
Indexing by Shape of Image Databases Based on Extended Grid Files

Carlo Combi, Gian Luca Foresti, Massimo Franceschet, Angelo Montanari
Department of Mathematics and ComputerScience, University of Udine

Via delle Scienze 206, 33100 Udine, Italy
{combi,foresti,francesc,montana}@dimi.uniud.it

Abstract

In this paper, we propose an original indexing by shape
of image databases based on extended grid files. We first
introduce a recently developed shape description method
and tailor it to obtain suitable representation structures for
image databases. Then, in order to efficiently support im-
age retrieval, we define an indexing structure based on grid
files. Since grid files were originally developed to speed
up point (exact match) and range (nearest neighbors within
a threshold) queries on multidimensional data with a fixed
number of attributes, we extend them to cope with data pro-
vided with a varying number of attributes and to deal with
a new class of queries relevant to image databases, namely,
nearest neighbor queries. We give a detailed description
of the proposed search algorithms and a systematic anal-
ysis of their complexity, and discuss the outcomes of some
experimental tests on sample image databases.

1. Introduction

Digital image databases are convenient media for rep-
resenting and storing information in a variety of domains,
including industrial, biomedical, and public administration
domains, provided that an efficient automatic procedure for
indexing and retrieving images from them is given. Most
image databases take a text-based approach to indexing
and retrieval, according to which keywords, captions, or
free text are associated with each image in the database.
However, such an approach suffers from several limitations.
First, since automatic extraction of semantic information
from images is beyond the capabilities of current machine
vision techniques, a human interaction is required to de-
scribe the contents of images in terms of keywords and/or
captions. This process is quite time-consuming and ex-
tremely subjective. Second, certain visual properties of im-
ages, such as some textures and shapes, are very difficult or
nearly impossible to describe with text. As an alternative,
one can work with descriptions based on properties which

are inherent to the visual contents of an image: colors, tex-
tures, shape, and location of image objects, spatial relation-
ships between objects, etc. Most work in image database
retrieval has concentrated on a single feature. Color and tex-
ture are reliable features only for retrieving generic images
(landscapes, outdoor views, etc.); on the contrary, shape is
very useful to represent objects, but it requires a large num-
ber of attributes. One of the most promising shape-based
approaches exploits morphological skeletons to represent
images [2]. It encodes a picture as a set of object skele-
tons; a sketch picture can then be partially reconstructed
and progressively refined back to the original image by di-
lating the skeleton function. This approach allows one to
reduce ambiguity in similarity retrieval and to reduce mem-
ory requirements, but it has two major drawbacks: the mor-
phological skeleton is not robust to noise [3] and it requires
a huge amount of attributes to represent object shapes. A
solution to the first problem has been obtained by introduc-
ing the notion of Statistical Morphological Skeleton (SMS)
[1]. The second problem is addressed in this paper. When-
ever we want to efficiently store data provided with sev-
eral attributes, each of them being possibly treated as a
primary key, multidimensional data structures are needed.
Most techniques for storing and searching these structures
hierarchically decompose the multidimensional space into
regions. Such a space can be either the data to be stored or
the embedding space from which the data is drawn. Grid
files adopt the latter solution. They are especially well-
suited when the domains over which the attributes take their
values are large and linearly ordered, and the attributes are
independent. Under such assumptions, grid files guarantee
a high data storage utilization, a smooth adaptation to the
contents to be stored, fast access to individual records, and
efficient processing of range queries [4].

The goal of our work is to provide a compact represen-
tation and efficient indexing structures for image databases.
In Section 2, we present a method for SMS extraction and
approximation. In Section 3, we first propose an efficient
indexing technique, based on a suitable extension of grid
files; then, we describe the algorithms we developed for

� ���

�������
	��
�� ���

� ���

	����������� ��	��� ���

��� � � � �������������

� ��	����

	����������� ��	��� ���

� �!
����������� ������	��� ���

B

sms(Xi)

S(sms(Xi))

V(sms(Xi))"��
	���#����

� �����
	���� � � � �!$&%('

R(sms(Xi))

Figure 1. General scheme of the method for SMS extrac-
tion and approximation

range and nearest neighbor queries, analyze their complex-
ity, and discuss some experimental results. In Section 4, we
report on a concrete application of extended grid files to in-
dexing by shape an image database. In the conclusions, we
point out some advantages and limitations of the proposed
solution.

