
Model Checking Hybrid Logics

(With an Application

to Semistructured Data)

Massimo Franceschet a,b,1 Maarten de Rijke b,2

aDepartment of Sciences, University of Chieti-Pescara, Italy
bInformatics Institute, University of Amsterdam, The Netherlands

Abstract

We investigate the complexity of the model checking problem for hybrid logics.
We provide model checker algorithms for various hybrid fragments and we prove
PSPACE-completeness for hybrid fragments including binders. We complement and
motivate our complexity results with an application of model checking in hybrid
logic to the problems of query and constraint evaluation for semistructured data.

1 Introduction

In model checking [19] we are given a formal model and a property and we
have to check whether the model satisfies the property. The model is a labelled
graph, sometimes called Kripke structure, and the property is a formula in
some logical language. We search the graph in order to check whether the
formula is true in the model. As a technique, model checking has very strong
links to (at least) two areas in computer science: verification and databases.
In the first half of this paper, we focus on model checking algorithms for so-
called hybrid logics; in the second half, we go on to show their relevance for
reasoning about semistructured data.

Email addresses: francesc@science.uva.nl (Massimo Franceschet),
mdr@science.uva.nl (Maarten de Rijke).
1 Supported by a grant from the Netherlands Organization for Scientific Research
(NWO) under project number 612.000.207.
2 Supported by grants from the Netherlands Organization for Scientific Research
(NWO) under project numbers 365-20-005, 612.069.006, 612.000.106, 220-80-001,
612.000.207, and 612.066.302.

Preprint submitted to Elsevier Science 18 April 2005

Modal and temporal logics have been successfully used as specification lan-
guages in the model checking task [20]; they are algorithmically well-behaved
and mathematically natural fragments of classical logics. However, something
crucial is missing in propositional modal and temporal logics: they lack mech-
anisms for naming states, for accessing states by names, and for dynamically
creating new names for states. In particular, traditional modal and tempo-
ral logics are able to express properties that satisfy the tree model property,
that is, properties that are satisfiable if, and only if, they are satisfiable in
a tree-like model. Are there extensions of modal and temporal logics violat-
ing the tree model property that are still computationally tractable? This is
where hybrid logics come in. They allow us to refer to states in a truly modal
framework, mixing features from first-order logic and modal logic, whence the
name hybrid logic [15]. In addition to ordinary propositional variables, hybrid
languages provide a type of atomic formulas called nominals. Syntactically,
nominals behave like propositional variables, but they have an important se-
mantic property: nominals are true at exactly one state in any model.

Nominals are only the first ingredient that sets hybrid languages apart from
traditional modal-like languages. Hybrid languages may also contain the at
operator @i which gives direct access to the unique state named by i: @ip holds
if, and only if, p holds at the state named by i. Moreover, hybrid languages
may be extended with the downarrow binder ↓x that assigns the variable name
x to the current state of evaluation. The operator @ combines naturally with
↓: ↓ stores the current state of evaluation and @ enables us to retrieve the
information stored by shifting the point of evaluation in the model. While ↓x
stores the current state in x, the binder ⇓x stores the ‘label’ of the current
state in x, that is, the set of propositions holding at the current state. Finally,
the existential binder ∃x binds the variable name x to some state in the model.

Model checking for hybrid languages has hardly been explored so far. In this
paper we address this gap. Our approach is incremental: on top of well-known
model checking results for Propositional Temporal Logic and Converse Propo-
sitional Dynamic Logic, we investigate the model checking problem for these
languages extended with the hybrid machinery as well as with the universal
modality A. It turns out that the addition of nominals, the @ operator, and the
universal modality A does not increase the complexity of the model checker.
In contrast, an arbitrary use of hybrid binders in formulas is computationally
dangerous. The model checking problem for any hybrid logic that freely mixes
the hybrid binder ↓ or ⇓ with temporal operators is PSPACE-complete, while
∃ is hard even without temporal operators. However, the model checker runs
in exponential time with respect to the nesting degree of the binders in the
formula. This means that we can still check in polynomial time long formulas,
as long as the nesting degree of the hybrid binders on the formula is bound. We
summarize our complexity results in Table 1, where k is the length of the for-
mula, n and m are the number of nodes and the number of edges of the graph

2

Table 1
Complexity of model checking for hybrid logics.

Language Complexity Language Complexity

HL(@,F,P,A) O(k · (n + m)) HLr(↓,@,F,A) O(k · (n + m) · nr)

HL(@,U,S,A) O(k · n ·m) HDLr(↓,@,A) O(k · (n + m) · nr)

HDL(@,A) O(k · (n + m)) HL(∃) PSPACE-complete

HL(↓,@) O(k · n) HL(∃,@,F,A) PSPACE-complete

HL(↓,F) PSPACE-complete HLr(∃,@,F,A) O(k · (n + m) · nr+1)

HL(↓,A) PSPACE-complete HDLr(∃,@,A) O(k · (n + m) · nr+1)

HL(↓,@,F,A) PSPACE-complete

structure, respectively, and r is the nesting degree of hybrid binders. More-
over, F is the Future temporal operator, P is Past, U is Until and S is Since.
Finally, languages of the form HL(·) are hybrid extensions of Propositional
Temporal Logic, while languages of the form HDL(·) are hybrid extensions of
Converse Propositional Dynamic Logic. Notice that PSPACE-complete prob-
lems are hard with respect to expression (or formula, or query) complexity,
which is the complexity of model checking if we only the length of the formula
as a parameter. If data complexity (the complexity of model checking if we
only the size of the model as a parameter) is taken into account, all the model
checking problems summarized in the table can be solved in polynomial time.

In the second part of the paper we illustrate a general methodological point:
since hybrid languages provide very natural modeling facilities, understand-
ing the computational and algorithmic properties of hybrid languages is of
great potential value. The complexity-theoretic results obtained in this pa-
per are valuable results about hybrid logic in their own right, but we believe
they get additional value because of the fact that hybrid languages provide
such natural modeling facilities, which makes the formal results of this paper
applicable in a fairly direct way. To back up these claims we apply model
checking for hybrid logics to the problems of query and constraint evalua-
tion for semistructured data: data with some structure but without a regular
schema. We discuss a hierarchy of query languages for semistructured data
corresponding to fragments of the language Lorel [3], the query language in
the Lore system [32], which was designed for managing semistructured data.
The languages that we discuss offer regular expressions to navigate the query
graph at arbitrary depths, as well as the possibility of comparing object iden-
tities and object values. We embed those query languages into fragments of
hybrid logics with different expressivity and establish a close relationship be-
tween the query processing problem for semistructured data and the global
model checking problem for hybrid logics. Moreover, we describe languages
to specify path constraints for semistructured data, including inclusion, in-

3

verse and functional path constraints. Path constraints generalize relational
integrity constraints for semistructured databases and they are useful to pro-
vide a loose schema to the otherwise unstructured database. Once again, we
provide an embedding into hybrid logic, this time of the constraint language,
and we underline the close connection between path constraint evaluation for
semistructured data and model checking for hybrid logics.

The paper is organized as follows. In Section 2 we discuss related work. Sec-
tion 3 introduces hybrid logic. In Section 4 we provide model checkers for
different hybrid languages, analyze their computational complexity, and prove
PSPACE-completeness of the model checking problem for hybrid fragments al-
lowing binders. Readers mostly interested in the relation between hybrid logic
and semistructured data, can skip Section 4 and return to it for details of the
results used in Section 5, where we describe the application of model checking
hybrid logic to semistructured data. We conclude the paper and outline future
work in Section 6.

2 Related Work

Hybrid logic was invented by Arthur Prior, the inventor of tense logic. The
germs of the idea seem to have emerged in the 1950s, but the first detailed
account is [36]. Prior called nominals world propositions and worked with rich
hybrid languages including quantifiers ∀ and ∃. The next big step was taken by
Robert Bull, Prior’s student, in [16]. Bull introduced a three-sorted hybrid lan-
guage (propositional variables, state nominals and path nominals) and proved
a completeness result for this logic. Path nominals name branches in tree-
like models of time by being true at all and only the points of the branch.
There were no further papers on the subject till the 1980s, when hybrid logic
was reinvented by a group of Bulgarian logicians (Passy, Tinchev, Gargov,
and Goranko). The locus classicus of this work is Passy and Tinchev’s [35];
they initiated the study of binder-free systems. During the 1990s, the empha-
sis has been on understanding the hybrid hierarchy in more detail. Goranko
introduced the ↓ binder [26], Blackburn and Seligman examined the interre-
lationships between a number of binders [14]. Characterizations with respect
to first-order correspondence theory, interpolation properties, and computa-
tional complexity (of the satisfiability problem) for hybrid modal logics have
been studied in [11]; recent contributions completing the picture are in [38].
The complexity of the satisfiability problem for hybrid temporal logics with
respect to different classes of frames has been investigated in [9,10,25]. As for
implementations, a resolution-based theorem prover for hybrid logic with @
and ↓ has been implemented [12]. For a comprehensive entry point to the field
see the hybrid logic home page [30].

