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Abstract We propose a mapping from a database con-
ceptual design to a schema for XML enjoying the fol-
lowing properties: information and integrity constraints
are preserved, no redundancy is introduced, different hi-
erarchical views of the conceptual information are avail-
able, the resulting XML structure is highly connected
and nested, and the design is reversible. We investi-
gate two different ways to nest the XML structure: a
maximum density nesting, that minimizes the number
of schema constraints used in the mapping of the con-
ceptual schema, thus reducing the validation overhead,
and a maximum depth nesting, that keeps low the num-
ber of costly join operations that are necessary to re-
construct information at query time using the mapped
schema. We propose graph-theoretic linear-time algo-
rithms to find a maximum density nesting in the gen-
eral case, as well as a maximum depth nesting in the
acyclic case. Furthermore, we show that the problem
of finding a maximum depth structure in the general
case is NP-complete and, notably, it admits no con-
stant ratio approximation algorithm. We complement
our investigation with an implementation of the devised
translation and an empirical evaluation that shows that
the mapping we propose, compared to a flat relational-
style design, leads to significant improvements in both
query and validation performances. A detailed analysis
of related work concludes the paper.
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1 Introduction

In the information age we are living, an increasing share
of information is by nature unpredictable, hierarchical,
and hybrid. Unpredictable information defies regular
patterns: it is unstructured or, at most, semistructured.
Hierarchical information is structured as complex en-
tities which, recursively, might embed other complex
entities. Hybrid information mixes both data and text
alike. Many advocated the use of Extensible Markup
Language (XML) to represent information of this na-
ture. This ignited the development of XML databases
to store very large data in XML format and to retrieve
them with universal and efficient query languages.

An XML database is a data persistence software
that allows one to store data in XML format. XML
databases can be partitioned into two major classes:
XML-enabled databases, which map XML data to a tra-
ditional database (such as a relational database), and
native XML databases, which define a logical model for
an XML document and store and retrieve documents
according to it. The design of any database follows a
consolidated methodology comprising conceptual, logi-
cal, and physical modeling of the data. This paper is a
contribution toward the development of design method-
ologies and tools for native XML databases. In particu-
lar, we focus on the mapping from conceptual designs to
logical schemas for native XML databases. Specifically,
our contributions are the following:

– Mapping. We propose a mapping from conceptual
designs to schemas for XML. We adopt the well-
known Entity Relationship model (ER for short) ex-
tended with specialization (specialization is particu-
larly relevant in the design of semistructured data),
as the conceptual model for native XML databases.
Moreover, we opt for W3C XML Schema Language
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(XML Schema for short) as the schema language
for XML. The main alternative to XML Schema
is the Document Type Definition (DTD) language,
but the latter is strictly less expressive than the for-
mer. In particular, DTD lacks expressive means to
specify integrity constraints, which are fundamen-
tal in database design. The mapping we propose
enjoys the following properties: information and in-
tegrity constraints of the ER model are preserved,
no redundancy is introduced, different hierarchical
views of the conceptual information are permitted,
the resulting structure is both highly connected and
nested, and, finally, the design is reversible;

– Graph-theoretic investigation of the XML nesting
problem. We provide a graph-theoretic interpreta-
tion of the XML nesting problem, that is, the prob-
lem of finding the best way to nest the XML ele-
ments corresponding to entities and relationships of
the ER schema. In this context, we thoroughly study
the problems of finding the maximum density nest-
ing forest and the maximum depth nesting forest.
The former is a nesting forest with the highest num-
ber of edges, which corresponds to the nesting that
minimizes the number of schema constraints used in
the mapping of the conceptual schema, thus reduc-
ing the validation overhead to the minimum. The
latter is a nesting forest with the largest value for
the summation of node depths. Such a nesting min-
imizes the number of expensive join operations that
are necessary to reconstruct information at query
time using the mapped schema, thus reducing the
average query evaluation time.

– System implementation. We fully implement the de-
vised mapping and we embed it into ChronoGeo-
Graph [1,2], an ongoing project with the goal of
developing a framework for the conceptual and log-
ical design of spatio-temporal XML and relational
databases.

– Experimental evaluation. We perform an extensive
experimental analysis whose output shows that the
highly connected and nested structures provided by
the developed system have a significant impact on
both validation and query performances of XML
databases that adhere to the mapped schema. We
test both native and XML-enabled databases using
data from the XMark benchmark [3].

The paper is organized as follows. Section 2 moti-
vates the use of native XML databases and briefly re-
views the major XML technologies. Section 3 illustrates
the mapping from conceptual designs to XML schemas.
The structure nesting problem is investigated in Sec-
tion 4. Section 5 describes the implementation and the
experimental evaluation of the devised mapping. Re-

lated work is discussed in Section 6. Conclusions are
drawn in Section 7.

2 Native XML databases

Much information around in these days is semistruc-
tured, hierarchical, and hybrid in nature.

Semistructured data has a loose structure (schema):
a core of attributes are shared by all objects associ-
ated with a semistructured schema, but many indi-
vidual variants are possible. For instance, consider a
bibliography containing references to academic publi-
cations. All references have in common a small core
of attributes, like authors, title, and publication year.
Different reference types, however, have many specific
attributes. For instance, books have publishers, journal
papers have volume numbers, conference contributions
have titles of the proceedings and conference addresses,
and theses have hosting institutes. Moreover, some of
these attributes might be structured in different ways.
For example, we might specify the name of an author
as a unique token or as an arbitrarily long list of tokens,
including space for possibly multiple first, middle, and
last name components.

Hierarchical data is composed of atomic elements
and compound elements. Atomic elements have a sim-
ple flat content. By contrast, compound elements con-
tain nested sub-elements, either atomic or compound.
There is no limit to the nesting level of information. The
resulting structure is a hierarchy of information, possi-
bly representable as a tree of objects. For instance, a
Web page written in XHTML has a hierarchical struc-
ture in which tag elements might contain other tag ele-
ments. As another example, consider the biological tax-
onomic hierarchy in which a species, the most basic
rank, nests inside a genus, which in turn nests inside a
family, and so on.

The term hybrid refers to the fact that information
often mixes both data and text alike. For instance, a
bibliographic reference might contain records, such as
authors, title, year, as well as narrative information,
like the paper abstract. Similarly, objects representing
people in a social network mix attributes, like name and
occupation, with possibly long and structured descrip-
tions, like a CV.

Many researchers have proposed XML as the most
appropriate formalism to work with this kind of infor-
mation. XML, a standard of the World Wide Web Con-
sortium since 1998, has the following unique strengths
as a data format [5]:

1. Simple syntax. XML is a well-defined format whose
documents are easy to create, manipulate, parse by
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computer software, and read by humans equipped
with a basic text editor. Moreover, XML is portable
across different computer architectures and program-
ming languages;

2. Semistructured data. The flexibility of the XML data
model allows one to represent unstructured informa-
tion as well as data with a loose schema;

3. Support for nesting. The hierarchical nature of XML
makes it possible to represent complex structures in
a natural way;

4. Support for hybrid information. Both data-centric
and text-centric information can be easily repre-
sented within the same XML document.

Unlike XML, the relational model allows one to store
information in a structured and flat fashion. It follows
that even simple and highly-related information, like an
invoice with date and number accompanied by a list of
invoice items (each one with description, quantity, and
price attributes), must be spanned over multiple tables
and potentially expensive queries, joining the scattered
information through the key and foreign key mecha-
nisms, must be used to reconstruct information at query
time.

An XML database is a data persistence system that
allows one to manage data in XML format. It must en-
sure those features of a traditional database system that
are vital for real-world applications, including a uni-
versal, efficient, and scalable query language, data in-
tegrity constraints, transaction management, data pri-
vacy, backup, and recovery. Two major classes of XML
databases exist:

(a) XML-enabled databases. These systems map XML
data to a traditional database, typically a relational
database. XML data can be stored in different man-
ners: an XML document can be shredded into rela-
tional fields, records and tables, it can be entirely
stored as character data in records, or it can be
saved as external character large objects.

(b) Native XML databases. A native XML database de-
fines a logical model for an XML document, and
it stores and retrieves documents according to that
method. Examples of such models are the XPath
data model, the XML Infoset, and the models un-
derlying DOM and SAX.

A plethora of XML technologies has been devel-
oped since XML has been recommended by W3C in
1998. In most cases, these technologies are integrated
in an XML database. They include schema definition
languages, like DTD and W3C XML Schema, which
allow one to define the structure and the integrity con-
straints of the data, query languages, such as XPath,

XQuery, and XQuery Full-Search, which make it possi-
ble to express simple element-retrieval queries as well as
structured, possibly full-search statements, update lan-
guages, like W3C XQuery Update Facility, to perform
database updates, transformation languages, such as
XSLT, to transform XML documents or query-results
retrieved from the database, and programmatic inter-
faces, like XQuery API for Java, to access an XML
database from Java independently from the particu-
lar database driver, and Java Architecture for XML
Binding, to marshal Java objects into XML and the
inverse. A notable example of XML database, imple-
menting most of the mentioned features, is BaseX [6].

3 Mapping conceptual designs to XML schemas

As we already pointed out, the XML data model is
both hierarchical and semistructured : XML elements
may be simple elements containing character data or
they may nest other child elements, generating a tree-
like structure; moreover, elements of the same type may
have different structures, e.g., some child elements may
be absent or repeated an arbitrary number of times. In
the XML encoding of the ER conceptual model we are
going to describe, we will deeply exploit the hierarchical
and semistructured nature of the XML data model.

3.1 XML schema notation

Representing XML Schema using its own syntax re-
quires substantial space and the reader (and sometimes
the developer as well) gets lost in the implementation
details. For this reason, we embed ER schemas into a
more succinct XML schema notation (XSN) whose ex-
pressive power lies in between DTD and XML Schema.
XSN allows one to specify sequences and choices of ele-
ments as in DTD. As an example, the sequence def-
inition author(name, surname) specifies an element
author with two child elements name and surname;
the choice definition contact(phone | email) spec-
ifies that the element contact has exactly one child el-
ement which is either phone or email. The sequence
and choice operators can be combined and nested. For
instance, to state that an author can be described ei-
ther by name, surname, and affiliation or by id and
affiliation, we may use the expression author(((name,
surname) | id), affiliation). For the sake of sim-
plicity, all pieces of information are encoded using XML
elements and the use of XML attributes is avoided.

XSN extends DTD with the following three con-
structs:
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– Occurrence constraints. They specify the minimum
and maximum number of occurrences of an item.
The minimum constraint is a natural number; the
maximum constraint is a natural number or the
character N denoting an arbitrarily large natural
number. The notation is item[x,y], where x is the
minimum constraint, y is the maximum constraint,
and item is a single element, a sequence, or a choice.
We will use the following shortcuts borrowed from
DTD:
∗ when both x and y are equal to 1, the occurrence

constraint may be omitted, that is, the definition
item equals item[1,1];

∗ when x = 0 and y = 1, the occurrence constraint
may be abbreviated as ?, that is, the definition
item? equals item[0,1];

∗ when x = 0 and y = N, the occurrence constraint
may be abbreviated as *, that is, the definition
item* equals item[0,N];

∗ when x = 1 and y = N, the occurrence constraint
may be abbreviated as +, that is, the definition
item+ equals item[1,N].

– Key constraints. If A is an element and KA is a
child element (or an attribute) of A, then the no-
tation KEY(A.KA) means that KA is a key for A.
Keys consisting of more than one element/attribute
are allowed. For instance, in KEY(A.K1, A.K2) the
pair (K1, K2) is a key for A. Moreover, it is pos-
sible to define keys over the union of different ele-
ments. For instance, the constraint KEY(A.K | B.K
| C.K) means that the element K must be unique
over the union of the domains identified by the ele-
ments A, B, and C.

– Foreign key constraints. If A is an element with key
KA, B is an element, and FKA is a child element (or
an attribute) of B, then KEYREF(B.FKA --> A.KA)
means that FKA is a foreign key of B referring to
the key KA of A.

In key and keyref definitions, if A.KA is ambiguous,
that is, if there exists another element A with a child
element KA in the database, then KA can be prefixed
by an unambiguous path to element A in the XML tree.

