
Towards an automata-theoretic counterpart
of combined temporal logics

Massimo Franceschet and Angelo Montanari

Department of Mathematics and Computer Science, University of Udine, Italy
{francesc|montana}@dimi.uniud.it

Abstract. In this paper, we define a new class of combined automata, called
temporalized automata, which can be viewed as the automata-theoretic counter-
part of temporalized logics, and show that relevant properties, such as closure
under Boolean operations, decidability, and expressive equivalence with respect
to temporal logics, transfer from component automata to temporalized ones. Fur-
thermore, we successfully apply temporalized automata to provide the full second-
order theory of k-refinable downward unbounded layered structures with a tem-
poral logic counterpart. Finally, we show how temporalized automata can be used
to deal with relevant classes of reactive systems, such as granular reactive systems
and mobile reactive systems.

1 Introduction

Logic combination is emerging as a relevant research topic at the intersection of math-
ematical logic with computer science [17]. It essentially provides a logical account of
traditional computer science notions such as modularity and abstraction. When dealing
with real-world systems, organizing their descriptive and inferential requirements in a
structured way is often the only way to master the complexity of the design, verification,
and maintenance tasks. Formulated in the setting of combined logics, the basic issue
underlying such an approach is: how can we guarantee that the logical properties of the
component logics, such as axiomatic completeness and decidability, are inherited by the
combined one? This issue is known as the transfer problem. It has a natural analogue in
terms of the associated methods and tools: can we reuse methods and tools developed
for the component logics, such as deductive engines and model checkers, to obtain meth-
ods and tools for the combined one? In general, the answer depends on the amount of
interaction among components: the transfer generally succeeds in the absence of inter-
action among the component logics [11, 14], but it can easily fail when they are allowed
to interact. There are, however, some exceptions. As an example, as shown in [16], in
contrast to combining deductive engines, combinations of model checking procedures are
well behaved, even in the presence of interaction.

Various forms of logic combination have been proposed in the literature. Tempor-
alization, independent combination (or fusion), and join (or product) are probably the
most popular ones as well as the ones that have been studied most extensively [11, 13,
14, 24]. They have been successfully applied in several areas, including databases [12,
26, 27], artificial intelligence [9, 19, 10], and system specification and verification [16]. We
are mainly interested in this last application of combined logics. Our ultimate goal is
to provide combined temporal logics with an automata-theoretic counterpart. Such an
equivalent characterization of combined logics as combined automata presents several

advantages for automated system specification and verification. First, turning a formula
of (combined) temporal logic into an automaton allows us to give a uniform represen-
tation of systems and specifications as automata. The problem of establishing whether
a system P behaves according to a given specification φ (model checking problem) can
then by reduced to the language containment problem L(AP) ⊆ L(Aφ), where L(AP) is
the language recognized by the automaton AP , consisting of all and only the behaviors
of P , and L(Aφ) is the language recognized by the automaton Aφ, consisting of all and
only the models of φ [37]. Furthermore, if the considered class of automata is closed
under Boolean operations, the language containment problem can be mapped into the
emptiness one, that is, L(AP ∩ Aφ) = ∅. Second, (combined) automata can be directly
used as a specification formalism, provided with a natural graphical interpretation [28].
Moreover, to avoid the costly complementation of the specification automaton Aφ, some
model checkers constrain the user to directly provide the automaton A¬φ for ¬φ, that
is, they constrain the user to specify the unacceptable behaviors of the system instead of
the good ones [21, 20]. As an alternative, one can replace specification automata with a
costly complementation by other, equally expressive, automata for which the complemen-
tation is much easier [25]. For instance, if the specification language is (quantified) linear
temporal logic, we can replace Büchi automata by Muller automata. Third, the specifica-
tion automaton Aφ can be used to cope with the state explosion problem by preventing
the complete construction of the system automaton AP from happening, whenever pos-
sible (on-the-fly model-checking) [5, 23, 36]. More precisely, some system states, which
are incompatible with or irrelevant to the specification, may not be generated at all;
furthermore, a counterexample for AP ∩ Aφ can be detected before the completion of
AP construction, making such a completion no more necessary. Finally, the automata-
theoretic characterization of (combined) temporal logics can help in finding the temporal
logic counterpart of monadic theories. In many cases, this is a difficult task, involving
a non-elementary blow up in the length of formulas. Ehrenfeucht games have been suc-
cessfully exploited to deal with such a correspondence problem for first-order monadic
theories [22] and well-behaved fragments of second-order ones, e.g. the path fragment
of the monadic second-order theory of infinite binary trees [18]. Unfortunately, these
techniques do not naturally lift to the full second-order case. The existence of a cor-
respondence between (combined) temporal logics and (combined) automata, satisfying
the usual closure properties, allows one to reduce the task of finding a temporal logic
counterpart of a (second-order) monadic theory to the often easier one of finding an au-
tomata counterpart of it. The mapping of monadic formulas into automata (the difficult
direction) can indeed greatly benefit from automata closure properties.

In this paper, we focus on the simplest case of temporalized logics. We define a new
class of combined automata, called temporalized automata, which can be viewed as the
automata-theoretic counterpart of temporalized logics, and show that relevant properties,
such as closure under Boolean operations, decidability, and expressive equivalence with
respect to temporal logics, transfer from component automata to temporalized ones. The
way of combining automata we propose can be naturally viewed as a way of abstracting
and concretizing over automata. We show how certain properties of an automaton can
be checked on its abstracted versions, instead of on the automaton itself. This generally
saves space and time. Furthermore, we successfully apply temporalized automata to pro-
vide the full second-order theory of k-refinable downward unbounded layered structures,
which can be used to model infinitely refinable granular structures consisting of a coarsest
domain and an infinite number of finer and finer domains, with an expressively complete

and elementarily decidable temporal logic counterpart (a problem that we left open in
[15]). Finally, we show how temporalized logics and automata can be used to deal with
relevant classes of reactive systems, such as granular reactive systems and mobile reactive
systems. A granular reactive system is a reactive system whose behaviour can be naturally
modeled with respect to a (possibly infinite) set of differently-grained temporal domains.
This is the case, for instance, of reactive systems consisting of a set of processes which
have dynamic behaviors regulated by very different—even by orders of magnitude—time
constants [29]. A mobile reactive system is a reactive system whose processes may reside
within a hierarchy of locations, called ambient structure, and modify it [3]. The opera-
tional behavior of a granular reactive system can be described as a suitable combination
of temporal evolutions and temporal refinements [16]. Analogously, the operational be-
haviour of a mobile reactive system can be described as a suitable combination of two
different components: the spatial distribution of processes within the ambient structure,
and the temporal evolution of processes due to computations or movements.

2 Temporalized logics

In this section we give a general definition of temporal logic that will allow us to easily
compare the expressive power of combined temporal logics and combined automata. Let
Σ be a finite alphabet. The language of temporal logic is based on a set of propositional
letters PΣ = {pa | a ∈ Σ} and extends that of propositional logic with a possibly infinite
set OP = {Oi1

1 , . . . ,Oin
n } of temporal operators with arities i1, . . . , in, respectively. The

language TL[OP ,PΣ] of temporal logic is the smallest set L of formulas generated by
the following rules: every proposition letter pa ∈ PΣ is in L; if φ, ψ are in L, then φ ∧ ψ
and ¬φ are in L; if Oij

j ∈ OP and φ1, . . . , φij are in L, then Oij

j (φ1, . . . , φij) is in L.
Boolean connectives ∨ , → , and ↔ are defined as usual. Moreover, given pa ∈ PΣ ,

true abbreviates pa ∨ ¬pa and false stands for ¬true. A frame for the temporal logic
TL[OP ,PΣ] is a pair (W,R), where W is a set of worlds, or states, and R is a set of
accessibility relations on W . A model is a triple (W,R, V), where (W,R) is a frame and
V : W → Σ is a labeling function mapping every state into one symbol of Σ. The
semantics of the propositional fragment of temporal logic TL[OP ,PΣ] is as follows. Let
M = (W,R, V) be a model and w ∈ W :

(S1) M, w |= pa iff V (w) = a, for every proposition letter pa ∈ PΣ ;
(S2) M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ;
(S3) M, w |= ¬φ iff it is not the case that M, w |= φ.

