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Abstract. We prove ExpTime-membership of the satisfiability problem for loosely
∀-guarded first-order formulas with a bounded number of variables and an un-
bounded number of constants. Guarded fragments with constants are interesting
by themselves and because of their connection to hybrid logic.
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1. Introduction

The guarded fragment of first-order logic was first introduced by
Andréka, Van Benthem and Németi [1], who proved that it is decidable
and that it has a number of other desirable properties. Van Benthem [9]
improved on this by generalizing the guarded fragment to the loosely
guarded fragment and showing that the latter is still decidable.

Grädel [4] further improved on these results in a number of ways.
He generalized the guarded and loosely guarded fragments by allowing
constants and the equality symbol to occur in formulas (but no function
symbols of positive arity), and subsequently proved the following:

THEOREM 1. (Grädel [4]). The satisfiability problem for loosely
guarded formulas is 2ExpTime-complete. The same problem is
ExpTime-complete for loosely guarded relational formulas with a
bounded number of variables, and for guarded relational formulas with
a bound on the arity of the relation symbols.

With a relational formula, we mean a formula that contains no
constants (function symbols of positive arity were already excluded).

Grädel [4] indicates that his results also apply to loosely ∀-guarded
formulas (i.e., formulas of which only the universal quantifiers are
loosely guarded), although the proof of this is not clearly spelled out.1

1 Marx [6] does explicitly state and prove the decidability of the satisfiability
problem for loosely ∀-guarded formulas.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

GFconstants.tex; 9/09/2005; 18:20; p.1



2

In the present paper we improve Grädel’s results by showing that
the qualification ‘relational’ in the above theorem may be dropped.
Concretely, we prove the following.

THEOREM 2. The satisfiability problem for loosely ∀-guarded formu-
las with a bounded number of variables and for guarded formulas with
a bounded arity is ExpTime-complete.

To appreciate the additional value of Theorem 2, we must return to
the original motivation behind the guarded fragment. The guarded
fragment was invented in order to explain and generalize the nice
computational and model theoretic properties of the modal language.
The key observation is that modal operators express a guarded form
of quantification, where the accessibility relations are the guards. For
explaining decidability results in modal logic, the first part of Theorem
1 often suffices. However, in order to explain low complexity, a more
refined analysis is needed. Consider for instance the global consequence
problem for modal formulas (does every model that globally satisfies φ
globally satisfy ψ? ). This is an ExpTime-complete problem. To under-
stand why this problem is in ExpTime, it suffices to observe that global
truth of a modal formula φ can be expressed by means of a guarded first-
order formula with only two variables, namely ∀x.(x = x→ STx(φ)).2

This shows the importance of bounded variable guarded fragments.
Recently there has been much interest in modal languages with nom-

inals [2]. Nominals are special proposition letters that denote singleton
sets. If we translate modal formulas containing nominals into first order
logic, then we arrive in the two-variable guarded fragment with an
unlimited number of constants. Theorem 1 will therefore not allow us
to prove, say, that the global consequence problem for modal formulas
with nominals is in ExpTime. Theorem 2 does, and it thereby broadens
the application of guarded fragments to the field of hybrid logic (this is
a common name for the family of modal languages with nominals and
related machinery).

Interestingly, and as an aside, recent results on hybrid logic have
also found applications for guarded fragments with constants. One such
application concerns the interpolation property. When the guarded
fragment was introduced, it was hoped that it has interpolation [1].
This turned out not to be the case [5]. In [7], it was shown using
results from hybrid logic that, in some sense, every extension of the
guarded fragment with constants that has interpolation has already
full first-order expressive power.

