
Event Calculus with Explicit Quantifiers∗

Iliano Cervesato†, Massimo Franceschet‡, and Angelo Montanari‡

† Department of Computer Science
Stanford University

Stanford, CA 94305-9045
iliano@cs.stanford.edu

‡ Dipartimento di Matematica e Informatica
Università di Udine

Via delle Scienze, 206 – 33100 Udine, Italy
francesc@dimi.uniud.it; montana@dimi.uniud.it

Abstract

Kowalski and Sergot’s Event Calculus (EC) is a sim-

Appeared in the Proceedings of the Fifth International Workshop on Temporal Representation and Reasoning — TIME’98 (R. Morris,
L. Khatib editors), pp. 81–88, IEEE Computer Society Press, Sanibel Island, FL, 16–17 May 1998.

ple temporal formalism that, given a set of event occur-
rences, derives the maximal validity intervals (MVIs)
over which properties initiated or terminated by these
events hold. We extend the range of queries accepted
by EC, so far limited to boolean combinations of MVI
verification or computation requests, to admit arbitrary
quantification over events and properties. We demon-
strate the added expressive power by encoding a medical
diagnosis problem as a case study. Moreover, we give
an implementation of this formalism and analyze the
computational complexity of the extended calculus.

1 Introduction

The Event Calculus, abbreviated EC [5], is a sim-
ple temporal formalism designed to model and reason
about scenarios characterized by a set of events, whose
occurrences have the effect of starting or terminating
the validity of determined properties. Given a (possi-
bly incomplete) description of when these events take
place and of the properties they affect, EC is able to de-
termine the maximal validity intervals, or MVIs, over
which a property holds uninterruptedly. In practice,
since this formalism is usually implemented as a logic
program, EC can also be used to check the truth of
MVIs and process boolean combinations of MVI veri-
fication or computation requests. The range of queries
that can be expressed in this way is however too limited
for modeling realistic situations.

∗The first author was supported by ONR grant N00014-97-1-
0505, Multidisciplinary University Research Initiative Semantic
Consistency in Information Exchange. The work of the third
author was partially supported by the CNR project Program-
mazione logica: strumenti per analisi e trasformazione di pro-
grammi; tecniche di ingegneria del software; estensioni con vin-
coli, concorrenza ed oggetti (STE).

A systematic analysis of EC has recently been un-
dertaken in order to gain a better understanding of this
calculus and determine ways of augmenting its expres-
sive power. The keystone of this endeavor has been
the definition of an extendible formal specification of
the functionalities of this formalism [2]. This has had
the effects of establishing a semantic reference against
which to verify the correctness of implementations [2],
of casting EC as a model checking problem [3], and of
setting the ground for studying the complexity of this
problem, which was proved polynomial [1]. Extensions
of this model have been designed to accommodate con-
structs intended to enhance the expressiveness of EC .
In particular, modal versions of EC [2], the interaction
between modalities and connectives [3], and precondi-
tions [4] have all been investigated in this context.

In this paper, we continue the endeavor to enhance
the expressive power of EC by considering the possibil-
ity of quantifying over events and properties in queries.
We also admit boolean connectives and requests to ver-
ify the relative order of two events. We show that the
resulting language, that we call QCEC, can effectively
be used to encode interesting problems in medical di-
agnosis. Moreover, we provide an elegant implemen-
tation in the higher-order logic programming language
λProlog [6] and prove its soundness and completeness.
Finally, we analyze the complexity of the model check-
ing problem involving this language.

The main contributions of this work are: (1) the ex-
tension of the event calculus with quantifiers; (2) per-
mitting queries to mention ordering information; and
(3) the use of the higher-order features of modern logic
programming languages in temporal reasoning.

This paper is organized as follows. In Section 2, we
formalize QCEC . Section 3 is devoted to exemplifying
how this calculus can adequately model certain medi-
cal diagnosis problems. In Section 4, we briefly intro-
duce the logic programming language λProlog, give an
implementation of QCEC in it and prove the sound-

ness and completeness of the resulting program. In
Section 5, we analyze the complexity of QCEC . We
outline directions of future work in Section 6.

2 Event Calculus with Quantifiers

In this section, we first recall the syntax and seman-
tics of the Event Calculus, EC for short (2.1). We then
extend this basic definition to give a semantic founda-
tion to the Event Calculus with Connectives and Quan-
tifiers, abbreviated QCEC (2.2).