As an example of XSN schema, suppose we want
to specify that a bibliography contains authors and pa-
pers. An author has a name and possibly an affiliation.
An affiliation is composed of an institute and an ad-
dress. A paper has a title, a publication source, a year,
and one or more authors. Moreover, name is the key
for element author, title is the key for element paper,
and the author child element of paper is a foreign key
referring to the name child element of author. Relevant
information is captured by the following concise XSN
definition:

bibliography((author | paper)*)

author(name, affiliation?)

affiliation(institute, address)

paper(title, source, year, author+)

KEY(author.name), KEY(paper.title)

KEYREF(paper.author --> author.name)

It is worth noticing that DTD only allows the speci-
fication of [0,1], [0,N], and [1,N] occurrence constraints;
moreover, it offers a limited key/foreign key mechanism
by using ID-type and IDREF-type attributes, which
turns out to be too simple for our goals. For instance,
it is not possible to restrict the scope of uniqueness for
ID attributes to a fragment of the entire document and
only individual attributes can be used as keys.

The mapping of XSN into XML Schema is straight-
forward: sequence and choice constructs directly corre-
spond to sequence and choice XML Schema elements;
occurrence constraints are implemented with minOc-
curs and maxOccurs XML Schema attributes; key and
foreign key constraints are captured by key and keyref
XML Schema elements, respectively.

3.2 Mapping ER to XSN

An ER schema basically consists of entities and rela-
tionships between them [7]. Both may have attributes,
which can be either simple or compound, single-valued
or multi-valued. Some entities are weak and are iden-
tified by owner entities through identifying relation-
ships. General entities may be specialized into more
specific ones. Specializations may be partial or total,
disjoint or overlapping. Relationships may involve two
or more entities. Each entity participates in a rela-
tionship with a minimum and a maximum cardinal-
ity constraint. Integrity constraints associated with an
ER schema comprise multi-valued attribute occurrence
constraints, relationship participation and cardinality
ratio constraints, specialization constraints (sub-entity
inclusion, partial/total and disjoint/overlapping con-
straints), as well as key constraints.

The proposed mapping has the following properties:

– it preserves information and as much integrity con-
straints of the original conceptual schema as pos-
sible. An extension to the standard XML Schema
validator has been implemented in order to capture
the constraints that are lost in the translation due to
lack of expressiveness of the XML Schema language;

– it does not introduce any redundancy in the mapped
schema: information in the original ER schema is
represented only once in the logical XML design;

– it supports different hierarchical views of conceptual
information; this allows one to adapt the structure
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of the logical schema on the basis of typical (most
frequent) transactions of the DBMS;

– it achieves maximum connectivity and deep nesting
in the structure used to embed the elements of the
conceptual design. As we will show in Section 4,
this makes it possible to optimize both validation
and query performances;

– it allows us to reverse the design: from the logical
XML schema, it is possible to go back to the original
conceptual ER schema.

3.2.1 The database element

The first step of the translation is the creation of a
database element. This is a container for all unnested
entity elements of the schema and it corresponds to the
document element in an XML instance of the schema. It
is defined as an unbounded choice among all unnested
entity elements. An instance is the bibliography element
in the bibliographic example above.

3.2.2 Entities

Each entity is mapped to an element with the same
name. Entity attributes are mapped to child elements.
The encoding of compound and multi-valued attributes
exploits the flexibility of the XML data model: com-
pound attributes are translated by embedding the sub-
attribute elements into the compound attribute ele-
ment; multi-valued attributes are encoded using suit-
able occurrence constraints. As opposed to the rela-
tional mapping, no restructuring of the schema is nec-
essary.

3.2.3 Relationships

Each binary relationship has two cardinality constraints
of the form (x, y), where x is a natural number, that
specifies the minimum participation constraint, and y

is a positive natural number or the special character N
(which represents an arbitrarily large natural number),
that specifies the maximum participation (or cardinal-
ity ratio) constraint. Typically, x is either 0 or 1, and y

is either 1 or N. Hence, we have 24 = 16 possible cases.
Let us consider two entities A, with key KA, and B,

with key KB, and a binary relation R between A (con-
ventionally, the left entity) and B (the right entity) with
left participation constraint (x1, y1) and right partici-
pation constraint (x2, y2). We denote such a case with
the notation A (x1,y1)

←→ R (x2,y2)
←→ B. The encodings for

all the typical cases are given in the following order:
first one-to-one relationships; then, one-to-many rela-
tionships; finally, many-to-many relationships.

1. A (0,1)
←→ R (0,1)

←→B. There are two possible mappings:

A(KA,R?) B(KB,R?)

R(KB) R(KA)

B(KB) A(KA)

KEY(A.KA) KEY(B.KB)

KEY(B.KB) KEY(A.KA)

KEY(R.KB) KEY(R.KA)

KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

The two mappings are equivalent in terms of num-
ber of used constraints. Notice that the constraint
KEY(R.KB) captures the right maximum participa-
tion constraint in the left mapping by forcing the
elements KB of R to be unique, that is, each B ele-
ment is assigned to at most one A element by the re-
lationship R. Similarly for the constraint KEY(R.KA)
in the right solution. Attributes of the relationship
R (if any) are included in the element R that repre-
sents the relationship.

2. A (0,1)
←→ R (1,1)

←→B. The suggested view is the left one
shown below. The element B is fully embedded into
element A; hence, no foreign key constraint is nec-
essary and the right minimum cardinality holds by
construction. The right maximum cardinality is cap-
tured by KEY(B.KB). Notice that the embedding is
not possible whenever the right minimum constraint
is 0 (as in case 1 above), as, in this case, it would
lead to the loss of all B elements that are not asso-
ciated with any A element. The embedding is not
possible whenever the right maximum constraint is
greater than 1 as well, as, in this case, it would
introduce data redundancy and would violate the
key constraint KEY(B.KB). The solution on the right
uses an additional key constraint to capture the left
maximum cardinality constraints and an extra for-
eign key constraint; moreover, it looses the chance
to nest the resulting structure.

A(KA,R?) B(KB,R)

R(B) R(KA)

B(KB) A(KA)

KEY(A.KA),KEY(B.KB) KEY(B.KB), KEY(A.KA),KEY(R.KA)

KEYREF(R.KA-->A.KA)

3. A (1,1)
←→ R (1,1)

←→B. There exist two symmetric map-
pings:

A(KA,R) B(KB,R)

R(B) R(A)

B(KB) A(KA)

KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA)

An additional flat encoding is possible but not sug-
gested:

A(KA,R)

R(KB)

B(KB)

KEY(A.KA),KEY(B.KB),KEY(R.KB)

KEYREF(R.KB-->B.KB), KEYREF(B.KB-->R.KB)
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In such a case, the right maximum constraint is
coded with KEY(R.KB), while the foreign key con-
straint KEYREF(B.KB --> R.KB) is used to capture
the right minimum constraint. The latter claims that
each B element must appear inside an R element of
A, that is, each B element must be associated with
at least one A element. Notice that this foreign key
constraint is possible since R.KB is a key (in XML
Schema, a foreign key cannot point to something
that is not a key).

4. A (0,1)
←→ R (0,N)

←→ B. The preferred mapping is shown
on the left below. The solution on the right uses
an extra constraint to capture the left maximum
cardinality constraint.

A(KA,R?) B(KB,R*)

R(KB) R(KA)

B(KB) A(KA)

KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA),KEY(R.KA)

KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

5. A (0,1)
←→ R (1,N)

←→ B. The suggested mapping is given
on the right below. As in the right solution to the
previous case, the constraint KEY(R.KA) captures
the left maximum cardinality constraint. The left
solution does not capture the right minimum car-
dinality constraint, which must be dealt with as an
external constraint (added with clause CHECK). To
force such a missing constraint, that is, to constrain
each B instance to be associated with at least one
A instance, one may be tempted to add the foreign
key KEYREF(B.KB --> R.KB). Unfortunately, a for-
eign key is allowed in XML Schema only if it refers
to a key and R.KB cannot be a key: the same B
instance can be associated with more than one A
instance and thus there may exist repeated B in-
stances under A, a situation that clearly violates
the key constraint.

A(KA,R?) B(KB,R+)

R(KB) R(KA)

B(KB) A(KA)

KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA),KEY(R.KA)

KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

CHECK("right min")

6. A (1,1)
←→ R (0,N)

←→ B. The best solution is the right one
below that uses the full nesting of elements. The op-
posite embedding, on the left, needs an extra keyref
constraint and it does not achieve full element nest-
ing.

A(KA,R) B(KB,R*)

R(KB) R(A)

B(KB) A(KA)

KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA)

KEYREF(R.KB-->B.KB)

7. A (1,1)
←→ R (1,N)

←→ B. The preferred mapping is the
right one below. The opposite embedding fails to

capture the right minimum cardinality constraint
(which must be dealt with as an external constraint)
and it uses an additional foreign key constraint.
A(KA,R) B(KB,R+)

R(KB) R(A)

B(KB) A(KA)

KEY(A.KA),KEY(B.KB) KEY(B.KB), KEY(A.KA)

KEYREF(R.KB-->B.KB)

CHECK("right min")

8. A (0,N)
←→ R (0,N)

←→ B. There exist two symmetric map-
pings:
A(KA,R*) B(KB,R*)

R(KB) R(KA)

B(KB) A(KA)

KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA)

KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

9. A (0,N)
←→ R (1,N)

←→ B. The best mapping is the right
one. The opposite embedding fails to capture the
right minimum cardinality constraint (which must
be dealt with as an external constraint).
A(KA,R*) B(KB,R+)

R(KB) R(KA)

B(KB) A(KA)

KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA)

KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

CHECK("right min")

10. A (1,N)
←→ R (1,N)

←→ B. There exist two symmetric map-
pings:
A(KA,R+) B(KB,R+)

R(KB) R(KA)

B(KB) A(KA)

KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA)

KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

CHECK("right min") CHECK("left min")

It is worth pointing out that both solutions need an
external constraint to check the minimum participa-
tion constraint: this is the only case in the mapping
of relationships where we have to resort to external
constraints in the preferred mapping.
An alternative bi-directional solution is the one that
pairs the two described mappings:
A(KA,R1+)

R1(KB)

B(KB,R2+)

R2(KA)

KEY(A.KA),KEY(B.KB)

KEYREF(R1.KB-->B.KB)

KEYREF(R2.KA-->A.KA)

CHECK("inverse relationship")

Such a solution captures all integrity constraints
specified at conceptual level. It imposes, however,
the verification of an additional inverse relationship
constraint, namely, if an instance x of A is inside an
instance y of B, then y must be inside x in the in-
verse relationship. Such a constraint is not express-
ible in XML Schema.
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Each of the six cases we did not explicitly deal with
is the inverse of one of the above-described ones. For
instance, A (0,N)

←→ R (0,1)
←→B is the inverse of case 4.

The general translation pattern for binary relation-
ships can be summarized as follows. The cardinality
constraint associated with the entity whose correspond-
ing element includes the element for the relationship,
say A, can be forced by occurs constraints, while the
way in which the cardinality constraint associated with
the other entity, say B, is imposed depends on its spe-
cific form. Inclusion of the element for B into the ele-
ment for R suffices for the cardinality constraint (1, 1).
Such a solution cannot be exploited in the other three
cases. All of them require the addition of a keyref
constraint of the form KEYREF(R.KB-->B.KB). In addi-
tion, the cardinality constraint (0, 1) needs a key con-
straint of the form KEY(R.KB), and an external con-
straint of the form CHECK("right min") (or of the form
CHECK("left min")) must be included to capture the
cardinality constraint (1, N).

The rules to translate binary relationships can be
generalized to relationships of higher degree as well as
to relationships with non-typical cardinality constraints,
e.g., the constraint (2, 10). For instance, let R be a
ternary relationship among A, B, and C, where A par-
ticipates in R with constraint (1, N), B participates in
R with constraint (0, 1), and C participates in R with
constraint (1, 1). The preferred mapping is the following
one:

A(KA,R+)

R(KB,C)

C(KC)

B(KB)

KEY(A.KA),KEY(B.KB),KEY(C.KC)

KEY(R.KB)

KEYREF(R.KB-->B.KB)

As a general rule, the translation of a relationship R of
degree n, with n > 2, has the following structure: the
outermost element corresponds to an entity that partic-
ipates in R with cardinality constraint (1, N). If there
is not such an entity, we choose an entity that partic-
ipates with cardinality constraint (0, 1). If there is not
such an entity as well, we choose one that participates
with cardinality constraint (0, N). If all entities partic-
ipate with cardinality constraint (1, 1), we will choose
one of them. Then, the element corresponding to R is
nested in the outermost element and it includes the ele-
ments, or the references to the elements, corresponding
to all the other entities. Such a translation avoids when-
ever possible the addition of external constraints and it
minimizes the number of internal constraints.
It goes without saying that, as an alternative, we can
preliminarily apply reification to replace every relation-
ship of higher degree by a corresponding entity related

to each participating entity by a suitable binary rela-
tionship, and then exploit the translation rules for bi-
nary relationships.