2 Here, ST refers to the well-known Gabbay-style standard translation of modal
formulas to first-order formulas, that uses only two variables.
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2. Preliminaries

We will consider first-order languages with arbitrarily many relation
symbols of any arity, constants and equality, but without function
symbols of arity greater than zero. A first-order formula φ of such
a language is called guarded if it is built up from atomic formulas
using the Boolean connectives and guarded quantifiers of the form
∃x1 . . . xn.(π ∧ ψ) or ∀x1 . . . xn.(π → ψ), where π is an atomic formula
and the free variables of ψ all occur in π. A formula is called ∀-guarded
if it is built up from atomic formulas and negated atomic formulas using
conjunction, disjunction, ordinary existential quantifiers and guarded
universal quantifiers. Note that the guards π may be atomic equality
statements. In particular, if a guarded formula φ has only one free
variable x, then ∃x.(x = x ∧ φ) and ∀x.(x = x → φ) are guarded
formulas. These formulas are equivalent to ∃x.φ and ∀x.φ, respectively.

The loosely guarded fragment is an extension of the guarded frag-
ment. A first-order formula φ is called loosely guarded if it is built
up from atomic formulas using the Boolean connectives and loosely
guarded quantifiers of the form ∃x1 . . . xn.(π∧ψ) or ∀x1 . . . xn.(π → ψ),
where π is conjunction of atomic formulas, such that every quantified
variable xi co-occurs with every free variable y 6= xi of ψ in some
conjunct of π. A formula is called loosely ∀-guarded if it is built up
from atomic formulas and negated atomic formulas using conjunction,
disjunction, ordinary existential quantifiers and loosely guarded univer-
sal quantifiers. Note that if a loosely guarded formula φ has only one
free variable x, then ∃x.(> ∧ φ) and ∀x.(> → φ) are loosely guarded.

For any formula φ, width(φ) will be the maximal number of free
variables of a subformula of φ, i.e., width(φ) is the largest natural
number n such that φ has a subformula with n free variables.

Grädel [4] proved his main decidability and complexity results for
guarded formulas using the following normal form.

DEFINITION 1. A (loosely) ∀-guarded formula is in normal form if
it is of the form

∃~x.P (~x) ∧
∧

i∈I

∀~x.(πi(~x) → ∃~y.φi(~x, ~y))

where, for each i ∈ I, the variables ~x, ~y are distinct, πi is a (loose)
guard and φi(~x, ~y) is a quantifier-free formula.

Grädel showed that every (loosely) guarded formula can be translated
in polynomial time into an equisatisfiable (loosely) ∀-guarded formula
in normal form. A slight variation of Grädel’s proof works for (loosely)
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∀-guarded sentences, thus turning it into a true normal form theorem
for (loosely) ∀-guarded formulas (cf. the full version of this paper for
more details [8]):

PROPOSITION 1. ([4]). Every (loosely) ∀-guarded formula φ can be
transformed in polynomial time into an equisatisfiable (loosely) ∀-
guarded sentence χ in normal form. Moreover, width(χ) ≤ width(φ).

Next, Grädel proved the following complexity result for such sentences.

PROPOSITION 2. ([4]). The satisfiability problem for loosely ∀-
guarded sentences in normal form is 2ExpTime-complete. It is
ExpTime-complete if there is a bound on the width of the sentence.

Note that Theorem 1 follows immediately from these results. In fact,
it follows that the satisfiability problem for loosely ∀-guarded formu-
las is 2ExpTime-complete, and it is ExpTime-complete for loosely
∀-guarded relational formulas with a bounded number of variables.

Incidentally, the constraints of bounded width and of bounded
number of variables in a first-order formula are equivalent. as in the
following folklore result (a proof of which can be found in the full
version of this paper [8]).

PROPOSITION 3. For k ∈ N, every first-order formula φ of width
k can be transformed in polynomial time into an equivalent formula
containing only k variables.

3. Eliminating constants

Most results on guarded formulas have been stated only for relational
first-order formulas, i.e., formulas not containing constants. In this
section, we will discuss how these results can be applied to formulas
containing constants. Let cons(φ) be the set of constants occurring in
φ. Grädel [4] proved the following.3

PROPOSITION 4. Every (loosely) ∀-guarded formula φ can be trans-
formed in polynomial time into an equisatisfiable relational (loosely)
∀-guarded formula χ, such that width(χ) ≤ width(φ) + |cons(φ)|.