2.1 EC

The Event Calculus (EC) [5] and the extension we
propose aim at modeling scenarios that consist of a set
of events, whose occurrences over time have the effect
of initiating or terminating the validity of properties,
some of which may be mutually exclusive. We for-
malize the time-independent aspects of a situation by
means of an EC-structure [2], defined as follows:

Definition 2.1 (EC-structure)
A structure for the Event Calculus (EC-structure)

is a quintuple H = (E, P, [·〉, 〈·],]·,·[) such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite
sets of events and properties, respectively.

• [·〉 : P → 2E and 〈·] : P → 2E are respectively the
initiating and terminating map of H. For every
property p ∈ P, [p〉 and 〈p] represent the set of
events that initiate and terminate p, respectively.

•]·,·[⊆ P × P is an irreflexive and symmetric re-
lation, called the exclusivity relation, that models
exclusivity among properties.

The temporal aspect of EC is given by the order in
which events happen. For the sake of generality [2], we
admit scenarios in which the occurrence times of events
are unknown or in which the relative order of event
happenings is incomplete. Clearly our argument spe-
cializes to the common situation where every event has
an associated occurrence time. We however require the
temporal information to be consistent so that an event
cannot both precede and follow some other event. In its
most basic form, EC does not take the evolution of the
event ordering into account, but operates on temporal
snapshots. We can then formalize the time-dependent
aspect of a scenario modeled by EC by means of a
(strict) partial order for the involved event occurrences.
We write WH for the set of all partial orders over the
set of events E in H, use the letter w to denote indi-
vidual orderings and write e1 <w e2 to indicate that e1

precedes e2 in the ordering w. For reasons of efficiency,
implementations usually represent the temporal infor-
mation of an EC problem as a binary acyclic relation o
from which w can be recovered by taking its transitive
closure, written o+.

Given a structure H = (E, P, [·〉, 〈·],]·,·[) and
an event ordering w, we call the pair (H, w) an EC-
problem. EC permits inferring the maximal validity
intervals, or MVIs, over which a property p holds un-
interruptedly. We represent an MVI for p as p(ei, et),
where ei and et are the events that respectively initiate
and terminate the interval over which p holds maxi-
mally. Consequently, we adopt as the query language
of an EC problem (H, w) the set

LH(EC) = {p(e1, e2) : p ∈ P and e1, e2 ∈ E}
of all such property-labeled intervals over H. We in-
terpret the elements of LH(EC) as propositional let-
ters and the task performed by EC reduces to deciding
which of these formulas are MVIs in w and which are
not. This is a model checking problem.

In order for p(e1, e2) to be an MVI relative to the
event ordering w, it must be the case that e1 <w e2.
Moreover, e1 and e2 must witness the validity of the
property p at the ends of this interval by initiating and
terminating p, respectively. These requirements are
enforced by conditions (i), (ii) and (iii), respectively,
in the definition of valuation given below. The max-
imality requirement is caught by the negation of the
meta-predicate br(p, e1, e2, w) in condition (iv), which
expresses the fact that the truth of an MVI must not be
broken by any interrupting event. Any event e which is
known to have happened between e1 and e2 in w and
that initiates or terminates a property that is either p
itself or a property exclusive with p interrupts the va-
lidity of p(e1, e2). These observations are formalized as
follows.

Definition 2.2 (Intended model of EC)
Let H = (E, P, [·〉, 〈·],]·,·[) be a EC-structure

and w ∈ WH. The intended EC-model of (H, w) is
the propositional valuation υ(H,w) ⊆ LH(EC), where
p(e1, e2) ∈ υ(H,w) if and only if

i. e1 <w e2;

ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];

iv. br(p, e1, e2, w) does not hold, where br(p, e1, e2, w)
abbreviates:
there exists an event e ∈ E such that e1 <w e,
e <w e2 and there exists a property q ∈ P
such that e ∈ [q〉 or e ∈ 〈q], and either]p, q[
or p = q. 2

2

2.2 QCEC

We will now enrich the query language of the Event
Calculus with universal and existential quantifiers over
both events and properties. In order to make the
resulting formalism more interesting, we further add
boolean connectives and the possibility of testing the
relative order of events. Indeed, a logic programming
implementation of EC can emulate existential quantifi-
cation over individual formulas in LH(EC) by means
of unification, and moreover, universally quantified for-
mulas in this language always have trivial solutions.
We call the resulting formalism the Event Calculus with
Connectives and Quantifiers, or QCEC for short.

The addition of connectives, precedence testing and
unrestricted quantification over events gives QCEC a
considerably improved expressive power with respect
to EC . This will be demonstrated in Section 3 where
we will be able to encode a medical diagnosis prob-
lem that cannot be easily tackled by EC . The compu-
tational complexity of the extended calculus remains
polynomial in the numbers of events, but becomes ex-
ponentials in the quantifiers nesting of the query, as we
will see in Section 5. However, in realistic applications
the query size is likely to be much smaller than the
number of recorded events.

