to be hard) and Qizx/open does not parse
queries Q3, Q11, Q12, and Q18. Moreover, Figure 3 shows
how the different engines scale with respect to document
size on query Q8. The times are those reported by the en-
gines. Galax is not here, because, as confirmed by the au-
thors, its reported query execution time is not reliable for
the version we checked. In both cases, XCheck plotted the
times in logarithmic scale due to the large variation in exe-
cution times among the engines.

Finally, Figure 4 provides a breakup, in terms of per-
centages, of the total execution time for Saxon on all
XMark queries and on the biggest document in our se-
quence. Notice that on queries Q8–Q12 almost all the time
is spent on query execution, while on all other queries the
document processing time was the main factor.

3XMark provides a document generator that produces documents
whose sizes are proportional to a unique parameter called the scaling fac-
tor. A scaling factor of 1 produces a document of about 100 MB.

Figure 4: Query execution time for each document

2.2 Data analysis phase

After running the benchmark, XCheck can perform some
data analysis tasks. Most measures are dependent on the
specific benchmark and are not provided by XCheck. That
given, XCheck performs some standard data analysis, as
indicated in the following.
Quantitative analysis The goal is to analyze the amount
of time spent by any engine for the processing of any eval-
uation phase on any fragment of the benchmark. As an
example, we define the medley relay speed (measured in
MB/sec) of an engine on the document set D and the query
set Q as follows:

MRSD,Q =
|Q| ·

∑
d∈D size(d)∑

d∈D,q∈Q time(d, q)

It summarizes the elaboration speed of the engine on the
given documents and queries.
Qualitative analysis The goal is to analyze the qualita-
tive behavior of the performance of the engines. Relevant
measures are the qualitative distance between two engines,
which indicates how similar are the evaluation strategies
of the two engines, and the stability measure of an engine,
which indicates how stable are the elaboration times of the
engine.
Scalability analysis The goal is to analyze the performance
of any engine either when the complexity of the input query
grows (query scalability analysis) or when the size of the
input document grows (data scalability analysis). The scal-
ability analysis is significant only when the benchmark has
been designed to target the engine scalability. For instance,
let D = (d1, d2, . . . , dk), for k ≥ 2, be a sequence of doc-
uments of increasing sizes. We define the data scalability
factor for an engine on the document sequence D and the
query set Q as follows. If k = 2, then

DS(d1,d2),Q =
MRSd1,Q

MRSd2,Q

If k > 2, then

DSD,Q =

∑k−1
j=1 DS(dj ,dj+1),Q

k − 1

http://staff.science.uva.nl/~zimuel/xmark.htm


Notice that, by virtue of the definition of medley relay
speed, a data scalability factor less than 1 (respectively,
equal to 1, bigger than 1) corresponds to a sub-linear (re-
spectively, linear, super-linear) increase of the elaboration
time when the data size increases.

Below is an extract of the data analysis result on our ex-
ample. We abbreviated the names of the engines with their
initials. We excluded from the computation queries Q3,
Q11, Q12 and Q18 because they are not supported by all
then engines. Finally, as said above, we have no informa-
tion on the query execution time for Galax.

Total execution Query execution
time time

Engine MRS DS MRS DS

MonetDB 4.356 MB/s 0.863 212.220 MB/s 0.768
Saxon 1.611 MB/s 1.145 1.927 MB/s 1.502
Qizx 7.629 MB/s 0.847 8.511 MB/s 0.946
Galax 0.131 MB/s 1.707 . . . . . .

3 Related systems
To the extent of the authors knowledge, there are two other
automated testing platforms for evaluating XML query en-
gines: BumbleBee [1] and XSLTMark [2]. BumbleBee is a
test harness for evaluating XQuery engines and for validat-
ing queries expressed in the XQuery language. Although it
measures the total execution times its main goal is to test
engine’s compliance with the language specification. The
application can execute user defined tests containing ref-
erence answers for the correctness check. XSLTMark is
a similar application for XSLT processor performance and
compliance benchmarking. It comes with a collection of
default test cases that are performance oriented. Both Bum-
blebee and XSLTMark have a fixed input/output pluggable
adapter design.

