Model Checking for Combined Logics

Massimo Franceschet Angelo Montanafi Maarten de Rijké

! Dip. di Matematica e Informatica, Univeraitli Udine, Via delle Scienze 206
33100 Udine, Italy. E-mail{frances¢montana@dimi.uniud.it
2 ILLC, University of Amsterdam, PI. Muidergracht 24
1018 TV Amsterdam, The Netherlands. E-mail: mdr@wins.uva.nl

Abstract

F We consider combined model checking procedures for the three ways of
combining logics: temporalizations, independent combinations, and the join.
We present results on computational complexity and report on experiments
with implementations. We also discuss the relevance to time granular logics.
Key words: temporal logic, model checking, combining logics, time granu-
larity.

1 Introduction

Concerns about modularity and the wish to join together different kinds of infor-
mation have inspired various combinations of logics. As any interesting real world
system is a complex entity, decomposing its descriptive and inferential require-
ments for design, verification, or maintenance purposes into simpler reasoning
tasks is often the only plausible way forward [9]. Assuming that we have methods
and tools available to tackle restricted tasks, how do we combine them to solve
complex tasks. How do we combine them in such a way that features of the com-
ponents are inherited by the combination? This question is known dsatiefer
problem[2]. Whether properties transfer from the components to the combination
depends on the amount of interaction between the component logics; even in the
presence of very weak forms of interaction (such as shared symbols), transfer may
fail [11]. In the absence of interaction between the component logics, we often have
transfer; such positive results are usually based divide and conquestrategy:

split problems into sub-problems and delegate these to the components [4, 12].

From acomputationapoint of view, the natural question in the setting of com-
bining logics is: does it work? Can we-usetools and procedures in a modular
fashion? So far, most of the work towards answering this question has gone into
putting together deductive engines. While there are no uniform solutions, there are
many successful instances of combined proof procedures, especially for modal and
modal-like logics [1]; these are often based on calculi satisfying special criteria or
on translating the component logics into a background logic.

In this paper we study the combination of model checking procedures. In ad-
dition to the issues mentioned above, the direct motivation for this work has been
the need to develop model checking procedures for granular logics [13, 14]. Such
logics are able to model and reason about time at different grain levels, for in-
stance, at the level of seconds and of micro-seconds. Instead of developing model
checking procedures for granular logics from scratch, we want to synthesize them

from existing (non-granular) ones. In Section 7 we will see that this is indeed pos-
sible. More generally, in contrast to combining deductive engines, combinations
of model checking procedures are well behaved, even in the presence of interac-
tion; indeed, this supports the general believe that modularity is easier to achieve
in model checking than in theorem-proving approaches [10].

We start by recalling basic definitions in Section 2 and presenting three modes
of combining logics in Section 3: temporalization, independent combinations, and
the join. In Section 4, we consider combined model checking procedures for these
three combinations. Section 5 contains results on computational complexity, and
Section 6 reports on our experiments with implementations. In Section 7 we sketch
the application of our ideas to granular logics, and we conclude in Section 8.

2 Temporal Logics

Let L be a logic system. We usg, andKy, to denote the language and the set of
models ofL, respectively. The language of a temporal lohits based on a s&?

of proposition letters and extends that of propositional logic with a setroporal
operators We write OP(L) to denote the set of temporal operatorsCef

Definition 2.1 (Syntax) The languag€sur, of Since and Until Logi¢SUL) is the
smallest seX of formulas generated by the following rules: any proposition letter
p € Pisin X; if ¢, ¢ are inX, then so are A ¢y and—¢; and if ¢, ¢ are inX,
then so areSvy and¢U.

The languagel 1~ of the computation tree logi€CTL* has state formulas
and path formulasState formulasre obtained as follows: any proposition letter
p € P is a state formula; i, ¢ are state formulas, then so afe\ 1) and—g; if ¢
is a path formula, theE¢ and A ¢ are state formulas?ath formulasare obtained
as follows: every state formula is a path formulapjf) are path formulas, then so
areo Ay and-g; if ¢, ¢ are path formulas, then soddJz.

The language 1, of the computation tree logi€TL is the set oftate for-
mulasgenerated by the rules for state formulas given before plus the following rule
for path formulas: ifp, ¢ are state formulas, thetlU is a path formula.