4

Since the mid-1990s there has been a lot of work on the interface of computa-
tional logic and semistructured data, making use of a wide variety of logical
tools and techniques. E.g., [17] use simulations and morphisms, [4] concentrate
on regular expressions, and [18] make the connection with description logic.
The relation between model checking and query processing has been exten-
sively explored for structured data; see, e.g., [28]. The relation between model
checking and query processing for semistructured data goes back at least to [6],
where it was formulated in terms of suitable modal-like logics. Quintarelli [37]
embeds a fragment of the graphical query language G-Log into CTL, and she
sketches a mapping for subsets of other semistructured query languages, like
Lorel, GraphLog and UnQL. It is worth noticing that the fragments consid-
ered in [37] do not allow queries with joins. De Alfaro [8] proposes the use of
model checking for detecting errors in the structure and connectivity of web
pages. Miklau and Suciu [33] and Gottlob et al. [27] sketch an embedding
of the forward looking fragment of XPath into CTL. Finally, Marx [31] used
PDL-like logics in order to extend the XPath core language to a language that
is expressively complete with respect to first-order logic on finite trees.

As for the relation between model checking and path constraints evaluation
for semistructured data, Alechina et al. [7] embed forward and backward path
constraints into Converse Propositional Dynamic Logic. Calvanese et al. [18]
use description logics, and Afanasiev et al. [5] turn to CTL and provide ex-
perimental results of the “query evaluation as model checking” perspective.

3 Hybrid Logics

Temporal logics [23] (TL, for short) may be viewed as fragments of classical
logics [13]. They extend propositional logic by adding the well-known temporal
operators future F, past P, until U and since S. Let PROP = {p, q, . . .} be a
set of propositional variables. The syntax of temporal logic is as follows:

φ := > | p | ¬φ | φ ∧ φ | Fφ | Pφ | φUφ | φSφ.

We adopt the usual Boolean shorthands. The dual of P is Hα = ¬P¬α, and
the dual of F is Gα = ¬F¬α.

Temporal logic is interpreted over Kripke structures of the form 〈M,R, V 〉,
where M is a set of states (or worlds, points, nodes), R is a binary relation
on M called the accessibility (or reachability) relation, and V is a valuation
function from PROP to the powerset of M . We assume no specific structure of
time (linear, branching, . . .). Let M be a Kripke structure and m ∈ M . The
semantics of temporal logic is given in Figure 1

Sometimes, TL also includes the transitive closure operators F+, P+, U+ and

5

Fig. 1. Semantics for temporal logic.

M,m |= >

M,m |= p iff m ∈ V (p), p ∈ PROP

M,m |= ¬φ iff M,m 6|= φ

M,m |= φ ∧ ψ iff M,m |= φ andM,m |= ψ

M,m |= Fφ iff ∃m′ (Rmm′ ∧ M,m′ |= φ)

M,m |= Pφ iff ∃m′ (Rm′m ∧ M,m′ |= φ)

M,m |= ψUφ iff ∃m′ (Rmm′ ∧ M,m′ |= φ∧

∀m′′ (Rmm′′ ∧ Rm′′m′ → M,m′′ |= ψ))

M,m |= ψSφ iff ∃m′ (Rm′m ∧ M,m′ |= φ∧

∀m′′ (Rm′m′′ ∧ Rm′′m → M,m′′ |= ψ))

S+, interpreted over the transitive closure R+ of the accessibility relation, as
well as the universal modality A. The semantics of the universal modality is
as follows:M,m |= Aφ iff for all m it holds thatM,m |= φ. The dual of the
universal modality is the existential modality Eα = ¬A¬α.

Hybrid logic (HL, for short) extends temporal logic with devices for naming
states and accessing states by names. Let NOM = {i, j, . . .} and WVAR =
{x, y, . . .} be sets of nominals and state variables, respectively. HL’s syntax is:

φ := TL | i | x | @tφ | ↓x.φ | ∃x.φ,

with i ∈ NOM, x ∈ WVAR, t ∈ NOM ∪ WVAR. The operators in {@, ↓,∃}
are called hybrid operators. We call WSYM = NOM ∪WVAR the set of state
symbols, ALET = PROP∪NOM the set of atomic letters, and ATOM = PROP∪
NOM∪WVAR the set of atoms. We use x = y for @xy and x 6= y for @x¬y. For
simplicity, we omit parenthesis after the ↓. For instance, in ↓x.p ∧ @xq, the
variable x used in @xq is bound by ↓x. Hence, it should be read as ↓x.(p∧@xq).

Hybrid logic is interpreted over hybrid Kripke structures, i.e., Kripke structures
〈M,R, V 〉 where the valuation function V assigns singleton subsets of M to
nominals i ∈ NOM. To give meaning to the formulas, we also need the notion
of assignment. An assignment g is a mapping g : WVAR → M . Given an
assignment g, we define gx

m by gx
m(x) = m and gx

m(y) = g(y) for x 6= y. For
any atom a, let [V, g](a) = {g(a)} if a is a state variable, and V (a) otherwise.

The semantics of hybrid logic is given in Figure 2, where M = 〈M,R, V 〉 is
a hybrid Kripke structure, m ∈ M , and g is an assignment; the semantics
for Boolean and temporal operators is as for temporal logic. In words, the at
operator @t shifts evaluation to the state named by t, where t is a nominal or

6

Fig. 2. Semantics for hybrid logic.

M, g,m |= a iff m ∈ [V, g](a), a ∈ ATOM

M, g,m |= @tφ iff M, g,m′ |= φ, where [V, g](t) = {m′}, t ∈ WSYM

M, g,m |= ↓x.φ iff M, gx
m,m |= φ

M, g,m |= ∃x.φ iff there is m′ ∈M such thatM, gx
m′ ,m |= φ

a variable. The downarrow binder ↓x binds the state variable x to the current
state (where evaluation is being performed), while the existential binder ∃x
binds the state variable x to some state in the model; ↓ and ∃ do not shift
evaluation away from the current state. We use HL(O1, . . . , On) to denote the
hybrid language with hybrid and temporal operators O1, . . . , On.

The until operator U can be written in hybrid logic as follows: αUβ =
↓x.F(β ∧ H(Px → α)), and analoguously for the since operator S. Moreover,
the past operator is Pα = ↓x.∃y.@y(Fx ∧ α). Finally, the downarrow binder
↓ is a particular case of the existential binder: ↓x.α = ∃x.(x ∧ α), while ∃ can
be simulated by ↓ and E as follows: ∃x.α = ↓y.E↓x.E(y ∧ α).

In addition to the hybrid languages listed so far, we consider hybrid dynamic
languages; these will prove to be especially useful in Section 5. We consider
a hybridization of converse propositional dynamic logic (CPDL) [29]. CPDL
adds two operators to propositional logic, namely 〈e〉α and 〈e〉−1α, where e
is a regular expression on a set of labels Σ and α is a CPDL formula. CPDL
is interpreted over Labelled Transitions Systems (LTSs), Kripke structures in
which both the nodes and the edges are labelled. The edges are labelled with
symbols in Σ. Each regular expression e on the set of edge labels Σ identifies
a binary relation Re on the set of states. The relation Re is recursively defined
in terms of the structure of e. More precisely, Rl contains all the edges labelled
with l, Re1.e2 = Re1 ◦ Re2 , Re1+e2 = Re1 ∪ Re2 , and Re∗ = (Re)

∗. A state s is
reachable from a state r through the regular expression e if (r, s) ∈ Re. Given
a LTS M and a state s in M, we have that 〈e〉α is true in M at s if there
exists a state s′ reachable from s trough e such that α is true in M at s′.
Moreover, 〈e〉−1α is true in M at s if there exists a state s′ such that s is
reachable from s′ through e and α is true inM at s′.

Hybrid dynamic logic is the hybridization of CPDL. We write HDL(O1, . . . , On)
to denote the extension of CPDL with nominals, hybrid operators and possi-
bly the universal modality in O1, . . . , On. For instance, HDL(@, ↓,A) is CPDL
with nominals, @, ↓ and A operators.