In comparison, XCheck is optimized for executing user
defined performance tests. It is also based on a pluggable
adapter design, but its adapters allow one to obtain a more
detailed evaluation of the intermediate processing steps and
other important engine parameters. XCheck performs sta-
tistical analysis of the data and outputs graphs, facilitat-
ing correct interpretation of the results. Although XCheck
does not perform a proper correctness test, it implements
a pseudo test by comparing the size of the query results of
several engines relative to each other.

4 Demonstration setup
The demonstration of XCheck has two purposes. First, we
show how XCheck works. As running a benchmark takes
too much time, we focus on the preparation of the input
and the interpretation of the output of XCheck. Second, we
provide the results obtained with XCheck.
For the first purpose, we show in particular:
• how easy it is to add benchmarks and engines to

XCheck;

• how the output of XCheck addresses the use-cases de-
scribed in the Introduction;

• the under-the-hood design choices.
For the second purpose, visitors of the demo can see how
their favorite engine performs on the benchmarks in Ta-
ble 1. We are currently collecting these data and plan to
run all these benchmarks on all XQuery processors de-
scribed in [6], provided they are freely available. Notice
that Figure 16 in [6] gives the results of running XMark
on 17 XQuery engines, but the data are collected from the
literature (and hence the corresponding experiments were
run on different machines). Hence the results are not easy
to compare. Using XCheck we can provide an independent
and fair comparison since every test is performed under the
same controlled circumstances.

References
[1] BumbleBee. http://www.xquery.com/bumblebee/.

[2] XSLTMark. http://www.datapower.com/xmldev/
xsltmark.html.

[3] L. Afanasiev, I. Manolescu, and P. Michiels. MemBeR: a micro-
benchmark repository for XQuery. In Proceedings of XSym, pages
144–161, 2005.

[4] Axyana software. Qizx/open. An open-source Java implementation
of XQuery. http://www.axyana.com/qizxopen, 2006.

[5] T. Böhme and E. Rahm. XMach-1: A benchmark for XML data
management. In Proceedings of BTW2001, Oldenburg, 2001.

[6] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teuber. MonetDB/XQuery: a fast XQuery processor powered by
a relational engine. In Proceedings of SIGMOD, 2006.

[7] S. Bressan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li, U. Nambiar, and
B. Wadhwa. X007: Applying 007 benchmark to XML query pro-
cessing tool. In Proceedings of CIKM, pages 167–174, 2001.

[8] M. Fernández, J. Siméon, C. Chen, B. Choi, V. Gapeyev, A. Mar-
ian, P. Michiels, N. Onose, D. Petkanics, C. Ré, M. Stark, G. Sur,
A. Vyas, and P. Wadler. Galax. The XQuery implementation.
http://www.galaxquery.org, 2006.

[9] M. Franceschet. XPathMark: an XPath benchmark for the
XMark generated data. In Proceedings of XSym, pages 129–
143, 2005. http://www.science.uva.nl/∼francesc/
xpathmark.

[10] M. H. Kay. Saxon. An XSLT and XQuery processor. http://
saxon.sourceforge.net, 2006.

[11] MonetDB/XQuery. An XQuery Implementation. http://
monetdb.cwi.nl/XQuery, 2006.

[12] K. Runapongsa, J. Patel, H. Jagadish, Y. Chen, and S. Al-Khalifa.
The Michigan Benchmark: A Microbenchmark for XML Query
Processing Systems. In Proceedings of EEXTT, pages 160–161,
2002.

[13] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu,
and R. Busse. XMark: A Benchmark for XML Data Manage-
ment. In Proceedings of VLDB, pages 974–985, 2002. http:
//monetdb.cwi.nl/xml/.

[14] B. Yao, T. Özsu, and N. Khandelwal. XBench benchmark and per-
formance testing of XML DBMSs. In Proceedings of ICDE, pages
621–633, 2004.

http://www.xquery.com/bumblebee/
http://www.datapower.com/xmldev/xsltmark.html
http://www.datapower.com/xmldev/xsltmark.html
http://www.axyana.com/qizxopen
http://www.galaxquery.org
http://www.science.uva.nl/~francesc/xpathmark
http://www.science.uva.nl/~francesc/xpathmark
http://saxon.sourceforge.net
http://saxon.sourceforge.net
http://monetdb.cwi.nl/XQuery
http://monetdb.cwi.nl/XQuery
http://monetdb.cwi.nl/xml/
http://monetdb.cwi.nl/xml/

	Introduction
	System description
	Running phase
	Data analysis phase

	Related systems
	Demonstration setup