The full semantics of temporal logic TL[OP ,PΣ] extends the one given above with
clauses for the temporal operators in OP , depending on the particular choice for these
operators. We give two notable examples:

Example 1. (Temporal logics)

1. The language of Propositional Linear Temporal Logic (PLTL) is TL[{X,U},PΣ],
where X (next) is a unary operator and U (until) is a binary operator. A model for
PLTL is a triple (W, {R}, V), also denoted (W,R, V), such that (W,R) is (N, <) (the
natural numbers with the usual ordering). The semantic clauses for X and U are as
follows. Let M = (W,R, V) ∈ S(Σ) and i ≥ 0:

M, i |=PLTL φUψ iff M, j |=PLTL ψ for some j ≥ i, and
M, k |=PLTL φ for every i ≤ k < j;

M, i |=PLTL Xφ iff M, i + 1 |=PLTL φ.
2. Let k ≥ 1. The language of Directed Computational Tree Logic (CTL∗k for short) is

TL[{E,U,X0, . . . ,Xk−1},PΣ], where E and X0, . . . ,Xk−1 are unary operators and
U is a binary operator.
A model M for CTL∗k is a triple (W,R, V), where (W,R) isomorphic to ({0, . . . , k −
1}∗, <) (where < is the prefix ordering). The semantic clauses for temporal operators
are as follows. A path X in M is an infinite sequence X(0), X(1) . . . such that, for
every i ≥ 0, R(X(i), X(i+1)); X(0) is the root of X. Let M = (W,R, V) be a model
for CTL∗k, X a path in M and i ≥ 0 a position on X:
M, X, i |=CTL∗k Eφ iff there is a path Y in M rooted at X(i) such that

M, Y, 0 |=CTL∗k φ;
M, X, i |=CTL∗k φUψ iff M, X, j |=CTL∗k ψ for some j ≥ i, and

M, X, k |=CTL∗k φ for every i ≤ k < j;
M, X, i |=CTL∗k Xjφ iff X(i + 1) = X(i)j and M, X, i + 1 |=CTL∗k φ.

Given a temporal logic T, we use LT and KT to denote the language and the set of
models of T, respectively. We write OP(T) to denote the set of temporal operators of T.

Temporalization is a simple mode of combining logics in which the two component lan-
guages are allowed to interact in a very restricted way [13]. More specifically, let T1 and
T2 be temporal logics. We partition the set of T2-formulas into Boolean combinations
BCT2 and monolithic formulas MLT2 : α belongs to BCT2 if its outermost operator is a
Boolean connective; otherwise, it belongs to MLT2 . We assume that OP(T1)∩OP(T2) =
∅.

Definition 2. (Temporalization – Syntax)
The combined language LT1(T2) of the temporalization T1(T2) of T2 by means of

T1 over the set of proposition letters PΣ is obtained by replacing the atomic formation
rule (P1) of LT1 by the following rule: (P1’) every monolithic formula α ∈ MLT2 is a
LT1(T2)-formula. 2

A model for T1(T2) is a triple (W,R, g), where (W,R) is a frame for T1 and g : W →
KT2 a total function mapping worlds in W into models for T2.

Definition 3. (Temporalization – Semantics)
Given a model M = (W,R, g) and a state w ∈ W , the semantics of the temporalized

logic T1(T2) is obtained by replacing the semantic clause (S1) for proposition letters of
T1 by the following clause: (S1’) M, w |=T1(T2) α iff g(w) |=T2 α, for every monolithic
formula α ∈ MLT2 . 2

Finger and Gabbay [13] study the problem of transferring logical properties, such as
axiomatic completeness, decidability, and separability, from two component logics T1

and T2 to the temporalized logic T1(T2). Franceschet et al. [16] address the problem of
model checking for temporalized logics, proving that complexity upper bounds transfer
through temporalization.

In the following, we restrict ourselves to consider temporal logics over frames of the
form (W, {R}), also denoted (W,R), where R is a binary accessibility relation on W (the
same restriction adopted in [13]).

3 Temporalized automata

In this section, we provide temporalization with an operational counterpart in terms
of automata (cf. Definition 6 below). We begin with some preliminary definitions. An
infinite sequence is a pair (W,R), where W is the set N of natural numbers and R is the
usual ordering < over N. We denote by S(Σ) the set of Σ-labeled sequences (W,R, V)
such that (W,R) = (N, <) and V : W → Σ. A Σ-labeled sequence (W,R, V) will be
also denoted by x0, x1, . . ., where xi = V (i) for every i ≥ 0.

Definition 4. (String automata)
A string automaton consists of (i) a labeled transition system (LTS for short) (Q, q0, R,

M,Σ, Ω), where Q is a set of states, q0 ∈ Q is the initial state, Σ and Ω are finite
alphabets, R ⊆ Q×Σ×Q is a transition relation, and M ⊆ Q×Ω is a labeling of states,
and (ii) an accepting condition AC.

A string automaton accepts Σ-labeled sequences taken form S(Σ). Given an automa-
ton A and a Σ-labeled sequence x = x0, x1, . . ., a run of A on x is a Q-labeled sequence
q0, q1, . . . such that (qi, xi, qi+1) ∈ R, for every i ≥ 0. The automaton A accepts x if there
is a run y of A on x such that AC(y), i.e., the accepting condition holds on y. We denote
by L(A) ⊆ S(Σ) the language of A, i.e., the set of Σ-labeled sequences accepted by A. 2

Example 5. (Büchi string automata)
A Büchi automaton is a string automaton A = (Q, q0, R, M, Σ,Ω) such that Ω =

{final}. We call final a state q such that (q, final) ∈ M . The Büchi acceptance condi-
tions states that A accepts x iff there is a run y of A over x in which at least one final
state occurs infinitely often. 2

A class of string automata A over an alphabet Σ is a set of automata sharing the alphabet
Σ and the accepting condition AC. We say that a class A of automata is closed under
an n-ary operation O over A if O(A1, . . . , An) ∈ A whenever A1, . . . , An ∈ A. We say
that A is effectively closed under O if A is closed under O and there is an algorithm that
computes O(A1, . . . , An). Moreover, we say that a class A of automata is decidable if, for
every A ∈ A, the problem L(A) = ∅ is decidable.

The link between logics and automata is the following. Let A be a class of string
automata over Σ and T be a logic interpreted over S(Σ). Given a formula ϕ of T, we
denote by M(ϕ) the set of models M = (W,R, V) ∈ S(Σ) such that M, 0 |= ϕ. A Σ-
labeled sequence (W,R, V) ∈ S(Σ) can be regarded either as a string accepted by some
automaton in A or as a model for some temporal formula in T. A couple of questions
naturally arises: given a string automaton A ∈ A, is there a formula ϕA in T such that
L(A) = M(ϕA)? Moreover, given a formula ϕ in T, is there an automaton Aϕ ∈ A such
that L(Aϕ) = M(ϕ)? We say that A is expressively complete with respect to T, denoted
T → A, if, given ϕ ∈ LT, there is Aϕ ∈ A such that L(Aϕ) = M(ϕ); we say that T
is expressively complete with respect to A, denoted A → T, if, given A ∈ A, there is
ϕA ∈ LT such that L(A) = M(ϕA). Finally, we say that A is expressively equivalent
with respect to T, denoted A ↔ T, if both T → A and A → T. In the following, unless
otherwise specified, we will use the word automata to refer to a string automata.

A sequence of Σ-labeled sequences is a triple (W,R, g), where (W,R) = (N, <) and
g : W → S(Σ) is a total function mapping worlds in W into Σ-labeled sequences in
S(Σ). We denote by S(S(Σ)) the set of all sequence of Σ-labeled sequences. We are now
ready to define the notion of temporalized automaton. In Theorem 11 we will show that

this notion of temporalized automata is indeed the automata-theoretic counterpart of
temporalized logics.

Definition 6. (Temporalized automata)
Let Σ be a finite alphabet and let A2 be a class of automata over Σ. Let Γ (Σ) be

a finite subset of A2. We can regard any element of Γ (Σ) as a symbol of an alphabet.
Consider a class A1 of automata over the alphabet Γ (Σ). Given an automaton A in A1, a
temporalized automaton A↓ over Γ (Σ) accepts elements of S(S(Σ)). It has the same LTS
than A, and differs because of the accepting condition. The combined accepting condition
for A↓ is the following. Let x = (W,R, g) ∈ S(S(Σ)). We say that A↓ accepts x if and
only if there is y = (W,R, V) ∈ S(Γ (Σ)) such that y ∈ L(A) and, for every w ∈ W ,
g(w) ∈ L(V (w)). The class A1(A2) contains all the temporalized automata A↓ over Γ (Σ)
such that A is in A1. 2

In the following, we will assume that A2 is a class of automata over an alphabet Σ and
A1 is a class of automata over an alphabet Γ (Σ) ⊆ A2. Given a temporalized automaton
A ∈ A1(A2), we denote by A↑ the automaton in A1 with the same LTS than A and with
the accepting condition of A1. Moreover, given an automaton A ∈ A1, we denote by A↓

the automaton in A1(A2) with the same LTS than A and with the combined accepting
condition of A1(A2).