We now introduce a new hybrid binder ⇓. We have separated the introduction
of this binder because it is usually not included in hybrid languages. However,
⇓ will come in handy in Section 5. Intuitively, while ↓ stores the current state

7

into a variable, ⇓ stores the label (or value) of the current state, that is, the
set of propositions that hold at the current state. Let WVAR′ = {v, w, . . .}
be a set of variables such that WVAR and WVAR′ are disjoint sets. The new
variables in WVAR′ serve as containers for sets of propositions. We add to
the hybrid language the formulas ⇓v.α, v, and v = w, and the new shortcut
v 6= w for ¬(v = w), where v, w ∈ WVAR′, with the following meaning. Let
M = 〈M,R, V 〉 be a hybrid Kripke structure, m ∈ M , and g an assignment
extended to WVAR′; that is, g is a mapping that associates each variable in
WVAR to a state in M and each variable in WVAR′ to a subset of PROP.
We denote by V −1 the function from M to the powerset of PROP such that
p ∈ V −1(m) iff m ∈ V (p). Then, M, g,m |= ⇓v.α iff M, gv

V −1(m),m |= α.

Moreover, M, g,m |= v iff g(v) = V −1(m) and M, g,m |= v = w iff g(v) =
g(w). In words, the binder ⇓v binds the variable v to the label of the current
state, while v = w compares the labels stored in v and w.

To put our results on model checking in perspective we briefly recall the com-
plexity/decidability results for satisfiability for the logics we consider. The ba-
sic hybrid logic with just nominals and the @ operator is PSPACE-complete,
not harder than modal logic. However, as soon as either the past operator, or
the until operator, or the universal modality is added, the satisfiability problem
becomes EXPTIME-complete. Finally, if the ↓ binder is added, decidability
of the satisfiability problem is lost.

4 Model Checking for Hybrid Logics

We now investigate the complexity of the global model checking problem for
various hybrid languages. A hybrid Kripke structureM = 〈M,R, V 〉 is finite
if M is finite. The global model checking problem for hybrid logic is: Given a
finite hybrid Kripke structure M, an assignment g, and a hybrid formula φ,
is there a state m ∈ M such that M, g,m |= φ? We distinguish between ex-
pression complexity, i.e., the complexity of the model checking problem when
the complexity parameter is the length of the formula only, and data complex-
ity, i.e., the complexity of the model checking problem when the complexity
parameter is the size of the model only.

4.1 Model Checkers

We provide global model checkers for different hybrid logics and we ana-
lyze their worst-case behavior. We start by describing a model checker called
MCLITE for the language HL(@,F,P,U,S,A). It receives a hybrid model
M = 〈M,R, V 〉, an assignment g, and a hybrid formula φ in the consid-

8

ered language and, after termination, every state in the model is labelled with
the subformulas of φ that hold at that state. The algorithm uses a bottom-up
strategy : it examines the subformulas of φ in increasing order of length, until
φ itself has been checked.

We need some auxiliary notation. Let R be an accessibility relation; then R−

is the inverse of R: R−vu if, and only if, Ruv. For n ≥ 1, let Rn(w) be the set
of states that are reachable from w in n R-steps, and R−n(w) be the set of
states that are reachable from w in n R−-steps. The states belonging to R1(w)
are successors of w, while those belonging to R−1(w) are predecessors of w.
Given a modelM = 〈M,R, V 〉, we denote byM− the model 〈M,R−, V 〉. The
length of a formula φ, denoted by |φ|, is the number of operators (Boolean,
temporal and hybrid) of φ plus the number of atoms (propositions, nominals
and variables) of φ. Let sub(φ) be the set of subformulas of φ. Notice that
|sub(φ)| = O(|φ|).

The model checker MCLITE updates a table L of size |φ|× |M | whose elements
are bits. Initially, L(α,w) = 1 if, and only if, α is an atomic letter in sub(φ)
such that w ∈ V (α). When MCLITE terminates, L(α,w) = 1 if, and only if,
M, g, w |= α for every α ∈ sub(φ). Given α ∈ sub(φ) and w ∈ M , we denote
by L(α) the set of states v ∈ M such that L(α, v) = 1 and by L(w) the set
of formulas β ∈ sub(φ) such that L(β, w) = 1. MCLITE uses subroutines MCF,
MCU, MCA, and MC@ in order to check subformulas of the form Fα, αUβ, Aα,
and @tα, respectively. The pseudocode for these procedures is in Figure 3.

Proposition 4.1 (Correctness of subroutines) Let M = 〈M,R, V 〉 be a
hybrid model, g an assignment, α and β hybrid formulas, and t a state symbol.
Let L be a table such that, for every w ∈ M , L(α,w) = 1 (respectively,
L(β, w) = 1) if, and only if, M, w |= α (respectively, M, w |= β). Then,

(1) after termination of MCF(M, g, α), we have that, for every state w ∈ M ,
L(Fα,w) = 1 if, and only if, M, g, w |= Fα;

(2) after termination of MCA(M, g, α), we have that, for every state w ∈M ,
L(Aα,w) = 1 if, and only if, M, g, w |= Aα;

(3) after termination of MC@(M, g, t, α), we have that, for every w ∈ M ,
L(@tα,w) = 1 if, and only if, M, g, w |= @tα; and

(4) after termination of MCU(M, g, α, β), we have that, for every w ∈ M ,
L(αUβ, w) = 1 if, and only if, M, g, w |= αUβ.

Proof. The proofs for cases 1, 2, and 3 are easy. We only show the more
involved case 4. The procedure MCU works as follows. First, all nodes are set
to unmarked. Then, for each w that is labelled with β, the first inner for loop
marks all the nodes u such that there exists a node v which is not labelled with
α and Ruv and Rvw. The second inner for loop labels with αUβ the remaining
unmarked nodes. The set of states labelled with αUβ grows monotonically as

9

Fig. 3. MCLITE subprocedures.

Procedure MCF(M, g, α)
for w ∈ L(α) do

for v ∈ R−1(w) do
L(Fα, w)← 1

end for
end for
Procedure MCA(M, g, α)
if L(α) = M then

for v ∈M do
L(Aα, v)← 1

end for
end if
Procedure MC@(M, g, t, α)
let {w} = [V, g](t)
if L(α, w) = 1 then

for v ∈M do
L(@tα, v)← 1

end for
end if

Procedure MCU(M, g, α, β)
for w ∈M do

unmark(w)
end for
for w ∈ L(β) do

for v ∈ R−1(w) do
if L(α, w) = 0 then

for u ∈ R−1(v) do
mark(u)

end for
end if

end for
for v ∈ R−1(w) ∪R−2(w) do

if marked(v) then
unmark(v)

else
L(αUβ, v)← 1

end if
end for

end for

computation proceeds. Indeed, a node that is not labelled with αUβ during
the iteration for some w may be labelled with αUβ during a later iteration
for some w′. Let w ∈ L(β). We claim that:

Claim 1 After termination of the main for loop dedicated to w in the proce-
dure MCU, for every v ∈ R−1(w)∪R−2(w), we have that v is labelled with αUβ
if, and only if, every successor of v that is a predecessor of w is labelled with
α.

It follows that, after termination of the procedure MCU, for every v ∈ M , v is
labelled with αUβ if, and only if, every successor of v that is a predecessor of
some w ∈ L(β) is labelled with α, which means that M, v |= αUβ. To prove
the left to right direction of the claim, suppose that v is labelled with αUβ.
Then, v is unmarked before the second inner for loop. We infer that every
successor of v that is a predecessor of w is labelled with α. Indeed, suppose
there exists a successor z of v such that z precedes w and z is not labelled with
α. Because of the first inner for loop, the predecessors of z are marked. Since
v is a predecessor of z, v is marked as well, which contradicts the fact that v
is unmarked. For the right to left direction, suppose every successor of v that
is a predecessor of w is labelled with α. Then, after the first inner for loop, v
is unmarked. Indeed, suppose v is marked. Then, there exists some successor
z of v that is a predecessor of w and is not labelled with α. This contradicts
the fact that every successor of v that is a predecessor of w is labelled with α.
Hence, v is unmarked before entering the second inner for loop and, hence, v

10

is labelled with αUβ at the end of it. 2

What is the complexity of the subroutines? Let M = 〈M,R, V 〉 be a finite
hybrid model, with n = |M | andm = |R|. The procedure MCF runs inO(n+m),
and both MC@ and MCA run in O(n). As for MCU, for every w ∈ L(β), the
procedure pays two backward visits to the states reachable in 2 steps. Each
visit costs O(m). As there are O(n) states in L(β), MCU runs in O(n ·m) time.

A model checker MCLITE for HL(@,F,P,U,S,A) can easily be programmed
by taking advantage of subroutines MCF, MCA, MC@, and MCU. MCLITE works
bottom-up checking all subformulas of the input formula in increasing length
order. When a formula starting with one of @, F, U, A needs to be checked,
the corresponding procedure is invoked. Past temporal operators P and S
are handled by feeding the subroutines MCF and MCU, respectively, with the
reversed model M−. Finally, Boolean connectives are treated as usual. The
correctness of MCLITE follows from the correctness of its subroutines (Propo-
sition 4.1) and the semantics of the operators P and S.