It is worth pointing out that, thanks to its hier-
archical nature, the XML logical model allows one to
capture a larger number of constraints specified at con-
ceptual level than the relational one. For all cardinality
constraints of the form (1, N), indeed, there is no way
to preserve the minimum cardinality constraint 1 in the
mapping of ER schemas into relational ones (as we will
see later on, the same happens with specializations [7]).

3.2.4 Weak entities and identifying relationships

A weak entity always participates in the identifying
relationship with cardinality constraint (1,1). Hence,
depending on the form of the second cardinality con-
straint, one of the cases discussed above applies. The
key of the element for the weak entity is obtained by
composing the partial key with the key of the owner
entity; moreover, the owner key in the element for the
weak entity must match the corresponding key in the
element for the owner entity. For instance, suppose we
have A (0,N)

←→ R (1,1)
←→B, where B is weak and owned by

A. The translation is:
A(KA,R*)

R(B)

B(KB, KA)

KEY(A.KA),KEY(B.KB, B.KA)

CHECK(B.KA=A.KA)

It is worth pointing out that the external constraint
CHECK(B.KA = A.KA) cannot be avoided. Indeed, sup-
pose we remove the owner key KA from the element for
the weak entity B, thus obtaining:
A(KA,R*)

R(B)

B(KB)

KEY(A.KA),KEY(B.KB,A.KA)

Unfortunately, the key constraint KEY(B.KB, A.KA)
cannot be expressed in XML Schema: on the one hand,
if we point the selector of the key schema element at
the level of the element A, then the field pointing to
KB is not valid, since it selects more than one node (A
may be associated with more than one B element if the
relationship is one-to-many). On the other hand, if we
point the selector at the level of the element B, then
the field referring to KA is not valid as well, since it
must use the parent or ancestor axes to ascend the tree,
but such axes are not admitted in the XPath subset
supported by XML Schema.1

Such a translation can be generalized to weak enti-
ties with identifying relationship of degree greater than
2 and with more than one identifying relationships.

1 Apparently, the authors of [8] repeatedly missed this point.
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3.2.5 Specialization

The hierarchical nature of the XML data model can be
fully exploited in the mapping of specializations. Let us
consider a parent entity A, with key KA, and two child
entities B, with attributes attB, and C, with attributes
attC. If the specialization is partial-overlapping, then
the possible mappings are the following:

A(KA,B?,C?) A(KA)

B(attB) B(KA,attB)

C(attC) C(KA,attC)

KEY(A.KA) KEY(A.KA),KEY(B.KA),KEY(C.KA)

KEYREF(B.KA-->A.KA)

KEYREF(C.KA-->A.KA)

The preferred solution is the left one, where both B
and C elements are embedded inside the element A.
Neither key nor foreign key constraints are necessary.
The partial-overlapping constraint is captured by using
the occurrence specifiers: an element A may contain any
subset of {B, C}.
If the specialization is total-overlapping, the mappings
are as follows (in flat solution to the right, the entity A
is discarded since the specialization is total):

A(KA, (B,C?) | C) B(KA,attB)

B(attB) C(KA,attC)

C(attC) KEY(B.KA),KEY(C.KA)

KEY(A.KA)

If the specialization is partial-disjoint, the mappings are
as follows:

A(KA, (B|C)?) A(KA)

B(attB) B(KA,attB)

C(attC) C(KA,attC)

KEY(A.KA) KEY(A.KA),KEY(B.KA|C.KA)

KEYREF(B.KA-->A.KA)

KEYREF(C.KA-->A.KA)

The key constraint KEY(B.KA | C.KA) in the right so-
lution forces disjointness: the value for KA must be
unique across the union of B and C domains.
Finally, a total-disjoint specialization can be encoded
as follows:

A(KA, (B|C)) B(KA,attB)

B(attB) C(KA,attC)

C(attC) KEY(B.KA|C.KA)

KEY(A.KA)

The generalization to specializations involving n >

2 child entities is immediate in all cases except for the
total-overlapping case. Let a1, . . . , an be the child en-
tities of a total-overlapping specialization. We indicate
with ρ(a1, . . . , an) the regular expression allowing all
non-empty subsets of child entities. Such an expression
can be recursively defined as follows:

ρ(a1, ..., an) =
{

a1 if n = 1
(a1, a2?, ..., an?)|ρ(a2, ..., an) if n > 1

publication(title, year, citations, reference*,

authorship+, (article | book)?)

reference(title)

authorship(name, contribution)

article(pages, abstract, (journal | conference))

journal(name, volume)

conference(name, place)

book(ISBN)

publisher(name, address, publishing+)

publishing(title)

author(name, affiliation+)

affiliation(institute, address)

KEY(publication.title), KEY(publisher.name)

KEY(author.name), KEY(publishing.title)

KEYREF(reference.title --> publication.title)

KEYREF(authorship.name --> author.name)

KEYREF(publishing.title --> publication.title)

Fig. 2 The mapping of the citation-enhanced bibliographic
database.

The size of the expression ρ(a1, . . . , an) is n · (n +
1)/2. Furthermore, the regular expression is determin-
istic, in the sense that its standard automata-theoretic
translation is a deterministic automaton. This is rele-
vant since both DTD and XML Schema content models
must be deterministic.

As in the case of higher-degree relationships, we can
actually replace specialization of a parent entity into k

child ones by k total functional binary identifying re-
lationships (one for each child entity), and then apply
translation rules for weak entities and identifying rela-
tonships.

So far we have discussed simple specializations: each
child entity inherits from exactly one parent entity. In
multiple specializations, a child entity may have more
than one parent entity. Multiple specializations break
the above nesting strategy. If only simple specializations
are used, the resulting structure is a tree that can be
naturally embedded in the tree-like XML data model.
On the contrary, that for multiple specializations is a
directed acyclic graph, which cannot be directly dealt
with such a data model. However, to encode multiple
specializations, we can use a flat encoding similar to the
relational mapping [7]. This approach uses key and for-
eign key constraints to encode the inclusion constraints
between child and parent entities and it avoids key du-
plications in the child entity when the parent entities
have a common ancestor in the specialization lattice.

We conclude the section with a simple example: the
mapping of the ER schema given in Figure 1, which
describes a citation-enhanced bibliography (a typical
semi-structured data instance), is reported in Figure 2.
The XML Schema version is available at the Chrono-
GeoGraph web site [1].
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author publication

article book publisher

journal conference

0:M 1:Mauthorship

cites 0:M

isCitedBy 0:M

reference

0:1

1:M

publishing

name
1:M

affiliation

insitute address

title

citation
year

ISBN

pages

abstract

name address

name

volume

name

place

contribution

Fig. 1 A citation-enhanced bibliographic database.

4 The XML nesting problem

In the following, we present an algorithm that maps ER
schemas into highly-nested XML Schema documents.
To keep the algorithm as simple as possible, we prelim-
inarily restructure the ER schema by removing higher-
order relationships and specializations. Every relation-
ship R with degree k greater than 2 is replaced by a
corresponding entity ER and k total functional binary
relationships linking ER to the entities participating in
R. Every specialization of a parent entity E into k child
entities E1, . . . , Ek is replaced by k total functional bi-
nary (identifying) relationships linking E to the (weak)
entities E1, . . . , Ek.

Then, translation rules described in the previous
section are applied to the elements of the restructured
ER schema. For each ER construct, the choice of the
specific translation rule to apply depends on the way in
which the construct occurs in the schema. Indeed, we
do not translate ER constructs in isolation, but an ER
schema including a number of related constructs. Con-
sider, for instance, the case of an entity E that partic-
ipates in two relationships R1 and R2 with cardinality
constraints (1, 1). As the element for E cannot be in-
cluded both in the element for R1 and in that for R2,
the preferred translation rule can be applied to one of
the relationships only, while for the other relationship
we must resort to the alternative translation rule. As
we will see, in order to select the relationship to which
the preferred translation rule must be applied, the pro-
posed algorithm takes into account the effects of the
different choices on the nesting degree of the resulting
XML structure.

Increasing the nesting degree of the XML structure
has two main advantages. The first one is the reduction
of the validation overhead thanks to the reduction of

the number of constraints in the mapped schema; the
second one is the decrease in the number of (expensive)
join operations needed to reconstruct information at
query time: highly nested XML documents can be bet-
ter exploited by tree-traversing XML query languages
like XPath. As a source of exemplification, consider the
following example. Suppose we want to model a one-to-
one relationship manages between an entity manager,
with attributes ssn and name (ssn is the key), and an
entity department, with attributes name and address
(name is the key). A manager manages exactly one
department and a department is directed by exactly
one manager. Given the corresponding ER fragment,
the XML Schema documents produced by the flat and
nested mappings are the following:

// flat mapping

manager(ssn, name, manages)

manages(name)

department(name, address)

KEY(manager.ssn)

KEY(department.name)

KEY(manages.name)

KEYREF(department.name --> manages.name)

KEYREF(manages.name --> department.name)

// nested mapping

manager(ssn, name, manages)

manages(department)

department(name, address)

KEY(manager.ssn)

KEY(department.name)

Notice that nesting saves three constraints over five
(one key and two foreign keys). Furthermore, suppose
we want to retrieve the address of the department di-
rected by Bob Strunk. Two XPath versions of this query
are given below, one working over the flat schema and
the other tailored to the nested one:

// flat mapping
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/department[name=/manager[name="Bob Strunk"]/manages

/name]/address

// nested mapping

/manager[name="Bob Strunk"]/manages/deparment/address

The first version of the query joins, in the first filter, the
name of the current department and the name of the
department directed by Bob Strunk. This amounts to
jump from the current node to the tree root. The second
version of the query fluently traverses the tree without
jumps. Similarly if the query is written in XQuery. We
expect the second version of the query to be processed
more efficiently by XML query processors.

According to the rules for the translation of binary
relationships given in Section 3, nesting comes into play
in the translation of total functional relationships only,
that is, relationships such that (at least) one of the par-
ticipating entities has cardinality constraint (1, 1). As
a general policy, the translation algorithm introduces
a nesting whenever possible. However, as we already
pointed out, a conflict arises when an entity participates
in two or more relationships with cardinality constraint
(1, 1) (nesting confluences). In addition, nesting loops
may occur. Both nesting confluences and nesting loops
must be broken to obtain a hierarchical nesting struc-
ture. We call the problem of finding the best nesting
structure that eliminates nesting confluences and nest-
ing loops the nesting problem. In the following, we pro-
vide a graph-theoretic formalization of such a problem
and we propose and contrast possible solutions to it.

Let S be the restructured ER schema. We build a
directed graph (digraph for short) G = (V, E), whose
nodes are the entities of S that participate in some total
functional binary relationship and (A,B) ∈ E if there
is a total functional relationship R relating entities A

and B such that B participates in R with cardinality
constraint (1, 1). The direction of the edges models the
entity nesting structure, that is, (A,B) ∈ E if (the ele-
ment for) entity A contains (the element for) entity B.
We call G the nesting graph of S. A nesting confluence
corresponds to a node in the graph with more than one
predecessor and a nesting loop is a graph cycle.

A spanning forest is a subgraph F of G such that:
(i) F and G share the same node set; (ii) in F , each
node has at most one predecessor; (iii) F has no cycles.
A root in a forest is a node with no predecessors. The
depth of a node in a forest is the length of the unique
path from the root of the tree containing the node to
the node. Notice that a root has depth 0. The nest-
ing problem can be formalized in terms of the following
two problems: (i) given a digraph G, find a spanning
forest with the maximum number of edges (maximum
density problem), and (ii) given a digraph G, find a

0 4 3

5

12

6 7

Fig. 3 A maximum density spanning forest for the given digraph
is obtained by removing edges (1,2), (2,3), and (3,4). It consists
of one tree, with 7 edges, and the sum of node depths is 19. A
maximum depth spanning forest is the simple path from node 1
to node 7 plus node 0. It consists of 2 trees, with 6 edges in total,
and the sum of node depths is 21. Both solutions are unique.

spanning forest with the maximum sum of node depths
(maximum depth problem). Both problems always ad-
mit a solution, which is not necessarily unique. The
reader might wonder if a spanning forest with maxi-
mum density is also a spanning forest with maximum
depth. Unfortunately, the answer in negative, as shown
by the example depicted in Figure 3.

