
Model Checking for Combined Logics

Massimo Franceschet1 Angelo Montanari1 Maarten de Rijke2

1 Dip. di Matematica e Informatica, Università di Udine, Via delle Scienze 206
33100 Udine, Italy. E-mail:{francesc|montana}@dimi.uniud.it

2 ILLC, University of Amsterdam, Pl. Muidergracht 24
1018 TV Amsterdam, The Netherlands. E-mail: mdr@wins.uva.nl

Abstract

F We consider combined model checking procedures for the three ways of
combining logics: temporalizations, independent combinations, and the join.
We present results on computational complexity and report on experiments
with implementations. We also discuss the relevance to time granular logics.
Key words: temporal logic, model checking, combining logics, time granu-
larity.

1 Introduction
Concerns about modularity and the wish to join together different kinds of infor-
mation have inspired various combinations of logics. As any interesting real world
system is a complex entity, decomposing its descriptive and inferential require-
ments for design, verification, or maintenance purposes into simpler reasoning
tasks is often the only plausible way forward [9]. Assuming that we have methods
and tools available to tackle restricted tasks, how do we combine them to solve
complex tasks. How do we combine them in such a way that features of the com-
ponents are inherited by the combination? This question is known as thetransfer
problem[2]. Whether properties transfer from the components to the combination
depends on the amount of interaction between the component logics; even in the
presence of very weak forms of interaction (such as shared symbols), transfer may
fail [11]. In the absence of interaction between the component logics, we often have
transfer; such positive results are usually based on adivide and conquerstrategy:
split problems into sub-problems and delegate these to the components [4, 12].

From acomputationalpoint of view, the natural question in the setting of com-
bining logics is: does it work? Can were-usetools and procedures in a modular
fashion? So far, most of the work towards answering this question has gone into
putting together deductive engines. While there are no uniform solutions, there are
many successful instances of combined proof procedures, especially for modal and
modal-like logics [1]; these are often based on calculi satisfying special criteria or
on translating the component logics into a background logic.

In this paper we study the combination of model checking procedures. In ad-
dition to the issues mentioned above, the direct motivation for this work has been
the need to develop model checking procedures for granular logics [13, 14]. Such
logics are able to model and reason about time at different grain levels, for in-
stance, at the level of seconds and of micro-seconds. Instead of developing model
checking procedures for granular logics from scratch, we want to synthesize them

1

from existing (non-granular) ones. In Section 7 we will see that this is indeed pos-
sible. More generally, in contrast to combining deductive engines, combinations
of model checking procedures are well behaved, even in the presence of interac-
tion; indeed, this supports the general believe that modularity is easier to achieve
in model checking than in theorem-proving approaches [10].

We start by recalling basic definitions in Section 2 and presenting three modes
of combining logics in Section 3: temporalization, independent combinations, and
the join. In Section 4, we consider combined model checking procedures for these
three combinations. Section 5 contains results on computational complexity, and
Section 6 reports on our experiments with implementations. In Section 7 we sketch
the application of our ideas to granular logics, and we conclude in Section 8.

2 Temporal Logics
Let L be a logic system. We useLL andKL to denote the language and the set of
models ofL, respectively. The language of a temporal logicL is based on a setP
of proposition letters and extends that of propositional logic with a set oftemporal
operators. We writeOP(L) to denote the set of temporal operators ofLL.

Definition 2.1 (Syntax) The languageLSUL of Since and Until Logic(SUL) is the
smallest setX of formulas generated by the following rules: any proposition letter
p ∈ P is in X; if φ, ψ are inX, then so areφ ∧ ψ and¬φ; and if φ, ψ are inX,
then so areφSψ andφUψ.

The languageLCTL∗ of the computation tree logicCTL∗ has state formulas
and path formulas.State formulasare obtained as follows: any proposition letter
p ∈ P is a state formula; ifφ, ψ are state formulas, then so areφ ∧ ψ and¬φ; if φ
is a path formula, thenEφ andAφ are state formulas.Path formulasare obtained
as follows: every state formula is a path formula; ifφ, ψ are path formulas, then so
areφ ∧ ψ and¬φ; if φ, ψ are path formulas, then so isφUψ.