Quantifiers over property do not appear to enhance
significantly the expressiveness of EC due to the tight
relation between properties and events, hard-coded in
the initiation and termination maps. However, we ex-
pect substantial benefits in a language that admits the
use of preconditions [4]. We nonetheless treat property
quantifiers since they are handled similarly to quantifi-
cation over events.

In order to accommodate quantifiers, we need to ex-
tend the query language of an EC problem (H, w), with
H = (E, P, [·〉, 〈·],]·,·[), in several respects. We first
assume the existence of infinitely many event variables
that we denote E, possibly subscripted. We similarly
need a countable set of property variables, indicated
with the letter P variously decorated. We write ē for
a syntactic entity that is either an event in E or an
event variable. We adopt a similar notation in the case
of properties. The query language of QCEC, denoted
LH(QCEC), is then the set of closed formulas gener-
ated by the following grammar:

ϕ ::= p̄(ē1, ē2) | ē1 < ē2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| ∀E.ϕ | ∃E.ϕ | ∀P.ϕ | ∃P. ϕ.

where ē1 < ē2 denotes the test of whether ē1 precedes
ē2. Observe that ∀ and ∃ have been overloaded to
indicate quantification over both events and properties;
the nature of the syntactic variable that follows these

symbols allows disambiguating their use. In addition
to the operators above, we also admit implication (⊃)
as a derived connective, where ϕ1 ⊃ ϕ2 is classically
defined as ¬ϕ1 ∨ ϕ2.

The notions of free and bound variables are defined
as usual and we identify formulas that differ only by
the name of their bound variables. We write [e/E]ϕ
for the substitution of an event e ∈ E for every free
occurrence of the event variable E in the formula ϕ,
and similarly for properties. Notice that this limited
form of substitution cannot lead to variable capture.

We now extend the definition of intended model of
an EC -problem (H, w) from formulas in LH(EC) to
objects in LH(QCEC). To this aim, we need to define
the notion of validity for the new constructs of QCEC.

Definition 2.3 (Intended model of QCEC)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure

and w an event ordering. The intended QCEC-model
of H and w is the classical model I(H,w) built on top
of the valuation υ(H,w). Given a (closed) formula
ϕ ∈ LH(QCEC), the truth of ϕ at I(H,w), denoted
as I(H,w) |= ϕ, is inductively defined as follows:

I(H,w) |= p(e1, e2) iff p(e1, e2) ∈ υ(H,w);
I(H,w) |= e1 < e2 iff e1 <w e2;
I(H,w) |= ¬ϕ iff I(H,w) 6|= ϕ;
I(H,w) |= ϕ1 ∧ ϕ2 iff I(H,w) |= ϕ1 and I(H,w) |= ϕ2;
I(H,w) |= ϕ1 ∨ ϕ2 iff I(H,w) |= ϕ1 or I(H,w) |= ϕ2;
I(H,w) |= ∀E. ϕ iff for all e ∈ E, I(H,w) |= [e/E]ϕ;
I(H,w) |= ∃E. ϕ iff there exists e ∈ E such that

I(H,w) |= [e/E]ϕ;
I(H,w) |= ∀P. ϕ iff for all p ∈ P, I(H,w) |= [p/P]ϕ;
I(H,w) |= ∃P. ϕ iff there exists p ∈ P such that

I(H,w) |= [p/P]ϕ.

The well-foundedness of this definition derives from
the observation that if ∀E. ϕ is a closed formula, so
is [e/E]ϕ for every event e ∈ E, and similarly for the
other quantifiers.

A universal quantification over a finite domain can
always be expanded as a finite sequence of conjunc-
tions. Similarly an existentially quantified formula is
equivalent to the disjunction of all its instances. The
following lemma, whose simple proof we omit, applies
these principles to QCEC.

Lemma 2.4 (Unfolding quantifiers)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure,

with E = {e1, . . . , en} and P = {p1, . . . , pm}. Then,
for every w ∈ WH,

(i) I(H,w) |= ∀E. ϕ iff I(H,w) |=
∧n

i=1[ei/E]ϕ;
(ii) I(H,w) |= ∃E. ϕ iff I(H,w) |=

∨n
i=1[ei/E]ϕ;

(iii) I(H,w) |= ∀P. ϕ iff I(H,w) |=
∧m

i=1[pi/P]ϕ;
(iv) I(H,w) |= ∃P. ϕ iff I(H,w) |=

∨m
i=1[pi/P]ϕ.