It is not difficult to see that the maximum depth
problem is close to the Hamiltonian path problem. Given
a graph G, the Hamiltonian path problem over G is
the problem of deciding whether there exists a path
in G that visits each node exactly once. The Hamilto-
nian path problem is NP -complete (see, e.g., [9]). We
first show that the Hamiltonian path problem can be
reduced to the maximum depth one. From the NP -
completeness of the former, it immediately follows that
the latter is hard and, unless P = NP , there exists no
efficient algorithm that solves it.

Theorem 1 Let G be a digraph. The maximum depth
problem for G is NP -complete.

Proof Let us introduce some notations. Given a digraph
G and a spanning forest F for G, we denote by SF the
sum of node depths in F . We say that F is a chain if
|V |−1 nodes in F have one child (successor) and 1 node
is a leaf.

We first prove that given a digraph G and a span-
ning forest F for G, it holds that:

(1) SF ≤ |V |·(|V |−1)
2 ;

(2) if F is not a chain, then SF < |V |·(|V |−1)
2 .

Let n = |V |. Depths of nodes in F range from 0 to
n−1, and thus we may partition F nodes as follows: k0

nodes at depth 0, k1 nodes at depth 1, . . ., kn−1 nodes at
depth n−1, where

∑n−1
j=0 kj = n and

∑n−1
j=0 kj · j = SF .

We prove by induction on the depth i ∈ [0, n − 1]
that if SF is the maximum possible value over all the
graphs having n nodes, then ki = 1.

Base Case (i = 0). Nodes at depth 0 do not con-
tribute to SF . Hence, it is convenient to have the min-
imum possible number of such nodes. Since there must



11

be at least one root in F , the value for k0 which maxi-
mizes SF is 1. By contradiction, suppose that G is the
complete digraph over n nodes. If F is a spanning forest
with more than one node at depth 0, then we can find
F ′ such that SF ′ > SF as follows: we choose one of the
nodes at depth 0 and we add to F all the edges going
from that node to the other nodes at depth 0.

Inductive Step (0 < i ≤ n − 1). We assume that
k0 = k1 = . . . = ki−1 = 1, and we prove that ki = 1. By
inductive hypothesis, there is one node at depth i− 1.
Moreover, since i ≤ n− 1, by the inductive hypothesis,
it also holds that

∑i−1
j=0 kj ≤ n − 1. Since we cannot

have nodes at depth greater than i without having at
least one node at depth i, we can conclude that there is
at least one node at depth i. Let G be the complete di-
graph over n nodes. If F is a spanning forest with more
than one node at depth i, say, vi

1, . . . , v
i
k, then we can

find F ′ such that SF ′ > SF as follows: we choose one
node at depth i, say vi

1, we remove from F all the edges
connecting the (only) node at depth i− 1 to vi

2, . . . , v
i
k,

and we add all the edges going from vi
1 to vi

2, . . . , v
i
k. In

such a way, vi
2, . . . , v

i
k, as well as all their descendants,

increase their depth by 1 and there are not nodes whose
depth is decreased. This allows us to conclude that, in
order to maximize SF , ki must be equal to 1.

It immediately follows that SF ≤ ∑n−1
j=0 1 · j =

n·(n−1)
2 (item (1)).
Item (2) easily follows as well. We have shown that,

in order to get the maximum possible value for SF , that
is, n·(n−1)

2 , there must be exactly one node at depth i,
for each i from 0 to n − 1, which amounts to say that
F must be a chain. Hence, if F is not a chain, we get
SF < n·(n−1)

2 (item (2)).
We now prove that given a digraph G, the following

problems are equivalent:

(i) G has an Hamiltonian path;
(ii) every solution F of the maximum depth problem

for G is such that SF = |V |·(|V |−1)
2 ;

(iii) every solution F of the maximum depth problem
for G is a chain.

In order to prove the equivalence, we show that (i)
implies (ii), (ii) implies (iii), and (iii) implies (i).
(i) implies (ii). If G has an Hamiltonian path H, then
H is a spanning forest for G. Moreover, since H is a
chain, SH = |V |·(|V |−1)

2 . As, by item (1), |V |·(|V |−1)
2 is

an upper bound over all the possible spanning forests,
it follows that H is a solution of the maximum depth
problem, and thus all the solutions have sum of depths
|V |·(|V |−1)

2 .
(ii) implies (iii). It immediately follows from item (1)
and item (2) (by contraposition).

0

1

2

3

4 5 6 7 8

Fig. 4 A maximum depth spanning forest for the given digraph
can be obtained by removing edge (1,0). It consists of one tree,
whose sum of node depths is 23. Its maximum out-degree is 3. A
minimum out-degree spanning forest can be obtained by remov-
ing edge (0,1). It consists of one tree whose sum of node depths
is 20 and maximum out-degree is 2.

(iii) implies (ii). If every solution of the maximum depth
problem is a chain, then we can extract at least one
chain from G, and any such chain is an Hamiltonian
path for G.

Hence, we have that G has an Hamiltonian path if
and only if SF = |V |·(|V |−1)

2 for every solution F of the
maximum depth problem for G. As SF can be computed
from F in polynomial time, it immediately follows that
the maximum depth problem for G is NP -hard.

To conclude, let us consider the problem of deciding
whether a digraph has a spanning forest of depth k. It
is easy to see that such problem is in NP , since given a
spanning forest F , SF can be computed in polynomial
time. As SF has an upper bound which is polynomial in
the size of the digraph (item 1), the corresponding opti-
mization problem, that is, the maximum depth problem
for G, is in NP . ut

As a matter of fact, the maximum depth problem
is close to various other problems studied in the litera-
ture. As an example, the problem of finding a spanning
tree whose maximum out-degree (number of children of
a node) is minimum is a generalization of the Hamil-
tonian path problem and different approximation algo-
rithms have been proposed to solve it (see, e.g., [10,
11]). One may expect a spanning forest with minimum
out-degree to be a maximum depth spanning forest, and
vice versa. Unfortunately, this is not the case, as shown
by the digraph in Figure 4. In [12], it has been shown
that, given an indirected graph, the problem of finding
a longest path is not constant approximable in poly-
nomial time, unless P = NP . In [13], such a result is
extended to the case of cubic Hamiltonian graphs. In
[14], the above results are exploited to prove that, given
an indirected graph, the problem of finding a spanning
tree with maximum sum of distances from a specified
root is not constant approximable in polynomial time,
unless P = NP . The maximum depth problem we are
interested in differs from such a problem in three re-
spects: (i) it refers to digraphs, (ii) spanning forests,
instead of spanning trees, are considered, and (iii) there
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is not an input root. However, the result in [14] can be
easily generalized to the case in which the graph is con-
nected and the root is not given in input, as it builds
on the results reported in [13], where the graphs are
Hamiltonian (and, thus, connected) and there is not an
input root. Hence, it holds that, given a connected undi-
rected graph, the problem of finding a rooted spanning
tree which has maximum sum of distances from its root
(undirected maximum depth problem) is not constant
approximable in polynomial time, unless P = NP . The-
orem 2 shows that such a result can actually be tailored
to digraphs.

As a preliminary step, we prove a meaningful prop-
erty of strongly connected digraphs. The strongly con-
nected components of a digraph are maximal sets of mu-
tually reachable nodes. A digraph is strongly connected
if it consists of one strongly connected component.

Lemma 1 Let G = (V, E) be a strongly connected di-
graph G = (V, E) such that (u, v) ∈ E if and only if
(v, u) ∈ E. It holds that if F is a maximum depth span-
ning forest for G, then F is a tree.

Proof Let us assume, by contradiction, that F consists
of n trees T1, . . . , Tn, with n > 1. Since G is strongly
connected, there is at least one node r in T1 which
reaches at least one node s belonging to Tj , for some
j 6= 1, that is, (r, s) ∈ E. Let h be the depth of r in T1,
k be the depth of s in Tj , Sr be the subtree of T1 rooted
at r, and Ss be the subtree of Tj rooted at s. If h ≥ k,
then we can remove Ss from Tj and add it to T1 using
the edge (r, s). In such a way, we get a new forest where
the depths of the nodes belonging to Ss are increased,
while all the other depths remain unchanged. This con-
tradicts the assumption that F is a maximum depth
spanning forest. Otherwise (h < k), from (r, s) ∈ E,
it immediately follows that (s, r) ∈ E as well. Hence,
the same argument can be applied: we remove Sr from
T1 and add it to Tj using the edge (s, r). Again, this
contradicts the assumption that F is a maximum depth
spanning forest. ut
Theorem 2 Unless P = NP , there is no constant ra-
tio approximation algorithm for the maximum depth
problem.

Proof Let µ be the function that maps any undirected
graph G into a corresponding digraph µ(G) such that,
for all u, v ∈ V , there exists a pair of edges (u, v) and
(v, u) in µ(G) if (and only if) there exists an edge be-
tween u and v in G. Moreover, let π be the function
that maps any undirected rooted tree T into a corre-
sponding directed rooted tree π(T ) such that, for all
u, v ∈ V , there exists an edge (u, v) in π(T ) if (and only
if) there exists an edge between u (the parent) and v

(the child) in T . Clearly, π is a bijection. Let G be an
undirected graph and T be a rooted spanning tree for
G with sum of depths equal to t. We have that π(T ) is a
rooted spanning tree for µ(G) with sum of depths equal
to t. Moreover, if S is a rooted spanning tree for µ(G)
with sum of depths equal to s, then π−1(S) is a rooted
spanning tree for G with sum of depths equal to s. Fi-
nally, if G is connected, then µ(G) is strongly connected
and hence, by Lemma 1, each maximum depth span-
ning forest for µ(G) consists of a single tree. Hence, the
existence of a constant ratio approximation algorithm
for the maximum depth problem would imply the ex-
istence of a constant ratio approximation algorithm for
the undirected maximum depth problem, and this last
may exist only if P = NP . ut

We now focus our attention on the relationships
between the maximum depth problem and the maxi-
mum density one. Let us consider the case of Directed
Acyclic Graphs (DAG). As a matter of fact, the di-
graph depicted in Figure 4, showing that maximum
density spanning forests are in general different from
maximum depth ones, is not a DAG. We can ask our-
selves whether the same may happen with DAGs. It is
easy to show that there exist maximum density span-
ning forests which do not maximize the sum of node
depths even if the graph is a DAG. Nevertheless, the
next theorem shows that, for any given DAG, a maxi-
mum depth spanning forest is also a maximum density
spanning forest.

Theorem 3 Let G = (V,E) be a DAG and let F be
a maximum depth spanning forest for it. Then, F is a
maximum density spanning forest for G.

Proof If F is a tree, then the thesis immediately follows.
Let F consist of n > 1 trees T1, . . . , Tn with roots r1,
. . . , rn, respectively. Suppose, by contradiction, that F

does not maximize density. Then, there exists a span-
ning forest F ′ consisting of m trees S1, . . . , Sm, with
m < n. By the pigeonhole principle, there exist i, j ≤ n

and k ≤ m such that both ri and rj belong to Sk.
Hence, at least one between ri and rj is not the root of
Sk. Without loss of generality, we may assume that ri

is not the root of Sk. Let p be the predecessor of ri in
Sk. The edge (p, ri) is in Sk and hence in G. Since G is
a DAG and (p, ri) is an edge of G, p does not belong to
the tree Ti of F rooted at ri. Hence, if we add to the
forest F the edge (p, ri), we get a new forest F ′′ with
n−1 trees. In F ′′, each node belonging to F \Ti has the
same depth as in F , while each node belonging to Ti

increases his depth by depthF (p) + 1, where depthF (p)
is the depth of p in F . Hence, F ′′ has a depth greater
than F , which contradicts the hypothesis that F is a
maximum depth spanning forest. ut
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Nodes of a DAG can be partitioned into different
strata using a suitable notion of rank (see, e.g., [15]).

Definition 1 Let G = (V, E) be a DAG. For each v ∈
V , we define rankG(v) as follows:

rankG(v) =

{
0 if v is a leaf
max{rankG(u) + 1 | (v, u) ∈ E} otherwise

According to Definition 1, the rank of a node v is the
length of the longest path from v to a leaf. Now, given
a DAG G, let G−1 be the DAG obtained by reversing
all the edges of G. For all v ∈ G, rankG−1(v) is the
length of the longest path in G from a root to v. Hence,
rankG−1(v) can be viewed as the maximum depth at
which we can push v in a spanning forest for G.