Theorem 4.2 (Correctness of MCLITE) Let M = 〈M,R, V 〉 be a hybrid
model, g an assignment, and φ a formula in HL(@,F,P,U,S,A). Then, after
termination of MCLITE(M, g, φ), we have that, for every w ∈M and for every
α ∈ sub(φ), it holds that L(α,w) = 1 if, and only if, M, g, w |= α.

Theorem 4.3 (Complexity of MCLITE) Let M = 〈M,R, V 〉 be a hybrid
model such that n = |M | and m = |R|. Let g be an assignment, and φ a
hybrid formula of length k. Then,

• if φ belongs to HL(@,F,P,U,S,A), then the model checker MCLITE(M, g, φ)
terminates in time O(k · n ·m);

• if φ belongs to HL(@,F,P,A), then the model checker MCLITE(M, g, φ) ter-
minates in time O(k · (n+m)); and

• if φ belongs to HL(@,A), then the model checker MCLITE(M, g, φ) termi-
nates in time O(k · n).

Proof. There are |sub(φ)| = |φ| = k subformulas to check. The complexity
of each check depends on the form of the subformula ψ. If ψ is atomic, it is
checked in constant time. If its main operator is Boolean, @, or A, then it is
checked in O(n). If ψ’s main operator is F or P, then it is checked in O(n+m).
Finally, if its main operator is U or S, then ψ is checked in O(n ·m). 2

We can extend MCLITE to cope with transitive closure operators F+ and U+,
as well as with their past counterparts, without increasing the asymptotic
complexity. The idea is to replace the visit to the predecessors of w with a
backward depth-first visit of the nodes that can reach w. As an alternative,
one may first compute the transitive closure of the accessibility relation, and

11

Fig. 4. MCFULL subprocedures.

Procedure CheckF(M, g, α)
MCFULL(M, g, α)
MCF(M, g, α)

Procedure Check↓(M, g, x, α)
for w ∈M do

g(x)← w
MCFULL(M, g, α)
if w ∈ L(α) then

L(↓x.α,w)← 1
end if
Clear(L, x)

end for

Procedure Check∃(M, g, x, α)
for v ∈M do

g(x)← v
MCFULL(M, g, α)
for w ∈M do

if w ∈ L(α) then
L(∃x.α,w)← 1

end if
end for
Clear(L, x)

end for

then use the model checker MCLITE on the transitive model.

We now move to hybrid languages with binders. The efficient bottom-up strat-
egy used in MCLITE does not work for such languages. Why? Consider the for-
mula G↓x.Fx. It says that every successor of the current point is reflexive. If
we try to check this formula in a bottom-up fashion, we initially have to check
the subformula x. However, at this stage, we do not have enough information
to check x, and hence we cannot label the states of the model with x. Instead,
we can proceed as follows: we first check ↓x.Fx with a procedure yet to be
developed, then we check G↓x.Fx, that is ¬F¬↓x.Fx, taking advantage of the
subprocedure MCF of MCLITE. In order to check ↓x.Fx, for each state w, we
first assign w to x, and then check Fx at w under the new assignment for x.
The latter can again be done using MCF.

The sketched strategy, which combines top-down and bottom-up reasoning,
has been implemented in a recursive model checker MCFULL for the full hybrid
language HL(HO ∪ TO), where HO = {@, ↓,∃}, and TO = {F,P,U,S,A}.
The auxiliary procedures Check∗, with ∗ ∈ HO ∪ TO, handle the cases of
subformulas with main operator ∗. Whenever possible, these procedures re-
use the subprocedures MC∗, with ∗ ∈ {@} ∪TO, of MCLITE. They use the new
subroutine Clear(L, x) to reset all the values of L(α), for any α containing
the variable x free (we assume that different binders use different variables).
Boolean operators are treated as usual. In Figure 4 we show the pseudocode
for CheckF, Check↓, and Check∃. The procedures for the other operators are
similar to CheckF.

Theorem 4.4 (Correctness of MCFULL) Let M = 〈M,R, V 〉 be a hybrid
model, g an assignment, and φ a hybrid formula. Then, after termination of
MCFULL(M, g, φ), we have that:

• for every w ∈M , L(φ,w) = 1 if, and only if, M, g, w |= φ; and

12

• for every w ∈ M and every sentence α ∈ sub(φ), L(α,w) = 1 if, and only
if, M, g, w |= α.

Theorem 4.5 (Complexity of MCFULL) Let M = 〈M,R, V 〉 be a hybrid
model such that n = |M | and m = |R|, and g an assignment. Let φ be a
hybrid formula in HL(∃, ↓, S), and let r↓ and r∃ be the nesting degree of ↓
and ∃, respectively, in φ. Let CS be the model checking complexity for HL(S).
Then, MCFULL(M, g, φ) terminates in time O(CS · nr↓+r∃+1) if r∃ > 0, and in
time O(CS · nr↓) if r∃ = 0. Moreover, the procedure uses polynomial space.

Proof. We have that (1) the procedure Check∗ runs in time Cα +C∗, where C∗
is the cost of MC∗ and Cα is the cost to check α; (2) the procedure Check↓ runs
in time n · Cα; and (3) the procedure Check∃ runs in time n · (Cα + n). Thus,
the overall worst-case time complexity is O(CS · nr↓+r∃+1) if r∃ > 0, and it is
O(CS · nr↓) if r∃ = 0. Since the height of the recursion stack for MCFULL is at
most |φ|, we have that MCFULL uses polynomial space. 2

MCFULL can easily be extended to cope with formulas involving ⇓ and the
comparison of state labels. A procedure similar to Check↓ can be used to check
formulas of the form ⇓v.α. The only difference is that we have to bind the
variable v to the label of the current state, and not to the current state itself.
The complexity remains the same. Moreover, the formula v, for v ∈ WVAR′,
can be verified by comparing the label of the current state and the label stored
in v, while the formula v = w, for v, w ∈ WVAR′, can be checked by comparing
the labels stored in v and w.

Furthermore, MCFULL can be viewed as a general model checker for the hy-
bridization of any temporal logic. Given a temporal logic T, the hybridization
of T is the hybrid logic obtained from the language of T by adding the hybrid
machinery. Suppose that, for each temporal operator O of arity k in T, we can
exploit a procedure CheckO that, given a model and k formulas α1, . . . , αk,
labels each state m of the model with the formula O(α1, . . . , αk) if, and only
if, the formula is true at m. A model checker for the hybridization of T can
be synthesized from these model checking procedures following the example of
MCFULL. For instance, a model checker for HDL(@, ↓,⇓,A) can be programmed
by taking advantage of a CPDL model checker. Model checking for CPDL can
be done in linear time with respect to the length of the formula and the size
of the model [21]. Hence, we have:

Theorem 4.6 Model checking for HDL(@,A) has linear time data and ex-
pression complexity, while model checking for HDL(@, ↓,⇓,A) has exponential
time expression complexity and polynomial time data complexity. In any case,
the problem can be solved in polynomial space.

13

Fig. 5. Embedding QBF into model checking for hybrid logics.

1
home

false
3

true
2

4.2 Lower Bounds

Can we do better than the upper bounds given in Section 4.1? Model checking
for first-order logic is PSPACE-complete. Since HL(∃,@,F) is as expressive
as first-order logic [15], model checking for HL(∃,@,F) is PSPACE-complete
as well. What about fragments of HL(∃,@,F)? The question is particulary
interesting for the fragment HL(↓,@,F), since it corresponds to the bounded
fragment of the first-order correspondence language [9]. Unfortunately, the
model checking problem for HL(↓,@,F), and hence for the bounded fragment,
is still PSPACE-hard, even without @, nominals and propositions. It is worth
noticing that all the lower bounds in this section refer to expression complexity.

Theorem 4.7 Model checking for the pure nominal-free fragment of HL(↓,F)
is PSPACE-complete.

Proof. PSPACE-membership follows from Theorem 4.5. To prove PSPACE-
hardness, we embed Quantified Boolean Formulas (QBF) [34] into the model
checking problem for the pure nominal-free fragment of HL(↓,F). We pro-
ceed in two steps. We first embed QBF into the model checking problem for
HL(↓,@,F). Then, we remove the @ operator and atomic letters.

