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Abstract

We investigate the complexity of the model checking problem for hybrid logics.
We provide model checkers for various hybrid fragments and we prove PSPACE-
completeness for hybrid fragments including binders. We apply our findings to
the problems of constraint verification for semistructured data and specification
checking for mobile systems.

1 Introduction

Model checking [7] is a reasoning task in which we are given a formal model
and a property and we have to check whether the model satisfies the property.
The model is a labelled graph (sometimes called Kripke structure), and the
property is a formula taken from some logic. Model checking then boils down
to search the graph in order to check whether the formula is true in the model.

Modal and temporal logics have been successfully used as specification lan-
guages in the model checking task [8]; they are algorithmically well-behaved
and mathematically natural fragments of classical logics. However, something
crucial is missing in propositional modal and temporal logics: they lack mech-
anisms for naming individual or sets of states, and for dynamically creating
new names for individual or sets of states. In particular, traditional modal
and temporal logics are able to express (only) properties that satisfy the tree
model property, that is, properties that are satisfiable if and only if they are
satisfiable in a tree-like model. An example of a (very simple) property vio-
lating the tree model property is the following: “the current point belongs to
a cycle”. An interesting question is: are there extensions of modal and tem-
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Language Complexity

HL(@,F) O(k · (n + m))

HL(@,F,P) O(k · (n + m))

HL(@,U) O(k · n ·m)

HL(@,U,S) O(k · n ·m)

HL(↓, @) O(k · n)

HL(↓,F) PSPACE-complete

HL(↓, @,F) PSPACE-complete

HLr(↓, @,F) O(k · (n + m) · nr)

HL(∃) PSPACE-complete

HL(∃,F) PSPACE-complete

HL(∃, @,F) PSPACE-complete

HLr(∃, @,F) O(k · (n + m) · n2r)

Table 1
Complexity of model checking for hybrid logics.

poral logics violating the tree model property that are still computationally
tractable?

Hybrid logics, to some extent, provide an answer to the previous question.
They allow one to refer to states in a truly modal framework, and in this
way they mix features from first-order logic with features from modal logic,
whence the name hybrid logic [6]. In addition to ordinary propositional vari-
ables, hybrid languages provide a new type of atomic formulas called nominals.
Syntactically, nominals behave like ordinary propositional variables, but they
have an important semantic property: nominals are true at exactly one state
in any model; in this way, we can assign a name to a state and use this name
in formulas.

Nominals are just the first ingredient that sets hybrid languages apart from
traditional modal and temporal languages. Additionally, hybrid languages
may contain the at operator @i which gives random access to the unique
state named by i: @ip holds if and only if p holds at the state named by
i. Moreover, hybrid languages may be extended with the downarrow binder
↓x. that assigns the variable name x to the current state of evaluation. The
operator @ combines very naturally with ↓: whereas ↓ stores the current
state of evaluation (by binding a variable to it), @ enables us to retrieve the
information stored by shifting the point of evaluation in the model. Finally,
the existential binder ∃x. binds the variable name x to a state in the model.
For example, the formula ↓x.F+x, where x is a variable and F+ is interpreted
over the transitive closure of the accessibility relation, is true if and only if
the current point belongs to a cycle. Moreover, ∃x.@xF

+x holds if and only
if the model contains a cycle.

Characterization (with respect to first-order correspondence theory), in-
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terpolation and computational complexity (of the satisfiability problem) for
hybrid modal logics have been studied in [5]. The complexity of the satisfi-
ability problem for hybrid temporal logics with respect to different classes of
frames (all frames, transitive frames, linear frames, transitive trees) has been
investigated in [3,4,9]. For a more detailed guide to the field, see the hybrid
logic home page [10].