In the following, we provide a linear time algorithm,
called Maximum Density, that solves the maximum den-
sity problem for digraphs as well as the maximum depth
problem for the subclass of DAGs. Given a digraph G,
the algorithm first computes the graph H of its strongly
connected components. The nodes of H are the strongly
connected components of G and (Cj , Ci) is an edge of
H if and only if there exist u ∈ Cj and v ∈ Ci such
that (u, v) is an edge in G. H is always a DAG, and
Maximum Density operates on it by taking advantage
of the notion of rank. Maximum Density consists of the
following steps:

1. compute the graph H of the strongly connected
components of G (let C = {C1, . . . , Cn} be the set
of nodes of H);

2. compute a maximum density spanning forest K =
(C,EK) for H as follows:
(i) compute H−1 and, for each node Ci, the rank

rankH−1(Ci);
(ii) for each node Ci in H, if Ci is not a root node

in H, then pick a node Cj such that (Cj , Ci) is
in H and rankH−1(Cj) = rankH−1(Ci) − 1 and
add the edge (Cj , Ci) to EK ;

3. compute a set of edges E′ as follows: for each edge
(Cj , Ci) ∈ Ek, pick an edge (u, v) such that (u, v) ∈
E, u ∈ Cj and v ∈ Ci and add (u, v) to E′;

4. for each strongly connected component Ci of G:
(a) if there is an edge (u, v) in E′ with v in Ci, then

compute a tree Ti = (Ci, Ei) rooted at v and
spanning Ci;

(b) else pick a node v in Ci and compute a tree Ti =
(Ci, Ei) rooted at v and spanning Ci;

5. output the forest F = (V, E′ ∪ E1 ∪ E2 ∪ . . . ∪ En).

Lemma 2 The spanning forest K generated by step 2
of the algorithm Maximum Density is a maximum depth
spanning forest for H.

Proof By Definition 1, we have that if Ci is not a root,
then there exists at least one node Cj such that (Cj , Ci)

is in H and rankH−1(Cj) = rankH−1(Ci)−1. Moreover,
K is a spanning forest for H, since for each node Ci of
H, K contains at most one incoming edge (Cj , Ci). We
show that K maximizes the depth by proving that for
each node Ci of H, Ci has maximum depth in K, that
is, its depth is equal to rankH−1(Ci). We proceed by
induction on rankH−1(Ci). If rankH−1(Ci) = 0, then
Ci is a leaf in H−1 and a root in H. In such a case,
the maximum depth for Ci in any spanning forest for
H is 0, as it has no incoming edges in H. Hence, Ci is
a root in K, that is, it is at depth 0 in K, and thus the
thesis holds. Let us assume that the thesis holds for all
nodes of rank at most h and let rankH−1(Ci) = h + 1.
At step 2, Maximum Density picks a node Cj such that
(Cj , Ci) is in H and rankH−1(Cj) = h. By the inductive
hypothesis, Cj is at depth h in K, and thus we have that
Ci is at depth h + 1 in K. ut
Since H is a DAG, from Theorem 3, it follows that K

is also a maximum density spanning forest for H.

Theorem 4 Let G be a digraph. The algorithm Max-
imum Density computes a maximum density spanning
forest for G in linear time.

Proof First, we observe that, given a spanning forest F ,
every root in F has no incoming edges and any node in
F which is not a root has exactly one incoming edge.
Hence, given a digraph G with n nodes, a spanning for-
est F for G has n−k edges if and only if it has k roots.
It immediately follows that the maximum density prob-
lem is equivalent to the problem of finding a spanning
forest with the minimum number of roots.

We prove the thesis by induction on the number of
strongly connected components of G.

Basic case. If G has one strongly connected com-
ponent only, then H has one node and no edges, and
thus K has no edges and E′ is empty. Maximum Density
picks a node v of G and it computes a tree T rooted at v

and spanning G. Hence, Maximum Density outputs the
tree T , which is a maximum density spanning forest.

Inductive step. Let us assume the thesis to be true
for digraphs with n strongly connected components and
let G be a digraph with n + 1 strongly connected com-
ponents C1, . . . , Cn+1. Since H is a DAG, at least one
node in H is a leaf. Without loss of generality, we as-
sume C1 to be a leaf. Let G \C1 be the subgraph of G

obtained by removing all nodes in C1 and all edges in-
volving nodes in C1. Since C1 is a leaf in H, its removal
does not affect the computation, that is, the forest F is
a possible output of Maximum Density on G if and only
if the forest F \ C1, obtained by removing all nodes in
C1 and all edges involving nodes in C1, is a possible
output of Maximum Density on G \ C1. By the induc-
tive hypothesis, the thesis holds for G \ C1. Let k be
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the number of roots of the maximum density spanning
forest for G\C1 computed by Maximum Density (which
is also a spanning forest with the minimum number of
roots). Two cases are possible:

(a) in G there exists an edge (u, v) with u 6∈ C1 and
v ∈ C1;

(b) there exist no such edges in G.

In case (a), since C1 is a leaf and it is reachable from
at least one (other) strongly connected component, a
maximum density spanning forest for G is a spanning
forest for G having k roots. In this case, by Lemma 2,
we have that the spanning forest K for H generated by
step 2 of the algorithm is a maximum depth one, and
thus C1 is not a root of K. Hence, the execution of step
3 of the algorithm adds an edge (u, v) to E′ for some
v ∈ C1. Then, at the subsequent step, the algorithm
computes a tree T1, rooted at v, which spans C1. By
the inductive hypothesis, Maximum Density is correct
on G \C1, and thus (V \C1, (E′ \ {(u, v)})∪E2 ∪ . . .∪
En+1) has k roots. Since (u, v) is in E′ and T1 is rooted
at v, (V, E′ ∪E1 ∪E2 ∪ . . .∪En+1) has k roots, that is,
Maximum Density is correct on G.
In case (b), since C1 is an isolated node in H, a maxi-
mum density spanning forest for G is a spanning forest
for G having k+1 roots. In this case, Maximum Density
picks a node v in C1 and it computes a tree T1, rooted
at v, which spans C1. By inductive hypothesis, Maxi-
mum Density is correct on G\C1, and thus (V \C1, E

′∪
E2 ∪ . . .∪En+1) has k roots. Hence, (V, E′ ∪E1 ∪E2 ∪
. . . ∪ En+1) has k + 1 roots, that is, Maximum Density
is correct on G.

To prove that Maximum Density has a linear time
complexity, it suffices to observe that: (i) H can be com-
puted in linear time by exploiting Tarjan’s algorithm;
(ii) H−1 can be computed in linear time exploiting a
visit over H; (iii) all ranks over H−1 can be computed
in linear time by taking advantage of a DFS-visit over
H−1 (see [15]); (iv) the edges of K can be chosen in
linear time by exploiting a visit over H; (v) each edge
(Cj , Ci) of K can be replaced by a suitable edge (u, v)
in constant time, by keeping pointers to the edges of G;
and (vi) since a spanning tree of Ci can be computed
in time linear in the size of Ci, the time required to
compute T1, . . . , Tn is linear in the size of G. ut

By Theorems 1 and 2, we know that there is no guar-
antee about the goodness of the spanning forest com-
puted by Maximum Density with respect to the maxi-
mum depth problem. There are two critical aspects: (i)
the use of the acyclic graph of strongly connected com-
ponents, and (ii) the problem of determining a maxi-
mum depth spanning tree for any given strongly con-
nected component. Let us consider the digraph in Fig-

ure 3. It features 5 strongly connected components,
namely, C1 = {0}, C2 = {4, 3, 2, 1}, C3 = {5}, C4 =
{6}, and C5 = {7}. The DAG of its strongly connected
components consists of one tree, rooted at C1, with
edges (C1, C2), (C2, C3), (C3, C4), and (C4, C5) which
are replaced by edges (0, 4), (4, 5), (5, 6), and (6, 7), re-
spectively, at step 3. Then, a tree T2, rooted at node
4, spanning C2 is computed, which contains the edges
(4, 3), (3, 2), and (2, 1). All the other trees, namely, T1,
T3, T4, and T5, consist of a single node. The maximum
density spanning forest returned by Maximum Density
consists of a single tree, whose sum of depth is 19. As
we already pointed out, the maximum depth spanning
forest for the digraph in Figure 3 consists of 2 trees and
has depth 21. The situation is different if we restrict
our attention to DAGs.

Theorem 5 Let G be a DAG. The algorithm Maxi-
mum Density computes a maximum depth spanning for-
est for G in linear time.

Proof Since G is a DAG, each strongly connected com-
ponent of G consists of a single node and thus G is
isomorphic to H. Hence, from Lemma 2, it immedi-
ately follows that Maximum Density computes a maxi-
mum depth spanning forest for G. ut

To make the translation algorithm more flexible,
we introduce a constrained variant of the considered
problems that gives the designer the possibility to im-
pose the application of the preferred translation rule
to some relationships, e.g., those involved in frequently
asked/dominant queries (see Section 6). Formally, this
amounts to force the maintenance of some edges of the
original digraph. The constrained variants of the maxi-
mum density and maximum depth problems are defined
as follows. Given a digraph G and a set of its edges C,
find a spanning forest, containing all edges in C, with
the maximum number of edges (constrained maximum
density problem), and find a spanning forest, containing
all edges in C, with the maximum sum of node depths
(constrained maximum depth problem). Obviously, the
constrained versions of the problems may lack a solu-
tion. As an example, if the edges in C form a loop, then
there is not a solution. Moreover, the solution of the
constrained version does not necessarily coincide with
that of the original problem, as shown in Figure 5.

As a preliminary step, we identify the conditions
which ensure the existence of a solution. Let C be a set
of edges, a confluence in C is a pair of edges of C with
the same target node, that is, a pair of edges (u, v) and
(w, v), for some u, v, w in G.

Lemma 3 Let G = (V, E) be a digraph and C ⊆ E.
The constrained maximum density (resp., depth) prob-
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2 3

Fig. 5 Different solutions to the maximum density problem for
the given digraph exist, each one consisting of 1 tree with 3 edges.
None of them contains the edge (3,2). A maximum density span-
ning forest containing the edge (3,2) necessarily consists of 2 trees
with 1 edge each.

lem has a solution if and only if neither loops nor con-
fluences occur in C.

Proof On the one hand, it is easy to check that if C

contains a loop or a confluence, then there exists no
forest F including all edges in C. On the other hand,
if neither loops nor confluences occur in C, the digraph
G′ = (V,C) is a spanning forest for G, and thus the
problems have a solution. ut

The complexity of the constrained maximum depth
problem is the same of its unconstrained version.

Theorem 6 Let G = (V, E) be a digraph and C ⊆ E.
The constrained maximum depth problem for G and C

is NP -complete. Moreover, unless P = NP , there is no
a constant ratio approximation algorithm for it.

Proof NP -hardness immediately follows from Theorem
1 (take C = ∅). To show that it is in NP , consider the
problem of deciding whether a digraph has a spanning
forest of depth k containing all edges in C. Such a prob-
lem is in NP , since given a spanning forest F , both
computing its depth and checking that it contains all
edges in C can be done in polynomial time. Hence, since
the depth of F has an upper bound which is polynomial
in the size of the graph size (see the proof of Theorem
1), it follows that the corresponding optimization prob-
lem, that is, the constrained maximum depth problem,
is in NP . The last part of the thesis is an immediate
consequence of Theorem 2 (take C = ∅). ut

We now show that the constrained maximum den-
sity problem can be effectively reduced to the maximum
density one. Let Constrained Maximum Density be the
following algorithm, which takes a digraph G = (V,E)
and a set C ⊆ E as input:

1. check that C contains neither loops nor confluences;
otherwise, stop with failure (it has no solution);

2. compute the set of target nodes T = {v|∃(u, v) ∈ C}
in C;

3. compute the graph G = (V,E) such that (u, v) ∈ E

iff (u, v) ∈ C ∨ (v 6∈ T ∧ (u, v) ∈ E);
4. apply Maximum Density to G (let F be the output

it produces);

5. for each edge (u, v) ∈ C, if (u, v) 6∈ F , then let (r, s)
be an edge on the path from v to u in F such that
(r, s) 6∈ C. Replace (r, s) by (u, v) in F ;

6. output the forest F .

Theorem 7 Let G = (V,E) be a digraph and let C ⊆
E. Constrained Maximum Density solves the constrained
maximum density problem for G and C in linear time.