Definition 2.2 (Semantics) A framefor a temporal logic T is a pa{i¥, R), where
W is a set ofworlds, or states andR is a set ofaccessibility relation®n W. We
restrict ourselves tbinary relations onl/’. A modelfor T is a triple(W, R, V),
where(W, R) is a frame for T and’ : W — 2% is avaluation functiormapping
states into sets of proposition letters.

A frame forSUL, CTL, or CTL" is a pairF = (W, {R}), or simply (W, R),
whereW is a set of states anE C W x W is a binary relation oi/’. A path
m in F is an infinite sequence of worlds, s1, ... such that, for every > 0,
R(s;, si+1); we writer(j) for the element in thg-th position on the path.

Truth of aSUL-formula¢ in a modelM = (W, R, V') with respect to a state
s € W is defined as usual: fgre P, M, s Esur, pif p € V(s), andM, s EsuL
oUy iff M, t |=gur ¢ for somet such thatRst, while M, r |=gu1, ¢ for everyr
such thatRsr and Rrt; similarly, M, s |=sur, ¢Sv iff M, t =sur, ¢ for somet
such thatRts, while M, r =gur, ¢ for everyr such thatktr and Rrs.

As to CTL*-formulas, state formulag are evaluated at a state(notation:
M, s =crL ¥); path formulasp are evaluated with respect to a path- sgs; . . .
and a positiory € N in 7 (notation: M, 7, j EcrL* ¢). For proposition letters
p € P, we putM, s o+ pif p € V(s). For any path formula, we have that
M, s E=cr+ E¢ if there is a pathr starting ats such thatM, 7, 0 =crr+ ¢; and
M, s EcrLs Ag if for every pathr starting ats we haveM, 7,0 =crp+ ¢. Fora
state formula), we putM, «, j =crrs ¥ if M, 7(j) Fcrr+ . Finally, for a pair
of path formulasy andv), we have thai\, 7, j Ecr+ ¢UY if M, 7,0 Ecrr+ ¢
for some:i > j and M, m, k =cp- ¢ foreveryj < k < i(j < k < iifwe
adopted a non-strict version &f).

The truth definition forCTL-formulas (notation:=cr,) can be obtained by
restrictingl=¢rp,+ to CTL-formulas.

3 Combining Logics

How do we combine logics? While many ways of combining logics have been
explored, we restrict ourselves to only three of them: temporalization, independent
combinations, and the join. These three are certainly among the most popular and
the ones that have been studied most extensively [4, 12, 5, 6].

§3.1 Temporalization. This is the simplest of the three modes of combining
logics that we will consider; here, the two component languages are only allowed
to interact in a very restricted way. More specifically, Tebe a temporal logic and
L an arbitrary logic. For simplicity we constralnto be an extension of classical
logic. We partition the set oL-formulas intoboolean combination®Cy, and
monolithic formulas\/Ly,: o belongs taB (Y, if its outermost operator is a boolean
connective; otherwise it belongs #dLy,. We assume tha®P(T) N OP(L) = 0.
The combined languag€r 1, of the temporalizationT (L) of L by means ofl
over the set of proposition lettef8is obtained by replacing the atomic formation
rule of Lt (i.e., every proposition letter is a formula) by the following rule: every
monolithic formulac € Ly, is anLyg,-formula.

A modelfor T(L) is a triple(W, R, g), where(W, R) is a frame forT and
g a total function mapping worlds if#/ to models inKg,. Given a modelM =
(W,R,g) and a statev € W, the semantics of the combined logI¥L) is ob-
tained by replacing the usual semantic clause for atomic formulasrdby the
following clause: for allu € M Ly, M, w =) « if and only if g(w) =1, .

§3.2 Independent Combinations. The independent combination of two logics
puts together all the expressive power of the two component logics in an unre-
stricted way; our definitions are straightforward extensions of definitions found
in [4, 12, 5]. LetT; andT; be two temporal logics defined over the same set of
proposition letter$, with OP(T1) N OP(T2) = (. Thefully combined language
L1, T, Of theindependent combinatidll; ¢ T, overP is obtained by taking all
connectives ofl'; andT, and the union of their formation rules.