The languageLCTL of the computation tree logicCTL is the set ofstate for-
mulasgenerated by the rules for state formulas given before plus the following rule
for path formulas: ifφ, ψ are state formulas, thenφUψ is a path formula.

Definition 2.2 (Semantics)A framefor a temporal logic T is a pair(W,R), where
W is a set ofworlds, or states, andR is a set ofaccessibility relationson W . We
restrict ourselves tobinary relations onW . A modelfor T is a triple(W,R, V),
where(W,R) is a frame for T andV : W → 2P is avaluation functionmapping
states into sets of proposition letters.

A frame forSUL, CTL, or CTL∗ is a pairF = (W, {R}), or simply(W,R),
whereW is a set of states andR ⊆ W × W is a binary relation onW . A path
π in F is an infinite sequence of worldss0, s1, . . . such that, for everyi ≥ 0,
R(si, si+1); we writeπ(j) for the element in thej-th position on the pathπ.

Truth of aSUL-formulaφ in a modelM = (W,R, V) with respect to a state
s ∈ W is defined as usual: forp ∈ P,M, s |=SUL p if p ∈ V (s), andM, s |=SUL

φUψ iff M, t |=SUL ψ for somet such thatRst, whileM, r |=SUL φ for everyr
such thatRsr andRrt; similarly,M, s |=SUL φSψ iff M, t |=SUL ψ for somet
such thatRts, whileM, r |=SUL φ for everyr such thatRtr andRrs.

2

As to CTL∗-formulas, state formulasψ are evaluated at a states (notation:
M, s |=CTL∗ ψ); path formulasφ are evaluated with respect to a pathπ = s0s1 . . .
and a positionj ∈ N in π (notation:M, π, j |=CTL∗ φ). For proposition letters
p ∈ P, we putM, s |=CTL∗ p if p ∈ V (s). For any path formulaφ, we have that
M, s |=CTL∗ Eφ if there is a pathπ starting ats such thatM, π, 0 |=CTL∗ φ; and
M, s |=CTL∗ Aφ if for every pathπ starting ats we haveM, π, 0 |=CTL∗ φ. For a
state formulaψ, we putM, π, j |=CTL∗ ψ if M, π(j) |=CTL∗ ψ. Finally, for a pair
of path formulasφ andψ, we have thatM, π, j |=CTL∗ φUψ if M, π, i |=CTL∗ ψ
for somei > j andM, π, k |=CTL∗ φ for everyj < k < i (j ≤ k < i if we
adopted a non-strict version ofU).

The truth definition forCTL-formulas (notation:|=CTL) can be obtained by
restricting|=CTL∗ to CTL-formulas.

3 Combining Logics
How do we combine logics? While many ways of combining logics have been
explored, we restrict ourselves to only three of them: temporalization, independent
combinations, and the join. These three are certainly among the most popular and
the ones that have been studied most extensively [4, 12, 5, 6].

§3.1 Temporalization. This is the simplest of the three modes of combining
logics that we will consider; here, the two component languages are only allowed
to interact in a very restricted way. More specifically, letT be a temporal logic and
L an arbitrary logic. For simplicity we constrainL to be an extension of classical
logic. We partition the set ofL-formulas intoboolean combinationsBCL and
monolithic formulasMLL: α belongs toBCL if its outermost operator is a boolean
connective; otherwise it belongs toMLL. We assume thatOP(T) ∩ OP(L) = ∅.
Thecombined languageLT(L) of the temporalizationT(L) of L by means ofT
over the set of proposition lettersP is obtained by replacing the atomic formation
rule ofLT (i.e., every proposition letter is a formula) by the following rule: every
monolithic formulaα ∈ LL is anLT(L)-formula.

