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Abstract

In this paper, we propose a logical approach to repre-
sent and reason about different time granularities. We iden-
tify a time granularity as a discrete infinite sequence of time
points properly labelled with proposition symbols marking
the starting and ending points of the corresponding gran-
ules, and we intensively model sets of granularities with lin-
ear time logic formulas. Some real-world granularities are
provided, to motivate and exemplify our approach. The pro-
posed framework permits to algorithmically solve the con-
sistency, the equivalence, and the classification problems in
a uniform way, by reducing them to the validity problem for
the considered linear time logic.

1. Introduction

The ability of providing and relating temporal represen-
tations at different ‘grain levels’ of the same reality is an
important research theme in computer science and a major
requirement for formal specifications, temporal databases,
data mining, problem solving, and natural language under-
standing [1].

Any time granularity can be viewed as the partitioning
of a temporal domain in groups of elements, where each
group is perceived as an indivisible unit (a granule). The
description of a fact can use these granules to provide it with
a temporal qualification, at the appropriate abstraction level.
In order to represent and reason about time granularity, any
formalism should satisfy the following requirements:

• Expressiveness. The class of granularities represented
in the formalism should be large enough to be of prac-
tical use.

• Effectiveness. The framework should provide algo-
rithms to reason about different time granularities. In
particular, it should provide an effective solution to the
well-known problems ofconsistency, equivalenceand
classification. The consistency problemis the prob-
lem of deciding whether a granularity representation
is well-defined. The algorithmic solution of the con-
sistency problem is important to avoid the definition of
inconsistent granularities that may produce unexpected
failures in the system. Theequivalence problemis the
problem of deciding whether two different represen-
tations define the same granularity. The decidability
of the equivalence problem implies the possibility of
effectively testing the semantic equivalence of two dif-
ferent time granularity representations, making it pos-
sible to use the smaller and more tractable one. The
classification problemsolves the problem of deciding
whether a natural numbern belongs to a granule of a
given granularity. The classification problem is strictly
related to the granule conversion problem which al-
lows one to relate granules of a given granularity to
granules of another one.

• Compactness. The formalism should exploit regulari-
ties exhibited by the considered granularities to make
their representations as compact as possible.

The frameworks to represent and reason about time granu-
larity present in the literature can be classified into algebraic



frameworks and logical frameworks. Algebraic frameworks
for time granularities have been proposed by Ning, Jajo-
dia and Wang [13], Foster, Leban and McDonald [5], and
Niezette and Stevenne [12]. In analgebraic(or operational)
framework, abottom granularityis assumed, and a finite set
of calendar operatorsare exploited to create new granular-
ities by suitably manipulating other granularities. A granu-
larity is hence identified by an algebraic expression. Log-
ical approaches to represent and reason about time granu-
larity, based on a many-level view of temporal structures,
have been proposed by Montanari in [8], and further in-
vestigated by Franceschet, Montanari, Peron and Policriti
in [6, 9, 10, 11]. In alogical (or descriptive) framework
for time granularity, the different granularities and their in-
terconnections are represented by means of mathematical
structures called layered structures, consisting of a possibly
infinite set of related differently-grained temporal domains.
Suitable operators make it possible to move horizontally
within a given temporal domain (displacement operators),
and to move verticallyacrosstemporal domains (projection
operators). Logical formulas allow one to specify properties
involving different time granularities in a single formula by
mixing displacement and projection operators.

A comparison of the algebraic and the logical frame-
works is not immediate. The main reason is that these
frameworks have been applied to different application fields
calling for different requirements. For instance, in the
database context, granule conversion plays a major role be-
cause it allows the user to view the temporal information
contained in the database in terms of different granularities,
while in the context of verification, decision procedures for
consistency and model checking are unavoidable to validate
the system. However, abstracting away from the applica-
tion fields of the two frameworks, a comparison is possible.
The main advantage of the algebraic framework is its nat-
uralness: by applying user-friendly operations to existing
standard granularities like ‘days’, ‘weeks’, and ‘months’, a
quite large class of new granularities, like ‘business weeks’,
‘business months’, and ‘years since 2000’, can be easily
generated. The major weakness of the algebraic approach is
that reasoning methods basically reduce to granule conver-
sions and semantic translations of statements. Little atten-
tion has received the investigation on algorithms to check
whether some meaningful relation holds between granular-
ities (e.g., to verify whether the granularityG1 is finer than
granularityG2 or G1 is equivalent toG2). Moreover, only
a finite number of time granularities can be represented. On
the contrary, reasoning methods have been extensively in-
vestigated in the logical framework, where both a finite and
an infinite number of time granularities can be dealt with.
Theorem provers make it possible to verify whether a gran-
ular requirement is consistent, while model checkers allow
one to check whether a granular property is satisfied in a