Proof First, by Lemma 3, we have that the algorithm
terminates before step 4 if and only if the problem has
no solution. Second, since G is a subgraph of G with the
same set of nodes as G, the spanning forest F computed
by step 4 is a spanning forest for G as well. Third, step
5 does not modify the number of edges.

Let F be the output of the algorithm. We show that
(i) F is a spanning forest for G, and (ii) it is a maximum
density spanning forest for G under the constraint that
it must include all edges in C.

As far as item (i) is concerned, let F be the span-
ning forest computed by step 4 and let (u, v) ∈ C be
such that (u, v) 6∈ F . We prove that v is a root of F

and u belongs to the tree rooted at v. By contradic-
tion, suppose that v is not a root of F . Hence, v has
a predecessor in F . Since (u, v) is the only edge in G

entering v, the predecessor of v in F must be u, against
the hypothesis that (u, v) 6∈ F (contradiction). Now,
again by contradiction, suppose that u does not belong
to the tree rooted at v. Let F

′
be F ∪ {(u, v)}. The

addition of (u, v) to F introduces neither confluences
(v has no predecessors in G, and thus in F , different
from u) nor cycles (there is not a path from v to u in
F ), and thus F

′
is a spanning forest for G with more

edges than F , which is a maximum density spanning
forest for G (contradiction). The existence of an edge
(r, s) 6∈ C in the path from v to u immediately follows
from the fact that we execute step 5 only if C has no
cycles. Hence, each iteration of the for-loop in step 5
replace a spanning forest for G by another one with the
same number of edges.

As far as item (ii) is concerned, suppose, by con-
tradiction, that there exists a spanning forest F ′ for G

containing all edges in C with a number of edges greater
than the spanning forest F returned by the algorithm.
Since F ′ contains all edges in C, F ′ is also a spanning
forest for G. Hence, there exists a spanning forest for
G with a number of edges greater than the number of
edges of the spanning forest produced by step 4 (con-
tradiction).

As for the complexity, Maximum Density works in
linear time and all the other steps have linear time com-
plexity. Hence, Constrained Maximum Density has linear
time complexity. ut
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We conclude the section by showing that in the case
of DAGs, Constrained Maximum Density also computes
a constrained maximum depth spanning forest.

Lemma 4 Let G = (V, E) be a DAG and C ⊆ E which
does not contain confluences. Let T = {v | ∃(u, v) ∈ C}
and G = (V,E) be such that (u, v) ∈ E iff (u, v) ∈
C ∨ (v 6∈ T ∧ (u, v) ∈ E). If F is a solution of the
maximum depth problem for G, then F is also a solution
of both the constrained maximum depth problem and the
constraint maximum density problem for G and C.

Proof Since G is a DAG, G is a DAG. Moreover, each
spanning forest for G is a spanning forest for G. We
show that all edges (u, v) ∈ C belong to F . By contra-
diction, suppose that there exists (u, v) ∈ C such that
(u, v) 6∈ F . Since (u, v) is the only edge entering v in
G and (u, v) 6∈ F , v is a root of F . Now, let Tv be the
tree of F rooted at v. Since (u, v) ∈ E and G is a DAG,
u does not belong to Tv. Hence, F

′
= F ∪ {(u, v)} is

a spanning forest for G and its depth is greater than
that of F , against the hypothesis that F is a maximum
depth spanning forest for G (contradiction).

We prove now that F has maximum depth over all
spanning forests for G containing all edges in C. By
contradiction, suppose that there exists a spanning for-
est F for G, containing all edges in C, whose depth is
greater than that of F . F is also a spanning forest for
G, against the hypothesis that F is a maximum depth
spanning forest for G (contradiction).

Finally, we show that F has maximum density over
all spanning forests for G containing all edges in C.
By contradiction, suppose that there exists a spanning
forest F for G containing all edges in C, whose density is
greater than that of F . F is also a spanning forest for G.
However, since F is a maximum depth spanning forest
for G, by Theorem 3, F is also a maximum density
spanning forest for G (contradiction). ut

Theorem 8 Let G = (V,E) be a DAG and let C ⊆
E. Constrained Maximum Density solves the constrained
maximum depth problem for G and C in linear time.

Proof If G is a DAG, then also G is a DAG. Hence,
by Theorem 5, Maximum Density computes a maximum
depth spanning forest for G. By Lemma 4, the output
of step 4 is also a solution to the constrained maxi-
mum depth problem for G and C (it contains all edges
in C). Hence, step 5 does nothing and the output of
Constrained Maximum Density is also a maximum depth
spanning forest for G. ut

5 Implementation and experimental evaluation

We have developed two implementation modules in the
Java programming language. The first module, the trans-
lator, implements the mapping from ER to XML Schema.
It takes the (restructured) ER schema and the associ-
ated maximum density spanning forest as input and
it returns the corresponding XML Schema document.
Each ER construct is associated with a Java class con-
taining a method translating the conceptual construct
to a corresponding schema fragment. Those (few) in-
tegrity constraints that are not captured within XML
Schema, due to lack of expressiveness of the schema lan-
guage, are annotated using the appinfo element of XML
Schema. The translator takes advantage of JDOM pack-
age to create the schema elements and to serialize the
schema document.

The second module is the validator. The validation
is split in two parts: the check of those constraints that
are expressible in XML Schema, which is performed
using the validation package provided in Java API for
XML Processing (JAXP, the standard API for XML
included in the Java platform), and the verification of
additional constraints not expressible in XML Schema,
which is implemented by retrieving the annotated con-
straints with the aid of JDOM and by checking them
with the additional code that we implemented.

The two modules have been integrated into Chrono-
GeoGraph (CGG) [16], a software framework for the
conceptual and logical design of spatio-temporal data-
bases. The core of the framework is the CGG model, a
conceptual model that extends the ER model with ad-
ditional constructs for spatio-temporal information [17,
18]. The CGG tool has a graphical interface that al-
lows one to draw CGG conceptual schemas. Moreover,
it has a working module that translates a CGG con-
ceptual schema into a relational logical schema and a
separate module, on which the devised translation has
been embedded, that maps the CGG conceptual schema
into XML Schema.

In the following, we present and discuss the out-
comes of the experimentation of (the proposed exten-
sion of) CGG on a typical XML benchmark. As ex-
pected, we have that both validation and query pro-
cessing are (often significantly) more efficient on nested
designs than on corresponding flat schemas. Ultimately,
our experiments empirically prove that there exists a
real advantage in using the semistructured and hierar-
chical data model of XML, instead of the structured
and flat relational data model.

The experimental setup is the following. We take
advantage of the well-known XML benchmark XMark
[3]. XMark models an Internet auction web site in which
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Fig. 6 The XMark conceptual schema.
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Fig. 7 The XMark nesting graph. The maximum depth nesting
forest is highlighted in bold.

people watch ongoing open auctions, biding for the items
on sale. People may also sell and buy items, and they
may declare their interests with respect to categories
of items. When an item is sold in an auction, the auc-
tion is declared closed with a given price. A (simpli-
fied) ER schema for XMark is depicted in Figure 6,
and the corresponding nesting graph is shown in Fig-
ure 7 (as a matter of fact, our simplified ER schema
includes all meaningful entities and relationships of the
original XMark design).

Starting from the XMark conceptual design, we ob-
tained two schemas: a nested, hierarchical-style XMark
schema (Figure 8), which exploits the nesting of XML
elements as much as possible (we used the maximum
depth nesting forest depicted in Figure 7), and a flat,
relational-like XMark schema (Figure 9), in which each
entity of the conceptual design is encoded at the same
level of the XML hierarchy and conceptual relationships
are mapped using the key and foreign key mechanisms

// element definitions

site((Category | Person)*)

Category(id, inclusion*, relate*)

relate(categoryref)

inclusion(Item)

Item(id, open?, closed?)

open(OpenAuction)

OpenAuction(id, sellOpen, bid*)

sellOpen(personref)

bid(personref, stamp)

stamp(date, time, increase)

closed(ClosedAuction)

ClosedAuction(id, buy, sellClosed)

buy(personref)

sellClosed(personref)

Person(id, interest*, watch*)

interest(categoryref)

watch(openauctionref)

// key constraints

KEY(Category.id)

KEY(Item.id)

KEY(OpenAuction.id)

KEY(ClosedAuction.id)

KEY(Person.id)

// foreign key constraints

KEYREF(sellOpen.personref --> Person.id)

KEYREF(bid.personref --> Person.id)

KEYREF(buy.personref --> Person.id)

KEYREF(sellClosed.personref --> Person.id)

KEYREF(interest.categoryref --> Category.id)

KEYREF(watch.openauctionref --> OpenAuction.id)

KEYREF(relate.categoryref --> Category.id)

Fig. 8 A nested XMark schema in XSN.
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// element definitions

site((Category|Item|Person|OpenAuction|ClosedAuction)*)

OpenAuction(id, open, sell, bid*)

open(itemref)

sellOpen(personref)

bid(personref, stamp)

stamp(date, time, increase)

ClosedAuction(id, closed, buy, sell)

closed(itemref)

buy(personref)

sellClosed(personref)

Item(id, inclusion)

inclusion(categoryref)

Category(id, relate*)

relate(categoryref)

Person(id, interest*, watch*)

interest(categoryref)

watch(openauctionref)

// key constraints

KEY(OpenAuction.id)

KEY(ClosedAuction.id)

KEY(open.itemref)

KEY(closed.itemref)

KEY(Item.id)

KEY(Category.id)

KEY(Person.id)

// foreign key constraints

KEYREF(open.itemref --> Item.id)

KEYREF(closed.itemref --> Item.id)

KEYREF(inclusion.categoryref --> Category.id)

KEYREF(relate.categoryref --> Category.id)

KEYREF(interest.categoryref --> Category.id)

KEYREF(watch.openauctionref --> OpenAuction.id)

KEYREF(sellOpen.personref --> Person.id)

KEYREF(bid.personref --> Person.id)

KEYREF(buy.personref --> Person.id)

KEYREF(sellClosed.personref --> Person.id)

Fig. 9 A flat XMark schema in XSN.

(the resulting XMark flat schema is very close to the
original DTD for XMark). Both schemas contain the
same information and capture all conceptual integrity
constraints.

The XMark benchmark includes a scalable data gen-
erator that produces well-formed, meaningful XML doc-
uments that are valid with respect the XMark schema.
The user can control the size of the generated document
using a scaling parameter, where scale 1 corresponds
to a document of 100 MB. We took advantage of the
data generator to produce XML instances of increas-
ing size, starting from scaling factor 0.001 (100 KB) up
to 1 (100 MB). We mapped these XML instances into
corresponding instances for the nested and flat designs,
using Java classes that we coded.

We ran all experiments on a 2.53 GHz machine with
2.9 GB of main memory running Ubuntu 9.10 operating
system. During the early elaborations of our tests, we
took advantage of the benchmarking platform XCheck-
Java [19].

As for validation, we measured the validation time
of the generated XML instances with respect to both
the flat and nested XMark schemas, using the validation
package included in the Java API for XML Processing.
All documents have been parsed using the event-based
SAX method. We expressed the selector XPath query
of the key and keyref constraints of XML Schema ei-
ther using the child axis (/) or using the descendant
axis (//). The resulting elapsed times, expressed in sec-
onds, are shown in Table 1. Validating nested designs is
more efficient than validating flat schemas. This was ex-
pected, since, thanks to the hierarchical structure, the
nested design has fewer constraints (5 keys and 7 foreign
keys) compared to the flat schema (7 keys and 10 for-
eign keys). Furthermore, expressing constraints using
the child axis instead of the blind descendant modality
makes validation faster on hierarchical schemas, while
the effect is negligible on flat designs. This might be a
useful guidance for database designers.