A modelfor T(L) is a triple(W,R, g), where(W,R) is a frame forT and
g a total function mapping worlds inW to models inKL. Given a modelM =
(W,R, g) and a statew ∈ W , the semantics of the combined logicT(L) is ob-
tained by replacing the usual semantic clause for atomic formulas ofLT by the
following clause: for allα ∈ MLL,M, w |=T(L) α if and only if g(w) |=L α.

§3.2 Independent Combinations. The independent combination of two logics
puts together all the expressive power of the two component logics in an unre-
stricted way; our definitions are straightforward extensions of definitions found
in [4, 12, 5]. LetT1 andT2 be two temporal logics defined over the same set of
proposition lettersP, with OP(T1)∩OP(T2) = ∅. Thefully combined language
LT1⊕T2 of the independent combinationT1⊕T2 overP is obtained by taking all
connectives ofT1 andT2, and the union of their formation rules.

To define the semantics ofT1 ⊕ T2, we need the following notion. Given a
binary relationR, we writeR∗ for its transitive closure, andR−1 for its converse.
Let (W,R) be a frame. Aconnected component(W ′,R′) of (W,R) is a frame

3

with (1) ∅ 6= W ′ ⊆ W andR′ = {R|W ′ | R ∈ R}; and (2)(W ′,R′) is connected,
i.e., for everyu andv in W ′, with u 6= v, we have(u, v) ∈ [

⋃{(R ∪ R−1) |
R ∈ R}]∗; and (3)(W ′,R′) is maximal, i.e., there is no connected component
(W ′′,R′′) with W ′ ⊂ W ′′. Notice that anisolatedpoint is a connected component.

A modelfor the combined logicT1 ⊕ T2 is a 4-tuple(W,R1,R2, V), where
the connected components of(W,R1, V) are inKT1 , the connected components
of (W,R2, V) are inKT2 , andW is the (not necessarily disjoint) union of the sets
of worlds that constitute each connected component. Finally,V : W → 2P is a
valuation function. Thetruth definitionof the combined logicT1⊕T2 is obtained
by taking the union of the semantic clauses forT1 andT2.

§3.3 The Join. Formulas in the language of the independent combination of two
logics are evaluated at a single node in a model. Thejoin introduces a separate
dimension for each of the component logics, and we are allowed to express rela-
tions between the two dimensions. For notational simplicity we assume that our
component logics are one-dimensional, i.e., evaluated at a single node only. Let
T1 andT2 be two temporal logics. Thejoin T1⊗T2 of T1 andT2 is obtained as
follows. ThelanguageLT1⊗T2 of the logic systemT1⊗T2 is the fully combined
language ofT1 andT2.

A modelfor T1 ⊗T2 is a 5-tuple(W1,R1,W2,R2, V), where(W1,R1) is a
T1-frame and(W2,R2) is aT2-frame, andV : W1 × W2 → 2P is a valuation
mapping pairs of worlds to sets of proposition letters. Truth of a formulaφ in a
modelM = (W1,R1,W2,R2, V), at statess1 ∈ W1 ands2 ∈ W2, is defined as
follows. If φ = p (p ∈ P), φ = (φ1 ∧ φ2), or φ = ¬φ1, thenM, s1, s2 |=T1⊗T2

φ is defined as usual. Ifφ = O(φ1, . . . , φn), with O ∈ OP(Ti), we define
M, s1, s2 |=T1⊗T2 φ by replacing every occurrence ofM, x in the definition of
M, si |=Ti φ (i ∈ {1, 2}) byM, x, s2 (if i = 1) orM, s1, x (if i = 2).

In our presentation of the join of logics, we have followed [6]; in [8] a slightly
different but equivalent construction is studied: theproductof modal logics.

4 Model Checking for Combined Logics
In this section we consider model checking procedures for each of the modes of
combining logics considered in Section 3.