particular structure. To allow such computational proper-
ties, however, some assumptions have to be made about the
involved granularities, as, for example, some form of regu-
larity of the sizes of the granules.

In this paper, we propose a logical approach to represent
and reason about different time granularities. We identify a
time granularity with a discrete linear time structure prop-
erly labelled with proposition symbols marking the start-
ing and ending points of the corresponding granules. We
make use of a linear time logic, interpreted over labelled
linear time structures, to model possibly infinite sets of time
granularities. Any linear time formula is associated with
a set of labelled linear time structures satisfying the for-
mula (the set of models of the formula). Since any prop-
erly labelled linear time structure identifies a time granu-
larity, we may model possibly infinite sets of time gran-
ularities by means of well-defined linear time formulas.
Moreover, a single sequence may identify a finite number
of different granularities (a calendar) by using a different
couple of marking proposition symbols for any granular-
ity. Hence, well-defined linear time formulas may model
possibly infinite sets of calendars as well. The proposed
framework permits to algorithmically solve the consistency,
the equivalence, and the classification problems in a uni-
form framework by reducing them to the validity problem
for the considered linear time logic, which is known to be
decidable in polynomial space. Our approach is logical, and
hence it intrinsically differs from the algebraic one. How-
ever, the starting point of our approach and of the algebraic
one is the same: the classical definition of time granular-
ity given in [1]. Moreover, our logical approach differs
from the above described logical one of Montanari et al for
the following reason. While Montanari et al model differ-
ent time granularities by using multi-layered mathematical
structures and use temporal logic formulas to captureprop-
ertiesof time granularities, we model both time granulari-
ties and their properties by using temporal logic formulas.
Our solution enhances the flexibility of the task of granu-
larity specification: the time granularity structure may be
changed by simply modifying the logical formula that de-
fines it, and the properties of the time granularity structure
may be defined in the same logical language.

The rest of the paper is as follows. In Section 2 we
present some motivating examples. In Section 3 we pro-
pose our logical approach to represent and reason about
time granularity, while in Section 4 we compare our work
with related ones and we outline future work.

2. Motivating examples

In introducing the needs of managing different granu-
larities, we will focus on an example coming from clinical
medicine. In particular, we focus on the definition of spe-



cific granularities related to therapy plans. Intuitively, ther-
apy plans can be considered as the calendar according to
which it is possible to properly observe the evolution of the
patient’s state.

We consider here chemotherapies for oncological pa-
tients, a topic which has been extensively considered by
the clinical research and that is precisely described and rec-
ommended in several clinical practice guidelines. In gen-
eral, oncology patients undergo several chemotherapy cy-
cles: each cycle can include the administration of several
drugs, which the patient has to assume according to a spe-
cific temporal pattern.

As an example, consider the following chemotherapy
recommendation [7]:

“The recommended CMF1 regimen consists of 14
days of oral cyclophosphamide with intravenous
methotrexate, and 5-fluorouracil on days 1 and 8.
This is repeated every 28 days for 6 cycles.”

Moreover, it may happen that the beginning of a cycle is
delayed a few days, due to patient’s blood analysis results.
Figure 1 provides a graphical representation of the recom-
mended CMF regimen. According to this scenario, we can
easily identify some requirements related to the definition
of useful granularity systems:

1. Definition of therapy-related granularities. These
granularities should be suitably specified for different
patients, according to the moment at which they start a
given chemotherapy.

2. Definition of granularities having some degree of un-
certainty. There is, indeed, the need of representing
the fact that two consecutive cycles may be separated
by some days, due to the patient’s conditions.