Recall that an instance of QBF has the form Ψ = Q1x1. . . . Qnxn.α(x1, . . . , xn),
where Qi ∈ {∃,∀}, and α(x1, . . . , xn) is a Boolean formula using variables
x1, . . . , xn. Let NOM = {true, false, home} and letM be the model depicted
in Figure 5, left-hand side. Let φΨ be the HL(↓,@,F)-formula obtained from
Ψ by replacing every occurrence of ∃x by @homeF↓x, every occurrence of ∀x
by @homeG↓x, every occurrence of x by @xtrue, and every occurrence of ¬x
by @xfalse. We have that Ψ is true if, and only if, M, 1 |= φΨ. We now
remove @ and atomic letters. To remove @, we have to find a way to “come
back home” after F↓x has fixed the variable x. We can add to the previous
model two more edges, one from 2 to 1, and the other from 3 to 1, and use
the F operator to come home. Since we don’t have atomic letters, we have
to distinguish in some structural way between state 2 (denoting true) and
state 3 (denoting false). We can add, for instance, a reflexive edge leaving
2. The resulting frame is depicted in Figure 5 (right-hand side). Without
loss of generality, we assume that negation in α(x1, . . . , xn) is applied only to
variables. Let τ be the translation given in Figure 6. We leave it to the reader
to check that Ψ is true if and only ifM, 1 |= τ(Ψ). 2

14

Fig. 6. From QBF to hybrid logic.

τ(x) = F(x ∧ ↓y.Fy) τ(¬x) = F(x ∧ ↓y.G¬y)

τ(α1 ∧ α2) = τ(α1) ∧ τ(α2) τ(α1 ∨ α2) = τ(α1) ∨ τ(α2)

τ(∃x.α) = F↓x.F(↓y.G¬y ∧ τ(α)) τ(∀x.α) = G↓x.F(↓y.G¬y ∧ τ(α))

Theorem 4.8 Model checking for the pure nominal-free fragments of HL(↓,F+)
is PSPACE-complete.

Proof. PSPACE-membership follows from Theorem 4.5. To prove hardness,
we embed QBF into the model checking problem for the pure nominal-free
fragment of HL(↓,F+). Let Ψ = Q1x1. . . . Qnxn.α(x1, . . . , xn), where Qi ∈
{∃,∀}, and α(x1, . . . , xn) is a Boolean formula using variables x1, . . . , xn. Let
M be the unlabelled model with frame 〈{1, 2}, {(1, 2), (2, 1)}〉. Let φΨ be the
HL(↓,@,F)-formula obtained from Ψ by replacing every occurrence of ∃x by
F+↓x and every occurrence of ∀x by G+↓x. Then Ψ is true if, and only if,
M, 1 |= φΨ. 2

Theorem 4.9 Model checking for the pure nominal-free fragment of HL(∃)
is PSPACE-complete.

Proof. PSPACE-membership follows from Theorem 4.5. To prove hardness,
we embed QBF into the model checking problem for the pure nominal-free
fragments of HL(∃). Let Ψ = Q1x1. . . . Qnxn.α(x1, . . . , xn), where Qi ∈ {∃,∀},
and α(x1, . . . , xn) is a Boolean formula using variables x1, . . . , xn. Ψ is a pure
nominal-free formula in HL(∃). LetM be the unlabelled model based on the
frame 〈{1, 2}, ∅〉. Then Ψ is true if, and only if,M, 1 |= Ψ. 2

Corollary 4.10 Model checking for the pure nominal-free fragment of HL(↓,A)
is PSPACE-complete.

Theorem 4.11 Model checking for HL(⇓,F) is PSPACE-complete.

Proof. The PSPACE upper bound comes from Section 4.1. To prove hardness,
we embed the model checking problem for HL(↓,F) into the same problem
for HL(⇓,F). Consider a hybrid model M = 〈M,R, V 〉 and a formula α in
HL(↓,F). We construct a hybrid model M′ = 〈M,R, V ′〉, where, for each
m ∈ M , there exists a fresh nominal im with V ′(im) = {m}. Moreover, let α′

be the formula in HL(⇓,F) that is obtained from α by replacing each instance
of ↓ by ⇓ and each instance of x by vx, where x ∈ WVAR and vx ∈ WVAR′.
Then, we have thatM, g,m |= α if, and only if,M′, g,m |= α′. 2

Theorem 4.12 Model checking for the pure nominal-free fragment of HDL(↓)
is PSPACE-complete.

15

5 Hybrid Logic in Action

On the previous pages we have discussed, and obtained, complexity results for
model checking a variety of hybrid logics. What’s the point? In this section
we describe an application of hybrid logic model checking to the task of eval-
uation of queries and constraints on semistructured data. We will encounter
a number of query and constraint formats as well as reasoning tasks, all of
which correspond to model checking in some specific hybrid language.

5.1 Semistructured data

The growth of the World Wide Web has given us a vast, largely accessible
database. The Extensible Markup Language (XML) [22] is a textual repre-
sentation of information that was designed to represent the hierarchical con-
tent of documents. It has been proposed as a data model for semistructured
databases since it is able to naturally represent missing or duplicated data as
well as deeply nested information [1]. As an example, Figure 7 contains the
XML representation of a simple bibliography file. A very natural representa-
tion for semistructured data is a labelled graph. In this paper, we will represent

Fig. 7. (Left) An XML representation of a bibliography file. (Right) A graphical
representation of the same file.

<biblio>
<book id = "o1">
<author> Marx </author>
<author> de Rijke </author>
<title> Hybrid Logics </title>

</book>
<book id = "o2">
<author> Franceschet </author>
<title> Model Checking </title>
<date> 2000 </date>
<cite idref = "o1"/>
<cite idref = "o3"/>

</book>
<paper id = "o3">
<author> Afanasiev </author>
<title> Model Checking </title>
<cite idref = "o2"/>

</paper>
</biblio>

cite

Model Checking

Afanasiev

title

author

2000

Model Checking

Franceschet

title

author

Hybrid Logics
title

de Rijke

Marx

date

author

author

paper

book

book

biblio

cite

cite

16

semistructured data as a graph in which a node corresponds to an object and
an edge corresponds to an object attribute. Edges are labelled with attribute
names, while leaf nodes are labelled with object values (internal nodes are not
labelled). The data graph corresponding to the XML example on the left-hand
side of Figure 7 is depicted on the right-hand side of Figure 7.

5.2 Query Processing via Hybrid Logic Model Checking

It is possible to perform significant query processing on semistructured data
via model checking for hybrid languages. Quite a number of query languages
for semistructured data have been proposed in the literature. However, many
of them are similar in spirit and sometimes even in syntax [1]. For this reason,
we have chosen one of them as a model: Lorel [3]. Lorel is the query language
in the Lore system [32], which was designed for managing semistructured data.
We discuss three fragments of Lorel, that differ in their expressive power; each
will be embedded in a suitable hybrid logic. As a consequence, we are able to
process a query in Lorel by taking advantage of a model checker for hybrid
logics. Moreover, with the aid of the well-understood hybrid logic framework,
it will be easy to investigate and compare the expressive power of various
fragments of the Lorel query language.

All fragments that we consider allow regular expressions for navigating the
data graph. Some offer the possibility of comparing object identities, which
allows us to implement queries with joins. We will focus on monadic queries
only: queries that return a set of objects of the database, or, equivalently,
a set of nodes of the graph representation of the database. The reason for
this restriction is that we want to embed the query processing problem into
the global model checking problem, and the output of a global model checker
is a set of nodes. We will consider 3 increasingly large fragments of Lorel:
L1

qry ⊂ L2
qry ⊂ L3

qry. The most expressive language, L3
qry, captures a large

subfragment of Lorel. Additional features of Lorel that are not expressible in
L3

qry will be discussed towards the end of the section.

Fragment 1: L1
qry We start by defining the query language L1

qry. A query
in L1

qry has the following schema Q1:

(Q1) select X

from rexp X

where X.fexp,

where rexp is a regular expression on edge labels (i.e., attribute names), and
fexp is a so-called filter expression. Intuitively, Q1 retrieves all nodes reachable

17

from the root through rexp satisfying the filter fexp. The variable X is used
as a container for these nodes. We call the variable X in the ‘select’ clause of
the query the focus of the query, the condition rexp X in the ‘from’ clause of
the query the selection expression, and the condition X.fexp in the ‘where’
clause of the query the filter expression. The syntax of filter expressions is:

fexp = true | rexp | rexp :: a | fexp and fexp | fexp or fexp | not fexp,

where a is an object value. Given a set of nodes X, the filter X.rexp selects
a node v in X if there exists at least one reachable node from v trough rexp.
The filter X.rexp::a adds an additional constraint: it filters a node v in X if
there exists at least one reachable node from v trough rexp that is labelled
with a. E.g., with reference the example in Figure 7, consider the following:

select X

from biblio.book X

where X.(author::Franceschet and date::2000)

This query selects all books written in 2000 such that Franceschet is one of
the authors. In our example, book o2 is retrieved. Moreover, the query

select X

from biblio. X

where X.abstract

retrieves all entries for which an abstract has been provided: none.