§4.1 Temporalization. We first define the global model checking problem for
the combined logicT(L); then, we give a general algorithm that solves it. Let
M = (W,R, g) be aT(L)-model. We say thatM is finite if W andR are finite
and, for everyw ∈ W , g(w) is finite. LetM = (W,R, g) be afiniteT(L)-model,
w ∈ W a state, andψ a formula inLT(L). We focus on theglobal model checking
problemfor T(L): is there a statev ∈ W such thatM, v |=T(L) ψ? We use
‘model checker’ for a program that solves the global model checking problem.

Let ψ be aT(L)-formula andMMLL(ψ) the set ofmaximalmonolithic sub-
formulas ofψ belonging toLL; abs(ψ) denotes the formula obtained fromψ by
replacing every formulaα ∈ MMLL(ψ) by the proposition letterpα. Moreover,
let MCT andMCL be model checkers forT andL, respectively. Given an appro-
priate model checking instance, these programs returnTrue if the correspond-

4

Function MCT(L)

Input : aT(L)-modelM = (W,R, g) and a formulaψ ∈ LT(L)

computeMMLL(ψ) andabs(ψ)
for every α ∈ MMLL(ψ)

for every w ∈ W
if MCL(g(w), α) = True then

V (w) = V (w) ∪ {pα}
return MCT((W,R, V), abs(ψ))

Figure 4.1: Model checking for temporalized logics.

ing instance is a “yes” instance,False otherwise. In Figure 4.1, we present the
pseudo-code of a model checkerMCT(L) for T(L) that exploitsMCT andMCL. Let
M be a finite model forT(L) andψ ∈ LT(L). As a theorem, we have that ifMCL

andMCT are terminating, sound and complete, then, on inputM andψ, the func-
tion MCT(L) terminates, returning eitherTrue or False . Moreover, if it returns
True , then there existsw ∈ W with M, w |=T(L) ψ; and if it returnsFalse ,
then, for everyw ∈ W ,M, w 6|=T(L) ψ.

§4.2 Independent Combination. We now give a general algorithm for solving
the global model checking problem forT1 ⊕T2. Let T1 andT2 be two temporal
logics, and letM = (W,R1,R2, V) be a model forT1 ⊕ T2. We say thatM is
finite if W ,R1, andR2 are finite, and, for everyw ∈ W , V (w) is finite.

The global model checking problem forT1 ⊕ T2 is defined just as forT(L).
C1
M andC2

M are the sets of connected components of(W,R1) and(W,R2), re-
spectively. SinceM is a model forT1 ⊕ T2, every connected component in
C1
M (C2

M) is a model forT1 (T2). Sub(φ) is the set of subformulas ofφ, and
MSub(φ) ⊆ Sub(φ) is constructed as follows. LetS = Sub(φ) ∩ LT1⊕T2 . Let
i ∈ {1, 2}. For every formulaO(φ1, . . . , φc) in S, withO ∈ OP(LTi)∪{∧,∨,¬},
if, for every j = 1, . . . , c, φj is a proposition letter or its main operator is in
OP(LTi) ∪ {∧,∨,¬}, then delete formulasφ1, . . . , φc from S; MSub(φ) is the
setS at the end of this procedure. Note that ifφ ∈ LTi , thenMSub(φ) = {φ}.

Below, we view model checkers asproceduresthat receive a model(W,R, V)
and a formulaψ as input, and that extend the valuationV (which maps a state to a
set of proposition letters) to a valuationV ′ mapping states to sets ofsubformulas
of ψ in the following way: for every subformulaφ of ψ and every nodew, V ′(w)
containsφ iff φ is true atw in (W,R, V). Let MCT1 andMCT2 be model checkers
for T1 andT2, respectively. In Figure 4.2, we present the pseudo-code of a model
checker forT1 ⊕ T2 that exploits the proceduresMCT1 and MCT2 . Let M =
(W,R1,R2, V) be a finite model forT1 ⊕ T2 andψ ∈ LT1⊕T2 . As a theorem,
we have that ifMCT1 andMCT2 are terminating, sound, and complete, then, on input
M andψ, the procedureMCT1⊕T2 terminates. Moreover, ifV ′ is the (extended)
valuation function returned byMCT1⊕T2 , then, for every subformulaφ of ψ and
every nodew ∈ W , φ ∈ V ′(w) iff M, w |=T1⊕T2 φ.