Despite their importance for modeling and specification purposes, there
is a big gap in our current state of knowledge of, and in the availability of
methods and tools for, hybrid languages: model checking for hybrid languages
has hardly been explored. This is the main issue of this paper. We follow
an incremental approach: we first study the problem for the basic hybrid lan-
guage, that is, modal logic plus nominals and @ (we denote this fragment by
HL(@,F)). Then, we complicate the basic hybrid language by adding opera-
tors along both a temporal direction (past P, until U, since S) and a hybrid
one (binders ↓ and ∃). It turns out that the addition of nominals and the @
operator does not increase the complexity of the model checker. In contrast,
an arbitrary use of a hybrid binder, either ↓ or ∃, is dangerous: the model
checking problem for any hybrid logic that freely mixes a hybrid binder with
temporal operators is PSPACE-complete. However, the model checker runs
in exponential time with respect to the nesting degree of the binder in the
formula. This means that the model checker terminates in polynomial time
whenever the nesting degree of hybrid binders is fixed. Table 1 summarizes
the complexity results we obtained (k is the length of the formula, n and m
are respectively the number of nodes and the number of edges of the graph
structure, and r is the nesting degree of hybrid binders). We apply our find-
ings to the problems of constraint verification for semistructured data and
specification checking for mobile systems.

The paper is organized as follows. Section 2 briefly introduces hybrid
logics. In Section 3.1 we provide model checkers for different hybrid languages
and we analyze their computational complexities. In Section 3.2 we prove
PSPACE-completeness the hybrid fragments allowing binders. In Section 4
we describe a couple of applications of the present investigation. We conclude
the paper in Section 5.

2 Hybrid logics

Temporal logics (TLs, for short) are algorithmically well-behaved and math-
ematically natural fragments of classical logics. They extend propositional
logic by adding the well-known temporal operators future F, past P, until
U and since S, interpreted over the accessibility relation on the set of states,
as well as their transitive closures F+, P+, U+ and S+, interpreted over the
transitive closure of the accessibility relation.

Hybrid logics extend temporal logics by introducing tools for naming states
and for accessing states by names. Let NOM = {i, j, . . .} be a set of nominals
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and WVAR = {x, y, . . .} be a set of state variables. The syntax of hybrid logic,
in its full extension, is as follows:

ϕ := TL | i | x | @tϕ | ↓x.ϕ | ∃x.ϕ,

with i ∈ NOM, x ∈ WVAR, t ∈ NOM ∪ VAR. The operators in {@, ↓,∃}
are called hybrid operators. We call WSYM = NOM ∪WVAR the set of state
symbols, ALET = PROP∪NOM the set of atomic letters, and ATOM = PROP∪
NOM ∪WVAR the set of atoms.

Hybrid logic is interpreted over hybrid Kripke structures, that is, Kripke
structures 〈M,R, V 〉 where the valuation function V is such that V (i) is a
singleton subset of M for all nominals i ∈ NOM. To give meaning to the
formulas, we also need the notion of assignment. An assignment g is a mapping
g : WVAR → M . Given an assignment g, we define gx

m by gx
m(x) = m and

gx
m(y) = g(y) for x 6= y. For any atom a, let [V, g](a) = {g(a)} if a is a state

variable, and V (a) otherwise.

The semantics of hybrid logic is as follows (we omit the well-known seman-
tics for temporal operators and for Boolean connectives). Let M = 〈M, R, V 〉
be a hybrid Kripke structure, m ∈ M , and g an assignment. Then,

M, g,m |= a iff m ∈ [V, g](a), a ∈ ATOM

M, g,m |= @tϕ iff M, g, m′ |= ϕ, where [V, g](t) = {m′}, t ∈ WSYM

M, g,m |= ↓x.ϕ iff M, gx
m,m |= ϕ

M, g,m |= ∃x.ϕ iff there is m′ ∈ M such that M, gx
m′ ,m |= ϕ

The at operator @t shifts evaluation to the state named by t, where t is either
a nominal or a variable. The downarrow binder ↓x binds the state variable x
to the current state (the state where evaluation is being performed), while the
existential binder ∃x binds the state variable x to some state in the model.
Notice that ↓ and ∃ do not shift evaluation away from the current state. In the
following, we denote by HL(O1, . . . , On) the hybrid language with hybrid and
temporal operators O1, . . . , On. As an example of hybrid formulas, the until
operator can be written in hybrid logic as αUβ = ↓x.F(β ∧ H(Px → α)),
and the since as αSβ = ↓x.P(β ∧ G(Fx → α)). Moreover, the past operator
is Pα = ↓x.∃y.@y(Fx ∧ α). Finally, the downarrow binder is a particular case
of the existential binder: ↓x.α = ∃x.(x ∧ α).