The simple query language L1
qry can be embedded into hybrid dynamic logic

with only one nominal root for the data graph root and no hybrid opera-
tors. The embedding τ1 is as follows. Let ω be the obvious embedding from
filter expressions to hybrid formulas: ω(true) = >, ω(rexp) = 〈rexp〉>,
ω(rexp :: a) = 〈rexp〉a, ω(fexp1 and fexp2) = ω(fexp1) ∧ ω(fexp2), ω(fexp1
orfexp2) = ω(fexp1) ∨ ω(fexp2), and ω(not fexp) = ¬ω(fexp). To the query
schema Q1 we associate the hybrid formula τ1(Q1) = 〈rexp〉−1root ∧ ω(fexp).
Notice how the selection expression is translated ‘backward,’ while the filter
expression is translated ‘forward.’

Next, we clarify the relation between query processing for semistructured data
and model checking for hybrid logic. Define the answer set of a monadic query
q with respect to a semistructured database D as the set of nodes retrieved by
q belonging to the data graph GD associated to D. Each node in the answer
set corresponds to an element in the corresponding XML representation of D.
Moreover, given a hybrid formula α and a hybrid model M, let the truth set
of α with respect to M be the set of nodes of M at which α is true. The
following result relates the query processing problem for semistructured data
to the model checking problem for hybrid dynamic logic.

18

Proposition 5.1 Let q be a query in L1
qry and D be a semistructured database.

Then, the answer set of q with respect to D corresponds to the truth set of τ1(q)
with respect to GD.

Moreover, since the translation τ1 goes inside a fragment of HDL(@,A), by
virtue of Theorem 4.6, we have the following corollary.

Corollary 5.2 Query processing for L1
qry has linear time data and expression

complexity.

Fragment 2: L2
qry The expressive power of L1

qry can be extended by splitting
the selection expression in more than one chunk. Consider the following query
that selects the authors of all entries with title Model Checking :

select Y

from biblio. X, X.author Y

where X.title::Model Checking

This query is not definable in L1
qry but it can be embedded into the basic hybrid

dynamic logic as 〈author〉−1(〈bibilo. 〉−1root ∧ 〈title〉Model Checking).
We define the query schema Q2 as follows:

(Q2) select Xi
from rexp1 X1, X1.rexp2 X2, ..., Xn−1.rexpn Xn
where fexp1, ..., fexpm

Each filter expression fexpj has the form X.fexp, where X is a variable and
fexp in a filter expression as in Q1. Intuitively, the schema Q2 binds the
variable X1 to the nodes reachable from the root through the regular expression
rexp1, it binds the variable X2 to the nodes reachable from a node in X1 through
the regular expression rexp2, and so on. The filter expression X.fexp filters the
nodes placed in the variable X according to the Boolean filter fexp. Finally,
the nodes contained in the focus Xi are selected. A well-formed query q is
defined as follows. Let X be the focus of q, S the selection sequence of q, F
the filter sequence of q, and V the variables in S. The query q is well-formed
if (i) X ∈ V , and (ii) all variables used in the filter sequence F are in V . Let
L2

qry be the query language containing all the well-formed queries according
to the schema Q2. Notice that L1

qry ⊂ L2
qry.

We now develop an embedding τ2 of queries in L2
qry into the basic hybrid

dynamic logic with only one nominal root for the root of the data graph.
Consider the query schema Q2. For each variable Xj in Q2, let fexpj be the
filter expression associated with the variable Xj, or fexpj = true if no filter
expression has been explicitly associated with Xj. We use the following two
auxiliary functions ν and ν−1 mapping a variable in Q2 into a hybrid formula.

19

ν(Xj) =

ω(fexpj) ∧ 〈rexpj+1〉 ν(Xj+1) if j < n

ω(fexpj) if j = n

ν−1(Xj) =

ω(fexpj) ∧ 〈rexpj〉−1 ν−1(Xj−1) if j > 1

ω(fexpj) ∧ 〈rexpj〉−1root if j = 1

Let Xi be the focus of Q2, that is, Xi is the variable in the select clause of Q2.
The translation τ2 of Q2 into hybrid logic is as follows:

τ2(Q) =

 ν(Xi) ∧ 〈rexpi〉−1 ν−1(Xi−1) if i > 1

ν(Xi) ∧ 〈rexpi〉−1root if i = 1

Notice that τ2(L1
qry) = τ1(L1

qry).

Proposition 5.3 Let q be a query in L2
qry and D be a semistructured database.

Then, the answer set of q with respect to D corresponds to the truth set of τ2(q)
with respect to GD.

Since the codomain of the translation τ2 is a fragment of HDL(@,A), by virtue
of Theorem 4.6, we have the following corollary:

Corollary 5.4 Query processing for L2
qry has linear time data and expression

complexity.

The results in Corollaries 5.2 and 5.4 do not really depend on previous results
for model checking hybrid logics, and in fact they can be obtained directly from
model checking converse PDL. Indeed, the root nominal can be simulated by
a propositions holding at exactly the root node. The material below does use
the expressive power of hybrid logic in an essential way.

Fragment 3: L3
qry So far, we have not used the full power of hybrid logic. In

particular, the hybrid binder ↓ has not been exploited in the query translation.
Consider the following query that selects papers with at least two authors:

select X

from biblio.paper X, X.author Y, X.author Z

where Y 6= Z

It can be embedded in hybrid logic, but we need the binder ↓:

↓x.〈biblio.paper〉−1root ∧ 〈author〉↓y.@x〈author〉↓z. y 6= z.

Moreover, the following query selects all the self-reference papers, that is, all
papers whose authors cite themselves:

20

select X

from biblio.paper X, X.cite Y

where X = Y

It corresponds to the hybrid formula ↓x.〈biblio.paper〉−1root ∧ 〈cite〉↓y.x =
y. The following query retrieves all papers p such that there exists a paper q
reachable from p trough a path of cite edges that cites back to p:

select X

from biblio.paper X, X.cite.cite∗ Y

where X = Y

This query maps to ↓x.〈biblio.paper〉−1root ∧ 〈cite.cite∗〉↓y.x = y.

We define a query schema Q3 that allows the above queries as follows:

(Q3) select Xi
from sexp1, sexp2, ..., sexpn
where fexp1, fexp2, ..., fexpm,

where each sexpj is a selection expression and each fexpj is a filter expression.
A selection expression is either rexp X or X.rexp Y, where rexp is a regular
expression and X and Y are variables. A filter expression is either X.fexp, or
X = Y, or X 6= Y, where X and Y are variables and fexp is a filter expression as
in Q1. Not every selection sequence is legal. For instance, X.a Y, X.b Y is not
legal for two reasons. First, it does not specify the content of X. Second, the
content of Y is ambiguous. A well-formed query q is defined as follows. Let X
be the focus of q, S the selection sequence of q, F the filter sequence of q, and
V the variables in S. We construct the edge-labelled directed graph TS with
nodes in V ∪ {/}. There is an edge (/, X) labelled with rexp if rexp X is in S,
and there is an edge (X, Y) labelled with rexp if X.rexp Y is in S. We say that
S is legal if TS is a tree rooted at /. That is (i) each node in TS is reachable
from /, (ii) the root / of TS has no predecessor and all the other nodes in TS

have exactly one predecessor. The query q is well-formed if (i) X ∈ V , (ii) S
is legal, and (iii) all the variables used in the filter sequence F are in V . Let
L3

qry be the query language containing all the well-formed queries according
to the schema Q3. Notice that L2

qry ⊂ L3
qry.

We now develop an embedding τ3 of queries in L3
qry into the hybrid dynamic

logic with nominals, @ and ↓. For the sake of simplicity, we describe the
embedding with an example. It is not difficult from this example to reconstruct
the full query translation. Consider the following abstract query q:

select Z

from a X, X.b Y, X.c Z, Z.d W

where X.e,Y.f,Z.g,W.h,Y = W

21

Notice that q is well-formed. The corresponding hybrid formula is as follows:

↓z.〈g〉> ∧ 〈d〉↓w.〈h〉> ∧
@z〈c〉−1↓x.〈e〉> ∧ 〈b〉↓y.〈f〉> ∧ @x〈a〉−1root ∧
y = w

The formula has been deliberately divided into three lines. The first line con-
straints the focus of the query (node Z) and its subtree (node W). The second
line predicates over the unique path from the parent of the focus to the root
of the tree as well as over all the subtrees rooted at children of nodes on this
path not belonging to the path (nodes X, Y, and /). The third line captures the
identity checking constraints. This technique can be generalized to arbitrary
trees. Notice that the use of the binder ↓ is necessary to encode the constraint
that compares object identities. Indeed, if we remove the filter Y = W from the
above query, the latter can be encoded without ↓ as follows:

〈g〉> ∧ 〈d〉〈h〉> ∧
〈c〉−1(〈e〉> ∧ 〈b〉〈f〉> ∧ 〈a〉−1root)

Proposition 5.5 Let q be a query in L3
qry and D be a semistructured database.