5

ProcedureMCT1⊕T2

Input : aT1 ⊕T2-modelM = (W,R1,R2, V) and a formulaψ ∈ LT1⊕T2

computeC1
M, C2

M andMSub(ψ)
for every w ∈ W let V (w) = V (w)
for every i = 1, . . . , |ψ|

for every φ ∈ MSub(ψ) such that|φ| = i
caseon the form ofφ

φ = p, p ∈ P: skip
φ = φ1 ∧ φ2: for every w ∈ W

if (φ1 ∈ V (w) and φ2 ∈ V (w)) then
V (w) = V (w) ∪ {φ} ; V (w) = V (w) ∪ {pφ}

φ = ¬φ1: for every w ∈ W
if (not φ1 ∈ V (w)) then

V (w) = V (w) ∪ {φ} ; V (w) = V (w) ∪ {pφ}
φ = O(φ1, . . . , φc), O ∈ OP(LTi), i ∈ {1, 2}
let Φ = {α ∈ Sub(φ) ∩MSub(ψ) | 1 < |α| < |φ|} andφ′ = φ
for every α ∈ Φ replace α in φ′ with pα

for every (U,S) ∈ Ci
M

for every u ∈ U let V ′(u) = V (u)
MCTi((U,S, V ′), φ′)
for every u ∈ U

if φ′ ∈ V ′(u) then
V (u) = V (u) ∪ {φ} ; V (u) = V (u) ∪ {pφ}

Figure 4.2: Model checking independently combined logics.

§4.3 The Join. In this section, we give a general algorithm that solves the global
model checking problem forT1⊗T2. LetT1 andT2 be temporal logics andM =
(W1,R1,W2,R2, V) be a model forT1⊗T2. We say thatM is finite if W1, W2,
R1 andR2 are finite, and, for every(w1, w2) ∈ W1 ×W2, V ((w1, w2)) is finite.
Let M = (W1,R1, W2,R2, V) be afinite T1 ⊗ T2-model andψ ∈ LT1⊗T2 .
The global model checking problemfor T1 ⊗ T2 is to check whether there exist
w1 ∈ W1 andw2 ∈ W2 such thatM, w1, w2 |=T1⊗T2 ψ.

Because of space limitations we have to omit the pseudo-code for a model
checker forT1 ⊗T2 that exploits model checkersMCT1 andMCT2 for the compo-
nent logicsT1 andT2, respectively; its code is similar to the code for the model
checkerMCT1⊕T2 given in Figure 4.2. ForMCT1⊗T2 similar termination, soundness
and completeness results may be obtained as forMCT1⊕T2 .

5 Computational Complexity
We now turn to an analysis of the computational complexity of the model checkers
proposed in the previous section. An instance for the model checking problem has
two components: a model(W,R, V) and a formulaψ. In our analysis, we will
consider three main complexity parameters: the cardinalityn of W , the summ of
the cardinalities of the relations inR, and the lengthk of ψ, i.e., the number of
operators and proposition letters inψ.

We will specify the complexity of the combined model checker in terms of that

6

of the component model checkers. The complexity of the combined model checker
is the sum of two factors: the communication overhead and the model checking
cost. Thecommunication overheadis the time spent for “packing” the inputs for
the components and for “unpacking” their outputs; this represents the cost of the
interaction between the components. Themodel checking costrepresents the cost
of performing the actual model checking of the component logics.

We first consider the case of temporalization. LetL be a logic andT a tem-
poral logic. We writeCT(L)(·, ·, ·) (resp.CL(·, ·), CT(·, ·, ·)) for the complexity
function of the model checkerMCT(L) (resp.MCL, MCT). Note thatCL(·, ·) has two
parameters (the size of the model and the length of the formula).