3 Model checking for hybrid logics

3.1 Upper bounds

In this section we provide model checkers for different hybrid logics and we
analyze their worst-case behaviour.

A hybrid Kripke structure M = 〈M, R, V 〉 is finite if M is finite. The
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model checking problem for hybrid logic is as follows: Given a finite hybrid
Kripke structure M, an assignment g, a state m in M, and a hybrid formula
ϕ, doesM, g, m |= ϕ? In the following we describe a model checker MCLITE for
HL(@,F,P,U,S). It receives a hybrid model M = 〈M, R, V 〉, an assignment
g, and a hybrid formula ϕ in the considered language and, after termination,
every state in the model is labelled with the subformulas of ϕ that hold at that
point. The algorithm uses a bottom-up strategy : it examines the subformulas
of ϕ in increasing order with respect to their lengths, from simple formulas to
more complicated ones, until ϕ itself has been checked.

We need some auxiliary notation. Let R be an accessibility relation and
R− the inverse of R: R−vu if and only of Ruv. For n ≥ 1, let Rn(w) be
the set of states that are reachable from w in n R-steps, and R−n(w) be the
set of states that are reachable from w in n R−-steps. The states belonging
to R1(w) are called successors of w, while those belonging to R−1(w) are
called predecessors of w. Given a model M = 〈M, R, V 〉, we denote by M−

the model 〈M, R−, V 〉. The length of a formula ϕ, denoted by |ϕ|, is the
number of operators (boolean, temporal and hybrid) of ϕ plus the number of
atoms (propositions, nominals and variables) of ϕ. Let sub(ϕ) be the set of
subformulas of ϕ. Notice that |sub(ϕ)| = |ϕ|.

The model checker MCLITE updates a table L of size |ϕ| × |M | whose
elements are bits. Initially, L(α,w) = 1 if and only if α is an atomic letter
in sub(ϕ) such that w ∈ V (α). When MCLITE terminates, L(α,w) = 1 if and
only if M, g, w |= α for every α ∈ sub(ϕ). Given α ∈ sub(ϕ) and w ∈ M , we
denote by L(α) the set of states v ∈ M such that L(α, v) = 1 and by L(w) the
set formulas β ∈ sub(ϕ) such that L(β,w) = 1. MCLITE uses three subroutines
named MCF, MCU and MC@ in order to check subformulas of the form Fα, αUβ
and @tα, respectively. The pseudocode for them is below.

Proposition 3.1 (Correctness of subroutines) Let M = 〈M, R, V 〉 be a
hybrid model, g be an assignment, α and β be hybrid formulas, and t be a state
symbol. Let L be a table such that, for every w ∈ M , L(α, w) = 1 (respectively,
L(β, w) = 1) if and only if M, w |= α (respectively, M, w |= β). Then,

(i) after termination of MCF(M, g, α), we have that, for every w ∈ M ,
L(Fα, w) = 1 if and only if M, g, w |= Fα;

(ii) after termination of MCU(M, g, α, β), we have that, for every w ∈ M ,
L(αUβ, w) = 1 if and only if M, g, w |= αUβ;

(iii) after termination of MC@(M, g, t, α), we have that, for every w ∈ M ,
L(@tα,w) = 1 if and only if M, g, w |= @tα.