Note that a structure (W,R, g) ∈ S(S(Σ)) may be regarded either as a string ac-
cepted by a temporalized automaton or as a model for a temporalized formula. Hence,
the notions of expressive completeness and expressive equivalence may be naturally lifted
to temporalized logics and temporalized automata. We define a transfer problem for tem-
poralized automata as follows: assuming that automata classes A1 and A2 enjoy some
property, does A1(A2) enjoy the same property? We investigate the transfer problem with
respect to the following properties of automata: (i) (Effective) closure under Boolean op-
erations (union, intersection, and complementation): if A1 and A2 are (effectively) closed
under Boolean operations, is A1(A2) (effectively) closed under Boolean operations? (ii)
Decidability: if A1 and A2 are decidable, is A1(A2) decidable? (iii) Expressive equivalence
with respect to temporal logic: if A1 ↔ T1 and A2 ↔ T2, does A1(A2) ↔ T1(T2)?

The following lemma is crucial in the rest of this section. It shows that every tempor-
alized automaton is equivalent to another temporalized automaton whose transitions are
labeled with automata that form a partition of the set of Σ-labeled sequences. Hence, dif-
ferent labels in the ‘partitioned automaton’ correspond to (automata accepting) disjoint
sets of Σ-labeled sequences. Moreover, the partitioned automaton can be effectively con-
structed from the original one. A similar partition lemma holds for temporalized logics
too (cf. Lemma 10 below).

Lemma 7. (Partition Lemma for temporalized automata)
Let A be a temporalized automaton in A1(A2). If A2 is closed under Boolean op-

erations (union, intersection, and complementation), then there exists a finite alphabet
Γ ′(Σ) ⊆ A2 and a temporalized automaton A′ over Γ ′(Σ) such that L(A) = L(A′) and
{L(X) | X ∈ Γ ′(Σ)} forms a partition of S(Σ). Moreover, if A2 is effectively closed
under Boolean operations, and A2 is decidable, then A′ can be effectively computed from
A.

Proof. To construct Γ ′(Σ) andA′ we proceed as follows. Suppose Γ (Σ) = {X1, . . . Xn} ⊆
A2 and A = (Q, q0, R,M, Γ (Σ), Ω). For every 1 ≤ i ≤ n and j ∈ {0, 1}, let Xj

i = Xi

if j = 0, and Xj
i = S(Σ) \ Xi if j = 1. Given (j1, . . . , jn) ∈ {0, 1}n, let Cap(j1,...,jn) =⋂n

i=1 Xji

i . We define Γ1(Σ) as the set of all and only Cap(j1,...,jn) such that (j1, . . . , jn) ∈
{0, 1}n. Since A2 is closed under Boolean operations, Γ1(Σ) ⊆ A2. Moreover, let Γ2(Σ) =
{X ∈ Γ1(Σ) | L(X) 6= ∅}. We set Γ ′(Σ) = Γ2(Σ), and, for 1 ≤ i ≤ n, Γ ′(Σ)(i) =
{X ∈ Γ ′(Σ) | X ∩Xi 6= ∅}. Note that {L(X) | X ∈ Γ ′(Σ)} forms a partition of S(Σ).
Moreover, for every 1 ≤ i ≤ n, {L(X) | X ∈ Γ ′(Σ)(i)} forms a partition of L(Xi). We
define A′ = (Q, q0, R

′,M, Γ ′(Σ), Ω), where R′ contains all and only the triple (q1, X, q2) ∈
Q× Γ ′(Σ)×Q such that there is i with 1 ≤ i ≤ n, X ∈ Γ ′(Σ)(i), and (q1, Xi, q2) ∈ R.
It is easy to see that L(A) = L(A′). ut

We now prove the first transfer theorem: closure under Boolean operations transfers
through temporalized automata.

Theorem 8. (Transfer of closure under boolean operations)

Closure under boolean operations (union, intersection, and complementation) trans-
fers through temporalized automata: given two classes A1 and A2 of automata which are
(effectively) closed under Boolean operations, the class A1(A2) of temporalized automata
is (effectively) closed under Boolean operations.

Proof. Let X,Y ∈ A1(A2).

Union We must provide an automaton A ∈ A1(A2) that recognizes the language
L(X) ∪ L(Y). Define A = (X↑ ∪ Y ↑)↓. We show that L(A) = L(X) ∪ L(Y). Let x =
(W,R, g) ∈ L(A). Hence, there is there is y = (W,R, V) ∈ L(A↑) = L(X↑) ∪ L(Y ↑) such
that, for every w ∈ W , g(w) ∈ L(V (w)). Suppose y ∈ L(X↑). It follows that x ∈ L(X).
Hence x ∈ L(X) ∪ L(Y). Similarly if y ∈ L(Y).

We now show the opposite direction. Suppose that x = (W,R, g) ∈ L(X) ∪ L(Y). If
x ∈ L(X), then there is y = (W,R, V) ∈ L(X↑) such that, for every w ∈ W , g(w) ∈
L(V (w)). Hence, y ∈ L(X↑) ∪ L(Y ↑) = L(X↑ ∪ Y ↑) = L(A↑). It follows that x ∈ L(A).
Similarly if x ∈ L(Y). Note that, in this case, we exploit only closure under union of
A1-automata.

Complementation We must provide an automaton A ∈ A1(A2) that recognizes the
language S(S(Σ))\L(X). Given the Partition Lemma, we may assume that {L(Z) | Z ∈
Γ (Σ)} forms a partition of S(Σ). We define A = (S(Γ (Σ))\X↑)↓. We show that L(A) =
S(S(Σ))\L(X). Let x = (W,R, g) ∈ L(A). Hence, there exists y = (W,R, V) ∈ S(Γ (Σ))\
X↑ such that, for every w ∈ W , g(w) ∈ L(V (w)). Suppose, by contradiction, that
x ∈ L(X). It follows that there exists z = (W,R, V ′) ∈ L(X↑) such that, for every
w ∈ W , g(w) ∈ L(V ′(w)). Hence, for every w ∈ W , g(w) ∈ L(V (w)) ∩ L(V ′(w)). Since,
for every w ∈ W , L(V (w)) ∩ L(V ′(w)) = ∅ whenever V (w) 6= V ′(w), we conclude that
V (w) = V ′(w). Hence V = V ′ and thus y = z. This is a contradiction since y and z
belong to disjoint sets. It follows that x ∈ S(S(Σ)) \ L(X).

We now show the opposite direction. Let x = (W,R, g) ∈ S(S(Σ)) \ L(X). It follows
that, for every y = (W,R, V) ∈ L(X↑), there exists w ∈ W such that g(w) 6∈ L(V (w)).
Suppose, by contradiction, that x ∈ S(S(Σ)) \ L(A). It follows that, for every z =
(W,R, V) ∈ L(A↑) = S(Γ (Σ)) \ L(X↑), there exists w ∈ W such that g(w) 6∈ L(V (w)).
We can conclude that, for every v = (W,R, V) ∈ S(Γ (Σ)), there exists w ∈ W such that
g(w) 6∈ L(V (w)). This is a contradiction: since {L(Z) | Z ∈ Γ (Σ)} forms a partition of
S(Σ), for every w ∈ W , there is Yw ∈ Γ (Σ) such that g(w) ∈ L(Yw). We have that

(W,R, V ′), with V ′(w) = Yw, is an element of S(Σ) and, for every w ∈ W , g(w) ∈
L(V ′(w)). We conclude that x ∈ L(A).

Intersection Follows from closure under union and complementation using De Mor-
gan’s laws. ut

Note that, if A = (X↑ ∩ Y ↑)↓, then L(A) ⊆ L(X) ∩ L(Y), but equivalence does not
hold in general. Here is a counterexample of L(A) ⊇ L(X)∩L(Y). Let Γ (Σ) = {a, b}, X↑

be the automata accepting strings starting with an a and Y ↑ be the automata accepting
strings starting with a b. Then, X↑ ∩ Y ↑ = ∅ and hence L(A) = ∅. Given Σ = {0, 1}, let
a be an automaton accepting strings with an odd number of 1’s and b be an automaton
recognizing strings with a prime number of 1’s. Thus L(X) ∩ L(Y) contains a combined
structure starting with a string with exactly 13 1’s, and hence it is not empty.