To define the semantics @f; @ T,, we need the following notion. Given a
binary relationR, we write R* for its transitive closure, ang~! for its converse.
Let (W, R) be a frame. Aconnected componetV’, R’) of (W, R) is a frame

with (1)@ # W’ C W andR’ = {R|y | R € R}; and (2)(W’', R') is connected
i.e., for everyu andv in W', with u # v, we have(u,v) € [U{(RU R™!) |
R € R}J*; and (3)(W',R’) is maximal i.e., there is no connected component
(W, R")with W' c W”. Notice that arisolatedpoint is a connected component.
A modelfor the combined logi@'; @ T is a 4-tuple(W, R, Re, V'), where
the connected components @V, R, V') are inK,, the connected components
of (W, Re, V) are inKr,, andW is the (not necessarily disjoint) union of the sets
of worlds that constitute each connected component. Firidly/ — 27 is a
valuation function. Théruth definitionof the combined logid’; & T is obtained
by taking the union of the semantic clausesTgrandTs.

§3.3 The Join. Formulas in the language of the independent combination of two
logics are evaluated at a single node in a model. jbireintroduces a separate
dimension for each of the component logics, and we are allowed to express rela-
tions between the two dimensions. For notational simplicity we assume that our
component logics are one-dimensional, i.e., evaluated at a single node only. Let
T andT5 be two temporal logics. Thein T ® T of T; andT is obtained as
follows. Thelanguagelr, T, Of the logic systenT'; ® T is the fully combined
language ofl'; andTs.

A modelfor Ty ® Ty is a 5-tuple(Wy, R, Wi, Ra, V), where(W1,Rq) is a
T:-frame and W5, R2) is aTe-frame, andV : Wy x Wy — 2P is a valuation
mapping pairs of worlds to sets of proposition letters. Truth of a formuila a
modelM = (W1, Ry, Wa, Ro, V), at states; € Wy andsy € W, is defined as
follows. If =p (p € P), ¢ = (¢1 A ¢2), Or ¢ = ~¢1, thenM, sq, s2 Fr,0T,
¢ is defined as usual. b = O(¢q,...,¢,), with O € OP(T;), we define
M, s1,s2 E1,0T, ¢ DYy replacing every occurrence 8ff, x in the definition of
M, si =1, ¢ (i€ {1,2}) by M, z, s (if i = 1) or M, 51, (if i = 2).

In our presentation of the join of logics, we have followed [6]; in [8] a slightly
different but equivalent construction is studied: greductof modal logics.

4 Model Checking for Combined Logics

In this section we consider model checking procedures for each of the modes of
combining logics considered in Section 3.

84.1 Temporalization. We first define the global model checking problem for
the combined logicT'(L); then, we give a general algorithm that solves it. Let
M = (W, R, g) be aT(L)-model. We say thai is finiteif W andR are finite
and, for everyw € W, g(w) is finite. LetM = (W, R, g) be afinite T'(L)-model,
w € W astate, and a formula inLy(y,). We focus on thglobal model checking
problemfor T(L): is there a state € W such thatM,v =y, ¥? We use
‘model checker’ for a program that solves the global model checking problem.
Let ¢ be aT(L)-formula andMMLy, () the set ofmaximalmonolithic sub-
formulas ofy belonging toL;; abs() denotes the formula obtained fromby
replacing every formular € MMLy, () by the proposition lettep,,. Moreover,
let MCt andMCy, be model checkers fdF andL, respectively. Given an appro-
priate model checking instance, these programs refue if the correspond-

Function MCrpy,)
Input: aT(L)-modelM = (W, R, g) and a formula) € Ly,

compute MMLy, (v) andabs(v))
for every o € MMLy,(v))
for everyw € W
if MCy,(g(w), &) = True then
V(w) = V(w) U {pa}
return MCt((W, R, V), abs(v))

Figure 4.1: Model checking for temporalized logics.

ing instance is a “yes” instancBalse otherwise. In Figure 4.1, we present the
pseudo-code of a model chech#ly 1, for T(L) that exploitMCt andMCr,. Let
M be a finite model fofl' (L) andy € Ly (1,). As a theorem, we have thatiM€y,
andMCr are terminating, sound and complete, then, on inpuand, the func-
tion MCy(r,) terminates, returning eithdirue or False . Moreover, if it returns
True , then there exista € W with M, w [=y(,) *; and if it returnsFalse ,
then, for everyw € W, M, w fEp) .