2. Shape Extraction and Approximation

In this section, we show how the SMS can be tai-
lored to obtain suitable representation structures for image
databases. In Figure 1, the general scheme of the method
for SMS extraction and approximation is given.

The method consists of three main steps: (a) extraction
of the Statistical Morphological Skeleton; (b) geometrical
approximation of skeleton points by means of a set of seg-
ments; (c) approximation of the shape function associated
with each segment by means of parametric splines. Figure
2 shows a running example image containing two different
shapes: a rectangle and a sort of oval.

A binary imageB, where each blobXi represents a pos-
sible object (Figure 2a), is provided as input to a module
which extracts its SMSsms(Xi) [1]. The SMS can be de-
scribed as:

sms(Xi) = {〈x, y, n(x, y)〉 : (x, y) ∈ B}
where the functionn(x, y) associates with each skeleton
point the iteration at which the point itself has been de-
tected. Figure 2b shows the SMS extracted from the two
binary objects in Figure 2a. The SMS of an objectXi

is provided as input to the approximation module, whose
goal is to efficiently represent information contained in the
SMS itself. More precisely, eachsms(Xi) is approximated
through the setS(sms(Xi)) = {sj : j = 1, . . . , Ni} of
segments which best fits with the(x, y) points ofsms(Xi).
Figure 2c shows the segment-based approximation of the

(a)

(b)

(c)

Figure 2. Example image with two shapes (a), the corre-
sponding SMSs (b), and the approximated SMSs (c)

SMS in Figure 2b. The shape approximation and represen-
tation module pairs shape information on the skeleton with
points of the segments inS(sms(Xi)). In such a way, each
segmentsj is associated with a functiongj(.) represent-
ing the behaviour of the shape on the segment. Then, each
functiongj(.) is interpolated by means of Hermite splines.
A vector αj of L coefficients describes the spline of the
j-th segment. The coefficients of the interpolating func-
tions are associated with each segment to generate a shape-
representationR(sms(Xi)) of the objectXi:

R(sms(Xi)) = {〈sj , αj〉 : sj ∈ S(sms(Xi)),
αj = [αj,u : u = 1, . . . , L], j = 1, . . . , Ni}

Finally, each objectXi is represented by means of a mul-
tidimensional vectorV (sms(Xi)) composed by a variable
number of elements, i.e.,

V (sms(Xi)) = [Ni, s1, α1, . . . , sNi , αNi],
where each segmentsj is represented by means of the vec-
tor [xi

j , y
i
j , x

f
j , yf

j] of its extremes on the image plane. Such
a vector is stored in the database as a record, whose at-
tributes correspond to the above detailed elements of the
vector. To efficiently support accesses to these records, we
developed suitable multidimensional indexing techniques,
which are described in the following section.

3. Using Grid Files for Indexing by Shape

In this section, we first introduce the basic concepts of
grid files; then, we extend them to cope with multidimen-
sional data provided with a varying number of attributes and
to deal with nearest neighbor queries.

3.1. Basics on Grid Files

The basic idea of grid files is that of dividing the search
space, where each record is a point, in a grid [4]. The

record spaceS is partitioned into blocks, calledgrid re-
gions. When records are inserted or deleted, the corre-
sponding grid partition can possibly be modified, by split-
ting an interval on a space axis or by merging two adjacent
intervals [4]. The fixed-size physical storage unit is called
cluster: there is a cluster in correspondence with each grid
region, while it is possible that several grid regions are as-
sociated with the same cluster. Thegrid directory is the
data structure providing the correspondence between grid
regions and clusters: for ak-dimensional search space, a
grid directory consists of a dynamick-dimensional array,
calledgrid-array, andk one-dimensional arrays, calledlin-
ear scales. The elements of the grid array are pointers to
clusters, and are in correspondence with the grid regions of
the grid partition. Linear scales, one for each dimension of
the space, contain the bounds of the partition on the corre-
sponding axis. The efficiency of grid arrays is based on the
assumption that the linear scales are relatively small and can
be maintained in the main memory; the grid array is usually
quite large and it is stored on the disk. In this situation, point
queries are performed with only two disk-accesses [4].