3

This property hints at the possibility of compiling a
QCEC query to a formula that does not mention any
quantifier. Observe however that this is possible only
after an EC -structure has been specified. Therefore,
quantifiers are not simply syntactic sugar, but an effec-
tive extension over a query language with connectives.

We will rely on the above lemma in order to ana-
lyze the computational complexity of the formalism in
Section 5. However, we will not take advantage of it to
implement QCEC in Section 4 since a model checker
should be independent from the particular EC -problem
it is operating on.

3 Example

In this section, we consider an example taken from
the domain of medical diagnosis that shows how an ex-
tension of EC with quantifiers and connectives can be
conveniently used to deal with significant applications.

We focus our attention on repeated clusters of events
whose correlation, if present, can entail conclusions
about the state of the system under observation. As
an example, consider the following rule of thumb for
diagnosing malaria [7]:

A malaria attack begins with chills that are fol-
lowed by high fever. Then the chills stop and some
time later the fever goes away as well. Malaria
is likely if the patient has repeated episodes of
malaria attacks.

Figure 1 describes the symptoms of a patient,
Mr. Jones, who has just returned from a vacation to
the Tropics. We have labeled the beginning and the
end of chills and fever periods for reference. Accord-
ing to the rule above, Mr. Jones should be diagnosed
with malaria. If however he had not had fever in the
period between e6 and e8 for example, or if e7 had pre-
ceded e6, then further checks should be made in order
to ascertain the kind of ailment he suffers from.

We will now show how the rule above can be ex-
pressed as a QCEC query in order to automate the
diagnosis of malaria. The first task is to give a rep-
resentation of symptom records as EC -problems. In
the case of Mr. Jones, the factual information of his
condition is represented by the EC -structure H =
(E, P, [·〉, 〈·],]·,·[) below, which is a direct transliter-
ation of the data in Figure 1.

• E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12},
• P = {chills, fever},
• [chills〉 = {e1, e5, e9}, [fever〉 = {e2, e6, e10},
• 〈chills] = {e3, e7, e11}, 〈fever] = {e4, e8, e12},
•]·,·[= ∅.

The events that initiate and terminate the symptoms of
Mr. Jones happened in ascending order of their indices.
We call w the corresponding ordering.

The decision rule for diagnosing malaria can then be
reworded as saying that “whenever there is an episode
of chills, there is a successive period of fever that starts
before the chills are over”.1 It can in turn be expressed
by the following formula in LH(QCEC):

ϕ = ∀E1. ∀E2. (chills(E1, E2) ⊃ (∃E′
1. ∃E′

2.
(E1 < E′

1 ∧ E′
1 < E2 ∧ fever(E′

1, E2′))))

that makes use of both universal and existential quanti-
fiers over events, of all the connectives of QCEC (once
implication is expanded) and of the precedence test. It
is easy to verify that I(H,w) |= ϕ, while this formula
is not valid in models where e6 or e8 have been elimi-
nated, or where the relative order of e6 and e7 has been
reversed, for example.

There is no way to express this rule in EC, even when
extended with connectives and the precedence test, un-
less quantifiers are unfolded as specified in Lemma 2.4.
This would have however the undesirable effects of
making the formula used to diagnose malaria problem-
specific, and to augment considerably the size of this
expression.

4 Implementation

The Event Calculus [5] has traditionally been im-
plemented in the logic programming language Pro-
log [8]. Recent extensions to EC have instead adopted
λProlog [6] in order to achieve a declarative yet sim-
ple encoding, necessary to formally establish correct-
ness issues [2]. In this section, we will rely on orthog-
onal features of λProlog to obtain an elegant encod-
ing of quantifiers (4.2). Before doing so, we recall the
meaning of relevant constructs of this language (4.1).
We conclude this section by showing that this program
faithfully realizes the specification of QCEC (4.3).

4.1 λProlog in a nutshell

Due to space limitations, we shall assume the reader
to be familiar with the logic programming language
Prolog [8]. We will instead illustrate some of the char-
acteristic constructs of λProlog at an intuitive level.
We invite the interested reader to consult [6] for a more
complete discussion, and [2] for a presentation in the
context of the Event Calculus.

Unlike Prolog which is first-order, λProlog is a
higher-order language, which means that the terms in

1The other possible interpretations can be rendered in QCEC.