§4.2 Independent Combination. We now give a general algorithm for solving
the global model checking problem fa, @ Ts. Let T; andT5 be two temporal
logics, and letM = (W, R1, R2, V') be a model fofll'; @ T2. We say thatM is
finiteif W, R4, andR,, are finite, and, for every € W, V(w) is finite.

The global model checking problem fa@, @ T is defined just as fo'(L).
Ci, andC3, are the sets of connected component$ldf R1) and (W, R»), re-
spectively. SinceM is a model forT; & T,, every connected component in
Ch, (C3)) is a model forTy (T2). Sub(¢) is the set of subformulas of, and
MSub(¢) C Sub(¢) is constructed as follows. L&t = Sub(¢) N L1, ¢T,. Let
i € {1,2}. Forevery formulaD(¢1, . .., ¢.) in S, withO € OP(Ly,)U{A,V, -},
if, for every j = 1,...,¢c, ¢; is a proposition letter or its main operator is in
OP(Lt,) U{A,V,~}, then delete formulag, ..., ¢. from S; MSub(¢) is the
setS at the end of this procedure. Note thabiE Lr,, thenMSub(¢) = {¢}.

Below, we view model checkers psocedureghat receive a modél, R, V)
and a formula) as input, and that extend the valuatidr(which maps a state to a
set of proposition letters) to a valuatidfi mapping states to sets s@ibformulas
of ¢ in the following way: for every subformula of v and every nodev, V' (w)
containsg iff ¢ is true atw in (W, R, V). LetMCt, andMCt, be model checkers
for T, and T4, respectively. In Figure 4.2, we present the pseudo-code of a model
checker forT; @ T, that exploits the procedure&t, andMCrt,. Let M =
(W, R1, R, V) be a finite model fofl'; & Ty andy € Lr,oT,. AS a theorem,
we have that ifiCt, andMCr, are terminating, sound, and complete, then, on input
M and1), the procedurelCr, 4T, terminates. Moreover, ¥’ is the (extended)
valuation function returned by¥Cr, ¢T,, then, for every subformula of ¢) and
every nodew € W, ¢ € V'(w) iff M,w 1,01, ¢

ProcedureMCr, ¢,
Input: aT; & Te-modelM = (W, Ry, Rs, V) and aformulap € Lr,4T,

computeCj, C3, and M Sub(v))
for every w e W let V(w) =V (w)
for everyi=1,...,[¢]
for every ¢ € M Sub(y) such thajep| =
caseon the form of¢
¢ =p,p € P:skip
¢ =ad1 N ¢o: for every we W
if (1 € V(w)and ¢o € V(w)) then
V(w) =V(w) U{e}; V(w) = V(w) U{ps}
¢ = ¢y for every we W
if (not ¢; € V(w))then
V(w) =V(w) U{e}; V(w) =V(w)U{ps}
¢ = O(Q/)la s 7¢c)v (OIS OP(‘CT,,)! i€ {172}
let ® = {a € Sub(¢) N MSub(y) |1 < |a] < |¢|} andg’ = ¢
for every a € ® replace « in ¢’ with p,,
for every (U,S) € Ci,
for every uw e Ulet V'(u) = V(u)
MCr, ((Uv S, V/)a ¢/)
for every u e U
if ¢ € V'(u)then
V(w) = V(u) U{6}; V(u) = V(u) U {ps}

Figure 4.2: Model checking independently combined logics.

84.3 The Join. In this section, we give a general algorithm that solves the global
model checking problem fdf'; @ T». Let T, and T, be temporal logics andt =
(W1, R1, Wa, Ro, V) be a model fofl'; @ To. We say thatM is finite if W7, Wa,

R1 andRy are finite, and, for everyw,,ws) € Wi x Wa, V((w1,w2)) is finite.

Let M = (W1, Ry, Wa, R, V) be afinite T; ® To-model andy) € Lo, gT,-

The global model checking problefor T; ® T is to check whether there exist
wy € Wy andwy € Ws such thatM, w1y, wo |:T1®T2 .