3.2. Extended Search Algorithms

In this section we propose an extension of grid files
with algorithms for range and nearest neighbor queries.
We consider ak–dimensionalsearch spaceS = ×k

i=1Di,
where the domainsDi are linearly ordered. A record
r ∈ {1, 2, . . . k} × S on S is characterized byk attributes
and by an integer which denotes thevalid dimensionof the
record, that is, the actual number of attributes that identify
the record. Ifr = (v, x1, x2, . . . , xk), thenxv+i = null, for
everyi ∈ {1, 2, . . . k − v}. Moreover, a distance function
on S is chosen. Records with different valid dimensions
generally identify different objects and are not comparable.

3.2.1 Nearest Neighbors within a Threshold Problem

Thenearest neighbors within a threshold(NNWT) prob-
lem can be described as follows: given a recordr with valid
dimensionv and thresholdd, retrieve the records compara-
ble with r (i.e. with valid dimensionv) that belong to the
sphere centered atr with radiusd.

The idea of the algorithm is quite simple: it accesses,
starting from the cluster containingr and moving off in
spiral, all the clusters intersecting the sphere with center
r and radiusd. In order to terminate the search, the al-
gorithm computes the number of steps to be performed be-
fore starting the computation. In Figure 3 we present the
pseudo-code implementing a procedureNeighbors for
the NNWT problem.

Before starting the search, the procedureNeighbors
invokes the subprocedureSteps in order to compute the

Neighbors(Value, ValidDim, Limit)

A = dynamic array of pointers
Clusters, L = linked list

s <-- Steps(Value,Limit)
for i <-- 1 to s do

A[i] <-- Adjacents(A,i,Value,ValidDim,Limit))
p <-- A[i]
while p \= NIL do

c <-- RetrieveCluster(key[p])
if ListSearch(Clusters,c) = NIL then

ListInsert(Clusters,c)
ScanCluster(c,Value,ValidDim,Limit,L)

endif
p <-- next[p]
endwhile

endfor
OrderRecords(L,Value)
return L

Figure 3. The NNWT algorithm

numbers of steps to be performed, taking advantage of the
grid file structure, the center and the radius of the search-
ing sphere. After that, the procedureNeighbors enters
a for loop to iterates steps. At each iteration of the loop,
the procedure computes the adjacent regions, with respect
to the regions computed at the previous step, that inter-
sect the search sphere (this is performed by the subproce-
dureAdjacents), and it scans the relative clusters search-
ing for records with valid dimensionValidDim and dis-
tance fromValue less than or equal toLimit (this is
done by the subprocedureScanCluster). Before ac-
cessing any cluster, the procedure checks if the cluster to
visit has been already processed, taking advantage of the list
Clusters of visited clusters. At the end of thefor loop,
the procedure orders the retrieved records in increasing or-
der with respect to the distance fromValue (subprocedure
OrderRecords).

3.2.2 Nearest Neighbor Problem

Thenearest neighbor(NN) problem can be described as
follows: given a recordr with valid dimensionv, retrieve
the record nearest tor with the same valid dimension.

The sketch of the algorithm is as follows: given a record
r with valid dimensionv, the algorithm finds one neighbor
r′ of r with valid dimensionv; then, it computes the actual
distanced from r to r′ and issues a new query centered atr
with radiusd.

In Figure 4 we present the pseudo-code implementing a
procedureNearestNeighbor for the NN problem. The
procedureNearestNeighbor relies on the main subpro-
cedureFON, a variant of the previously proposed algorithm
for the search of the nearest neighbors within a threshold.
This procedure returnsoneneighbor ofValue with valid
dimensionValidDim , searching in the current sphere. It
uses the new functionsIntersects (which tests intersec-
tion of a region with a sphere) andScanN (which retrieves

NearestNeighbor(Value, ValidDim)

A = dynamic array of pointers
Clusters, L = linked list

Limit <-- + inf ; r <-- 1 ; p <-- NIL ; x <-- NIL
s <-- Steps(Value,Limit)
while r <= s do

(x,r,p) <--
FON(Value,ValidDim,Limit,Clusters,A,r,p,s)
if x \= NIL then

Limit <-- Distance(Value,x)
s <-- Steps(Value,Limit)

endif
endwhile
return (x, Limit)