4

- time

Chills
e1 e3 e5 e7 e9 e11

Fever
e2 e4 e6 e8 e10 e12

Figure 1. Symptoms of Patient Jones

this programming language are drawn from a simply
typed λ-calculus. More precisely, the syntax of terms is
given by the following grammar:

M ::= c | x | F | M1 M2 | x \M

where c ranges over constants, x stands for a bound
variable and F denotes a logical variable (akin to
Prolog ’s variables). Identifiers beginning with a low-
ercase and an uppercase letter stand for constants
and logical variables, respectively. Terms that differ
only by the name of their bound variables are con-
sidered indistinguishable. “x \M” is λProlog ’s syn-
tax for λ-abstraction, traditionally written λx.M . In
this language, terms and atomic formulas are writ-
ten in curried form (e.g. “before E1 E2” rather than
“before(E1, E2)”).

Every constant, bound variable and logical variable
is given a unique type A. Types are either user-defined
base types, or functional types of the form A1 ->A2. By
convention, the predefined base type o classifies formu-
las. A base type a is declared as “kind a.”, and a con-
stant c of type A is entered in λProlog as “type c A.”.
Syntax is provided for declaring infix symbols. Appli-
cation and λ-abstraction can be typed if their subex-
pression satisfy certain constraints. λProlog will reject
every term that is not typable.

While first-order terms are equal solely to them-
selves, the equational theory of higher-order languages
identifies terms that can be rewritten to each other
by means of the β-reduction rule: (x \M) N =
[N/x]M , where the latter expression denotes the
capture-avoiding substitution of the term N for the
bound variable x in M . A consequence of this fact is
that unification in λProlog must perform β-reduction
on the fly in order to equate terms or instantiate logi-
cal variables. A further difference from Prolog is that
logical variables in λProlog can stand for functions (i.e.
expressions of the form x \M) and this must be taken
into account when unification is performed.

For our purposes, the language of formulas of
λProlog differs from Prolog for the availability of an
explicit existential quantifier in the body of clauses.
The goal ∃x.G is written “sigma x \G” in the con-
crete syntax of this language. We will also take advan-

tage of negation-as-failure, denoted not. We will not
rely directly on the other powerful constructs offered
by this language. Other connectives are denoted as in
Prolog : “,” for conjunction, “;” for disjunction, “:-”
for implication with the arguments reversed. The only
predefined predicate we will use is the infix “=” that
unifies its arguments. Given a well-typed λProlog pro-
gram P and a goal G, the fact that there is a derivation
of G from P, i.e. that G is solvable in P, is denoted
P ` G. See [6, 2] for details.

λProlog offers also the possibility of organizing pro-
grams into modules. A module m is declared as
“module m.” followed by the declarations and clauses
that define it. Modules can access other modules by
means of the accumulate declaration.

Finally, % starts a comments that extends to the end
of the line.

4.2 Implementation of QCEC in λProlog

We will now give an implementation of QCEC in
λProlog. The resulting module, called qcec, is dis-
played in Appendix A. The rule to diagnose malaria
and the medical record of Mr. Jones from Section 3 are
included in Appendices B and C, respectively. This
code has been tested using the Terzo implementa-
tion of λProlog, version 1.0b, which is available from
http://www.cse.psu.edu/~dale/lProlog/.

We define a family of representation functions p·q
that relate the mathematical entities we have been us-
ing in Section 2 to terms in λProlog. Specifically, we
will need to encode EC -structures, the associated or-
derings, and the language of QCEC . In the remainder
of this section, we will refer to a generic EC -structure
H = (E, P, [·〉, 〈·],]·,·[).

We represent H by giving an encoding of the enti-
ties that constitute it. We introduce the types event
and property so that every event in E (property in
P) is represented by a distinct constant of type event
(of type property, respectively). Event and property
variables are represented as λProlog variables of the
relative type. The initiation, termination and exclu-
sivity relations, event occurrences (traditionally repre-
sented in EC) and property explicitation (needed to

5

guarantee groundness) are mapped to the predicate
symbol initiates, terminates, exclusive, happens
and prop, respectively, applied to the appropriate ar-
guments. Declarations for these constants can be found
in Appendix A.

For implementation purposes, it is more convenient
to compute the relative ordering of two events on the
basis of fragmented data (a binary acyclic relation)
than to maintain this information as a strict order.
We rely on the binary predicate symbol beforeFact
to represent the edges of the binary acyclic relation.
We encapsulate the clauses for the predicate before,
which implements its transitive closure, in the module
transClo. We do not show details for space reasons,
but a quadratic implementation can be found in [1].

