
On the Complexity of Hybrid Logics
with Binders

Balder ten Cate1 and Massimo Franceschet1,2

1 Informatics Institute, University of Amsterdam,
Kruislaan 403 – 1098 SJ Amsterdam, The Netherlands

2 Department of Sciences, University “G. D’Annunzio”,
Viale Pindaro, 42 – 65127 Pescara, Italy

Abstract. Hybrid logic refers to a group of logics lying between modal
and first-order logic in which one can refer to individual states of the
Kripke structure. In particular, the hybrid logic HL(@, ↓) is an appealing
extension of modal logic that allows one to refer to a state by means of
the given names and to dynamically create new names for a state.
Unfortunately, as for the richer first-order logic, satisfiability for the hy-
brid logic HL(@, ↓) is undecidable and model checking for HL(@, ↓) is
PSpace-complete. We carefully analyze these results and we isolate large
fragments of HL(@, ↓) for which satisfiability is decidable and model
checking is below PSpace.

1 Introduction

There is a general interest in well-behaved logical languages in-between the basic
modal language and full first-order logic. Ideally, one would like such languages to
combine the good properties of both: to be reasonably expressive, to be decidable,
and to have other good properties, such as the interpolation property. Famous
examples of fragments that have been studied are the guarded fragment [1, 2]
and the two variable fragment [3, 4]. Both are decidable, reasonably expressive
languages, but they lack interpolation.

The hybrid logic HL(@, ↓) is another example of a language in between the
basic modal language and full first-order logic. It extends the basic modal lan-
guage with three constructs: nominals, which act as names of states of the model,
the satisfaction operator @, which allows one to express that a formula holds
at the state named by a nominal, and the binder ↓, which allows one to give a
name to the current state. Together, these three elements greatly increase the
expressivity of the language. Moreover, like the basic modal language and full
first-order logic, HL(@, ↓) has the interpolation property. Unfortunately, it is
undecidable.

The language HL(@, ↓) is a natural fragment of first-order logic: it is the
generated submodel invariant fragment [5], it is the least expressive extension of
the basic hybrid language HL(@) with interpolation [6], and, finally, it has been
characterized as the intersection of first-order logic with second-order proposi-
tional modal logic [7]. HL(@, ↓) has been used in the context of semistructured



data. In particular, [8] gives an application of model checking in hybrid logic to
the problems of query and constraint evaluation for semistructured data.

In this paper, we give an in-depth analysis of the undecidability of HL(@, ↓).
We show how decidability can be regained by making a syntactic restriction on
the formulas, or by restricting the class of models in a natural way. Moreover,
we show how these and similar syntactic and semantic restrictions affect the
complexity of the model checking problem for hybrid languages.

In Section 2 we introduce hybrid logic, and in Section 3 we revisit the unde-
cidability result for HL(@, ↓). In Section 4 and 5, we show how decidability can
be regained by restricting the language and the class of models, respectively. In
Section 6 we investigate how these and similar restrictions affect the complexity
of the model checking problem for hybrid logic. We conclude in Section 7.

2 Hybrid Logic

In its basic version, hybrid logic extends modal logic with devices for naming
(individual) states and for accessing states by their names. The key idea is the
use of nominals. Syntactically, nominals behave like ordinary propositions, but
they have an important semantic property. A nominal is true at exactly one state
of the model. In such a way, it gives a name to that point. Besides nominals,
the hybrid language HL(@, ↓) also contains @-operators, that allow one to state
that a formula is true at a state named by a nominal, and the ↓-binder, that
allows one to introduce variables to name points. Formally, HL(@, ↓) is defined
as follows.

Let PROP = {p, q, . . .} be a (countably) infinite set of proposition sym-
bols, NOM = {i, j, . . .} be a (countably) infinite set of nominals, and SVAR =
{x, y, . . .} be a (countably) infinite set of state variables. We assume that these
sets are disjoint. The formulas of the hybrid language HL(@, ↓) are given by the
following recursive definition.