3. Verification of consistency between an assigned ther-
apy and the recommended regimen. Given a therapy
assigned to a patient with the specification of days
and corresponding drug assumptions, it is important to
be able to determine whether the therapy is consistent
with the recommended regimen.

4. Assignment of a therapy according to the recom-
mended regimen and to other granularity-related con-
straints. It could be necessary, for organizational rea-
sons, to avoid that some specific drug administrations
happen during the weekend: for example, in specifying
a CMF therapy, we could avoid that the administration
of 5-fluorouracil is on Sundays.

1CMF stands for the chemotherapy based on the drugs Cyclophos-
phamide, Methotrexate, and 5-Fluorouracil.

3. A logical approach to represent and reason
about calendars

In this section, we propose our logical approach to rep-
resent and reason about different time granularities.

3.1. Representing time granularity

We model time granularity according to the following
definition.

Definition 3.1 A granularity is a mappingG : N → 2N

such that:

1. for all i < j, for anyn ∈ G(i) andm ∈ G(j), n < m;

2. for all i < j, if G(j) 6= ∅, thenG(i) 6= ∅;
3. for anyi ∈ N, G(i) is a convex interval.

Following the classical definition given in [1], the domain
of a granularityG is calledindex setand an element of the
codomain ofG is called agranule. The definition of granu-
larity above specializes the definition given in [1], assuming
that both the index set and the domain of granules are the
linear discrete domain(N, <). The first condition states that
granules in a granularity do not overlap and that their index
order is the same as their time domain order. The second
condition states that the subset of the index set that maps
to nonempty granules forms an initial segment. The third
condition avoids granularities with gaps inside the granules
(this assumption will be relaxed in the following).

Let G = {G1, . . . , Gn} be a finite set of granulari-
ties (we will refer toG as a calendar), and letPG =
{PGi , QGi | 1 ≤ i ≤ n} be a set of proposition symbols
associated with the calendarG. Given an alphabet of propo-
sition symbolsP ⊇ PG , we shall consider in the following
P-labelled (discrete) linear time structures having the form
(N, <, V ), where(N, <) is the set of natural numbers with
the usual ordering, andV : N → 2P is a labelling func-
tion mapping natural numbers to sets of proposition sym-
bols. The idea is to identify a time granularityG, according
to Definition 3.1, with a linear time structure, properly la-
belled with proposition symbols taken from{PG, QG}: the
starting (resp. ending) point of an arbitrary granule ofG in
the structure is labelled byPG (resp.QG).

Definition 3.2 A labelled linear time structure(N, <, V ) is
G-consistent whenever:

• if PG ∈ V (i) for somei ∈ N, then eitherQG ∈ V (i)
or QG ∈ V (j) for somej > i such thatPG 6∈ V (k)
for eachi < k ≤ j andQG 6∈ V (k) for eachi ≤ k <
j;
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Figure 1. Granularities involved in a chemotherapy treatment.

• if QG ∈ V (i) for somei ∈ N, then eitherPG ∈ V (i)
or PG ∈ V (j) for somej < i such thatQG 6∈ V (k)
for eachj ≤ k < i andPG 6∈ V (k) for eachj < k ≤
i.

The above conditions say that every point labelled withPG

has to match with a unique point labelled withQG, and vice
versa. It is easy to see that everyG-consistent labelled linear
time structure induces a granularityG: given aG-consistent
labelled linear time structureM = (N, <, V ), a granule of
Mwith respect toG is a set{n, n+1, . . . , n+k}, for some
n, k ≥ 0, such thatPG ∈ V (n), QG ∈ V (n+k) andQG 6∈
V (n + j) for all 0 ≤ j < k. The granularityG induced by
M is such thatG(i) is thei-th granule ofM with respect to
G, if any, andG(i) = ∅ otherwise. Similarly, a granularity
G induces aG-consistent labelled linear time structure.

Example 3.3 We give two examples of labelled linear time
structures that induce well-defined granularities and one ex-
ample of a labelled linear time structure that does not corre-
spond to a granularity.