Because of space limitations we have to omit the pseudo-code for a model
checker forT; ® T, that exploits model checkeMer, andMCr, for the compo-
nent logicsT; andTs, respectively; its code is similar to the code for the model
checkeMCr, g1, givenin Figure 4.2. FAiCt, g, Similar termination, soundness
and completeness results may be obtained asde[q T, .

5 Computational Complexity

We now turn to an analysis of the computational complexity of the model checkers
proposed in the previous section. An instance for the model checking problem has
two components: a mod¢lW, R, V') and a formula). In our analysis, we will
consider three main complexity parameters: the cardinaliy W, the summ of
the cardinalities of the relations iR, and the lengttk of v, i.e., the number of
operators and proposition lettersijn

We will specify the complexity of the combined model checker in terms of that

of the component model checkers. The complexity of the combined model checker
is the sum of two factors: the communication overhead and the model checking
cost. Thecommunication overhead the time spent for “packing” the inputs for
the components and for “unpacking” their outputs; this represents the cost of the
interaction between the components. Thedel checking cosepresents the cost
of performing the actual model checking of the component logics.

We first consider the case of temporalization. Lebe a logic andI’ a tem-
poral logic. We writeCrp(r,)(+, -,) (resp.CL(,), Cr(-,-,-)) for the complexity
function of the model check@Cr g,y (resp.MCy, MCt). Note thatCr (-, -) has two
parameters (the size of the model and the length of the formula).

Theorem 5.1 Let (W, R, g) be a finiteT (L)-model andy a T'(L)-formula. The
complexity oMCry g,y on inputM andz is

O(n) - [k-CL(N,0(1)) + CL(N,O(k))] + Cr(n,m,O(k)),
M =Y per |BRl k= [¢] and N = max,cw |g(w)|.

The communication overhead is the cost of computing th&/SdLy, () and the

formulaabs(v). It equals toO(k) and is dominated by the model checking cost.

For instance, ifT' is CTL (henceCr(n,m,k) = O((n+ m) - k) [3]), andL is a

logic such thaCr,(n, k) = O(n- k), then the model checking cost@¥k - (n- N +

m)), hence still linear in the size of the model and in the length of the formula.
We now treat the independent combination of two temporal |dfjicandT.

wheren = |IW

Theorem 5.2 Let M = (W, R1, Ro, V) be afiniteT; @& Te-model and) a T, ®
Ts-formula. The complexity ofCt, g1, on inputM and is:

O(ma +ma +n- k) + 2, (Ok) - O, (O(n), O(m:), 0(1)) +
O(n) - C1,(0(1),0(1), 0(k)) + O(1) - Cp,(O(n), O(mi), O(k))) ,
wheren = [W|,m; =} pcr. |R[, fori=1,2, andk = [¢)|.

The communication overhead is the cost of computing the connected components,
of preparing the valuation as input to the model checking procedure, and of updat-
ing the valuations when the procedure returns. It adds @p(ta; + ms +n - k),
which is more significant than in the case of temporalization. By way of example,
if both Ty andT5 are CTL, andn = m; = ms, then the communication overhead
is O(m+n-k), which is proportional to the model checking cost¥f(n+m)-k).
So, the overall cost of the model checker@f'L & CTL is O((n+m) - k), which
is linear in the size of the model and the length of the formula.

Finally, we briefly consider the join of temporal logi@s, andT,. Due to
space limitations we have to omit further discussions of Theorem 5.3 below.

Theorem 5.3 Let M = (W7, R, Wa, Ro, V) be a finiteT; ® T2-model and) a
T; ® To-formula. Letl = 2 and2 = 1. The complexity dfCr, T, On inputM
andv is:

O(ny-mo+mng-mi+mny-ng-k)+
71 (09) - [O(k) - O, (nimi, O(1)) + O, (i, mi, O(R))))

7

wheren; = [W;|, m; = 3 per, |R| fori= 1,2, andk = [¢)].

6 Experimental Results

We briefly report on experimental results based on implementations of (combined)
model checkers foCTL(CTL) and CTL & CTL. The model checkers have
been implemented in C, and are available frottp://www.illc.uva.nl/
“"mdr/ACLG/Software/ . Tests were carried on a Sun ULTRA Il (300MHz)
with 1Gb RAM, under Solaris 5.2.5.