We now investigate the transfer problem for automata with respect to the decidability
property. Given A ∈ A1(A2), a sufficient condition for L(A) = ∅ is that L(A↑) = ∅. How-
ever, this condition is not necessary, since A may be labeled with some A2-automaton ac-
cepting the empty language. Nevertheless, if we know that A is labeled with A2-automata
recognizing non-empty languages, then the condition L(A↑) = ∅ is both necessary and
sufficient for L(A) = ∅. In the following theorem, we apply these considerations to devise
an algorithm that checks emptiness of a temporalized automaton.

Theorem 9. (Transfer of decidability)

Decidability transfers through temporalized automata: given two decidable classes A1

and A2 of automata, the class A1(A2) of temporalized automata is decidable.

Proof. Let A be a temporalized automaton in A1(A2). We describe an algorithm that
returns 1 if L(A) = ∅ and returns 0 otherwise.

Step 1 Check whether L(A↑) = ∅ using A1-emptiness algorithm. If L(A↑) = ∅, then
returns 1.

Step 2 For every X ∈ Γ (Σ), if L(X) = ∅ (this check is performed exploiting A2-
emptiness algorithm), then remove symbol X from the LTS of A, i.e., remove every
transition of the form (q1, X, q2) from the transition relation of A.

Step 3 Let B be the temporalized automaton resulting from A after Step 2. Check,
using A1-emptiness algorithm, whether L(B↑) = ∅. If L(B↑) = ∅, then returns 1, else
returns 0.

Note that the above algorithm always terminates returning either 1 or 0. We prove
that the algorithm returns 1 whenever L(A) = ∅, and returns 0 otherwise. Suppose the
algorithm returns 1. If L(A↑) = ∅, then, by definition of combined accepting condition
(Definition 6), we have that L(A) = ∅. Suppose now that L(A↑) 6= ∅ and L(B↑) = ∅. Note
that L(A) = L(B), since B is obtained from A cutting off empty automata. Assume, by
contradiction, that there is x ∈ L(A). Since L(A) = L(B), we have that x ∈ L(B). Hence
L(B) in not empty, contradicting the fact that L(B↑) = ∅.

We now show that the algorithm returns 0 whenever L(A) 6= ∅. Suppose the algorithm
returns 0. Then L(B↑) contains at least one element, say x = (W,R, V). Since B uses
only non-empty A2-automata as alphabet symbols, we have that, for every w ∈ W ,
L(V (w)) 6= ∅. Hence y = (W,R, g), with g such that, for every w ∈ W , g(w) equals to
some element of L(V (w)), is an element of L(A). ut

Finally, we investigate the transfer of expressive equivalence with respect to temporal
logics through temporalized automata. We first state a partition lemma for temporalized
logics. The proof is similar to the one of the corresponding lemma for temporalized
automata.

Lemma 10. (Partition Lemma for temporalized logics)
Let ϕ be a temporalized formula of T1(T2) and α1, . . . , αn be the maximal T2-

formulas of ϕ. Then, there is a finite set Λ of T2-formulas such that:

1. the set {M(α) | α ∈ Λ} forms a partition of
⋃n

i=1M(αi), and
2. the formula ϕ′ obtained by replacing every T2-formula αi in ϕ with

∨{α | α ∈ Λ ∧
M(α) ∩M(αi) 6= ∅} is equivalent to ϕ, i.e., M(ϕ) = M(ϕ′).

We now show that expressive equivalence transfers through temporalized automata.

Theorem 11. (Transfer of expressive equivalence w.r.t. temporal logic)
Expressive equivalence w.r.t. temporal logic transfers through temporalized automata:

if A1 ¿ T1 and A2 ¿ T2, then A1(A2) ¿ T1(T2).

Proof. We first prove that A1(A2) → T1(T2). Let A ∈ A1(A2) be a temporalized
automaton. We have to find a temporalized formula ϕA ∈ T1(T2) such that L(A) =
M(ϕA). Let Γ (Σ) = {X1, . . . , Xn} ⊆ A2 be the combined alphabet of A. Because of the
Partition Lemma for temporalized automata, we may assume that {L(X1), . . . ,L(Xn)}
partitions S(Σ). Since A1 → T1, we have a translation τ1 from A1-automata to T1-
formulas such that, for every X ∈ A1, L(X) = M(τ1(X)). Let ϕA↑ = τ1(A↑). The
formula ϕA↑ uses proposition letters in {pX1 , . . . , pXn}. Moreover, since A2 → T2, we
have a translation σ1 from A2-automata to T2-formulas such that, for every X ∈ A2,
L(X) = M(σ1(X)). For every 1 ≤ i ≤ n, let ϕXi = σ1(Xi). For every proposition letter
pXi appearing in ϕA↑ , replace pXi with ϕXi in ϕA↑ and let ϕA be the resulting formula.
Note that ϕA ∈ T1(T2). We claim that L(A) = M(ϕA).

(⊆) Let x = (W,R, g) ∈ L(A). By definition of combined acceptance condition, there is
x↑ = (W,R, V) ∈ S(Γ (Σ)) such that x↑ ∈ L(A↑) and, for every w ∈ W , g(w) ∈ L(V (w)).
Since L(A↑) = M(ϕA↑), we have that x↑ ∈ M(ϕA↑). Moreover, for every w ∈ W and
j = 1, . . . , n, we have that x↑, w |= pXj iff V (w) = Xj . We prove that V (w) = Xj iff
g(w) ∈ L(Xj). The left to right direction of the previous claim follows since g(w) ∈
L(V (w)). We prove the right to left direction by contradiction. Suppose g(w) ∈ L(Xj)
and V (w) = Xk 6= Xj . Hence g(w) ∈ L(Xk) and thus g(w) ∈ L(Xj) ∩ L(Xk). A
contradiction, since L(Xj) ∩ L(Xk) = ∅. Finally, g(w) ∈ L(Xj) iff g(w) ∈ M(ϕXj)
iff x,w |= ϕXj . Summing up, we have that x↑ ∈ M(ϕA↑) and, for every w ∈ W and
j = 1, . . . , n, x↑, w |= pXj iff x,w |= ϕXj . It follows that x ∈M(ϕA).

(⊇) Let x = (W,R, g) ∈ M(ϕA). We define x↑ = (W,R, V) ∈ S(Γ (Σ)) such that,
for every w ∈ W , V (w) = Xj if and only if g(w) ∈ M(ϕXj) = L(Xj). Note that V (w)
is always defined, since {L(X1), . . . ,L(Xn)} partitions S(Σ). For every w ∈ W and
j = 1, . . . , n, we have that x↑, w |= pXj iff V (w) = Xj . We prove that V (w) = Xj iff
g(w) ∈ L(Xj). The left to right direction of the previous claim follows by definition of
x↑.The right to left direction follows since L(Xj) ∩ L(Xk) = ∅ whenever k 6= j. Finally,
g(w) ∈ L(Xj) iff g(w) ∈ M(ϕXj) iff x,w |= ϕXj . It follows that x↑ ∈ M(ϕA↑) = L(A↑).
Moreover, for every w ∈ W , g(w) ∈M(ϕV (w)) = L(V (w)). Therefore, x ∈ L(A).

We now prove that T1(T2) → A1(A2). Let ϕ ∈ T1(T2) be a temporalized formula.
We have to find a temporalized automaton Aϕ ∈ A1(A2) such that M(ϕ) = L(Aϕ).
Let α1, . . . , αn be the maximal T2-formulas of ϕ. Because of the Partition Lemma for
temporalized logics, we may assume that there is a finite set Λ of T2-formulas such that:

1. the set {M(α) | α ∈ Λ} forms a partition of
⋃n

i=1M(αi), and
2. every maximal T2-formula αi in ϕ has the form

∨{α | α ∈ Λ ∧ M(α)∩M(αi) 6= ∅}.

Let ϕ↑ be the formula obtained from ϕ by replacing every T2-formula α ∈ Λ appearing
in ϕ with proposition letter pα and adding to the resulting formula the conjunct β ∨ ¬β,
where β = ¬∨n

i=1 αi.
Since T1 → A1, we have a translation τ2 from T1-formulas to A1-automata such

that, for every ψ ∈ T1, M(ψ) = L(τ2(ψ)). Let Aϕ↑ = τ2(ϕ↑). The automaton Aϕ↑ labels
its transitions with symbols in {pα | α ∈ Λ∪ {β}}. Moreover, since T2 → A2, we have a
translation σ2 from T2-formulas to A2-automata such that, for every ψ ∈ T2, M(ψ) =
L(σ2(ψ)). For every α ∈ Λ ∪ {β}, let Aα = σ2(α). Finally, let Aϕ be the automaton
obtained by replacing every label pα on a transition of Aϕ↑ with the automaton Aα.
Note that Aϕ ∈ A1(A2). We claim that L(Aϕ) = M(ϕ). The proof is similar to the case
L(A) = M(ϕA). ut

As a corollary, we have the following:

Corollary 12. If A1 ¿ T1, A2 ¿ T2, A1 (resp. T1) and A2 (resp. T2) are decidable,
then T1(T2) (resp. A1(A2)) is decidable.