FON(Value,ValidDim,Limit,Clusters,A,r,p,s)

Found <-- False
while (not Found) and (r <= s) do

if (p = NIL) then
A[r] <-- Adjacents(A,r,Value,ValidDim,Limit)
p <-- A[r]

endif
while (not Found) and (p \= NIL) do

if Intersects(key[p],Value,Limit) then
c <-- RetrieveCluster(key[p])
if ListSearch(Clusters,c) = NIL then

ListInsert(Clusters,c)
t <-- ScanN(c,Value,ValidDim,Limit)
if t \= NIL then

Found <-- true
x <-- t

endif
endif

endif
p <-- next[p]
if (p = NIL) then r <-- r + 1

endwhile
endwhile
return (x,r,p)

Figure 4. The NN algorithm

the nearest record within a given cluster).
3.2.3 Complexity Analysis

In this section, we determine the worst-case and average-
case complexity of the proceduresNeighbors and
NearestNeighbors , in case of uniform distribution of
the data, by taking the number of disk accesses as the rel-
evant complexity parameter. Letr be a record (with valid
dimensionv) on ak-dimensional spaceS andZ be a sphere
centered atr with radiusd. We denote byKZ (resp.LZ)
the number of grid regions (resp. clusters) that intersect the
sphereZ. The number of disk accesses performed by the
procedureNeighbors is KZ + LZ : the subprocedure
RetrieveClusters makes one disk access (to the grid
directory) for every region intersecting the sphereZ, while
the subprocedureScanCluster makes one disk access
(to the data) for every cluster intersecting the sphereZ.
Note thatLZ can range from1 (best case, the sphereZ is
entirely contained in one cluster) toKZ (worst case, every
region has its own cluster). Hence, in the worst case, the
number of disk accesses is2KZ . It is possible to show that
KZ = bk · (2s − 1)k, wheres is the number of steps com-

puted by the subprocedureSteps and0 < bk ≤ 1. Hence,
the worst-case complexity of the procedureNeighbors
is 2KZ = 2bkDs = 2bk(2s − 1)k. Since the dimension
k of the search space is fixed andbk ≤ 1, the complexity
is O(sk), and hence depends on the radius and the density
of records of the search sphere, and on the capacity of the
clusters.

As for the average-case complexity,LZ ≈ KZ/t, where
t is the average number of regions per cluster. As shown
in [4], for uniform distributions of the data, independent at-
tributes and capacityc ≥ 10, the numbert is quite stable
and it varies from 2 to 4. Letu be the average number of
records per cluster (cluster occupancy) andRW (Z) be the
average number of records in the smallest rectangleW (Z),
built on using the grid structure, containing the sphereZ. It
is immediate to see thatLZ ≈ RW (Z)/u. As pointed out in
[4], for uniform distributions, the average occupancyu ap-
proximates toc · ln 2. Moreover,RW (Z) ≈ (VW (Z)/VS) ·n,
whereVW (Z) (resp.VS) is the volume ofW (Z) (resp.S),
andn is the number of records in the database. Hence, the
average complexity of the procedureNeighbors , in case
of uniform distribution of the data, is

KZ + LZ ≈ (1 + t) · LZ ≈ (1 + t) · VW (Z) · n
VS · c · ln 2

Let us now bound the complexity of the
NearestNeighbor procedure. We denote with
C(r, d) the complexity (in the worst- or average-case) of
the procedureNeighbors with query pointr and search
sphere centered atr with radiusd. Morover, we denote
with Ĉ(r) the complexity (in the worst- or average-case)
of the procedureNearestNeighbor with query point
r. We have thatC(r, d′) ≤ Ĉ(r) ≤ C(r, d′′), whered′ is
the distance betweenr and itsnearestneighbor andd′′ is
the distance betweenr and itsfirst neighbor, i.e. the first
neighbor that the procedureFONfinds.

3.3. Experimental Results

We evaluated the algorithms on records having a differ-
ent number of attributes and having random uncorrelated
attribute values. We executed these tests on a database of
more than 6000 records, each record having, in different
tests, an increasing number of attributes. Each search test
has been repeated 100 times with randomly generated val-
ues, to obtain sound mean values as result.