Then, the answer set of q with respect to D corresponds to the truth set of τ3(q)
with respect to GD.

Since the the translation τ3 embeds into HDL(@, ↓,⇓,A), by virtue of Theo-
rem 4.6, we have the following corollary (we do not know whether it is optimal):

Corollary 5.6 Query processing for L3
qry has exponential time expression com-

plexity and polynomial time data complexity.

Additional Features of Lorel Lorel includes additional queries that are
not immediately expressible in our language. For instance, a query in Lorel
may use regular expressions on object values, as in the following:

select X

from biblio.paper X, X.title Y

where matches("*.(D|d)ata.*",Y)

The query selects all papers with a title containing either Data or data. Reg-
ular expressions on object values can be incorporated into our model checking
framework as follows. Given a query q featuring the regular expression r and a
database D, the data graph representing D is preprocessed and all leaf nodes
with a value matching r are labelled with a fresh symbol reg r. Moreover, each
instance of matches("*.(D|d)ata.*",Y) in q is replaced by Y.ε::reg r. The
query is then translated into hybrid logic and model checking is applied.

22

Lorel queries may also allow variables containing object values, instead of ob-
ject identifiers. Consider the following query that retrieves all papers with two
different authors with the same first name (we assume that the author element
has a subelement name which in turn has an atomic subelement first):

select X

from biblio.paper X, X.author Y, Y.name.first N,

X.author Z, Z.name.first M

where Y 6= Z, N = M

The constraint Y 6= Z compares object identities, while N = M compares object
values, since Y and Z contain internal nodes, while N and M contain leaf nodes.
This query can be implemented in hybrid logic by using the hybrid binder ⇓x
that binds the current node value to the variable x:

〈biblio.paper〉−1root ∧ ↓x.〈author〉↓y.〈name.first〉⇓n.
@x〈author〉↓z.〈name.first〉⇓m.y 6= z ∧ n = m

Finally, Lorel includes label and path variables as well. These variables can be
used to combine schema and data information. These features are beyond the
expressive power of hybrid logic with nominals for states. Path nominals, i.e.,
nominals interpreted over paths, and corresponding path binders, have been
introduced in hybrid logics [16]. However, at present model checking results
for hybrid logics with path nominals and path binders are non-existent.

Constraint Evaluation via Hybrid Model Checking So far we have
considered hybrid logic model checking as a mechanism for evaluating queries
in (fragments of) Lorel. We now change tack and consider constraint evalu-
ation for semistructured data. Recall that integrity constraints on structured
data are conditions that restrict the possible populations of the database.
They are important to maintain the integrity of data as well as for query
optimization [2]. Path constraints are generalizations of integrity constraints
in the context of semistructured data [1,24]. They are navigation conditions
imposing conditions on nodes at arbitrary depths in the data graph. They
include functional, inclusion and inverse path constraints [24].

Consider a semistructured database containing information about authors and
publications. Each author has a list of publications and each publication has
a corresponding list of authors. An example in XML is shown in Figure 8.
Constraints such as the following are reasonable for this type of data:

(1) for each author a, all the publications in a’s publications list should be
contained in the database;

(2) for each publication p, all the authors in p’s authors list should be con-
tained in the database;

23

Fig. 8. Authors and publications in XML.

<author id = "a1">
<name> Marx </author>
<has written idref = "p1"/>
<has written idref = "p2"/>

</author>
<author id = "a2">

<name> de Rijke </author>
<has written idref = "p1"/>

</author>
<publication id = "p1">

<title> Hybrid Logics </title>
<code> MdeR03 </code>
<year> 2003 </year>
<written by idref = "a1"/>
<written by idref = "a2"/>

</publication>
<publication id = "p2">

<title> Computational Complexity </title>
<code> M00 </code>
<year> 2000 </year>
<written by idref = "a1"/>

</publication>
...

(3) for each author a and for each publication p in a’s publications list, a
should be contained in p’s authors list; and

(4) for each publication p and for each author a in p’s authors list, p should
be contained in a’s publications list.

The data in Figure 8 satisfies the above constraints. We could require that
the attribute code is a key for the element publication: different publications
should have different code values. Less restrictively, we could ask that the
attribute code functionally determines the authors of a publication: any two
different publications with the same code values should have the same authors.

More generally, let r, p and q be regular expressions on attribute names.
Let τ be an attribute name and S a set of attribute names. A τ node is a
node reachable through an edge labelled with τ . We consider the following
constraints:

• key constraints, denoted τ [S] → τ , saying that, for all τ nodes x and y, if x
and y agree on the values of nodes reachable through attributes in S, then
x and y are the same node;
• path functional constraints, denoted τ.p → τ.q, saying that, for all τ nodes

24

x and y, if x and y agree on the values of nodes reachable through p, then
they should agree on the values of nodes reachable through q as well;
• circular constraints :
· forward version, denoted p ⇒ q, saying that all nodes reachable from the

root through p are also reachable from the root through q;
· backward version, denoted p � q, saying that all nodes reachable from

the root through p can reach back to the root through q;
• lollipop constraints :
· forward version, denoted r → p ⇒ q, saying that, for each node x reach-

able from the root through r it holds that all nodes that are reachable
from x through p are also reachable from x through q;
· backward version, denoted r → p � q, saying that, for each node x

reachable from the root through r it holds that all nodes that are reachable
from x through p can reach back to x through q.

Forward circular constraints are special cases of forward lollipop constraints
in which r is empty; similarly for backward constraints. Forward circular con-
straints are also called inclusion path constraints, and backward lollipop con-
straints are sometimes referred to as inverse path constraints [1,24]. Whenever
S is a singleton {a}, the key constraint τ [{a}] → τ corresponds to the func-
tional constraint τ.a → τ .

Constraints (1) and (2) in our example above are forward circular constraints:
(1) is a forward circular constraint in which p = *.publication. written by

and q = *.author, and (2) is a forward circular constraint constraint with
p = *.author.has written and q = *.publication. Constraints (3) and (4)
above are backward lollipop constraints: (3) is a backward lollipop constraint
with r = *.publication, p = written by and q = has written, and (4) is
a backward lollipop constraint with r = *.author, p = has written and q =
written by. The key constraint publication[code] → publication states
that the attribute code of the element publication is a key for the element
publication. Finally, the functional path constraint publication.code →
publication.written by.name asks that the code of the element publication
determines the set of authors of the publication.

To show how such constraints can be expressed in hybrid dynamic languages,
we define a constraint language Lcon containing any Boolean combination of
constraints as introduced above. Formally, a constraint c in Lcon has the fol-
lowing syntax:

• c = atom | c ∧ c | c ∨ c | ¬c
• atom = τ [S] → τ | τ.p → τ.q | p ⇒ q | p � q | r → p ⇒ q | r → p � q,

where τ is an attribute name, S is a set of attribute names, and r, p, q are
regular expressions on attribute names.

25

Next we show how to express the constraints in Lcon within hybrid dynamic
logic. We define a mapping σ from the constraint language Lcon to HDL(@, ↓,⇓).
Let root be a nominal for the root of the data graph. The easiest constraints
to encode are the circular ones. Their encodings do not require hybrid binders:

σ(p ⇒ q) = @root[p]〈q〉−1root
σ(p � q) = @root[p]〈q〉root

We encode lollipop constraints. Their encodings require only one nesting of
the hybrid binder ↓:

σ(r → p ⇒ q) = @root[r]↓x.[p]〈q〉−1x
σ(r → p � q) = @root[r]↓x.[p]〈q〉x

Key and functional constraints are more involved, since they involve both
the comparison of node identities and the comparison of node values. The
translation of the key constraint τ [S] → τ states that, for all different τ
nodes x and y, if x and y agree on the values of nodes reachable through
attributes in S, then x and y are the same node:

σ(τ [S] → τ) =A↓x.A↓y.(@x〈τ〉−1> ∧ @y〈τ〉−1 ∧ x 6= y) →
(

∧
a∈S

@x[a]⇓v1.@y〈a〉⇓w1.v1 = w1 ∧

@y[a]⇓w2.@x〈a〉⇓v2.v2 = w2) → x = y

The translation of the path functional constraints τ.p → τ.q states that, for
all different τ nodes x and y, if x and y agree on the values of nodes reachable
through p, they should also agree on the values of nodes reachable through q:

σ(τ.p → τ.q) =A↓x.A↓y.(@x〈τ〉−1> ∧ @y〈τ〉−1 ∧ x 6= y) →
(@x[p]⇓v1.@y〈p〉⇓w1.v1 = w1 ∧
@y[p]⇓w2.@x〈p〉⇓v2.v2 = w2) →
(@x[q]⇓v1.@y〈q〉⇓w1.v1 = w1 ∧
@y[q]⇓w2.@x〈q〉⇓v2.v2 = w2)

We conclude the description of our translation by stipulating that σ distributes
over the Boolean operators. In σ it is convenient to replace the universal
modality A with @root[∗]. Notice that in this way each translated constraint
is a formula starting with @root. Given a semistructured database D and an
integrity constraint c ∈ Lcon, it is possible to check whether D satisfies c as
follows. The databaseD is represented as a rooted graphGD and the constraint
c is translated into the hybrid formula σ(c). Then, the formula σ(c) is checked
on GD by using a hybrid model checker (in fact, it is sufficient to check the
formula at the root of the graph). If the outcome of the model checker is the

26

empty set of nodes, then D does not satisfy c, otherwise it does.