Theorem 5.1 Let (W,R, g) be a finiteT(L)-model andψ a T(L)-formula. The
complexity ofMCT(L) on inputM andψ is

O(n) · [k · CL(N,O(1)) + CL(N,O(k))] + CT(n,m,O(k)),

wheren = |W |, m =
∑

R∈R |R|, k = |ψ| andN = maxw∈W |g(w)|.
The communication overhead is the cost of computing the setMMLL(ψ) and the
formulaabs(ψ). It equals toO(k) and is dominated by the model checking cost.
For instance, ifT is CTL (henceCT(n,m, k) = O((n + m) · k) [3]), andL is a
logic such thatCL(n, k) = O(n ·k), then the model checking cost isO(k ·(n ·N +
m)), hence still linear in the size of the model and in the length of the formula.

We now treat the independent combination of two temporal logicsT1 andT2.

Theorem 5.2 LetM = (W,R1,R2, V) be a finiteT1⊕T2-model andψ a T1⊕
T2-formula. The complexity ofMCT1⊕T2 on inputM andψ is:

O(m1 + m2 + n · k) +
∑2

i=1

(
O(k) · CTi(O(n),O(mi),O(1)) +

O(n) · CTi(O(1),O(1),O(k)) +O(1) · CTi(O(n),O(mi),O(k))
)

,

wheren = |W |, mi =
∑

R∈Ri
|R|, for i = 1, 2, andk = |ψ|.

The communication overhead is the cost of computing the connected components,
of preparing the valuation as input to the model checking procedure, and of updat-
ing the valuations when the procedure returns. It adds up toO(m1 + m2 + n · k),
which is more significant than in the case of temporalization. By way of example,
if bothT1 andT2 are CTL, andm = m1 = m2, then the communication overhead
isO(m+n·k), which is proportional to the model checking cost ofO((n+m)·k).
So, the overall cost of the model checker forCTL⊕CTL isO((n+m) ·k), which
is linear in the size of the model and the length of the formula.

Finally, we briefly consider the join of temporal logicsT1 andT2. Due to
space limitations we have to omit further discussions of Theorem 5.3 below.

Theorem 5.3 LetM = (W1,R1,W2,R2, V) be a finiteT1 ⊗T2-model andψ a
T1 ⊗T2-formula. Let1 = 2 and2 = 1. The complexity ofMCT1⊗T2 on inputM
andψ is:

O(n1 ·m2 + n2 ·m1 + n1 · n2 · k) +∑2
i=1

(
O(ni) · [O(k) · CTi(ni,mi,O(1)) + CTi(ni,mi,O(k))]

)
,

7

whereni = |Wi|, mi =
∑

R∈Ri
|R|, for i = 1, 2, andk = |ψ|.

6 Experimental Results
We briefly report on experimental results based on implementations of (combined)
model checkers forCTL(CTL) and CTL ⊕ CTL. The model checkers have
been implemented in C, and are available fromhttp://www.illc.uva.nl/
˜mdr/ACLG/Software/ . Tests were carried on a Sun ULTRA II (300MHz)
with 1Gb RAM, under Solaris 5.2.5.

We tested our model checker forCTL(CTL) on ‘linear’ and ‘dense’ models.
In our first test, we usedA1G1A2(pU2q) as a fixed test formula, and we varied
the modelM1 = (W,R, g), where(W,R) is a complete binary tree of heighth1

and, for everyw ∈ W , g(w) is a labeled complete binary tree of heighth2. The
outcomes are summarized in Table 6.1(a), wheretms represents the CPU time in
milliseconds. In the second test, we checked the formulaA1G1E2(pU2q) and
used modelsM2 = (W,R, g), where(W,R) is a complete graph ofn1 nodes and,
for everyw ∈ W , g(w) is a complete graph ofn2 nodes. The outcomes are given
in Table 6.1(b). The times listed in (b) are higher than those listed in (a) because
M2 containsdensegraphs, whileM1 is based onlinear graphs.