In order to encode the syntax of QCEC, we define
the type mvi, intended to represent the formulas of this
language (as opposed to the formulas of λProlog, that
have type o). The representation of formulas is then
relatively standard [2], except for quantifiers:

pp̄(ē1, ē2)q = period pē1q pp̄q pē2q
pē1 < ē2q = pē1q precedes pē2q

p¬ϕq = neg pϕq
pϕ1 ∧ ϕ2q = pϕ1q and pϕ2q
pϕ1 ∨ ϕ2q = pϕ1q or pϕ2q
pϕ1 ⊃ ϕ2q = pϕ1q implies pϕ2q

p∀E. ϕq = forAllEvent (E \ pϕq)
p∃E. ϕq = forSomeEvent (E \ pϕq)
p∀P.ϕq = forAllProp (P \ pϕq)
p∃P.ϕq = forSomeProp (P \ pϕq)

Quantifiers differ from the other syntactic entities of
a language such as QCEC by the fact that they bind
a variable in their argument (e.g. E in ∃E. ϕ). Bound
variables are then subject to implicit renaming to avoid
conflicts and to substitution. Encoding binding con-
structs in traditional programming languages such as
Prolog is painful since these operations must be ex-
plicitly programmed. λProlog and other higher-order
languages permit a much leaner emulation since λ-
abstraction (X \ M) is itself a binder and their im-
plementations come equiped with (efficient) ways of
handling it. The idea, known as higher-order ab-
stract syntax [6], is then to use λProlog ’s abstrac-
tion mechanism as a universal binder. Binding con-
structs in the object language are then expressed as
constants that takes a λ-abstracted term as its argu-
ment (for example forSomeEvent is declared of type
(event -> mvi) -> mvi). Variable renaming hap-
pens behind the scenes, and substitution is delegated
to the meta-language as β-reduction.

An example will shed some light on this technique.
Consider the formula ϕ = ∃E. p(E, e2), whose repre-

sentation is

forSomeEvent (E \ (period E p e2))

where we have assumed that p and e2 are encoded
as the constants p and e2, of the appropriate type.
It is easy to convince oneself that this expression is
well-typed. In order to ascertain the truth of ϕ, we
need to check whether p(e, e2) holds for successive
e ∈ E until such an event is found. Automating
this implies that, given a candidate event e1 (rep-
resented as e1), we need to substitute e1 for E in
period E p e2. This can however be achieved by
simply applying the argument of forSomeEvent to
e1. Indeed, (E \ (period E p e2)) e1 is equal to
period e1 p e2, modulo β-reduction. This technique
is used in clauses 8–11 in our implementation.

We represent the truth of a formula in QCEC my
means of the predicate holds. Clauses 1 to 11 in Ap-
pendix A implement the specification of this language
given in Section 2. More precisely, clauses 1 and 2 pro-
vide a direct encoding of Definition 2.1, where clause
2 faithfully emulates the meta-predicate br. Clause
3 captures the meaning of the precedence construct,
while clauses 4 to 7 reduce the truth check for the
connectives of QCEC to the derivability of the corre-
sponding λProlog constructs. Notice that implication
is translated back to a combination of negation and dis-
junction in clause 7. Existential quantifiers are handled
similarly to connectives in clauses 9 and 11. Although
λProlog offers a form of universal quantification, we are
forced to take a detour and express our universal quan-
tifiers as negations and existentials in clauses 8 and 10.
A lengthy discussion of the logical reasons behind this
step can be found in [2]. The conjunct prop P in clause
10 is needed in order to prevent passing uninstantiated
logical variables to the negation-as-failure operator.

4.3 Soundness and Completeness

The encoding we have chosen as an implementa-
tion of QCEC permits an easy proof of its faithfulness
with respect to the formal specification of this formal-
ism. Key factors in the feasibility of this endeavor are
the precise semantic definition of QCEC given in Sec-
tion 2, and the exploitation of the declarative features
of λProlog.

We only show the statement of our soundness and
completeness result since a fully worked out proof
would require a very detailed account of the seman-
tics of λProlog, and is rather long, although simple.
Space constraints prevent us from doing so. The inter-
ested reader can find the full development of a proof
that relies on the same techniques in [2].

6

Theorem 4.1 (Soundness and completeness of qcec)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure, o

a binary acyclic relation over E and ϕ and formula in
LH(QCEC), then
qcec, pHq, poq ` holds ϕ iff I(H,o+) |= ϕ.

5 Complexity Analysis

Given an EC -structure H, an ordering w ∈ WH and
a formula ϕ, we want to characterize the computational
complexity of establishing whether I(H,w) |= ϕ is true
as a function of the size of both H and ϕ. This is a
model checking problem. We call the triple (H, w, ϕ)
an instance of the problem.