• The structure(N, <, V ) such thatV (i) = {PG} iff i
is even, andV (i) = {QG} iff i is odd, induces the
uniform, continuous and total granularityG such that
G(i) = {2 · i, 2 · i + 1} for anyi ∈ N.

• The structure(N, <, V ) such thatV (0) = {PG},
V (1) = {QG}, V (3) = {PG}, V (5) = {QG} induces
the non-uniform, non-continuous, non-total granular-
ity G such thatG(0) = {0, 1}, G(1) = {3, 4, 5}, and
G(i) = ∅ for eachi ≥ 2.

• The structure(N, <, V ) such thatV (0) = {PG},
V (1) = {QG, PG}, V (2) = {QG} does not induce

any granularity, since it is notG-consistent (indeed,
the granulesG(0) = {0, 1} andG(1) = {1, 2} inter-
sect).

In the following we show how a set of granularities can
be defined in an intensional declarative manner by means
of a formula of a propositional linear time logic (instead
of defining it extensively as done in Example 3.3). We
will use Past Propositional Linear Time Logic (PPLTL for
short) [4], interpreted over labelled linear time structures.
A PPLTL-formula intensionally defines a possibly infinite
set of labelled linear time structures, which correspond to
the linear time structures satisfying the formula. Since, as
shown above, consistently labelled linear time structures
correspond to granularities, we can use suitable linear time
formulas to define sets of granularities. We proceed by in-
troducing the syntax and the semantics ofPPLTL.

Definition 3.4 (Syntax ofPPLTL)

Formulas ofPPLTL are inductively defined as follows:

• any proposition symbolP ∈ P is aPPLTL formula;

• if φ andψ are PPLTL formulas, thenφ ∧ ψ and¬φ
arePPLTL formulas;

• if φ and ψ are PPLTL formulas, thenXφ, φUψ,
X−1φ andφSψ arePPLTL formulas.

Formulasφ ∨ ψ, φ → ψ, andφ ↔ ψ are defined
as¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ, and(φ → ψ) ∧ (ψ → φ),
respectively. Moreover,Fp (p will hold in the future),
Gp (p will always hold in the future),Pp (p held in the
past) andHp (p always held in the past) are shorthands for,



respectively,trueUp, ¬F¬p, trueSp and¬P¬p, where
true = P ∨ ¬P , for someP ∈ P.

We interpretPPLTL overP-labelled linear time struc-
tures. The semantics ofPPLTL is as follows.

Definition 3.5 (Semantics ofPPLTL)

LetM = (N, <, V ) be aP-labelled linear time struc-
ture andi ∈ N. The truth of aPPLTL-formula ψ in M
with respect to the pointi, denotedM, i |= ψ, is defined as
follows:

M, i |= P iff P ∈ V (i) for P ∈ P
M, i |= φ ∧ ψ iff M, i |= φ andM, i |= ψ
M, i |= ¬φ iff it is not the case thatM, i |= φ
M, i |= φUψ iff M, j |= ψ for somej ≥ i and

M, k |= φ for eachi ≤ k < j;
M, i |= Xψ iff M, i + 1 |= ψ;
M, i |= φSψ iff M, j |= ψ for somej ≤ i and

M, k |= φ for eachj < k ≤ i;
M, i |= X−1ψ iff i > 0 andM, i− 1 |= ψ.

We say thatM is a model ofψ if M, 0 |= ψ.

Example 3.6 We give some examples of howPPLTL-
formulas can encode sets of granularities.

• The set of allG-consistent granularities (according to
Definition 3.2) is captured by the followingPPLTL-
formula

η(G) = G((PG → α) ∧ (QG → β)),

where

α = QG ∨ X(¬(PG ∨ QG)U(¬PG ∧ QG))
β = PG ∨ X−1(¬(PG ∨ QG)S(PG ∧ ¬QG)).

• The (singleton containing the) granularityG such that
G(i) = {2 · i, 2 · i + 1}, for eachi ∈ N, is defined by
the following formula:

η(G)∧PG ∧ G(PG → (¬QG ∧ ¬XPG ∧ XXPG)).