What is the complexity of the subroutines? Let M = 〈M,R, V 〉 be a finite
hybrid model, with n = |M | and m = |R|. The procedure MCF runs in O(n+m)
and MC@ runs in O(n). As for MCU, for every w ∈ L(β), the procedure backward
visits twice the states reachable in 2 steps. Both the visits cost O(m). Since
there are O(n) states in L(β), MCU runs in O(nm) time.
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Procedure MCF(M, g, α)
for w ∈ L(α) do

for v ∈ R−1(w) do
L(Fα, w) ← 1

end for
end for

Procedure MC@(M, g, tα)
let {w} = [V, g](t)
if L(α, w) = 1 then

for v ∈ M do
L(@tα, v) ← 1

end for
end for

Procedure MCU(M, g, α, β)
for w ∈ M do

unmark(w)
end for
for w ∈ L(β) do

for v ∈ R−1(w) do
if L(α, w) = 0 then

for u ∈ R−1(v) do
mark(u)

end for
end if

end for
for v ∈ R−1(w) ∪R−2(w) do

if marked(v) then
unmark(v)

else
L(αUβ, v) ← 1

end if
end for

end for
Using the subroutines MCF, MCU, and MC@ we can implement a bottom-up
model checker MCLITE for the hybrid language HL(@,F,P,U,S). Past tem-
poral operators are handled by feeding the above subroutines with the inverse
model M−. Boolean connectives are treated as usual. The code is omitted
for space reasons. The correctness of MCLITE follows from the correctness of
its subroutines (Proposition 3.1) and the semantics of past operators P and
S.

Theorem 3.2 (Correctness of MCLITE) Let M = 〈M,R, V 〉 be a hybrid
model, g an assignment, and ϕ a formula in HL(@,F,P,U,S). Then, after
the termination of MCLITE(M, g, ϕ), we have that, for every w ∈ M and for
every α ∈ sub(ϕ), it holds that L(α,w) = 1 if and only if M, g, w |= α.

Now for the computational complexity.

Theorem 3.3 (Complexity of MCLITE) Let M = 〈M, R, V 〉 be a hybrid
model such that n = |M | and m = |R|. Let g be an assignment, and ϕ a
hybrid formula in HL(@,F,P,U,S) of length k. Then, the model checker
MCLITE(M, g, ϕ) terminates in O(k · n ·m) time. If ϕ contains neither until
nor since operators, then the complexity is O(k · (n + m)). If ϕ contains no
temporal operators, the complexity is O(k · n).

We can extend MCLITE to cope with transitive closure operators F+ and U+,
as well as with their past counterparts, without increasing the complexity. The
idea is to replace the visit to the predecessors of w with a backward depth
first visit of the nodes that can reach w. As an alternative, one may first
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compute the transitive closure of the accessibility relation, and then use the
model checker MCLITE on the transitive model.

We now move to hybrid languages with binders (↓ and ∃). The bad news is
that the efficient bottom-up strategy used in MCLITE does not work for hybrid
languages with binders. Consider the formula G↓x.Fx. It says that every
successor of the current point is reflexive. If we try to check this formula
bottom-up, that is, from simple formulas to more complex ones, we initially
have to check the subformula x. However, at this stage, do not have enough
information to check x, and hence we cannot label the states of the model
with x. On the other hand, a (inefficient) top-down strategy works: to check
G↓x.Fx at the current state m, check whether the subformula ↓x.Fx holds at
every successor of m. To check ↓x.Fx at a successor n, assign the value n to
the variable x and check Fx at n. Now we have enough information to verify
Fx, and hence we can use MCLITE’s bottom-up strategy. The sketched strategy
combines top-down and, whenever possible, bottom-up reasoning; it has been
implemented in the recursive model checker MCFULL for HL(@, ↓,∃,F). For
space reasons, we only present the code for the auxiliary procedures CheckF,
Check@, Check↓ and Check∃, that handle the cases of subformulas of the form
Fα, @tα, ↓x.α, and ∃x.α, respectively. These procedures use the subroutines
Lite(α) to check whether or not α belongs to HL(@,F), and Clear(L, x) to
reset all the values of L(α), for any α containing the variable x.