We tested our model checker fofTL(CTL) on ‘linear’ and ‘dense’ models.
In our first test, we used 1 G1A2(pUzq) as a fixed test formula, and we varied
the modelM; = (W, R, g), where(W, R) is a complete binary tree of height
and, for everyw € W, g(w) is a labeled complete binary tree of height The
outcomes are summarized in Table 6.1(a), whgferepresents the CPU time in
milliseconds. In the second test, we checked the fornduléx, E,(pUsq) and
used models\y = (W, R, g), where(W, R) is a complete graph of; nodes and,
for everyw € W, g(w) is a complete graph of, nodes. The outcomes are given
in Table 6.1(b). The times listed in (b) are higher than those listed in (a) because
My containsdensegraphs, whileM; is based ottinear graphs.

hi|h2| #nodes # edges tms ni| n2| #nodes # edges tms
4] 4 992 960 10 32 32 1056 33792 20
5/ 5| 4032 396§ 30 64 64 4160 266240 110
6| 6| 1625¢ 16128 110 128 128 16514 2113536 820
7| 7] 65280 65024 380 256| 256/ 65797 16842752 6010
8| 8| 261632 261120 1490 512 512 262656 134479872 47970
9| 9|10475521046528 5850 10241024 10496001074790400 386760
(a): trees and\ 1 G1A2(pU2q) (b): complete graphs andl; G1E2(pU2q)

I| #nodes #edges tms 7| tms

32| 1024 1984 90 0/1870

64/ 4096 8024 340 3[2540

128 16384 32514 1400 712970

256 65396 130560 5760 11/3860

512 262144 532264 23480 15/4720

1024 1048576209510411898(195590

(c): square grids (d): fixed square grid

Table 6.1: Experiments with combined model checkers.

Next, we treated the independent combinatithL. & CTL. Our test models were
‘square grid’ models, where we varied either the size of the model or the ‘degree
of interaction’ of the formula. In the first test (Table 6.1(c)), we ugedsq A
A»Goq as our test formula on a square gfidl, Ry, R, V') of width [where rows

are the connected componentg @f, R,) and columns the connected components
of (W, Rs). For the second test (Table 6.1(d)), we used a square grid of @4dth

The test formula wagsy (Where fy = ¢, and fx1 = E; X, fx, for k > 0 andi €

{1, 2}), varying the number of alternations of blocks of the forl; X, E; X (i #

j) occurring infy from 0 (no interaction) tal9 (maximal interaction). Increasing

the degree of interaction in the formula increased the required computing time, thus

confirming that the communication overhead is higher when checking formulas
with a high degree of interaction.

7 An Application to Time Granularity

In this section we describe the relevance of our resultsrtiporal logics for time
granularity. Temporal logics have been successfully used for modeling and analyz-
ing the behavior of (real-time) reactive systems. The behavior of reactive systems
whose components have dynamic behaviors regulated by very different time con-
stants, e.g., days, hours, and seconds, is naturally modeled by a set of differently-
grained temporal domains. The addition of time granularity allows one to give
concise specifications of sugjtanular reactive system@GRSs). The theory of
finitely-layered structures for time granularity has been investigated in [14]. As
for w-layered structures, both the theorywgdward (downward) unbounded lay-
ered structuresi.e.,w-layered structures consisting of a finest (coarsest) temporal
domain together with an infinite number of ever coarser (ever finer) domains, are
non-elementarily decidable [13]. An expressively complete and elementarily de-
cidable temporal logic counterpart of the theory of downward unbounded layered
structures has been proposed in [7].