h1 h2 # nodes # edges tms

4 4 992 960 10
5 5 4032 3968 30
6 6 16256 16128 110
7 7 65280 65024 380
8 8 261632 261120 1490
9 9 10475521046528 5850

(a): trees andA1G1A2(pU2q)

n1 n2 # nodes # edges tms

32 32 1056 33792 20
64 64 4160 266240 110

128 128 16512 2113536 820
256 256 65792 16842752 6010
512 512 262656 134479872 47970

1024 1024 10496001074790400 386760

(b): complete graphs andA1G1E2(pU2q)

l # nodes # edges tms

32 1024 1984 90
64 4096 8024 340

128 16384 32512 1400
256 65396 130560 5760
512 262144 532264 23480

1024 10485762095104118980

(c): square grids

r tms

0 1870
3 2540
7 2970

11 3860
15 4720
19 5590

(d): fixed square grid

Table 6.1: Experiments with combined model checkers.

Next, we treated the independent combinationCTL⊕CTL. Our test models were
‘square grid’ models, where we varied either the size of the model or the ‘degree
of interaction’ of the formula. In the first test (Table 6.1(c)), we usedA1G1q ∧
A2G2q as our test formula on a square grid(W,R1, R2, V) of width l where rows
are the connected components of(W,R1) and columns the connected components
of (W,R2). For the second test (Table 6.1(d)), we used a square grid of width256.
The test formula wasf20 (wheref0 = q, andfk+1 = EiXifk, for k ≥ 0 andi ∈
{1, 2}), varying the numberr of alternations of blocks of the formEiXiEjXj (i 6=
j) occurring inf20 from 0 (no interaction) to19 (maximal interaction). Increasing
the degree of interaction in the formula increased the required computing time, thus

8

confirming that the communication overhead is higher when checking formulas
with a high degree of interaction.

7 An Application to Time Granularity
In this section we describe the relevance of our results totemporal logics for time
granularity. Temporal logics have been successfully used for modeling and analyz-
ing the behavior of (real-time) reactive systems. The behavior of reactive systems
whose components have dynamic behaviors regulated by very different time con-
stants, e.g., days, hours, and seconds, is naturally modeled by a set of differently-
grained temporal domains. The addition of time granularity allows one to give
concise specifications of suchgranular reactive systems(GRSs). The theory of
finitely-layered structures for time granularity has been investigated in [14]. As
for ω-layered structures, both the theory ofupward (downward) unbounded lay-
ered structures, i.e.,ω-layered structures consisting of a finest (coarsest) temporal
domain together with an infinite number of ever coarser (ever finer) domains, are
non-elementarily decidable [13]. An expressively complete and elementarily de-
cidable temporal logic counterpart of the theory of downward unbounded layered
structures has been proposed in [7].

The behavior of a reactive system with respect to layered structures can be de-
scribed as a suitablecombinationof temporal evolutions (sequences of states over
a given temporal domain) and temporal refinements (mapping of a state, within
a given domain, into a finite sequence of states over a finer temporal domain).
As a consequence, both the model describing a system’s operational behavior and
the specification language can be obtained bycombiningsimpler models and lan-
guages, and model checking procedures for combined logics can be used. For
instance, a temporalized modelM = (W,R, g) can be used in a ‘horizontal’ and
a ‘vertical’ way for model checking purposes. Horizontally, it can be used to deal
with finitely-layered, upward and downward unbounded GRSs. Assume thatR is
linear, that is, every node inW has at most oneR-successor. The ‘top’ frame
(W,R) models the granular relationships among the different components (wRv
meaning that the component associated withv is a one-step refinement of the one
associated withw), while, forw ∈ W , the modelg(w) captures the internal behav-
ior of a single component.LT1(T2) is the specification language, whereT1 (resp.
T2) is a linear (resp.branching) temporal logic. ‘Horizontal’ properties, that is,
formulas that predicate over temporal evolutions, are easily expressible and verifi-
able in this framework, but it is hard to capture ‘vertical’ properties which refer to
temporal refinements. In contrast, within the ‘vertical’ model checking framework
one can deal with finitely-layered and downward unbounded GRSs. The interpre-
tation of the model is different then: the ‘top’ frame(W,R) models the evolution
of the coarsest component of the system, while, forw ∈ W , the modelg(w) cap-
tures the behavior of all temporal refinements ofw. Specifications can be written in
LT1(T2), whereT1 andT2 are branching temporal logics. As for expressiveness
of the ‘vertical’ framework, the situation is dual to the ‘horizontal’ case.