Procedure CheckF(M, g, α)
if Lite(α) then

MCLITE(M, g,Fα)
else

MCFULL(M, g, α)
for w ∈ M do

for v ∈ R(w) do
if v ∈ L(α) then

L(Fα, w) ← 1
end if

end for
end for

end if

Procedure Check@(M, g, t, α)
if Lite(α) then

MCLITE(M, g, @tα)
else

MCFULL(M, g, α)
let {v} = [V, g](t)
if v ∈ L(α) then

for w ∈ M do
L(@tα, w) ← 1

end for
end if

end if
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Procedure Check↓(M, g, x, α)
for w ∈ M do

g(x) ← w
MCFULL(M, g, α)
if w ∈ L(α) then

Clear(L, x)
L(↓x.α, w) ← 1

else
Clear(L, x)

end if
end for

Procedure Check∃(M, g, x, α)
for w ∈ M do

for v ∈ M do
g(x) ← v
MCFULL(M, g, α)
if w ∈ L(α) then

Clear(L, x)
L(∃x.α, w) ← 1

else
Clear(L, x)

end if
end for

end for
The correctness of MCFULL follows from the correctness of MCLITE and the
semantics of HL(@, ↓,∃,F).

Theorem 3.4 (Correctness of MCFULL) Let M = 〈M,R, V 〉 be a hybrid
model, g an assignment, and ϕ a hybrid formula in HL(@, ↓,∃,F). Then,
after termination of MCFULL(M, g, ϕ), we have that:

• for every w ∈ M , L(ϕ,w) = 1 if and only if M, g, w |= ϕ;

• for every w ∈ M and sentence α ∈ sub(ϕ), L(α, w) = 1 if and only if
M, g, w |= α.

Now for the computational complexity.

Theorem 3.5 (Complexity of MCFULL) Let M = 〈M, R, V 〉 be a hybrid
model such that n = |M | and m = |R|, and g an assignment. Then,

• if ϕ is a hybrid formula in HL(@, ↓,F) of length k and r the nesting degree
of ↓ in ϕ, then MCFULL(M, g, ϕ) terminates in time O(k · (n + m) · nr);

• if ϕ is a hybrid formula in HL(@, ∃,F) of length k and r the nesting degree
of ∃ in ϕ, then MCFULL(M, g, ϕ) terminates in time O(k · (n + m) · n2r).

In both cases MCFULL uses a polynomial amount of space.

3.2 Lower bounds

The natural question is: can we do better that the upper bounds proved
above? It is well known that model checking for first-order logic is PSPACE-
complete. Since HL(∃, @,F) is as expressive as first-order logic [6], model
checking for HL(∃, @,F) is PSPACE-complete as well. However, what about
fragments of HL(∃, @,F)? The question is particulary interesting for the frag-
ment HL(↓, @,F), since it corresponds to the bounded fragment of the first-
order correspondence language [3]. Unfortunately, the model checking prob-
lem for HL(↓, @,F) and hence for the bounded fragment is still PSPACE-hard,
even without @, nominals and propositions.
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Fig. 1. Embedding QBF into model checking for hybrid logics.

Theorem 3.6 Model checking for the pure nominal-free fragment of HL(↓,F)
is PSPACE-complete.

Proof. PSPACE-membership follows from Theorem 3.5. To prove PSPACE-
hardness, we embed Quantified Boolean Formulas (QBF) into the model
checking problem for the pure nominal-free fragment of HL(↓,F). We do
it in two steps. We first embed QBF into the model checking problem for
HL(↓, @,F). Then, we remove the @ operator and atomic letters by compli-
cating the model.

Recall that an instance of QBF is Ψ = Q1x1. . . . Qnxn.α(x1, . . . , xn), where
Qi ∈ {∃,∀}, and α(x1, . . . , xn) is a Boolean formula using variables x1, . . . , xn.
Let NOM = {true, false, home} and M be the model is depicted in Figure
1, left side. Let ϕΨ be the HL(↓, @,F)-formula obtained from Ψ by replacing
every occurrence of ∃x by @homeF↓x, every occurrence of ∀x by @homeG↓x,
every occurrence of x by @xtrue, and every occurrence of ¬x by @xfalse.
We have that Ψ is true if and only if M, 1 |= ϕΨ.