We invite the interested reader to compare the above result with Theorem 3.1 in [13].
Moreover, the following proposition holds:

Proposition 13. Let Ti, for i = 1, . . . , 4, be temporal logics. If T1 ¿ T3 and T2 ¿ T4,
then T1(T2) ¿ T3(T4).

We conclude this section by giving a more general notion of automata: tree automata.
Let k ≥ 1. A k-ary tree is a pair (W,R) such that W = {0, . . . , k − 1}∗ and <P is the
usual prefix ordering over {0, . . . , k−1}∗. We denote by Tk(Σ) the set of Σ-labeled k-ary
trees (W,R, V) such that (W,R) = ({0, . . . , k−1}∗, <P) and V : W → Σ. A Σ-labeled
k-ary tree will be also denoted as a function x : {0, . . . , k− 1}∗ → Σ, where x(i) = V (i)
for every i ∈ {0, . . . , k − 1}∗.

Definition 14. (Tree automata)

A k-ary tree automaton consists of (i) a labeled transition system (LTS for short)
(Q, q0, R,M,Σ, Ω), where Q is a set of states, q0 ∈ Q is the initial state, Σ and Ω are
finite alphabets, R ⊆ Q×Σ ×Qk is a transition relation, and M ⊆ Q×Ω is a labeling
of states, and (ii) an accepting condition AC.

A k-ary tree automaton accepts Σ-labeled k-ary trees taken form Tk(Σ). Given a
k-ary tree automaton A and a Σ-labeled k-ary tree x, a run of A on x is a Q-labeled
k-ary tree y such that (y(i), x(i), y(i0), . . . , y(i(k−1))) ∈ R, for every i ∈ {0, . . . , k−1}∗.
The automaton A accepts x if there is a run y of A on x such that AC(y), i.e., the
accepting condition holds on y. We denote by L(A) ⊆ S(Σ) the language of A, i.e., the
set of Σ-labeled sequences accepted by A. 2

Example 15. (Rabin tree automata)
A k-ary Rabin tree automaton is a k-ary tree automaton A = (Q, q0, R, M, Σ,Ω)

such that Ω = {finitei, infinitei | 1 ≤ i ≤ n} for some finite n. The Rabin acceptance
conditions states that A accepts x iff there is a run y of A over x such that, for all infinite
paths of y, there is 1 ≤ i ≤ n such that all the states labeled with finitei occurs finitely
often and at least one state labeled with infinitei occurs infinitely often. 2

Theorems 8, 9 and 11 immediately generalize to k-ary tree automata. They also hold for
finite sequences and finite k-ary trees. Moreover, it is possible to combine string and tree
automata. Let A1 be a class of string automata and A2 be a class of k-ary tree automata.
Automata in the class A1(A2) accept in the set of sequences of Σ-labeled k-ary trees,
denoted S(Tk(Σ)), and automata in the class A2(A1) accept in the set of k-ary trees of
Σ-labeled sequences, denoted Tk(S(Σ)). In the next section, we will show an example of
temporalized automata accepting infinite sequences of trees.

4 Combining Büchi and Rabin automata

In this section, we apply temporalized automata to solve a correspondence problem re-
lated to temporal logics for time granularity. In [30], Montanari et al. defined the monadic
second-order theory of k-refinable downward unbounded layered structures and showed
that it can be used to model infinitely refinable granular structures consisting of a coars-
est domain and an infinite number of finer and finer domains. In [15], we provided an
alternative view of these structures as infinite sequences of infinite k-ary trees. Then, by
a suitable application of the Ehrenfeucht game, we defined an expressively complete and
elementarily decidable combined temporal logic counterpart of the path fragment of this
theory. We left open the problem of finding a (combined) temporal logic able to capture
the full power of the monadic second-order theory of infinite sequences of infinite k-ary
trees, possibly preserving elementary decidability. In the following, we solve this problem
by exploiting a suitable combination of Büchi and Rabin automata.

Let B be the class of Büchi automata (cf. Example 5) and Rk be the class of k-ary Ra-
bin automata, with k ≥ 1 (cf. Example 15 above). We define the class of Büchi(Rabink)
automata as B(Rk). A Büchi(Rabink) automaton accepts tree sequences in S(Tk(Σ)).
In this section, we compare the expressiveness of Büchi(Rabink) automata with that of
monadic second-order logic interpreted over tree sequences.

Definition 16. (MSO over tree sequences)
Let MSOΣ [<1, <2, (succi)k−1

i=0 ,+1] be the second-order language with equality built
up as follows: (i) atomic formulas are of the forms x = y, x <1 y, x <2 y, succi(x) = y,
x + 1 = y, x ∈ X and x ∈ Pa, where 0 ≤ i ≤ k − 1, x, y are individual variables, X is a
set variable, and a ∈ Σ; (ii) formulas are built up from atomic formulas by means of the
Boolean connectives ¬ and ∧, and the quantifier ∃ ranging over both individual and set
variables.

Let Tk = {0, . . . k − 1}∗ and ST k = Tk × N. Let ST k(Σ) be the set of all maps ts :
ST k → Σ. We define two partial orders <1 and <2 over ST k as follows: (x, i) <1 (y, j)
iff x = ε, y = ε, and i < j (where < is the usual ordering over natural numbers), and
(x, i) <2 (y, j) iff i = j and x <P y (where <P is the prefix ordering over Tk). Moreover,
let +1 and, for 0 ≤ n ≤ k − 1, let succn be binary predicates over ST k defined as

follows: (x, i) + 1 = (y, j) iff x = ε, y = ε and j = i + 1 (where + is the sum over natural
numbers) and, for 0 ≤ n ≤ k − 1, succn((x, i)) = (y, j) iff i = j and y = xn. Any
given tree sequence ts ∈ ST k(Σ) can be represented as a relational structure as follows
t̂s = (ST k, <1, <2, (succi)k−1

i=0 ,+1, (Pa)a∈Σ), where Pa = {(x, i) ∈ ST k | ts((x, i)) = a},
for every a ∈ Σ. Given ts : ST k → Σ, let ttsi ∈ Tk(Σ) be the i-th tree of ts,
i.e., the tree such that, for every x ∈ Tk, ttsi (x) = ts((x, i)). Is should be clear that
ST k(Σ) is isomorphic to S(Tk(Σ)): given ts ∈ ST k(Σ), ts corresponds to a tree sequence
ts′ = (W,R, g) ∈ S(Tk(Σ)) such that, for every i ≥ 0, g(i) = ttsi . Hence, in the following,
we will not distinguish between structures ts and ts′.

MSOΣ [<1, <2, (succi)k−1
i=0 , +1]-formulas are interpreted over (relational structures cor-

responding to) tree sequences in ST k(Σ). A sentence of MSOΣ [<1, <2, (succi)k−1
i=0 , +1]

is a formula devoid of free first-order variables and with free second-order variables in
{Pa | a ∈ Σ}. Given a sentence ϕ in MSOΣ [<1, <2, (succi)k−1

i=0 , +1], a model for ϕ is a
tree sequence ts ∈ ST k(Σ) such that ts |= ϕ. We denote by M(ϕ) the set of models of
ϕ.

Proposition 17. (Embedding of Büchi(Rabink) automata into MSO)
Let A be a Büchi(Rabink) automaton. Then, there exists a sentence ϕA in MSOΣ [<1

, <2, (succi)k−1
i=0 , +1] such that L(A) = M(ϕA).