The behavior of a reactive system with respect to layered structures can be de-
scribed as a suitableombinationof temporal evolutions (sequences of states over
a given temporal domain) and temporal refinements (mapping of a state, within
a given domain, into a finite sequence of states over a finer temporal domain).
As a consequence, both the model describing a system’s operational behavior and
the specification language can be obtaineddmybiningsimpler models and lan-
guages, and model checking procedures for combined logics can be used. For
instance, a temporalized mod&t = (W, R, g) can be used in a ‘horizontal’ and
a ‘vertical’ way for model checking purposes. Horizontally, it can be used to deal
with finitely-layered, upward and downward unbounded GRSs. Assumétlsat
linear, that is, every node ifV has at most ond?-successor. The ‘top’ frame
(W, R) models the granular relationships among the different componetits (
meaning that the component associated with a one-step refinement of the one
associated withv), while, forw € W, the model(w) captures the internal behav-
ior of a single componentCt, (1) is the specification language, wheFe (resp.
T,) is alinear (resp.branching temporal logic. ‘Horizontal’ properties, that is,
formulas that predicate over temporal evolutions, are easily expressible and verifi-
able in this framework, but it is hard to capture ‘vertical’ properties which refer to
temporal refinements. In contrast, within the ‘vertical’ model checking framework
one can deal with finitely-layered and downward unbounded GRSs. The interpre-
tation of the model is different then: the ‘top’ frani®/, R) models the evolution
of the coarsest component of the system, whileufor 1, the modely(w) cap-
tures the behavior of all temporal refinementsofSpecifications can be written in
L, (T,), whereT; andT; are branching temporal logics. As for expressiveness
of the ‘vertical’ framework, the situation is dual to the ‘horizontal’ case.

8 Conclusions

We have addressed the problem of model checking for combined logics and struc-
tures. In contrast to combined deductive engines, combinations of model checking
procedures are very well behaved, even in the presence of strong forms of interac-
tion. In particular, complexity upper bounds transfer from the component frame-
work to the combined one, and the introduced communication overhead is in most
cases non significant with respect to the actual model checking cost.

One of the motivations for this work has been the need to develop model check-
ing frameworks for granular reactive systems and logics. We have shown that this
is indeed possible, usingdivide and conquestrategy: we first isolated the or-
thogonal ‘simple’ entities in which a granular system can be decomposed. Then,
we applied well-known structures and logics to the component entities. Although
we only applied thidivide and conqueapproach to granular reactive systems,
because of its generality, we feel that it can be useful to model and analyze many
other complex systems, which, inherently, are the composition of simpler entities.

Acknowledgment. Maarten de Rijke was supported by the Spinoza project ‘Logic
in Action.’

References

[1] B. Bennett, C. Dixon, M. Fisher, E. Franconi, |. Horrocks, U. Hustadt, and
M. de Rijke. Combining modal logicsSubmitted1999.

[2] P.Blackburn and M. de Rijke. Editors’ introductioNotre Dame Journal of Formal
Logic, 37:161-166, 1996.

[3] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal-logic specificatioh€M Trans. Programming
Languages and Systen®2):244—263, 1986.

[4] K. Fine and R. Schurz. Transfer theorems for multimodal logicsPrisceedings
Arthur Prior Memorial Conferencel989.

[5] M. Fingerand D.M. Gabbay. Adding a temporal dimension to a logic sysiearnal
of Logic, Language and Informatipa:203-233, 1992.

[6] M. Finger and D.M. Gabbay. Combining temporal logic systeN@tre Dame Jour-
nal of Formal Logi¢ 37:204-232, 1996.

[7] M. Franceschet and A. Montanari. Branching within time. Technical Report
UD/03/2000/RR, DIMI, Universd di Udine, 2000.

[8] D. Gabbay and V. Shehtman. Products of modal logics, Pdrbgic Journal of the
IGPL, 6:73-146, 1998.

[9] D.M. Gabbay and M. de Rijke, editorErontiers of Combining Systemswlume 7
of Studies in Logic and ComputatioResearch Studies Press/Wiley, 2000.

[10] J.Y. Halpern and M.Y. Vardi. Model checking vs. theorem proving: a manifesto. In:
Proc. KR'9], pages 325-334, 1991.

[11] E. Hemaspaandra. Complexity transfer for modal logidPiioc. LICS'94 1994.

[12] M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal logics.
Journal of Symbolic Logib6:1469-1485, 1991.

[13] A. Montanari, A. Peron, and A. Policriti. Decidable theoriesusfayered metric
temporal structured.ogic Journal of the IGPL7(1):79-102, 1999.

[14] A. Montanari and A. Policriti. Decidability results for metric and layered temporal
logics. Notre Dame Journal of Formal Logi@7:260-282, 1996.

10