• The infinite set of granularities obtained by an arbi-
trarily right-shiftingG (i.e., the non-anchored version
of G), whereG(i) = {2 · i, 2 · i + 1}, for eachi ∈ N,
is encoded by the following formula:

η(G) ∧ F(PG ∧ G(PG →
(¬QG ∧ ¬XPG ∧ XXPG))).

A finite number of different granularities may be addressed
in the same formula by using different pairs of mark-
ing proposition symbols. For instance, given a calen-
dar G = {G1, . . . , Gn}, the formula

∧n
i=1 η(Gi) defines

the set of all calendars withn granularitiesG1, . . . , Gn.
Meaningful relations between granularities belonging to

the calendarG may be captured in our framework. For
instance,G1 GroupInto G2 (each granule ofG2 is ob-
tained by grouping granules ofG1), G1 FinerThan G2

(each granule ofG1 is contained in some granule ofG2),
G1 SubGranularityOf G2 (each granule ofG1 is equal
to a granule ofG2) [13]. As an example, the relation
FinerThan can be captured by the following formula:

η(G1) ∧ η(G2) ∧ G((PG1 → α) ∧ (QG1 → β)),

where

α = ¬(PG2 ∨ QG2)U(QG1 ∧
(QG2 ∨ X(¬PG2UQG2)))

β = ¬(PG2 ∨ QG2)S(PG1 ∧
(PG2 ∨ X−1(¬QG2SPG2)))

Hence, the calendars withn granularities that are totally or-
dered with respect to theFinerThan relation are defined by
the following formula:

n∧

i=1

η(Gi) ∧
n−1∧

i=1

FinerThan(Gi, Gi+1).

The above framework does not consider granularities with
gaps inside the granules (only convex granules are treated).
However, it can be easily extended to cope with non-convex
granules. The idea is to use symbolsPG andQG to delimit
the granules of a granularityG as done before, and symbols
PHG andQHG to bound the gaps inside the granules ofG.
In this way we have that the description of the gaps ofG
is itself a granularityHG. Note thatHG is finer thanG.
Indeed, every internal gap ofG (a granule ofHG) is a sub-
set of some granule ofG. Moreover, there are no granules
of G that are entirely covered by gaps (granules ofHG):
HG GroupInto G does not hold.

We conclude this section by reconsidering the chemother-
apy treatment described in Section 2.

Example 3.7 Let us assume thatOC (cyclophosphamide),
IM (intravenous methotrexate) andFI (5-fluorouracil) are
proposition symbols corresponding to the drugs of the CMF
regimen. We preliminary introduce some useful shorthands.
For a formulap, Xn(p) stands for “p holds inn time in-
stants”, and is defined as follows:X0(p) = p, andXn(p) =
XXn−1(p). For0 ≤ n ≤ m, ∀[n,m](p) (resp.∃[n,m](p))
stands for “p holds everywhere (resp. somewhere) in the
time interval[n,m]”, and is defined as

∧m
i=n Xi(p) (resp.∨m

i=n Xi(p)). Finally, Count(p, n) stands for “p holds
exactly n times in the future” and is defined as follows:
Count(p, 0) = G(¬p) and Count(p, n) = ¬pU(p ∧
X(Count(p, k − 1))).

The formulaΩCMF below defines, on the time domain
N of days, a granularity CMF according to the recommen-
dation given in Section 2:



η(CMF )∧
Count(PCMF , 6)∧
G(PCMF → (∀[0, 26](¬QCMF ) ∧ X27QCMF ))∧
G((QCMF ∧ FPCMF ) → ∃[1, 5]PCMF )∧
G(PCMF → (∀[0, 13](OC ∧ IM) ∧ FI ∧ X7(FI)∧
∀[14, 27](¬OC ∧ ¬IM ∧ ¬FI)))

The first conjunct says that CMF is a granularity. The sec-
ond and the third conjuncts say, respectively, that the gran-
ularity CMF consists of6 granules (cycles) each of28 ele-
ments (days). The fourth conjunct states that each cycle is
separated by time intervals not exceeding 5 units. Finally,
the fifth conjunct associates the drugs to each day in the
cycle, according to the recommendation (the first 14 days
cyclophosphamide and intravenous methotrexate, with 5-
fluorouracil on days 1 and 8, and no drugs during the second
14 days).