Proof. We prove the proposition for k = 2. The generalization to k 6= 2 is straightforward.
Let A = (Q, q0, R,M, Γ (Σ), Ω) be the Büchi(Rabink) automaton over Γ (Σ). We assume
Q = {0, . . . m} and q0 = 0. For every Z ∈ Γ (Σ), let Z = (QZ , q0

Z , RZ ,MZ , Σ,ΩZ),
with QZ = {0, . . .mZ}, q0

Z = 0, and ΩZ = {finitei, infinitei | 1 ≤ i ≤ rZ}. Let
LZ

i = {q ∈ QZ | Ω(q) = finitei}, and UZ
i = {q ∈ QZ | Ω(q) = infinitei}, for

1 ≤ i ≤ rZ .
Let T0(x) be an abbreviation for ¬∃y ∨k−1

i=0 succi(y) = x and let (ε, 0) ∈ X be a
shorthand for ∃x(x ∈ X ∧ T0(x) ∧ ∀y(T0(y) → ((x = y) ∨ x <1 y))). Moreover, let
Path(W,x) be a shorthand for the formula that says “W is a path rooted at x”. The
formula ϕA of MSOΣ [<1, <2, (succi)k−1

i=0 ,+1] is the following:

(∃QZ)Z∈Γ (Σ)(∃Xi)m
i=0

(
∧m

i=0 ∀x(x ∈ Xi → T0(x)) ∧ ∧
Z∈Γ (Σ) ∀x(x ∈ QZ → T0(x))∧

(ε, 0) ∈ X0 ∧
∧

i 6=j ¬∃y(y ∈ Xi ∧ y ∈ Xj)∧
∀x(T0(x) → ∨

(i,Z,j)∈R(x ∈ Xi ∧ x ∈ QZ ∧ x + 1 ∈ Xj))∧∨
i∈F ∀x(T0(x) → ∃y(T0(y) ∧ x <2 y ∧ y ∈ Xi))∧∧
Z∈Γ (Σ) ∀x(x ∈ QZ → RAC(x, Z))

where RAC(x,Z) stands for:

(∃Yi)mZ
i=0(

∧mZ

i=0 ∀y(y ∈ Yi → x ≤1 y)∧
x ∈ Y0 ∧

∧
i6=j ¬∃y(y ∈ Yi ∧ y ∈ Yj) ∧ ∀y(x ≤1 y →∨

(i,a,j0,j1)∈RZ
(y ∈ Yi ∧ y ∈ Pa ∧ succ0(y) ∈ Yj0 ∧ succ1(y) ∈ Yj1))∧

∀W (Path(W,x) →∨rZ

i=0(
∧

j∈LZ
i
∃u(u ∈ W ∧ ∀v(v ∈ W ∧ u <1 v → v 6∈ Yj))∧∨

j∈UZ
i
∀u(u ∈ W → ∃v(v ∈ W ∧ u <1 v ∧ v ∈ Yj)))))

The above sentence encodes the acceptance condition for Büchi(Rabink) automata. The
outermost part of the sentence codifies the Büchi acceptance condition for Büchi au-
tomaton A↑ over the first layer of the tree sequence. It uses letter QZ as a landmark for

α
i α

j

ζ ζ

α n

i,j

ζ ζi,jα

Fig. 1. Combined automata for atomic formulas.

Rabin automaton Z. The innermost part RAC(x, Z) captures Rabin acceptance condition
for Rabin automaton Z over the tree rooted at x. ut

Proposition 18. (Expressive completeness of Büchi(Rabink) automata)
For any sentence ϕ of MSOΣ [<1, <2, (succi)k−1

i=0 ,+1], there exists a Büchi(Rabink)
automaton Aϕ such that L(Aϕ) = M(ϕ).

Proof. This proof follows the same pattern than the proof for Büchi Theorem (see [35]).
We first remove the ordering relations <1 and <2 as follows:

x <1 y iff ∀X(
∧k−1

i=0 succi(x) ∈ X ∧ ∀z(z ∈ X →∧k−1
i=0 succi(z) ∈ X) → y ∈ X),

x <2 y iff T0(x) ∧ T0(y)∧
∀X(x + 1 ∈ X ∧ ∀z(z ∈ X → z + 1 ∈ X) → y ∈ X)).

Hence MSOΣ [<1, <2, (succi)k−1
i=0 ,+1] is as expressive as MSOΣ [(succi)k−1

i=0 ,+1]. In the
following, we introduce an equivalent variant of MSOΣ [(succi)k−1

i=0 ,+1], which will be
denoted by MSO[(succi)k−1

i=0 ,+1], which uses free set variables Xi in place of predicate
symbols Pa. MSO[(succi)k−1

i=0 , +1] considers formulas ϕ(X1, . . . , Xn) without predicate
symbols Pa and interpret them over tree sequences over the special alphabet {0, 1}n.
With respect to a tree sequence ts ∈ ST k({0, 1}n), the formula x ∈ Xi says that the
letter at node x of ts has 1 in its ith position. By embedding a given alphabet Σ into
a set {0, 1}n for suitable n, every MSOΣ [(succi)k−1

i=0 , +1]-formula can be easily encoded
into an equivalent MSO[(succi)k−1

i=0 ,+1]-formula ϕ(X1, . . . , Xn).
We now reduce MSO[(succi)k−1

i=0 ,+1] to a simpler formalism MSO0[(succi)k−1
i=0 , +1],

where only second order variables Xi occur and atomic formulas are of the forms Xi ⊆ Xj

(Xi is a subset of Xj), Succm(Xi, Xj), with m = 0, . . . , k−1 (Xi and Xj are the singletons
{x} and {y}, respectively, and succm(x) = y), and Succ(Xi, Xj) (Xi and Xj are the
singletons {x} and {y}, respectively, and x + 1 = y). This step is performed as in the
proof of Büchi Theorem.

Finally, given a MSO0[(succi)k−1
i=0 , +1]-formula ϕ(X1, . . . , Xn), we prove, by induction

on the complexity of ϕ, that there exists a combined automaton Aϕ over {0, 1}n such
that L(ϕ) = L(Aϕ). As for atomic formulas, let αi,j be the Rabin tree automaton over
{0, 1}n for Xi ⊆ Xj . The combined automaton for Xi ⊆ Xj is depicted in Figure 1 (left).
Moreover, let ζ be the Rabin tree automaton over {0, 1}n accepting the singleton set
containing a tree labeled with 0n everywhere, and let αm

i,j be the Rabin tree automaton
over {0, 1}n for Succm(Xi, Xj). The combined automaton for Succm(Xi, Xj) is depicted
in Figure 1 (middle). Finally, let αi be the Rabin tree automaton over {0, 1}n accepting
the singleton set containing a tree labeled with 0i−110n−i at the root, and labeled with
0n elsewhere. The combined automaton for Succ(Xi, Xj) is depicted in Figure 1 (right).

The induction step is clear from the closure of Büchi(Rabink) automata under Boolean
operations and projection. Closure under boolean operations follows from Theorem 8.
It is easy to see that Büchi(Rabink) automata are closed under projection: given a
Büchi(Rabink) automaton A, the corresponding projected Büchi(Rabink) automaton is
obtained by projecting every Rabin automaton that labels some transition of A. ut

Propositions 17 and 18 allow us to conclude that, modulo the obvious isomorphism be-
tween corresponding structures, Büchi(Rabink) ¿ MSOΣ [<1, <2, (succi)k−1

i=0 , +1]. Let
QLTL be Quantified Linear Temporal Logic and QCTL∗k be Quantified Directed Com-
putation Tree Logic [8]. Quantified versions of propositional temporal logics add to the
language quantified formulas of the form ∃Qϕ, where Q is a proposition letter and ϕ is a
formula. It is known that Büchi ¿ QLTL [1] and Rabink ¿ QCTL∗k [7]. By applying The-
orem 11, we have that Büchi(Rabink) ¿ QLTL(QCTL∗k). It follows that QLTL(QCTL∗k)
is expressively equivalent to MSOΣ [<1, <2, (succi)k−1

i=0 , +1]. Since QLTL and QCTL∗k are
nonelementarily decidable [1, 33], by Corollary 12, we have that QLTL(QCTL∗k) is nonele-
mentarily decidable. Let EQLTL be the fragment of QLTL consisting of formulas of the
form ∃Q1 . . . ∃Qnϕ, where ϕ is a PLTL-formula. Similarly, we define EQCTL∗k. It is easy
to show that Büchi ¿ EQLTL, and thus EQLTL ¿ QLTL. Similarly, EQCTL∗k ¿
QCTL∗k. By Proposition 13, we have that QLTL(QCTL∗k) ¿ EQLTL(EQCTL∗k). More-
over, it is known that both EQLTL and EQCTL∗k are elementarily decidable [34]. Hence,
again by Corollary 12, we have that EQLTL(EQCTL∗k) is elementarily decidable. This
allows us to conclude that EQLTL(EQCTL∗k) is a temporal logic which is elementar-
ily decidable and expressively equivalent to MSOΣ [<1, <2, (succi)k−1

i=0 ,+1], which is the
result we were looking for.