α := > | p | t | ¬α | α ∧ β | 3α | @tα | ↓x.α

where p ∈ PROP, t ∈ NOM ∪ SVAR and x ∈ SVAR. We will use the familiar
shorthand notations, such as 2α for ¬3¬α. The notions of free and bound vari-
ables are defined similarly as in first-order logic. A hybrid sentence is a hybrid
formula with no free variables. The width of a formula α is the maximum number
of free variables of any subformula of α.

The binder ↓ binds a variable to the current state of evaluation. For instance,
the formula ↓x.3x says that the current state is reflexive. The @ operator com-
bines naturally with the ↓ binder: while ↓ stores the current state of evaluation,
@ enables us to retrieve the information stored by shifting the point of evalu-
ation. As an example, the formula ↓x.3↓y.@x2y states that the current point
has exactly one successor.

Hybrid formulas are interpreted over hybrid Kripke structures (or hybrid
models) of the form M = (W,R, V ) where W is a set of states, R is a binary
relation over W called the accessability relation, and V : PROP∪NOM → ℘(W )



is a valuation function that assigns to each proposition letter or nominal a set of
states, such that V (i) is a singleton set for each nominals i. The pair F = (W,R)
is called the frame of M and M is said to be a model based on the frame F .

An assignment for M is a function g : SVAR → W . Given such an assignment
g, a variable x ∈ SVAR and a state w ∈ W , we will use gx

w to refer to the
assignment that is identical to g except that maps x to w. Formally, gx

w(y) = x
for y = x and gx

w(y) = g(y) for y 6= x.
Let M = (W,R, V ) be a hybrid model, g an assignment for M , and let

w ∈ W . For any nominal i, let [i]M,g = V (i), and for any state variable x, let
[x]M,g = {g(x)}. The semantics of HL(@, ↓) is as follows:

M, g, w ° >
M, g, w ° p iff w ∈ V (p)
M, g, w ° t iff w ∈ [t]M,g for t ∈ NOM ∪ SVAR
M, g, w ° ¬α iff M, g, w 6° α
M, g, w ° α ∧ β iff M, g, w ° α and M, w ° β
M, g, w ° 3α iff there is a w′ ∈ W such that wRw′ and M, g,w′ ° α
M, g, w ° @tα iff M, g, w′ ° α where {w′} = [t]M,g

M, g, w ° ↓x.α iff M, gx
w, w ° α

Define the first-order correspondence language to be the first-order language
with equality that has one binary relation symbol R, a unary relation symbol p
for each p ∈ PROP and a constant i for each nominal i ∈ NOM. Every hybrid
Kripke structure (W,R, V ) can be viewed as a relational structure for the first-
order correspondence language: the binary relation symbol R is interpreted by
the accessibility relation R, the unary relation symbols p are interpreted by V (p),
and each constant i denotes the unique state w such that V (i) = {w}. Then,
the following Standard Translation, defined by mutual recursion3 between two
functions STx and STy, embeds HL(@, ↓) into the first-order correspondence
language (where p ∈ PROP and t ∈ NOM ∪ SVAR):4

STx(>) = > STy(>) = >
STx(p) = p(x) STy(p) = p(y)
STx(t) = x = t STy(t) = y = t
STx(¬α) = ¬STx(α) STy(¬α) = ¬STy(α)
STx(α ∧ β) = STx(α) ∧ STx(β) STy(α ∧ β) = STy(α) ∧ STy(β)
STx(3α) = ∃y.(xRy ∧ STy(α)) STy(3α) = ∃x.(yRx ∧ STx(α))
STx(@tα) = ∃y.(y = t ∧ STy(α)) STy(@tα) = ∃x.(x = t ∧ STx(α))
STx(↓z.α) = ∃z.(z = x ∧ STx(α)) STy(↓z.α) = ∃z.(z = y ∧ STy(α))