3 Strictly speaking, Grädel’s proof for this proposition is flawed, since his transla-
tion does not correctly handle formulas containing equality. However, this problem
can easily be fixed.
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For complexity reasons, we have a particular interest in formulas with a
bounded width. Unfortunately, for such formulas φ, Proposition 4 does
not imply a bound on the width of χ. We will present another method
to eliminate constants, that allows us to circumvent this problem.

However, first we will prove a technical lemma. The lemma shows
that, in the case of loosely guarded formulas, the arity of the relation
symbols occurring in the formula may be bounded by the width. For
any formula φ, let maxarity(φ) denote the highest arity of a relation
symbol occurring in φ.

LEMMA 1. Every loosely ∀-guarded formula φ can be transformed
in polynomial time into an equisatisfiable loosely ∀-guarded formula
χ in normal form, such that width(χ) ≤ max{width(φ), 2} and
maxarity(χ) ≤ max{width(φ), 2}.

Proof. The proof proceeds in two steps. First, we reduce the arity
of the relation symbols occurring in φ to two, using a familiar trick:
we replace each n-ary relation symbol by n distinct binary relation
symbols. Then, we write the resulting formula in normal form. The
latter step might increase the arity of the relation symbols again, but
it will still be bounded by the width of the formula.

Let φ be any loosely ∀-guarded formula. For each n-ary relation
symbol R occurring in φ, with n > 2, introduce n + 1 new binary
relation symbols, R0, . . . , Rn. These relation symbols will be used to
encode the tuples that stand in the relation R: a tuple 〈d1, . . . , dn〉 will
be thought to stand in the relation if each pair 〈d`, dm〉 stands in the
R0 relation (1 ≤ `,m ≤ n), and there exists an element e such that
〈e, d`〉 ∈ R` for 1 ≤ ` ≤ n.

Replace each subformula of φ of the form R(t1, . . . , tn) that is not
inside a guard by

∧

1≤`,m≤n

R0(t`, tm) ∧ ∃u.
∧

1≤`≤n

R`(u, x`)

If φ has a subformula of the form ∀~x(π → ψ), where the guard π

contains a conjunct of the form R(t1, . . . , tn), then replace that conjunct
by

∧

1≤`,m≤nR0(t`, tm), and replace ψ by ∃u.(
∧

1≤`≤nR`(u, x`)∧>) →
ψ.

The resulting formula contains no relation symbols of arity greater
than 2, and it is satisfiable iff the original formula φ is satisfi-
able. Furthermore, the width of the resulting formula is at most
max{width(φ), 2}.

Finally, we apply Proposition 1 to bring the resulting formula into
normal form. Inspection of the proof of Proposition 1 shows that the
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arity of the relation symbols added during the normal form translation
is bounded by the width of the input formula. Hence, we end up with
a formula with the desired properties. 2

The following proposition is central to this paper.

PROPOSITION 5. Fix a natural number k ≥ 2. Every loosely ∀-
guarded formula φ of width at most k can be transformed in polynomial
time into an equisatisfiable relational loosely ∀-guarded formula χ of
width at most k.

Proof. Consider any loosely ∀-guarded formula φ of width at most
k. By Lemma 1, we may assume that φ is in normal form and that
maxarity(φ) ≤ k.

Let cons be the set of constants occurring in φ. Consider any n-
place relation symbol R occurring in φ, except for equality, and consider
any partial function f : {1, . . . , n} ↪→ cons assigning constants to the
argument positions of R. For each such R and f , introduce a new
relation symbol Rf with arity n − |dom(f)|, where dom(f) is the set
of all k ∈ {1, . . . , n} for which f(k) is defined. For example, if R is
a ternary relation symbol and f = {(1, c), (3, d)}, then Rf is a unary
relation symbol, and we will also denote it by Rc•d (where the “black
hole” • indicates that f(2) is undefined). The intended interpretation
of Rc•d(x) will be the same as R(c, x, d). Also, for each pair of constants
c, d, introduce a nullary relation symbol Ecd.

We will now eliminate all constants, with the help of these new
relation symbols. For any sequence of variables ~x, let T (~x) be the set of
all partial functions from {~x} to cons (including the empty function).
Note that there are (|cons| + 1)|~x| such functions. For each τ ∈ T (~x)
and formula ψ, let ψτ be the result of replacing each occurrence of a
variable x ∈ dom(τ) by τ(x). Finally, let φ∗ be obtained from φ by
means of the following procedure.