The notion of cost we adopt is as follows: we assume
that verifying the truth of the propositions e ∈ [p〉,
e ∈ 〈p] and]p, p′[has constant cost O(1), for given
event e and properties p and p′. Although possible in
principle, it is disadvantageous in practice to imple-
ment event orderings so that the test e1 <w e2 has
constant cost. We instead maintain an acyclic binary
relation o on events whose transitive closure o+ is w
(see Section 4). Verifying whether e1 <w e2 holds be-
comes a reachability problem in o and it can be solved
in time O(n2) in the number n of events [1]. The cost
of solving the query e1 < e2 is therefore quadratic.

Model checking in EC is known to have cubic cost
O(n3), where n is the number of events in H [1]. Ad-
mitting connectives implies solving as many EC prob-
lems as there are binary operators in the query, plus 1.
Therefore, given a formula ϕ containing k binary opera-
tors, model checking it has cost O(kn3) [3]. This bound
does not change if we consider precedence queries: solv-
ing e1 < e2 has complexity O(n2), and therefore, ab
abundantia, O(kn3) for any positive k.

We will exploit the unfolding lemma (2.4) to reduce
the determination of the complexity of model checking
in QCEC to the analogous problem in a setting de-
prived of quantifiers. Consider first the case of quan-
tification over events. This lemma affirms that every
formula involving one event quantifier at its top-level
can be replaced by the conjunction of n instances of it.
If we have a nesting of qe such quantifiers, we are led
to solve nqe instances. In general, if we eliminate in
this manner all event quantifiers in a formula ϕ with k
binary connectives, we will produce a formula ϕ′ with-
out quantifiers but with at most knqe connectives. This
implies that the cost of solving a QCEC query with-
out property quantifiers is at most O(knqe+3), where
qe is now the maximum nesting of event quantifiers in
ϕ. Notice that the strategy suggested by the unfold-
ing lemma has optimal cost since proving that ∀E.ϕ

holds requires checking [ei/E]ϕ for all n events ei in
E, while disproving ∃E. ϕ implies checking similarly
[ei/E]ϕ for all these events. Similar considerations are
in order if the formula at hand contains a nesting of at
most qp quantifications over properties and there are m
properties. These results are combined in the following
theorem, where the complexity parameters n, m, k, qe

and qp have been defined above. Notice that n and m
are bound to the EC -structure H, while the remaining
quantities depend on the query ϕ.

Theorem 5.1 (Complexity of model checking)

Given an instance (H, w, ϕ), the test I(H,w) |= ϕ has
cost O(knqe+3mqp).

The program in Appendix A is a direct transliteration
of the definition of QCEC in λProlog. It is therefore
easy to check that the complexity of this algorithm co-
incides with the bound we just achieved for the problem
it implements, if we assume a quadratic implementa-
tion of before. Moreover, it is possible to show that
model checking in QCEC is PSPACE-complete, and
thus, unless P = PSPACE, there are no algorithms for
this problem that perform significantly better (in poly-
nomial time, say) than the one we propose.

Practical applications using event calculus tech-
niques are expected to model situations involving a
large number of events, while the size of the queries
will in general be limited. The medical example in
Section 3 falls into this category. In such contexts, the
fact that QCEC is polynomial in the number of events
is essential. The weight of the high exponents (check-
ing for malaria has cost O(n7) for example) can often
be lowered by pushing quantifiers inside formulas and
detecting vacuous quantifications.

6 Conclusions and Future Work

In this paper, we have extended the Event Calcu-
lus [2, 5] with the possibility of using quantifiers, con-
nectives and precedence tests in queries. The net effect
of these combined additions has been a substantial gain
in expressiveness with acceptable extra computational
cost for queries of a reasonable size. We have pro-
vided an implementation of the resulting calculus in the
higher-order logic programming language λProlog [6],
which we used to encode a case study from the area of
medical diagnosis. We intend to explore the interaction
of these ideas with recently proposed extensions of the
Event Calculus with operators from modal logic [2, 3]
and preconditions [4].

7

References

[1] I. Cervesato, L. Chittaro, and A. Montanari. Speeding
up temporal reasoning by exploiting the notion of kernel
of an ordering relation. In S. Goodwin and H. Hamil-
ton, editors, Proceedings of the Second International
Workshop on Temporal Representation and Reasoning
— TIME’95, pages 73–80, Melbourne Beach, FL, 26
April 1995.

[2] I. Cervesato, L. Chittaro, and A. Montanari. A general
modal framework for the event calculus and its skeptical
and credulous variants. Technical Report 37/96-RR,
Dipartimento di Matematica e Informatica, Università
di Udine, July 1996. Submitted for publication.