3 Mutual recursion is used in order to limit the number of variables occurring in the
translation.

4 As was pointed out by Guillaume Malod (personal communication), the clause for
the ↓-binder in the Standard Translation for HL(@, ↓) given in [5], i.e., STx(↓z.α) =
STx(α)[z/x] and STy(↓z.α) = STy(α)[z/y], is incorrect. Indeed, consider the formula
↓z.33z. The Standard Translation of this formula according to the definitions in [5]
is ∃y.(xRy ∧ ∃x.(yRx ∧ x = z))[z/x] = ∃y.(xRy ∧ ∃x.(yRx ∧ x = x)), which clearly
fails to capture the semantics of the hybrid formula.



Here, it is assumed that the variables x, y do not occur in α. For each
HL(@, ↓)-formula α with free variables y1, . . . , yn, STx(α) is a first-order for-
mula with free variables in {x, y1, . . . , yn}. Moreover, it is easy to show that for
any Kripke structure M , assignment g and world w, M, g,w ° α if, and only
if, M, gx

w |= STx(α). It follows that HL(@, ↓) is a fragment of the first-order
correspondence language. In fact, this fragment admits several natural charac-
terizations, as mentioned in the introduction.

In Section 4, we will consider a further extension of HL(@, ↓), containing the
global modality E and the converse operator 3− (whose duals will be denoted
by A and 2−, respectively). These have the following semantics:

M, g, w ° Eα iff there is a w′ ∈ W such that M, g, w′ ° α
M, g, w ° 3−α iff there is a w′ ∈ W such that w′Rw and M, g, w′ ° α

or, in terms of the Standard Translation:

STx(Eα) = ∃y.(y = y ∧ STy(α)) STy(Eα) = ∃x.(x = x ∧ STx(α))
STx(3−α) = ∃y.(yRx ∧ STy(α)) STy(3−α) = ∃x.(xRy ∧ STx(α))

For θ1, . . . , θn ∈ {↓, @, E, 3−}, we will use HL(θ1, . . . , θn) to refer to the exten-
sion of the modal language with nominals and the operators θ1, . . . , θn (if ↓ is
among θ1, . . . , θn, then the language is understood to contain state variables as
well). The language HL(@, ↓, E, 3−), which we will also refer to as the full hybrid
language (FHL), provides a natural upper bound on expressive power of hybrid
languages: it is known to be expressively complete for first-order logic. In other
words, every formula of the first-order correspondence language is equivalent to
the standard translation of a FHL-formula.

So far, we have only introduced uni-modal HL(@, ↓). This was only for con-
venience of exposition. It is straightforward to extend the above definitions to
the multi-modal case. In fact, in the remainder of this paper, we will frequently
make use of multi-modal formulas.

3 The Undecidability of HL(@, ↓) Revisited

In this section, we revisit the negative result that is central to this paper: the
undecidability of HL(@, ↓) [9]. We present a new undecidability proof based on
an encoding of the N× N tiling problem. It will help us identify the real source
of the undecidability.

Let us first recall the N × N tiling problem. A tile type is a square, fixed in
orientation, each side of which has a color. Formally, it can be identified with a
4-tuple of elements of some finite set of colors. To tile a space, we have to ensure
that adjacent tiles have the same color on the matching sides. The N× N tiling
problem is then: given a finite set of tile types T , can the infinite grid N × N
be tiled using only tiles of the types in T? This problem is well known to be
undecidable (see, e.g., [10]).

We will reduce this problem to the satisfiability problem for HL(@, ↓) with
three modalities: 31 (to move one step up in the grid), 32 (to move one step



to the right in the grid), and 3 (to reach all the points of the grid), interpreted
by the accessibility relations R1, R2 and R, respectively. Let T be a finite set of
tiles, and for each tile t ∈ T let left(t), right(t), top(t), and bottom(t) denote the
four colors of t. We will now give a hybrid formula πT that describes a tiling of
N×N using the tile types in T . Note that the formula πT given below is not the
simplest possible encoding of the tiling problem. The reason is that the specific
syntactic shape of πT will be further exploited later on in the paper.