As for query performance, we devised a benchmark
comprising four significant queries in the XQuery lan-
guage. Each query is encoded in two instances, a flat
version for the flat XMark schema, and a nested ver-
sion, that works over the nested XMark schema. The
benchmark queries are as follows:

Q1. Categories and the items they contain. The flat ver-
sion of this query, shown below, performs a join op-
eration between items and categories:

let $doc := doc("xmark.xml")

for $category in $doc/site/Category

for $item in $doc/site/Item

where $item/inclusion/categoryref = $category/id

return

<result>

{$category/id}

{$item/id}

</result>

On the other hand, the nested version fluently tra-
verses the XML tree without joins, exploiting the
fact that, in nested XML instances, items are em-
bedded inside categories, ready for use:

let $doc := doc("xmark.xml")

for $category in $doc/site/Category

for $item in $category/inclusion/Item

return

<result>

{$category/id}

{$item/id}

</result>

Q2. Categories and the open auctions bidding items be-
longing to these categories. The flat version of this
query performs two joins: a first join between cat-
egories and items, and a second one between items
and open auctions:
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scale flat// nest// flat nest

0.001 0.41 0.36 0.39 0.38

0.005 0.65 0.57 0.63 0.69

0.010 0.96 0.90 0.86 0.90

0.050 1.64 1.61 1.59 1.45

0.100 2.53 2.15 2.31 2.27

0.500 25.01 21.99 24.77 19.66

1.000 83.09 73.22 82.62 67.46

Table 1 Validation performance. The columns labeled with flat (nest) refer to validation against the flat (nested) XMark schema;
the suffix // means the the key and foreign key constrains are expressed using the descendant axis instead of the child one.

let $doc := doc("xmark.xml")

for $category in $doc/site/Category

let $item := for $i in $doc/site/Item

where $i/inclusion/categoryref=$category/id

return $i

for $auction in $doc/site/OpenAuction

where $auction/open/itemref = $item/id

return

<result>

{$category/id}

{$auction/id}

</result>

The nested version fully exploits the hierarchical
structure of the nested instances in which open auc-
tions are embedded inside items, which are in turn
nested inside categories:

let $doc := doc("xmark.xml")

for $category in $doc/site/Category

for $auction in

$category/inclusion/Item/open/OpenAuction

return

<result>

{$category/id}

{$auction/id}

</result>

Q3. The open and corresponding closed auctions. The
flat version joins open and closed auctions as follows:

let $doc := doc("xmark.xml")

for $open in $doc/site/OpenAuction

for $closed in $doc/site/ClosedAuction

where $closed/closed/itemref = $open/open/itemref

return

<result>

{$open/id}

{$closed/id}

</result>

The nested version combines descendant and ances-
tor axes to draw a seamless path in the nested in-
stance: the query first descends to open auctions,
backtracks up to the corresponding items, and fi-
nally falls down toward the associated closed auc-
tions. The query exploits the fact that both open
and closed auctions are nested inside items:

let $doc := doc("xmark.xml")

for $open in $doc//OpenAuction

for $closed in $open/ancestor::Item//ClosedAuction

return

<result>

{$open/id}

{$closed/id}

</result>

Q4. People and the closed auctions bidding items bought
by these people. The flat instance of the query makes
a join between people and closed auctions, which are
both unnested, top-level entities:

let $doc := doc("xmark.xml")

for $people in $doc/site/Person

for $auction in $doc/site/ClosedAuction

where $auction/buy/personref = $people/id

return

<result>

{$people/id}

{$auction/id}

</result>

The nested version makes a similar join between
people and closed auctions. While person is a top-
level entity in the nested schema, closed auctions are
nested inside items and inside categories, hence they
must be located in the hierarchy before the join op-
eration can start. Hence, this query disadvantages,
in principle, the nested version of the schema.

let $doc := doc("xmark.xml")

for $people in $doc//Person

for $auction in $doc//ClosedAuction

where $auction/buy/personref = $people/id

return

<result>

{$people/id}

{$auction/id}

</result>

We tested the devised benchmark on three open-
source XML query engines: BaseX (version 6) [6], Saxon
(release B 9.1.0.8 for Java) [20], and MonetDB/XQuery
(release 4) [21]. BaseX is a native XML database, Saxon
is a native processor for XSLT and XQuery, and Mon-
etDB/XQuery is a XML-enabled database which maps
XML into the relational data model. It is worth stress-
ing that our goal here is to compare query performance
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BaseX Q1 Q2 Q3 Q4

scale nest flat nest flat nest flat nest flat

0.001 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.01

0.005 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01

0.010 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02

0.050 0.04 0.04 0.03 0.06 0.01 0.02 0.06 0.05

0.100 0.07 0.06 0.05 0.11 0.02 0.02 0.09 0.10

0.500 0.28 0.29 0.19 0.80 0.08 0.22 0.70 0.83

1.000 0.55 0.58 0.37 1.81 0.15 0.56 1.71 1.88

Table 2 Query evaluation performance: BaseX

Saxon Q1 Q2 Q3 Q4

scale nest flat nest flat nest flat nest flat

0.001 0.89 0.91 0.88 0.89 0.87 0.86 0.91 0.86

0.005 1.03 1.05 1.06 1.10 1.00 1.16 1.18 1.22

0.010 1.15 1.32 1.14 1.41 1.15 1.49 1.59 1.56

0.050 1.61 1.90 1.63 2.08 1.54 2.07 2.30 2.29

0.100 1.64 2.21 1.87 2.58 1.81 2.69 3.75 3.59

0.500 2.54 7.07 2.88 14.52 2.80 22.86 65.85 47.70

1.000 3.50 19.99 4.10 46.23 3.90 86.15 264.34 173.95

Table 3 Query evaluation performance: Saxon

MDB/XQ Q1 Q2 Q3 Q4

scale nest flat nest flat nest flat nest flat

0.001 0.05 0.08 0.06 0.12 0.04 0.08 0.03 0.03

0.005 0.04 0.08 0.06 0.12 0.04 0.08 0.03 0.03

0.010 0.04 0.08 0.06 0.12 0.06 0.09 0.04 0.04

0.050 0.04 0.09 0.06 0.13 0.06 0.10 0.04 0.05

0.100 0.05 0.09 0.07 0.14 0.07 0.11 0.05 0.05

0.500 0.05 0.18 0.10 0.22 0.13 0.16 0.10 0.09

1.000 0.05 0.25 0.15 0.34 0.18 0.23 0.16 0.15

Table 4 Query evaluation performance: MonetDB/XQuery

on different designs, and not query performance on dif-
ferent engines. We are benchmarking schema designs,
not query processors. Tables 2, 3, and 4 show the query
evaluation performance, expressed in seconds of elapsed
time, for the three benchmarked engines, respectively.
We can draw the following conclusions.

1. Queries Q1, Q2, and Q3 are significantly more ef-
ficient in their nested version on hierarchical docu-
ments. For instance, the time performance ratio for
query Q2 between the flat and the nested largest
XML instance is 4.9 for BaseX, 11.3 for Saxon, and
2.3 for MonetDB/XQuery. These queries use an un-
folding technique to join related information: the
linked information is just few steps away from in
the XML tree, and hence it can be retrieved by
unfolding few XML elements and directly accessing
their content. On the other hand, the flat versions of
these queries interpreted on the unnested instances
use a product approach to combine information that
is far away in the XML tree, alighted on different

immediate sub-trees of the database element, in a
relational-style manner.

2. On the other hand, it is not clear which schema
structure, flat or nested, is more efficient for query
Q4. Recall that this query is designed to favour the
flat schema structure, because the entities it links
are immediately accessible top-level elements in flat
instances, while they must be located down in the
hierarchical structure in nested documents. Mon-
etDB/XQuery makes no difference between the two
structures, BaseX performs slightly better on the
nested structure, while Saxon is significantly faster
on the flat schema.

6 Related work

There is a vast literature on the relationships between
XML and relational databases, which ranges from ex-
pressiveness issues to performance comparison, going
through data import/export from/to XML/relational
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databases. In particular, a general comparison of XML
and relational constructs and an analysis of the basic
kinds of mapping between them can be found in [22].
Unfortunately, this literature is partly redundant (you
find very similar analyses in a number of contributions)
and not well linked (the corresponding citation net-
work is made of disconnected components). We iden-
tified three main research themes related to our work:
(i) the encoding of (standard) conceptual schemas into
some XML schema language, (ii) the mapping of re-
lational schemas into XML schemas, and (iii) the de-
velopment of new conceptual models tailored to XML
databases.

As for the first theme, even though some work has
been done to provide an XML encoding of other for-
malisms for conceptual modeling, such as, for instance,
UML [23] and ORM [24], most contributions refer to
the ER conceptual model. For this reason, we restrict
our attention to the XML encoding of the (enhanced)
ER model. The various proposals differ in a number of
respects, including the choice of the target XML schema
language (DTD or XML Schema), the set of constraints
encoded by the conceptual schema they cope with (car-
dinality constraints on the participation of entities in
relations, constraints on specializations) as well as the
way in which the constraints they encode are dealt with,
and the correspondence they establish between the con-
structs of the conceptual model and those of the XML
target language (XML elements vs. attributes, XML
ID/IDREF vs. KEY/KEYREF).

The problem of mapping relational schemas into
XML ones has been extensively and successfully ad-
dressed in the literature, e.g., [25–27]. From the point
of view of information preservation, converting a rela-
tional (logical) schema into an XML one is easier than
converting an ER (conceptual) schema into it. The set
of constructs of the ER model, in particular, the in-
tegrity constraints that it allows one to express, is in-
deed a superset of those of the relational model. More-
over, the generated XML schemas usually mirror the
flat schemas of the source relational databases as op-
posed to what happens with the conceptual design. The
problem of transforming relational schemas into highly
nested XML schemas has been addressed by a few con-
tributions, e.g., [8,28]. All proposed solutions are based
on a direct or indirect classification of database rela-
tions. As an example, Zhou et al. [28] partitions the set
of relations in base, single-related, and multi-related re-
lations on the basis of their foreign key constraints: base
relations are devoid of foreign keys, single-related ones
feature exactly one foreign key, and multi-related ones
have two or more foreign keys [28]. One of the most
elaborated solutions, which aims at providing a highly-

nested XML counterpart of relational schemas, is the
one proposed by Liu et al. [8]. They preliminarily map
the relational schema into a graph, whose nodes and
edges correspond to the tables and the referential in-
tegrity constraints of the original schema, respectively.
The resulting graph provides a clean characterization of
critical points such as nesting confluences and nesting
cycles. However, the authors provide no general solu-
tion, leaving any design decision to the user, who is
supposed to be guided by information about dominant
queries. A different approach is followed by Duta et
al. [29] and by Fong and Cheung in [30]. They first map
relational schemas back to ER schemas, and then they
translate the generated conceptual schemas into XML
schemas, taking advantage of existing mapping rules.
As an example, Duta et al. [29] propose two algorithms
to encode relational schemas in XML Schema preserv-
ing the source relationships and their structural con-
straints. The first one, called ConvRel, translates each
relationship individually into a nested XML structure;
the second one, called Conv2XML, identifies complex
nested structures able to capture all possible relation-
ships in a relational database in a uniform way. They
also provide an ordered list of parameters to measure
the relative quality of mappings from relational schemas
to XML ones, namely, constraint-preservation, nested
structure, compact structure, length of generated XML
file, similarity to the relational structure (the first one
being the most significant one).

The last related theme is the development of ad-hoc
conceptual models, tailored to XML databases, that al-
low the developer to express at conceptual level con-
ditions that are usually dealt with by XML models
only, such as, for instance, ordering conditions on at-
tributes and alternative attributes. Most proposals es-
sentially extend standard conceptual models with XML
features. This is the case, for instance, with the ERX
model [31] and the XSEM model [32], that extend the
ER model (the proposal of the XSEM model is based
on the comparative analysis of existing models given
in [33]), and with the UXS model, which is based on
UML [34]. Other proposals define new hierarchical con-
ceptual models, whose constructs closely resemble those
of XML schema languages. This is the case, for in-
stance, with the ORA-SS model [35] and with the XML
tree model [36]. Most contributions pair the proposal of
a new conceptual model with a translation algorithm
that maps the conceptual schema into the correspond-
ing XML schema.

Our work presents significant intersections with re-
search about relational-to-XML mappings and XML-
inspired conceptual models. However, the closest re-
search theme is definitely that about the XML encod-
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ing of (standard) conceptual schemas. For this reason,
in the following we restrict our attention to it.

6.1 Encoding of conceptual schemas in XML

The first mappings from conceptual models to XML
proposed in the literature take DTD as their target
language [23,37]. Despite its simplicity and conciseness,
DTD is not expressive enough to capture some relevant
database integrity constraints, such as, for instance, do-
main constraints, composite keys, and arbitrary con-
cept cardinalities [22]. To get rid of these drawbacks,
most recent encodings replace DTD by XML Schema.