5 Applications

In this section we show how to encode (the state-transition representation of) granular
reactive systems and mobile reactive systems into combined models (in particular, models
for temporalization). Accordingly, combined temporal logics or combined automata may
be adopted for the specification of requirements for such systems. This makes it possible
to apply combined model checking/satisfiablity procedures to verify granular reactive
systems and mobile reactive systems. The main advantage of the combining strategy is
that different components are treated as different entities during both the modeling and
specifying tasks. Other advantages of using combined tools to verify a system include
modularity and flexibility. Well-known modules, consisting of modeling and specification
languages, as well as verification techniques, are combined in such a way that the re-
sulting framework inherits nice features of the components. This improves the reuse of
tools and software. Moreover, the result of the combination forms a bag of solutions,
instead of a specific tailored one, where each possible solution is obtained by ‘plugging’
the preferred modules and ‘playing’ the combined solution. This is particularly useful
for mobile systems, which are heterogeneous systems composed of differently specified
components.

5.1 An Application to Time Granularity

A granular reactive system (GRS) is a reactive system whose components have dynamic
behaviors regulated by very different—even by orders of magnitude—time constants [29].

As an example, consider a pondage power station consisting of a reservoir, with filling
and emptying times of days or weeks, generator units, possibly changing state in a few
seconds, and electronic control devices, evolving in milliseconds or even less [4]. A com-
plete specification of the power station must include the description of these components
and of their interactions. A natural description of the temporal evolution of the reservoir
state will probably use days: “During rainy weeks, the level of the reservoir increases
1 meter a day”, while the description of the control devices behavior may use millisec-
onds: “When an alarm comes from the level sensors, send an acknowledge signal in 50
milliseconds”. It is somewhat unnatural, and sometimes impossible, to force the speci-
fier of these systems to use a unique time granularity when describing the behavior of
all the components. Indeed, a good specification language must allow the specifier to
easily describe all simple and intuitively clear facts. Therefore, a specification language
for granular reactive systems must support different time granularities. Granular logics
have been extensively studied in [29–32], where a many-level view of temporal structures,
with matching decidability results (based on automata-theoretic techniques), has been
proposed.

A GRS can be viewed as a layered set of system components, each one evolving at
a different time granularity. Each system component can be regarded as a (flat) reactive
system: component states are represented as sets of propositions that hold at the state;
component computations are modeled as infinite sequences of component states. The
component behavior is a set of component computations, and it is usually represented
as a Kripke structure. The set of time granularities of the system (and thus the set of
system components) is totally ordered on the basis of the degree of fineness (coarseness)
of its elements. As an example, consider the set of time granularities including weeks,
days, seconds, and milliseconds. Time granularities are ordered as follows: weeks ≺
days ≺ seconds ≺ milliseconds, where g1 ≺ g2 means that g1 is coarser than g2. If
g1 ≺ g2, then there exists a conversion factor between the g1 and g2 that allows one to
map each time point of g1 into a set of time points of g2. For instance, the conversion
factor between weeks and days is 7. The behavior of the whole GRS can be described
in terms of the synchronized behavior of its components. A system state corresponds
to the set of states of all system components at/during an instant of the coarsest time
granularity; it can be represented as a tree such that the elements of its i-th layer are the
states of the i-th system component. Accordingly, a system computation can be defined
as an infinite sequence of system states (this is the state-based view). Equivalently, a
system computation can be expressed by a layered set of component computations, one
computation for each component (this is the component-based view). Finally, the system
behavior is a set of system computations.

The operational behavior of a GRS can be naturally described as a suitable combi-
nation of temporal evolutions (sequences of component states) and temporal refinements
(mapping of a component state into a finite sequence of states belonging to a finer com-
ponent). According to such a point of view, it can be represented by means of a combined
structure. In the following, we propose two simple verification frameworks based on tem-
poralization. A temporalized pointed model M = (W,R, g, w0) can be used in both the
component-based and a state-based fashion in order to represent the operational be-
haviour of a GRS. In the component-based framework, the ‘top’ frame (W,R, w0) models
the granular relationships among the different components: wRv means that the compo-
nent associated with v is a refinement of the one associated with w. The initial state w0

represents the coarsest component. Moreover, for w ∈ W , the model g(w) captures the in-

(a) component-based (b) state-based

Fig. 2. Frameworks for a GRS

ternal behavior of a single component (Figure 2(a)). Accordingly, the combined temporal
logic T1(T2), or the combined automata class A1(A2), may be adopted as specification
language, where T1 (resp. A1) models temporal refinement among different components,
and T2 (resp. A2) expresses temporal evolution of the single components. Component-
based properties, that is, formulas that predicate over temporal evolutions, are easily
expressible in this framework. A typical component-based property is the following one:
“there exists a computation of a system component during which p always holds”. This
condition can be expressed in PLTL(CTL) by means of the formula: F1E2G2p (we dis-
tinguish PLTL and CTL operators by using different indexes, namely, 1 for PLTL and 2
for CTL).

In the state-based framework, the interpretation of the model is different: the ‘top’
frame (W,R, w0) models the evolution of the system states (w0 is the initial system state),
while, for w ∈ W , the model g(w) captures the behavior of all temporal refinements
of w (Figure 2(b)). The combined temporal logic T1(T2), or the combined automata
class A1(A2), may be adopted as specification language. As for expressiveness of such a
framework, state-based properties, which refer to temporal refinements, are immediately
expressible. A typical state-based requirement is the following one: “there exists a system
state s such that every component state belonging to s satisfies p”. This condition can
be captured in PLTL(CTL) by means of the formula: F1A2G2p.

5.2 An Application to Mobile Ambients

The ambient calculus is a process calculus devised to model mobile computation (move-
ment of processes) and mobile computing (movement of devices) through administrative
domains [3]. The use of modal logic to describe properties of mobile computations has
been proposed in [2]. Following [3], we define a mobile reactive system (MRS) as a reactive
system whose processes (may) reside within a hierarchy of locations (ambient structure)
and modify it (Figure 3). The system may evolve in time by computing (a process in

P2 P3 P4P
1

a

b c

d

b c
d

a

Fig. 3. A Mobile Reactive System and its ambient structure

(b,s) (c,t) (d,u’)

(a,r’)

(c,t)(b,s)

(d,u)

(a,r)

(c,t)(b,s)

(d,u)

(a,r’)

Fig. 4. A temporalized model for an MRS

the system executes one step of computation) or moving (an ambient moves with its
subambients inside or outside another ambient). Moreover, a process may dissolve the
ambient of another process. The execution of a computation step modifies the program
state of the process that executes it, whereas the movement or dissolution of an ambient
modifies the ambient structures.

The operational behaviour of an MRS can be naturally described as a suitable com-
bination of two different components: the spatial distribution of processes within the
ambient structure, and the temporal evolution of processes due to computation or move-
ment. According to such a point of view, it can be represented by means of a combined
structure. MRSs can be embedded into a number of verification frameworks based on
combined structures and languages, which differ from each other in the expressive power
and in the level of interaction between components. In the following, we focus on a simple
framework based on temporalization. An MRS state describes the ambient structure and
the program states of the processes residing in each ambient. We model an MRS state
as a finite tree, labeled with pairs belonging to A × 2P , where A is a set of ambient
names and P is a set of proposition letters. The label (n, s) represents the fact that the
process in ambient n has (program) state s; an edge from (n, s) to (m, t) expresses the
fact that m is a subambient of n. The operational behavior of an MRS is modeled by
means of a temporalized pointed model (W,R, g, w0). The frame (W,R) models temporal
process evolution (both computation of processes and movement of ambients), and, for
every w ∈ W , g(w) models the system state associated with w. Finally, w0 is associ-
ated with the initial system state (Figure 4). A combined temporal logic T1(T2), or the
combined automata class A1(A2), can be used to specify mobile temporal requirements.
Requirements about temporal evolutions of processes may be captured using formulas of
T1 or automata in A1, and the structure of system states may be specified by means of
T2-formulas or A2-automata. For instance, the property “there will be a future in which
there will be no more viruses everywhere” can be encoded in PLTL(CTL) by means of
the formula F1G1A2G2¬pvirus.

6 Related and future work

In this paper, we proposed a new class of automata, called temporalized automata,
which can be obtained by combining simpler automata in a suitable way. We proved that
relevant properties, such as closure under Boolean operations, transfer from component
automata to temporalized ones. We also showed that a specific class of temporalized
automata, namely, Büchi(Rabink) automata, is expressively equivalent to the full second-
order monadic theory of k-refinable downward unbounded layered structures. Finally, we
showed how they can be used to deal with relevant classes of reactive systems, such as
granular reactive systems and mobile reactive systems.