9

8 Conclusions
We have addressed the problem of model checking for combined logics and struc-
tures. In contrast to combined deductive engines, combinations of model checking
procedures are very well behaved, even in the presence of strong forms of interac-
tion. In particular, complexity upper bounds transfer from the component frame-
work to the combined one, and the introduced communication overhead is in most
cases non significant with respect to the actual model checking cost.

One of the motivations for this work has been the need to develop model check-
ing frameworks for granular reactive systems and logics. We have shown that this
is indeed possible, using adivide and conquerstrategy: we first isolated the or-
thogonal ‘simple’ entities in which a granular system can be decomposed. Then,
we applied well-known structures and logics to the component entities. Although
we only applied thisdivide and conquerapproach to granular reactive systems,
because of its generality, we feel that it can be useful to model and analyze many
other complex systems, which, inherently, are the composition of simpler entities.

Acknowledgment. Maarten de Rijke was supported by the Spinoza project ‘Logic
in Action.’

References
[1] B. Bennett, C. Dixon, M. Fisher, E. Franconi, I. Horrocks, U. Hustadt, and

M. de Rijke. Combining modal logics.Submitted, 1999.
[2] P. Blackburn and M. de Rijke. Editors’ introduction.Notre Dame Journal of Formal

Logic, 37:161–166, 1996.
[3] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state

concurrent systems using temporal-logic specifications.ACM Trans. Programming
Languages and Systems, 8(2):244–263, 1986.

[4] K. Fine and R. Schurz. Transfer theorems for multimodal logics. InProceedings
Arthur Prior Memorial Conference, 1989.

[5] M. Finger and D.M. Gabbay. Adding a temporal dimension to a logic system.Journal
of Logic, Language and Information, 1:203–233, 1992.

[6] M. Finger and D.M. Gabbay. Combining temporal logic systems.Notre Dame Jour-
nal of Formal Logic, 37:204–232, 1996.

[7] M. Franceschet and A. Montanari. Branching within time. Technical Report
UD/03/2000/RR, DIMI, Universit̀a di Udine, 2000.

[8] D. Gabbay and V. Shehtman. Products of modal logics, Part 1.Logic Journal of the
IGPL, 6:73–146, 1998.

[9] D.M. Gabbay and M. de Rijke, editors.Frontiers of Combining Systems 2, volume 7
of Studies in Logic and Computation. Research Studies Press/Wiley, 2000.

[10] J.Y. Halpern and M.Y. Vardi. Model checking vs. theorem proving: a manifesto. In:
Proc. KR’91, pages 325–334, 1991.

[11] E. Hemaspaandra. Complexity transfer for modal logic. InProc. LICS’94, 1994.
[12] M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal logics.

Journal of Symbolic Logic, 56:1469–1485, 1991.
[13] A. Montanari, A. Peron, and A. Policriti. Decidable theories ofω-layered metric

temporal structures.Logic Journal of the IGPL, 7(1):79–102, 1999.
[14] A. Montanari and A. Policriti. Decidability results for metric and layered temporal

logics. Notre Dame Journal of Formal Logic, 37:260–282, 1996.

10