1. Replace each subformula of the form ∀~x.ψ by
∧

τ∈T (~x) ∀~x.ψ
τ , and

replace each subformula of the form ∃~y.ψ by
∨

τ∈T (~y) ∃~y.ψ
τ . 4

2. Replace each atomic formula of the form R(c1, . . . , cn, x1, . . . , xm)
by Rc1...cn•...•(x1, . . . , xm) (and similarly for other permutations)

3. Replace each atomic formulas of the form c = d by Ecd, and replace
each atomic formula of the form x = c or c = x by ⊥.

4 Note that this will only polynomially increase the length of the formula, due
to the fact that the width and the quantifier depth of φ are both bounded (keep in
mind that φ is in normal form).
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Let χ be the conjunction of φ∗ with

∧

c∈cons

Ecc ∧
∧

c,d∈cons

Ecd → Edc ∧
∧

c,d,e∈cons

Ecd ∧Ede → Ece

and all formulas of the form

∀x1 . . . xm.
(

Rc1...c`...cn•...•(x1, . . . , xm) →

(Ec`d → Rc1...d...cn•...•(x1, . . . , xm))
)

(including all permutations of the sequence c1, . . . , cnx1, . . . , xm).5

Clearly, χ does not contain any constants, and is loosely ∀-guarded.
Furthermore, the length of χ is polynomial in the length of φ, and χ

can be obtained from φ in polynomial time.
Finally, we claim that χ is satisfiable iff φ is satisfiable. One direction

of this claim is easy: a model for φ is easily turned into a model for χ. As
for the other direction, every model M satisfying χ can be turned into
a model M ′ for φ in the following way: define an equivalence relation
on the set cons by putting c ∼ d iff M |= Ecd, extend the domain of M
with one element for each equivalence class, and extend the relations
to the new elements in the obvious way: ([c1], . . . , [cn], e1, . . . , em) ∈ R

iff (e1, . . . , em) ∈ Rc1...cn•...•, and likewise for other permutations. It is
easily seen that the resulting model M ′ satisfies φ. 2

Note that the translation used in the above proof is polynomial only
provided that the width of the input formula is bounded by a constant.
Unlike Grädel’s translation, it is in general exponential.

Theorem 2 now follows: the first half follows immediately from
Propositions 1, 2 and 5 (trivially, the width of a formula is bounded by
the number of variables occurring in it). For the second half, it suffices
to observe that the width of a guarded formula is bounded by the arity
of the relation symbols occurring in it.

Incidentally, in general, the latter does not hold for ∀-guarded for-
mulas or loosely guarded formulas. Indeed, by a similar argument as
used in the proof of Lemma 1, the satisfiability problem for loosely
guarded formulas with arity at most 2 is already as hard as the
satisfiability problem for loosely guarded formulas in general, i.e.,
2ExpTime-complete.

5 The number of such formulas is in the order of

|rel(φ)| ·
“

|cons(φ)| maxarity(φ)
”

where rel(φ) is the set of relation symbols occurring in φ. This is polynomial in the
length of φ, given that maxarity(φ) is bounded by k.
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4. Discussion

We finish by discussing two open questions. The first question is:

What is the complexity of the satisfiability problem for ∀-guarded
formulas with bounded arity?

Note that the answer to this question does not depend on the presence
of constants. Our conjecture is that this problem is ExpTime-complete.

A second interesting question would be the following:

Classify, in the style of Börger et al. [3], the quantifier patterns
π for which the satisfiability problem for sentences consisting of a
sequence of quantifiers conform π followed by a guarded formula, is
decidable.

The satisfiability problem for π = ∃∗∀∃∗ is still decidable, as can be
seen by replacing the outermost existentially quantified variables by
constants and guarding the universal quantifier by an identity state-
ment of the form x = x. On the other hand, π = ∀3 is already a
conservative reduction class, as follows from results of Grädel [4]. What
about π = ∃∗∀2∃∗?
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