We now remove @ and atomic letters. To remove @, we have to find a way
to “come back home” after F↓x has fixed the variable x. We can add to the
previous model two more edges, one from 2 to 1, and the other from 3 to 1, and
use the F operator to come home. Since we don’t have atomic letters, we have
to distinguish in some structural way between state 2 (denoting true) and state
3 (denoting false). We can add, for instance, a reflexive edge leaving 2. The
resulting frame is depicted in Figure 1, right side. Without loss of generality,
we assume that negation in α(x1, . . . , xn) is applied only to variables. Let τ
be the following translation:

τ(x) = F(x ∧ ↓y.Fy) τ(¬x) = F(x ∧ ↓y.G¬y)

τ(α1 ∧ α2) = τ(α1) ∧ τ(α2) τ(α1 ∨ α2) = τ(α1) ∨ τ(α2)

τ(∃x.α) = F↓x.F(↓y.G¬y ∧ τ(α)) τ(∀x.α) = G↓x.F(↓y.G¬y ∧ τ(α))

It holds that Ψ is true if and only if M, 1 |= τ(Ψ). 2

Theorem 3.6 still holds if we replace F by F+:

Theorem 3.7 Model checking for the pure nominal-free fragments of HL(↓,F+)
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is PSPACE-complete.

Proof. PSPACE-membership follows from Theorem 3.5. To prove PSPACE-
hardness, we embed QBF into the model checking problem for the pure
nominal-free fragments of HL(↓,F+). Let Ψ = Q1x1. . . . Qnxn.α(x1, . . . , xn),
where Qi ∈ {∃,∀}, and α(x1, . . . , xn) is a Boolean formula using variables
x1, . . . , xn. Let M be the unlabelled model with frame 〈{1, 2}, {(1, 2), (2, 1)}〉.
Let ϕΨ be the HL(↓, @,F)-formula obtained from Ψ by replacing every occur-
rence of ∃x by F+↓x and every occurrence of ∀x by G+↓x. Then Ψ is true if
and only if M, 1 |= ϕΨ. 2

If we replace ↓ by ∃, hardness holds even without temporal operators.

Theorem 3.8 Model checking for the pure nominal-free fragment of HL(∃)
is PSPACE-complete.

Proof. PSPACE-membership follows from Theorem 3.5. To prove PSPACE-
hardness, we embed QBF into the model checking problem for the pure
nominal-free fragments of HL(∃). Let Ψ = Q1x1. . . . Qnxn.α(x1, . . . , xn), where
Qi ∈ {∃,∀}, and α(x1, . . . , xn) is a Boolean formula using variables x1, . . . , xn.
Note that Ψ is a pure nominal-free formula in HL(∃). LetM be the unlabelled
model based on the frame 〈{1, 2}, ∅〉. We have that Ψ is true if and only if
M, 1 |= Ψ. 2

4 Hybrid logic in action

We describe a couple of scenarios in which the problem of model checking for
hybrid logic is relevant.

4.1 Constraint evaluation in semistructured data

In this section we are motivated by the task of verification of constraints
for semistructured data [1]. Semistructured data are data without a regular
schema. It is generally agreed that the appropriate data model for semistruc-
tured data is an edge-labelled rooted graph, where the nodes corresponds to
objects, and the edges corresponds to attributes. Each edge is labelled with
the attribute name. Nodes may also be labelled, with both object identifiers
and values. By the way, structured data are special cases of semistructured
data having a regular structure. Constraints in semistructured data are path
conditions over the data graph representation of the form: every node reach-
able through a path in p is also reachable through a path in q, where p and
q are sets of paths. They correspond and generalize integrity constraints in
structured data. Consider the following ODMG schema, which is borrowed
from [1].
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authorpublication author

r

auth

pub

auth auth

pub pub
title datetitle address namedate name address

... ... ... ... ... ... ... ...