Regardless of the choice of DTD or XML Schema
as the target language, existing proposals for an XML
encoding of conceptual schemas can be evaluated with
respect to different parameters. The basic and most im-
portant ones are preservation of information (to what
extent concepts and constraints expressed by means of
conceptual schemas are preserved by the corresponding
XML schemas) and nesting degree of the resulting XML
schemas (the length of nested element chains). Addi-
tional quality parameters have been proposed in the lit-
erature [38], including (absence of) redundancy, confor-
mity with applications, and design reversibility. In fact,
they are not independent from the basic ones, and thus
we will not discuss them separately. The most interest-
ing one is design reversibility. An XML schema satisfies
such a condition if it allows one to reconstruct the orig-
inal conceptual schema. Design reversibility turns out
to be useful in data integration and reverse engineering.
In general, full design reversibility cannot be guaran-
teed without annotations, as there are constraints en-
coded by conceptual schemas that cannot be preserved
by XML ones. The use of annotations for design re-
versibility has been analyzed in some detail in [37]. In
the following, we first focus our attention on the preser-
vation of information (Section 6.1.1) and then on the
nesting degree of the resulting XML schemas (Section
6.1.2).

6.1.1 Preservation of information

A large variety of XML encodings of conceptual schemas
can be found in the literature. No relevant differences
can be found in their treatment of basic constructs. On
the contrary, there is not a consensus mapping for ad-
vanced constructs, e.g., specialization, and constraints,
e.g., cardinality constraints on relations. Furthermore,
many proposals disregard some important constructs
and constraints (for instance, many-to-many relation-
ships with total participation of both entities). The
translation we presented in Section 3 can be viewed

as the merge of a number of existing proposals, cop-
ing with all distinctive features of the ER model in
a systematic and detailed way. In the following, we
briefly survey different translations of the most prob-
lematic constructs and constraints, namely, cardinality
constraints on the participation of entities in relations,
weak entity types, and constraints on specializations.

Relationship. The translation of relationships is more
complex than that of entities as one must take into
account all their distinctive features (one-to-one, one-
to-many, or many-to-many binary relationships, binary
relationships or relationships with degree greater than
2, total or partial participation of entities in relation-
ships, and so on). In addition, choices that influence the
nesting of the corresponding XML elements have a con-
siderable impact on validation and query processing. As
a result, different mappings of relationships have been
proposed in the literature.

The translation of binary functional relationships R

is quite standard: the element corresponding to (one
of) the entity with participation constraint (1, 1), say
A, is nested in the element corresponding to R, which,
in its turn, is nested in the element corresponding to
the other entity, say B [37,29,39]. Minor variants to
such a translation schema have been proposed in [38],
where the relative positions of R and A are exchanged,
and in [40], where there is not an element for R, thus
loosing design reversibility. In the specific case of one-
to-one relationships, some translations map them into
a unique element (merge) [37,40].

Non-functional (binary) one-to-many relationships
R between two entities A and B are dealt with by
adding a reference to the element corresponding to the
entity with participation constraint (0, 1), say A (and
not directly the element, as in the functional case), in
the element corresponding to R, which, in its turn,
is nested in the element corresponding to the entity
with participation constraint ( , N), say B. The same
solution is often applied to the case of non-functional
(binary) many-to-many relationships. As both entities
participate in the relationship with maximum cardi-
nality equal to N , there is the problem of establishing
which one must be mapped into the B-element (resp.,
A-element). Different criteria have been proposed in
the literature. In [39], the B-element corresponds to
an entity with participation constraint (1, N) (if any).
Such a solution aims at minimizing the number of ad-
ditional (external) constraints. In [38], the choice of the
B-element is based on the notion of dominant entity,
where a dominant entity is the entity from which most
accesses to R start. An equivalent solution, based on the
notion of general access frequency, is provided in [40].
The dominance/frequency approach aims at increasing



23

the performance of query evaluation, and it may pos-
sibly yield to the loss of some constraints. An alterna-
tive mapping of many-to-many relationships has been
proposed in [37], where the element corresponding to
the relationship includes references to the elements cor-
responding to the participating entities. A non-trivial
limitation of such a solution is that it cannot enforce
total participation of entities in relationships. Finally,
a mixed solution can be found in [29]. The mapping of
many-to-many relationships with partial participation
of entities is the same as in [37], while the treatment
of the other cases is the same as in [39], apart from
the replacement of references by elements. Such a re-
placement trades the absence of redundancy and the
enforcement of key constraints for the achievement of
nested and compact structures, that is, the authors ac-
cept the presence of some redundancies and the lack of
some key constraints in order to increase the nesting
degree and the compactness of the resulting structures.

As we already pointed out in Section 3, the only case
in which there is no way of providing a direct XML en-
coding of all the constraints, whatever translation one
adopts, is that of many-to-many relationships with to-
tal participation of both entities. Some papers recog-
nize the existence of such a problem, but provide no
solution; most papers ignore it. Complications inherent
to the management of many-to-many relationships in
XML are discussed in a survey paper by Link and Trinh
on the treatment of cardinality constraints in XML
[41]. They analyze a variety of alternative mappings of
many-to-many relationships, pointing out their advan-
tages and disadvantages. In particular, they explicitly
argue that it is not possible to provide an information-
preserving and redundancy-free mapping of many-to-
many relationships with total participation of both en-
tities (to cope with this case, some form of existence
constraint would be necessary).

Translations of binary (functional or non-functional)
relationships can be generalized to relationships of higher
degree, as shown in Section 3. As a matter of fact, most
proposals in the literature do not explicitly consider
higher-degree relationships.

Weak entity. A special case of functional (binary) re-
lationships is that of identifying relationships of weak
entities. Let A be a weak entity, R be the identifying
relationship, and B be the owner entity. As A has par-
ticipation constraint equal to (1, 1), we nest the element
for A in the element for R, which, in its turn, is nested
in the element for B. In addition, the key of A consists
of the union of the partial key of A and the key of B.
As shown in Section 3, this can be done by duplicat-
ing the key of B in the element for A and forcing the
uniqueness of the value of the two occurrences of B by

means of an external constraint. Most translations pro-
posed in the literature do not deal with weak entities.
This is the case, for instance, with [40]. The few excep-
tions assimilate identifying relationships to functional
relationships, neglecting the problem of key definition.
This is the case, for instance, with [39]. In [37], Kleiner
and Lipeck correctly pointed out the problem with key
definition. However, their choice of DTD as the target
XML language prevents them from defining the key of
the element for the weak entity in a compositional way
(as usual). Finally, the straightforward ‘solution’ pro-
posed in [38] does not work, as we already argued in
Section 3.

Specialization. Two different approaches to the XML
mapping of specializations can be found in the litera-
ture. The first one makes use of the construct extension
(in fact, such a construct is featured by XML Schema,
not by DTD) [38]. Given a specialization of an entity
A in two entities B and C, the types of the elements
for B and C are defined as extensions of the type of
the element for A. Such a solution suffers from vari-
ous weaknesses. First, it does not allow one to express
constraints on specializations consisting of one parent
entity and two or more children. Moreover, it cannot
manage multiple specializations of the same entity (for
instance, there is no way to identify the specialization
a given child belongs to). The second approach em-
beds the elements for the children in the element for
the parent and it deals with constraints on special-
izations (total/partial, disjoinct/overlapping) by using
the XML constructs sequence and choice in combina-
tion with occurrence constraints [23,37,39]. Despite the
reservations formulated in [42], such an approach makes
it possible to capture all constraints on specializations,
including the total/overlapping constraints, as shown in
[23] for binary specializations (in Section 3, we showed
that such a solution can be easily generalized to n-ary
specializations). An alternative solution is outlined in
[40], where the authors suggest to first restructure the
ER schema, by replacing specializations by standard re-
lationships, and then to apply the standard translation
rules for relationships. In addition, they consider the
case in which the parent entity is removed (resp., the
children are removed) and information about it (resp.,
them) is moved to the children (resp., to the parent
entity). However, the removal of the parent (resp., chil-
dren) may introduce redundancy and it does not pre-
serve design reversibility.

6.1.2 Structure of the resulting XML schemas

The XML nesting problem has not been systematically
dealt with in the literature. There exist, indeed, var-
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ious contributions that underline its importance, e.g.,
[37,39,38]. However, besides recognizing the influence
of functional relationships and specializations on the
nesting degree of the resulting XML structure, most pa-
pers limit themselves to the definition of a translation
algorithm, that guarantees neither maximal density nor
maximal depth. In particular, they do not explicitly ad-
dress the problems of nesting confluences and loops.

The translation algorithm outlined in [39] prelim-
inarily identifies the set of first-level entities, namely,
those entities whose corresponding elements cannot be
nested into other elements without introducing some
form of redundancy (for instance, entities whose par-
ticipation in relationships is always partial), and put
them as direct subelements of the root. Then, for every
such element, the algorithm generates the XML sub-
tree rooted at it. To this end, it navigates in the ER
schema, starting from the corresponding first-level en-
tity, until there are no more reachable entities or rela-
tionships whose corresponding elements can be added
to the considered subtree. Finally, the algorithm exe-
cutes the same steps for those (strong) entities, that do
not participate in a specialization relation as children,
which have not been considered yet (if any). The way
in which nesting confluences and loops are dealt with
depends on the ordering according to which entities and
relationships are taken into consideration (such an or-
dering is to a large extent arbitrary, e.g., the authors
mention as a possible ordering the alphabetical order-
ing of entity and relationship names). In some critical
situations, e.g., loops involving non-first-level entities
only, this may prevent the algorithm from achieving
the highest possible nesting degree.

A similar translation algorithm is given in [38]. As
a preliminary step, the algorithm generates an element
for every entity, by distinguishing between strong and
weak entities. Then, it processes relationships accord-
ing to a fixed order: first, it considers relationships with
degree greater than 2; then, it copes with recursive re-
lationships; finally, it deals with (non-recursive) binary
relationships. As for binary relationships, it starts with
many-to-many relationships; then, it moves to one-to-
many ones; finally, it considers one-to-one relationships.
The final position of the elements for the entities within
the resulting XML structure is determined by the re-
lationships they participate in. The authors claim that
the order according to which relationships are processed
guarantees that the nesting of any pair of elements cor-
responding to related entities can be fixed once and for
all. Unfortunately, it seems that the algorithm makes
no provision for the treatment of nesting confluences
and loops (as a matter of fact, the informal description
of the algorithm makes it difficult to completely check

its correctness and the proposed examples are useless,
as they avoid all critical cases).

A translation algorithm that takes into account data
and query workload of the expected XML applications
has been proposed in [40]. Besides the ER schema, the
input to such an algorithm includes information about
data volumes and types and frequencies of estimated
operations. The algorithm consists of a sequence of three
main steps: (i) generalization conversion; (ii) relation-
ship conversion; (iii) integration. Both in step (i) and
in step (ii), the order according to which specializations
(resp., relationships) are considered as well as the choice
among the possible alternative (rewritings and) trans-
lations are based on information about general access
frequencies of the involved relationships and entities.
Step (iii) defines the root element of the schema, that
can be either the only element devoid of a parent in the
current structure or an additional element. The prob-
lems of nesting confluences and loops are not explicitly
addressed; however, they are indirectly solved by the
execution of steps (i) and (ii). Once more, there is no
guarantee that the achieved solutions maximize density
and/or depth. The effectiveness of the proposed solu-
tion has been checked by executing a suitable sets of
queries in XQuery on the trial version of the native
XML database Tamino and comparing the outcomes
with those obtained by applying the same queries to
alternative translations given in the literature.

This paper refines and widely extends the work de-
scribed in [4]. The additional material includes: (i) an
introduction to the addressed problem in its general-
ity, emphasizing the distinctive features of native XML
databases (Section 2); (ii) a description of the rules of
the translation, where all details are worked out (Sec-
tion 3); (iii) a comprehensive complexity analysis, that
takes into account some additional cases of special in-
terest (apart from Theorems 1 and 4, all results in Sec-
tion 4 are original); (iv) a refined implementation and
an extensive experimental evaluation of the proposed
mappings (Section 5); (v) a systematic analysis of re-
lated work (Section 6).

7 Conclusion

In this paper, we devised an original graph-theoretic
approach to the problem of mapping ER schemas into
highly-nested XML schema documents. The paper pairs
the formal analysis of the computational complexity of
the proposed graph algorithms with an empirical eval-
uation of their implementation. We are thinking of a
refinement of the algorithms for the maximum den-
sity/depth problems based on weighted graphs, where
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higher (resp., lower) values are assigned to edges that
should be maintained (resp., can be removed). In ad-
dition, we are working at an extension of the proposed
translation to spatio-temporal conceptual models.
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