As for the time needed to perform the search, we can
distinguish two different situations by fixing, respectively,
the number of space dimensions and the threshold value:
(i) given the number of space dimensions, NNWT perfor-
mances decrease with increasing threshold values; (ii) given
a threshold value, NNWT performances decrease when the

number of space dimensions increases. The reason of such
a behaviour is that, for high threshold values or for spaces
with a high number of dimensions, NNWT must perform
heavy computations to find the path for accessing the suit-
able grid regions. Similar tests on the NN algorithm have
shown that NN performances are always better than the
sequential search (the algorithm we used for comparison)
ones: differences in search time decrease with the increase
of the number of space dimensions.

Image databases are usually characterized by a huge
number of clusters and, when shape is used to represent im-
age objects, by a high-dimensional search space. It is worth
noting that in high-dimensional spaces, image features al-
low one to precisely discriminate among different objects
and thus limited threshold values are sufficient. This allows
us to conclude that extended grid files are suitable structures
for indexing image databases.

4. An application to image databases

The application image database was created by scanning
a large number of 2D geometric figures. For each class of
figures, e.g., squares, rectangles, circles, etc., several im-
ages have been considered by traslating, scaling and rotat-
ing a reference image.

During pre-processing, the feature vector,V (sms(Xi)),
was computed for each image and stored in the database in-
stead of the digitized images themselves. The dimensions
of the feature vector vary according to the object class, i.e.,
the number of segments needed to approximate the SMS.
For a given object class whose skeleton approximation re-
quiresNi segments, the feature vector will be composed by
Ni · (L + 4) components. In particular, the numberNi of
segments depends on the complexity of the object shape (it
is proportional to the number of sides of the polygon which
approximates the shape) and the parameterL is strictly de-
pendent on the accuracy required to represent the object it-
self. In our application, the parameterNi ranges from 2
to 16 and the parameterL has been fixed to 4. We have
studied the behaviour of our image retrieval system, on the
basis of the typical performance parameters: (i) precision
(P = mT /(mF +mT)), (ii) recall (R = mT /Mk), and (iii)
goodness (G = (mT − mF)/Mk), wheremT (resp.mF)
is the number of correct (resp. false) objects returned by the
query andMk the number of correct objects really existing
in the database. As an example, let us consider the retrieval
of the images which are similar to the query image in Figure
5a. The query image is contained into the database. Figure
5b shows the corresponding skeleton, and Figure 5c shows
the retrieved images. The left image is exactly the query
image, while the right image is the most similar. The query
has obtained the optimum result:mT = 2, mF = 0, and
Mk = 2, henceP = R = G = 1.

(a) (b)

(c)

Figure 5. NN search for an image in the database

5. Conclusions

In this paper, we have proposed an extension of grid
files for indexing image databases. Grid files are a good
choice for indexing multidimensional databases with a fixed
number of attributes, whenever point and range queries are
needed. Since many image databases need to support point,
range and nearest neighbors queries on data with a vary-
ing number of attributes, we proposed a suitable extension
of grid files and checked it by means of some experimen-
tal tests. These tests have shown that the proposed NN and
NNWT algorithms are suitable for image databases with a
varying number of attributes, provided that the number of
clusters is large and the threshold values (NNWT algorithm)
are low.

References

[1] G.L. Foresti, C.S. Regazzoni, and A.N. Venet-
sanopoulos. Coding of Noisy Binary Images by Us-
ing Statistical Morphological Skeleton. IEEE Work-
shop on Non Linear Signal Processing, Cyprus, 354–
359, 1995.

[2] P. W. Huang and Y.R. Jean. Reasoning about Pictures
and Similarity Retrieval for Image Information Sys-
tems Based on sk-Set Knowledge Representation.
Pattern Recognition, 28(12): 1915–1925, 1995.

[3] P. Maragos and R.W. Schafer. Morphological Skele-
ton Representation and Coding of Binary Images.
IEEE Transactions on Acoustic, Speech and Signal
Processing, 34: 1228–1244, 1986.

[4] J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The
Grid File: An Adaptable, Symmetric, Multikey File
Structure.ACM Transactions on Database Systems,
9: 39-71, 1984.