The proposed way of combining automata can be naturally viewed as a way of ab-
stracting and concretizing objects. More precisely, we have defined two operations over
temporalized automata: the operation ↑, that, given a temporalized automaton in the
class A1(A2), returns an automaton in the outermost class A1, and the operation ↓,
that, given an automaton in the class A1, returns an automaton in the combined class
A1(A2). These operations can be interpreted as abstraction and concretization opera-
tions, respectively: the automaton A↑ may be viewed as an abstraction of A, that is, it
is a simpler object encoding only part of the information of A, while the automaton A↓

may be viewed as a concretization of A, that is, it is a more complex object encoding
more information than A. Thanks to its simple form, the abstraction A↑ can be used to
efficiently answer particular queries about A. For instance, to check the emptiness of A
one can check the emptiness of A↑. Checking the emptiness of A↑ is in general easier than
checking the emptiness of A. If the language of A↑ is empty, then we know for sure that
the language of A is empty too. These operations of abstraction and concretization can
be generalized to more structured temporalizations. Let A be a class of automata. We
define A1 = A, and, for n ≥ 2, we define An = A(An−1). For A ∈ An, we define the i-th
abstraction of A as follows: A↑

1
= A↑, and, for i = 2, . . . , n−1, A↑

i

= (A↑
i−1

)↑. Similarly,
we define the i-th concretization of A ∈ A. Given A ∈ An, it is sometime possible to
analyze A by studying its abstractions A↑

1
, . . . , A↑

n−1
, which belong, respectively, to the

classes An−1, . . . ,A1. For instance, if A↑
n−1

accepts the empty language, then every A↑
i

,
for i = 1, . . . , n− 1, as well as A, accepts the empty language.

It is worth remarking that some forms of automata combination have been already
considered in the literature to increase the expressive power of temporal logics. As an
example, extensions of PLTL with connectives defined by means of finite automata over
ω-strings are investigated in [37]. To gain the expressive power of the full second-order
monadic theory of natural numbers with the usual order, Vardi and Wolper’s Extended
Temporal Logic (ETL) replaces the until operator of PLTL by an infinite bunch of au-
tomata connectives, that is, ETL allows formulas to occur as arguments of an automaton
connective (as many formulas as the symbols of the automaton alphabet are). Given the
well-known correspondence between formulas and automata, the application of automata
connectives to formulas can be viewed as a form of automata combination. Unlike the
case of temporalized automata, however, the switch from PLTL to ETL does not involve
any change in the domain of interpretation (ω-structures). An extension of CTL∗ that
substitutes ETL operators for PLTL ones, is given in [6]. Also in this case, however, the
underlying temporal structure does not change (binary trees). On the contrary, in the
case of temporalized logics, component temporal logics refer to different temporal struc-
tures, and thus the combination of logics is paired with a combination of their temporal
structures.

We are currently exploring the possibility of extending our correspondence results
to other forms of logic combination, such as independent combination and join. Further-
more, we are investigating the relationships between temporalized and classical automata.
On the one hand, the languages recognized by temporalized automata are structurally
different from those recognized by classical automata, e.g., Büchi(Büchi) automata rec-
ognize infinite strings of infinite strings. On the other hand, this fact does not imply that
language problems for temporalized automata cannot be reduced to the corresponding
problems for classical automata. As an example, the emptiness problem for Büchi(Büchi)
automata can be reduced to the emptiness problem for Büchi automata.

References

1. A. P. Sistla. Theoretical Issues in the Design of Distributed and Concurrent Systems. PhD
thesis, Harvard University, Cambridge, MA, 1983.

2. L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In
The 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 365–377, Boston, Massachusetts, January 19–21, 2000.

3. L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–
213, June 2000.

4. E. Ciapessoni, E. Corsetti, A. Montanari, and P. San Pietro. Embedding time granularity
in a logical specification language for synchronous real-time systems. Science of Computer
Programming, 20:141–171, 1993.

5. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms
for the verification of temporal properties. In Edmund M. Clarke and Robert P. Kurshan,
editors, Proceedings of Computer-Aided Verification (CAV ’90), volume 531 of LNCS, pages
233–242, Berlin, Germany, 1991. Springer.

6. M. Dam. CTL∗ and ECTL∗ as fragments of the modal µ-calculus. Theoretical Computer
Science, 126, 1994.

7. E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Information and Control,
61(3):175–201, June 1984.

8. E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Vol. B, pages 995–1072. Elsevier Science Publishers B.V., 1990.

9. J. Engelfriet. Minimal temporal epistemic logic. Notre Dame Journal of Formal Logic,
37:233–259, 1996.

10. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT
Press, Cambridge, MA, 1995.

11. K. Fine and G. Schurz. Transfer theorems for multimodal logics. In J. Copeland, editor,
Logic and Reality: Essays on the Legacy of Arthur Prior, pages 169–213. Oxford University
Press, Oxford, 1996.

12. M. Finger. Handling database updates in two-dimensional temporal logic. Journal of Applied
Non-Classical Logics, 2(2), 1992.

13. M. Finger and D.M. Gabbay. Adding a temporal dimension to a logic system. Journal of
Logic Language and Information, 1:203–233, 1992.

14. M. Finger and D.M. Gabbay. Combining temporal logic systems. Notre Dame Journal of
Formal Logic, 37:204–232, 1996.

15. M. Franceschet and A. Montanari. Branching within time: an expressively complete and
elementarily decidable temporal logic for time granularity. Journal of Language and Com-
putation, 2001. To appear.

16. M. Franceschet, A. Montanari, and M. de Rijke. Model checking for combined logics. In
Proceedings of the 3rd International Conference on Temporal Logic (ICTL), 2000. Submitted
to the Journal of Logic and Computation.

17. D. M. Gabbay and M. de Rijke, editors. Frontiers of Combining Systems 2, volume 7 of
Studies in Logic and Computation. Research Studies Press/Wiley, 2000.

18. T. Hafer and W. Thomas. Computation tree logic CTL* and path quantifiers in the monadic
theory of the binary tree. In T. Ottmann, editor, Automata, Languages and Programming,
14th International Colloquium, volume 267 of LNCS, pages 269–279. Springer, 1987.

19. Joseph Y. Halpern and Moshe Y. Vardi. The complexity of reasoning about knowledge and
time I: Lower bounds. Journal of Computer and System Sciences, 38(1):195–237, 1989.

20. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, Englewood
Cliffs, NJ, 1991.

21. G. J. Holzmann and D. Peled. The state of spin. In 8th International Conference on
Computer Aided Verification, number 1102 in LNCS, pages 385–389, New Brunswick, NJ,
USA, 1996. Springer Verlag.

22. N. Immerman and D. Kozen. Definability with bounded number of Information and Com-
putation, 83(2):121–139, 1989.

23. C. Jard and T. Jeron. On-line model checking for finite linear temporal logic specifications.
In Proc. Workshop on Automatic Verification Methods for Finite State Systems, Lecture
Notes on Computer Science, pages 189–196, Grenoble, France, 1989. Springer Verlag.

24. M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal logics. Journal
of Symbolic Logic, 56(4):1469–1485, 1991.

25. R. Kurshan. Computer-aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, 1994.

26. M. Finger. Changing the past: database applications of two-dimensional executable temporal
logics. PhD thesis, Imperial College, Department of Computing, 1994.

27. M. Reynolds M. Finger. Two-dimensional executable temporal logic for bitemporal
databases. In Proceedings of Advances in Temporal Logic, pages 393–411. Kluver Academic,
2000.

28. Z. Manna and A. Pnueli. Specification and verification of concurrent programs by ∀ au-
tomata. In Proceedings of the 14th ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 1–12, 1987.

29. A. Montanari. Metric and Layered Temporal Logic for Time Granularity. ILLC Dissertation
Series 1996-02, Institute for Logic, Language and Computation, University of Amsterdam,
1996.

30. A. Montanari, A. Peron, and A. Policriti. Decidable theories of ω-layered metric temporal
structures. Logic Journal of the IGPL, 7(1):79–102, 1999.

31. A. Montanari, A. Peron, and A. Policriti. The taming (timing) of the states. Logic Journal
of the IGPL, 8(5):681–699, 2000.

32. A. Montanari and A. Policriti. Decidability results for metric and layered temporal logics.
Notre Dame Journal of Formal Logic, 37:260–282, 1996.

33. P. Wolper. Synthesis of Communicating Processes from Temporal Logic Specifications. PhD
thesis, Standford University, Palo Alto, CA, 1982.

34. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Buchi automata
with applications to temporal logic. Theoretical Computer Science, 49(2-3):217–237, 1987.

35. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, Vol. B, pages 133–191. Elsevier Science Publishers, 1990.

36. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In Symposium on Logic in Computer Science (LICS ’86), pages 332–345, Washington,
D.C., USA, 1986. IEEE Computer Society Press.

37. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, 1994.