publication

Fig. 2. A graph representation of semistructured data.

interface Publication

extent publication

{ attribute String title;

attribute Date date;

relationship set<Author> auth inverse Author::pub;

}

interface Author

extent author

{ attribute String name;

attribute String address;

relationship set<Publication> pub inverse Publication::auth;

}
It describes the entities publication and author. A publication has at-
tributes title, date and a relationship auth which associates a set of authors
to the publication. An author has attributes name, address and a relation-
ship pub which associates a set of publications to the author. Besides this
information, the schema specifies the following constraints:

(i) for any publication p, the set p.auth is a subset of the set author;

(ii) for any author a, the set a.pub is a subset of the set publication;

(iii) for any publication p and for any author a in p.auth, p is a member of
a.pub;

(iv) for any author a and for any publication p in a.pub, a is a member of
p.auth.
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R0
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R R1 2 n−1

R n

R

Fig. 3. Inclusion constraint (top) and inverse relationship constraint (bottom).

Conditions 1 and 2 are called inclusion constraints, and conditions 3 and
4 are called inverse relationship constraints. Of course, there is nothing
semistructured in the example above. However, we will ignore in the following
the structure of data and focus on constraints only. A graph representation of
the ODMG schema above is depicted in Figure 2. With the aid of the graph
representation of the data, the inclusion constraints above can be reformulated
as follows: any node that is reached from the root by following a publication

edge followed by a auth edge can also be reached from the root following a
author edge. Similarly, any node that is reached from the root by following
a author edge followed by a pub edge can also be reached from the root fol-
lowing a publication edge. The inverse relationships constraints above can
be reformulated as follows: for every node x that is reached from the root by
following an publication edge, if x can reach a node y by following an auth

edge then y can reach x by following an pub edge. Similarly, for every node
x that is reached from the root by following a author edge, if x can reach a
node y by following an pub edge then y can reach x by following an auth edge.

More generally, let R0, . . . Rn be binary relations. An inclusion constraint
IC(〈R1, . . . , Rn〉, R0) is as follows:

Any node that is reached from the root by following an R1 edge, followed
by an R2 edge, . . . , followed by an Rn edge can also be reached from the
root following a R0 edge (see top of Figure 3).

An inverse relationship constraint IRC(〈R1, . . . , Rn〉, R0) is as follows:

For every node x that is reached from the root by following an R1 edge,
followed by an R2 edge, . . . , followed by an Rn−1, if x can reach a node y
by following an Rn edge then y can reach x by following an R0 edge (see
bottom of Figure 3).

In the following, a constraint will be either an inclusion constraint or an
inverse relationship constraint. The constraint evaluation problem is as fol-
lows:

Given a finite edge-labelled rooted graph G and a Boolean combination C
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of constraints on G, is C true in G at the root?

Constraint evaluation is important to maintain the integrity of data and
for query optimization as well. Indeed, two query plans may be semantically
equivalent in the assumption that some constraints hold, but one of them may
be computationally more efficient.

4.1.1 Formalization in hybrid logic

In this section we formalize in our setting the constraint evaluation. We will
show that, using the algorithms and methods we proposed in this paper, we
are able to solve the constraint evaluation problem in polynomial time.

We can naturally encode both the inclusion and the inverse relationship
constraints in hybrid logic. Let C = IC(〈R1, . . . , Rt〉, R0) be an inclusion
constraint. Let Fj and Pj be the future and past modalities interpreted over
relation Rj, and let r be a nominal denoting the root of the graph. Then C is
captured by the hybrid formula:

ϕC = @rG1 . . .GtP0r.

Let C = IRC(〈R1, . . . , Rs〉, R0) be an inverse relationship constraint. It can
be expressed by

ψC = @rG1 . . .Gs−1↓x.GsF0x.

It follows that the constraint evaluation problem can be reduced to the
model checking problem for hybrid logic. More precisely, given a finite edge-
labelled rooted graph G and a Boolean combination C of constraints C1, . . . , Cn

on G, we can verify whether C is true in G at the root r by checking G, r ° Φ,
where Φ is the Boolean combination C of formulas ϕCi

and ψCi
as above.