[3] I. Cervesato, M. Franceschet, and A. Montanari. A hier-
archy of modal event calculi: Expressiveness and com-
plexity. In H. Barringer, M. Fisher, D. Gabbay, , and
G. Gough, editors, Proceedings of the Second Interna-
tional Conference on Temporal Logic — ICTL’97, pages
1–17, Manchester, England, 14–18 July 1997. Kluwer,
Applied Logic Series. To appear.

[4] I. Cervesato, M. Franceschet, and A. Montanari. Modal
event calculi with preconditions. In R. Morris and
L. Khatib, editors, Fourth International Workshop on
Temporal Representation and Reasoning — TIME’97,
pages 38–45, Daytona Beach, FL, 10–11 May 1997.
IEEE Computer Society Press.

[5] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4:67–95, 1986.

[6] D. Miller. Lambda Prolog: An introduction to the
language and its logic. Current draft available from
http://cse.psu.edu/~dale/lProlog, 1996.

[7] D. Schroeder. Staying Healthy in Asia, Africa and Latin
America. Moon publications, 1995.

[8] L. Sterling and E. Shapiro. The Art of Prolog: Advanced
Programming Techniques. MIT Press, 1994.

A Implementation of QCEC

module qcec.
accumulate transClo.

kind event type.
kind property type.
kind mvi type.

type initiates event -> property -> o.
type terminates event -> property -> o.
type exclusive property -> property -> o.
type happens event -> o.
type prop property -> o.

% ------- MVIs
type period event -> property -> event -> mvi.
type holds mvi -> o.
type broken event -> property -> event -> o.

holds (period Ei P Et) :- % 1 %
happens Ei, initiates Ei P,
happens Et, terminates Et P,
before Ei Et,
not (broken Ei P Et).

broken Ei P Et :- % 2 %
happens E,

before Ei E, before E Et,
(initiates E Q; terminates E Q),
(exclusive P Q; P = Q).

% ------- Ordering
type precedes event -> event -> mvi.
infixr precedes 6.

holds (E1 precedes E2) :- % 3 %
before E1 E2.

% ------- Connectives
type neg mvi -> mvi.
type and mvi -> mvi -> mvi.
type or mvi -> mvi -> mvi.
type implies mvi -> mvi -> mvi.
infixr or 5.
infixr and 5.
infixl implies 4.

holds (neg X) :- not (holds X). % 4 %
holds (X and Y) :- % 5 %

holds X, holds Y.
holds (X or Y) :- % 6 %

holds X; holds Y.
holds (X implies Y) :- % 7 %

holds ((neg X) or Y).

% ------- Quantifiers
type forAllEvent (event -> mvi) -> mvi.
type forSomeEvent (event -> mvi) -> mvi.
type forAllProp (property -> mvi) -> mvi.
type forSomeProp (property -> mvi) -> mvi.

holds (forAllEvent X) :- % 8 %
not (sigma E \

(happens E,
not (holds (X E)))).

holds (forSomeEvent X) :- % 9 %
sigma E \ holds (X E).

holds (forAllProp X) :- % 10 %
not (sigma P \

(prop P,
not (holds (X P)))).

holds (forSomeProp X) :- % 11 %
sigma P \ holds (X P).

B Diagnosing Malaria

module malaria.
accumulate qcec.

type fever property.
type chills property.
type malaria o.

prop fever.
prop chills.

malaria :- holds (forAllEvent E1 \
forAllEvent E2 \
((period E1 chills E2) implies

(forSomeEvent E1’ \
forSomeEvent E2’ \

((E1 precedes E1’) and
(E1’ precedes E2) and
(period E1’ fever E2’))))).

C Mr. Jones’s Medical Record

module jones.
accumulate malaria.

type e1 event.
type e2 event.

8

type e3 event.
type e4 event.
type e5 event.
type e6 event.
type e7 event.
type e8 event.
type e9 event.
type e10 event.
type e11 event.
type e12 event.

happens e1.
happens e2.
happens e3.
happens e4.
happens e5.
happens e6.
happens e7.
happens e8.
happens e9.
happens e10.
happens e11.
happens e12.

initiates e1 chills.
initiates e2 fever.
terminates e3 chills.
terminates e4 fever.
initiates e5 chills.
initiates e6 fever.
terminates e7 chills.
terminates e8 fever.
initiates e9 chills.
initiates e10 fever.
terminates e11 chills.
terminates e12 fever.

beforefact e1 e2.
beforefact e2 e3.
beforefact e3 e4.
beforefact e4 e5.
beforefact e5 e6.
beforefact e6 e7.
beforefact e7 e8.
beforefact e8 e9.
beforefact e9 e10.
beforefact e10 e11.
beforefact e11 e12.

9