It is worth noting that in the above example only a
bounded form of uncertainty is involved. Indeed, two suc-
cessive cycles may be separated by no more than 5 time
units (in the chosen granularity). However, there exist ap-
plications calling forunbounded uncertainty. For instance,
two therapy cycles that are arbitrarily distant. Our frame-
work can cope with unbounded uncertainty as well.

3.2. Reasoning about time granularity

Besides representing sets of granularities and relations
among them, our framework permits to automatically solve
the following problems.

Automatic verification of granularity properties. For
verifying properties against models, we can exploit in a nat-
ural way the mature technology ofmodel checking[2]. A
labelled structure representing a concrete set of granulari-
ties can be suitably encoded in the format required by the
chosen model checker and it can be checked against a for-
mula of a propositional linear logic which describes the re-
quired property. For instance, with reference to our clini-
cal example, a concrete chemotherapy plan can be checked
for consistency against the formulaΩCMF describing the
chemotherapy regimen (as described in the requirement 3
of Section 2).
Automatic generation of granularities. Given a formula
ϕ defining a set of granularities, it it possible to automati-
cally generate the labelled linear time structures satisfying
ϕ. More technically, it is possible to construct a finite state
automaton which accepts the set of structures satisfying the
formulaϕ. Any concrete labelled linear time structure satis-
fying the formulaϕ can be obtained by suitably unravelling
the automaton. For instance, we can obtain all of the possi-
ble schedules for a chemotherapy according to the regimen
encoded by the formulaΩCMF .

Consistency, equivalence and classification.As far as
consistency is concerned, given aPPLTL-formula ϕ, one
can verify whether it encodes a set of well-defined granular-
ities (according to Definition 3.1) by checking the validity
of the formulaϕ → η(G).

The equivalence problem for two sets of granularities de-
fined byϕ1 andϕ2, respectively, is reduced to checking the
validity of the formulaϕ1 ↔ ϕ2.

Finally, the classification problem, that is, the problem of
checking whether a natural numbern belongs to a granule
of a granularityG defined by aPPLTL-formulaϕ can be
solved as follows. We have thatn ≥ 0 is contained in some
granule of any granularity defined byϕ if the formulaϕ →
αn(G) is valid, whereαn(G) is the formula:

Xn(PG ∨ QG)∨
Xn(¬(PG ∨ QG)SPG ∧ ¬(PG ∨ QG)UQG)

It is worth pointing out that the model checking and the va-
lidity problems for linear time logics have been extensively
studied. Both the problems belong to the complexity class
PSPACE (polynomial space) [4], and efficient procedures
for solving them are at hand [2].

4. Related and future work

A related recent approach to represent and reason about
time granularity has been proposed by Wijsen [14] and re-
fined by Dal Lago and Montanari [3]. Wijsen modelled infi-
nite granularities as infinite strings over a suitable finite al-
phabet. The resulting string-based model is then used to for-
mally state and solve problems of granularity equivalence
and minimality. Dal Lago and Montanari gave an automata-
theoretic counterpart of the string-based model. They used
single string automata, that is, finite-state automata accept-
ing a single infinite string, to represent in a compact way
time granularities and to give an algorithmic solution to the
problems of equivalence and classification of time granular-
ities. The resulting formalism satisfies the requirements of
effectiveness and compactness. As for expressiveness, it is
not able to representdynamic granularities, that is, granu-
larities that are not anchored to the underlying time domain.
A typical example of dynamic granularity is a repeating pat-
tern that can start at an arbitrary time point. Our formalism
has the expressive power to represent both static and dy-
namic granularities. Dynamic ones are encoded by tempo-
ral formulas representing a possibly infinite set of granu-
larities. Moreover, our formalism is effective: consistency,
equivalence, and classification problems can be algorithmi-
cally solved in a uniform and elegant way. However, our
formalism lacks compactness: the representation formula
can be very long whenever a periodic granularity has a long
prefix or period (for instance, in the case of the Gregorian
calendar). We aim at finding a possible way out to this prob-



lem within our logical framework. A solution may reside in
the use of ametric linear time logic, which extends linear
time logic with methods to expressquantitativetemporal
requirements.
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