Whenever only inclusion constraints are present, the model checking task
G, r ° Φ can be solved in time O(k · (n+m)), where k in the length of Φ, and
n and m are the number of nodes and the number of edges of G, respectively.
This boils down to k · n in the reasonable assumption that the representation
graph is sparse. Whenever both inclusion and inverse relationships constraints
are present, the model checking task G, r ° Φ can be solved in time O(k · n ·
(n + m)), that is k · n2 whenever the graph is sparse.

It is worth remarking that in the literature the constraint evaluation prob-
lem has been addressed in the more general setting where regular expressions
are involved in constraints. Given regular expressions p and q, a regular in-
clusion constraint is:

Any node that is reached from the root by a path whose labels form a word
in p can also be reached from the root by a path whose labels form a word
in q.

Similarly, given regular expressions r, p and q, a regular inverse relationship
constraint is:

For every node x that is reached from the root by a path whose labels form
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a word in r, if x can reach a node y by a path whose labels form a word in
p then y can reach x by a path whose labels form a word in q.

It is clear that in this paper we considered a restricted version of the above
constraints in which regular expressions boil down to (sequences of) atomic
labels. However, as we showed, this restricted version is both interesting and
computationally tractable.

The regular constraint evaluation problem is still polynomial [2]. How-
ever, the dynamic logic presented in [2] is not expressive enough to capture
inverse relationship constraints, and the solution given there to the constraint
evaluation problem is an ad hoc algorithm.

4.2 Verification of mobile reactive systems

Our second application concerns the verification of specifications for mobile
systems. Roughly speaking, a mobile system is a program that exploits a wide
area computational infrastructure like the World-Wide-Web. It consists of
several spatially distributed and dynamically connected components that may
go mobile among locations. From a technical point of view, we can isolate two
main ingredients of mobility: the notion of location and the change of spatial
configurations of locations over time. The notion of location can be naturally
expressed in hybrid logics with nominals to give names to locations, and with
the @ operator to access a location through its name. Mobile requirements
may be encoded in hybrid logics and model checking may be used to verify
whether the mobile system enjoys its specifications. For space reasons we do
not describe this application in full detail.

5 Conclusion

We investigated the model checking problem for hybrid logics. We found that
the addition of nominals and the @ operator does not increase the complexity
of the model checking task. The reason is that the resulting language still
enjoys the following subformula property: to check the truth of a formula ϕ,
we can check the truth of subformulas of ϕ, and then verify the truth of ϕ tak-
ing advantage of the gained information about subformulas. The subformula
property is important for model checking, since it permits to apply an efficient
bottom-up procedure that works on subformulas in increasing length order up
to the formula to be checked. In contrast, whenever hybrid binders are present
in the language, the truth of a subformula containing a variable may depend
on the binding of the variable, which is external to the subformula. We may
not have enough information to check subformulas before knowing how to
bind its variables. Therefore, a pure bottom-up strategy does not work, and
a costly top-down evaluation in needed. We used a model checking strategy
that combines bottom-up and top-down reasoning. The running time of the
resulting model checker is exponential in the nesting level of the binders. We
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cannot do better, since we proved that the model checking problem for hybrid
logics with binders is PSPACE-complete.

Our work pointed out once more the difference in complexity between ↓
and ∃. While ↓ binds a variable to the current state, ∃ binds a variable to
some state. This makes a difference from a model checking point of view,
that reflects in the running times of the corresponding model checkers (see
Theorem 3.5). Moreover, ∃ is dangerous alone, while ↓ is dangerous only in
presence of temporal operators. In fact, the formula ∃x.ϕ is equivalent to
↓y.F↓x.@yϕ, where F is interpreted over a universal accessibility relation.

Finally, we think that our work may be relevant in any setting in which
properties to check refer to the graph like nature of the underlying structure,
e.g. properties about loops.
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