Proposition 5.7 Let c be an integrity constraint in Lcon and D be a semistruc-
tured database. Then, D satisfies c if, and only if, the truth set of σ(c) with
respect to GD is non-empty.

The translation σ embeds (any Boolean combination of) circular constraints
into HDL(@), lollipop constraints into the fragment of HDL(@, ↓) in which
↓ is nested only once, and key and functional constraints into the fragment
of HDL(@, ↓,⇓,A) in which the hybrid binders are nested a fixed number of
times. As a consequence, by virtue of Theorem 4.6, we have the following.

Corollary 5.8

• The constraint evaluation problem for circular constraints can be solved in
linear time both in the length of the constraint (expression complexity) and
in the size of the database (data complexity);

• The constraint evaluation problem for lollipop constraints can be solved in
linear time in the length of the constraint (expression complexity) and in
quadratic time in the size of the database (data complexity);

• The constraint evaluation problem for key and functional constraints can be
solved in linear time in the length of the constraint (expression complexity)
and in polynomial time in the size of the database (data complexity).

6 Conclusion and Work for the Future

We investigated the model checking problem for hybrid logics. We gave model
checkers for a large number of fragments of hybrid and hybrid dynamic logic.
We obtained lower bounds on the computational complexity of the model
checking problem for hybrid logics with binders. We found that the addition
of nominals and the @ operator does not increase the complexity of the model
checking task. In contrast, whenever hybrid binders are present in the lan-
guage, the running time of the resulting model checker is exponential in the
nesting level of the binders. We cannot do better, since we proved that the
model checking problem for hybrid logics with binders is PSPACE-complete.

We applied our findings to the problems of query and constraint evaluation for
semistructured data. We identified significant fragments of well-known query
and constraint languages for semistructured data that can be efficiently em-
bedded into hybrid languages. These embeddings allowed us to solve query
and constraint evaluation problems via model checking for hybrid logics.

An implementation of the model checkers MCLITE and MCFULL proposed in

27

this paper is available at http://www.luigidragone.com/hlmc. The code is
written in C available under the GNU General Public License. It can be freely
used, modified and distributed in conformity with this license.

Acknowledgements

We are very grateful to Carlos Areces, Daniel Gorin, Maarten Marx and the
anonymous referees for helpful comments and suggestions.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan Kaufmann
Publishers, Los Altos, CA 94022, USA, 2000.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, Reading, Mass., 1995.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener, and J. Widom.
The Lorel Query Language for Semistructured Data. International Journal on
Digital Libraries, 1(1):68–88, 1997.

[4] S. Abiteboul and V. Vianu. Regular path queries with constraints. Journal of
Computer and System Sciences, 58(3):428–452, 1999.

[5] L. Afanasiev, M. Franceschet, M. Marx, and M. de Rijke. CTL Model Checking
for Processing Simple XPath Queries. In Proceedings TIME 2004, pages 117–
124, 2004.

[6] N. Alechina and M. de Rijke. Describing and querying semistructured data:
Some expressiveness results. In S.M. Embury, N.J. Fiddian, W.A. Gray, and
A.C. Jones, editors, Advances in Databases, LNCS. Springer, 1998.

[7] N. Alechina, S. Demri, and M. de Rijke. A modal perspective on path
constraints. Journal of Logic and Computation, 13(6):939–956, 2003.

[8] L. De Alfaro. Model checking the World Wide Web. In Proceedings CAV 2001,
volume 2102 of LNCS, pages 337–349, 2001.

[9] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. In J. Flum and M. Rodriguez-Artalejo, editors, Computer Science Logic,
volume 1683 of LNCS, pages 307–321. Springer, 1999.

[10] C. Areces, P. Blackburn, and M. Marx. The computational complexity of hybrid
temporal logics. Logic Journal of the IGPL, 8(5):653–679, 2000.

[11] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization,
interpolation, and complexity. Journal of Symbolic Logic, 66(3):977–1010, 2001.

28

http://www.luigidragone.com/hlmc

[12] C. Areces and J. Heguiabehere. HyLoRes 1.0: Direct resolution for hybrid
logics. In A. Voronkov, editor, Automated Deduction – CADE-18, volume 2392
of LNCS, pages 156–160. Springer-Verlag, July 27-30 2002.

[13] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

[14] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language
and Information, 4:251–272, 1995.

[15] P. Blackburn and J. Seligman. What are hybrid languages? In M. Kracht,
M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal
Logic, Volume 1, pages 41–62. CSLI Publications, 1998.

[16] R. Bull. An approach to tense logic. Theoria, 36:282–300, 1970.

[17] P. Buneman, W. Fan, and S. Weinstein. Path constraints on semistructured
and structured data. In Proceedings PODS, 1998.

[18] D. Calvanese, G. De Giacomo, and M. Lenzerini. Representing and reasoning
on XML documents: A description logic approach. Journal of Logic and
Computation, 9(3):295–318, 1999.

[19] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[20] E. M. Clarke and H. Schlingloff. Model checking. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 24,
pages 1635–1790. Elsevier Science, 2001.

[21] R. Cleaveland and B. U. Steffen. A linear-time model checking algorithm for
the alternation-free modal mu-calculus. Formal Methods in System Design,
2:121–147, 1993.

[22] World Wide Web Consortium. Extensible markup language (XML). Available
at http://www.w3.org/XML, 1998.

[23] E.A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B, pages 995–1072. Elsevier Science
Publishers B.V., 1990.

[24] W. Fan and J. Siméon. Integrity constraints for XML. Journal of Computer
and System Sciences, 66(1):254–291, 2003.

[25] M. Franceschet, M. de Rijke, and B. H. Schlingloff. Hybrid logics on linear
structures: expressivity and complexity. In Proceedings TIME 2003, pages 166–
173. IEEE Computer Society Press, 2003.

[26] V. Goranko. Hierarchies of modal and temporal logics with reference pointers.
Journal of Logic, Language and Information, 5(1):1–24, 1996.

[27] G. Gottlob and C. Koch. Monadic Queries over Tree-Structured Data. In Logic
in Computer Science, pages 189–202, Los Alamitos, CA, USA, July 22–25 2002.
IEEE Computer Society.

29

[28] J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Vardi, and V. Vianu.
On the unusual effectiveness of logic in computer science. The Bulletin of
Symbolic Logic, 7(2):213–236, 2001.

[29] D. Harel, J. Tiuryn, and D. Kozen. Dynamic Logic. MIT Press, 2000.

[30] HyLo: The Hybrid Logic home page. URL: http://hylo.loria.fr.

[31] M Marx. Conditional XPath, the first order complete XPath dialect. In
Proceedings PODS, pages 13–22, 2004.

[32] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A
database management system for semistructured data. SIGMOD Record (ACM
Special Interest Group on Management of Data), 26(3):54–66, 1997.

[33] G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment.
In Proceedings PODS, pages 65–76, 2002.

[34] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[35] S. Passy and T. Tinchev. An essay in combinatory dynamic logic. Information
and Computation, 93(2):263–332, 1991.

[36] A. Prior. Past, Present and Future. Clarendon, Oxford, 1967.

[37] E. Quintarelli. Model-Checking Based Data Retrieval: an application to
semistructured and temporal data. PhD thesis, Dipartimento di Elettronica
e Informazione, Politecnico di Milano, 2000.

[38] B. ten Cate. Model theory for extended modal languages. PhD thesis, University
of Amsterdam, 2005. ILLC Dissertation Series DS-2005-01.

30

http://hylo.loria.fr

	1 Introduction
	2 Related Work
	3 Hybrid Logics
	4 Model Checking for Hybrid Logics
	4.1 Model Checkers
	4.2 Lower Bounds

	5 Hybrid Logic in Action
	5.1 Semistructured data
	5.2 Query Processing via Hybrid Logic Model Checking

	6 Conclusion and Work for the Future
	Acknowledgements
	References