Spypoint α = s∧3s∧23s∧221↓x.(3(s∧3x))∧222↓x.(3(s∧3x)), where
s is a nominal. This formula says that the current world is named s, that the
set of its R-successors is closed under R1 and R2, and that each R-successor
of s has s as an R-successor.

Functionality β =
∧

i=1,2

(
23i>∧2↓x.2(s → 2(2ix∨2i¬x))

)
. This formula,

which is equivalent to
∧

i=1,2

(
23i> ∧ 2↓x.2(s → 2(3ix → 2ix))

)
, says

that, within the submodel consisting of all R-successors of s, the relations
R1 and R2 are in fact total functions.

Grid γ = 2↓x.2(s → 2(2122¬x ∨ 2221x)). This formula, which, in the pres-
ence of functionality is equivalent to 2↓x.2(s → 2(3132x → 3231x)),
expresses that R1 and R2 commute.

Tiling δ = 2(δ1 ∧ δ2 ∧ δ3), where

δ1 =
∨

t∈T (pt ∧
∧

t′∈T ;t 6=t′ ¬pt′)
δ2 =

∧
t∈T (pt → 22

∨
t′∈T ;left(t′)=right(t) pt′)

δ3 =
∧

t∈T (pt → 21

∨
t′∈T ;bottom(t′)=top(t) pt′)

Formula δ1 states that exactly one tile is placed at each node of the grid, δ2

says that horizontally adjacent tiles must match, and δ3 says that vertically
adjacent tiles must match. Hence, δ states that the grid is well-tiled.

It is easy to prove that T tiles N×N iff the hybrid formula πT = α∧β∧γ∧ δ
is satisfiable.

Notice that the formula πT does not contain any @-operators, it does not
nest the ↓ binder, and it uses only one state variable. Hence, the source of
undecidability for hybrid logic is neither the @-operator, nor the nesting degree
of ↓, nor the number of state variables used the formulas. Instead, as we will show
in the next section, the source of undecidability is the 2↓2-pattern of β and γ
(i.e., a 2-operator scoping over a ↓ that in turn has scope over a 2-operator).
For formulas not containing this pattern, the satisfiability problem is decidable.

We conclude this section by briefly surveying undecidability proofs for hybrid
logic with ↓ binder. The first undecidability proofs appear in [9, 11]. Both the
proofs reduce an undecidable tiling problem into the satisfiability for hybrid logic
with ↓ binder. The reduction of Goranko [11] uses a global modality, whereas
Blackburn and Seligman [9] eliminate the use of a global modality by means of a
spy point construction (cf. the formula α above). The encoding of [9] uses nested
occurrences of the ↓ binder. Areces, Blackburn, and Marx [12] give another un-
decidability proof by a reduction of the undecidable global satisfaction problem



for K23 (the class of frames in which every state has at most 2 successors and
at most 3 two-step successors). This proof has the advantage that it uses no
nominals and no proposition letters. However, it does use nested occurrences of
↓. Finally, Marx [13] gives another proof of undecidability by a reduction from
a tiling problem. The formulas used in this proof do not nest ↓ and contain only
one state variable. Moreover, only one modality is used. However, the encoding
is more involved than ours. Each of these proofs use formulas containing the
2↓2-pattern. The proof given above is reasonably simple, and it will help show
the precise role of the 2↓2-pattern.

4 Syntactic Restrictions

In this section, we will show that the undecidability of HL(@, ↓) is caused by
formulas containing the 2↓2-pattern. We show that without such formulas, the
satisfiability problem is still decidable, even when the global modality and con-
verse modalities are added to the language.

Consider the full hybrid language FHL. In what follows, it will be convenient
to consider the universal operators 2 and 2−, and the disjunction ∨, to be
primitive operators (rather than shorthand notations). Moreover, we will restrict
attention to sentences, i.e., formulas with no free state variables. This is not an
essential limitation, since one can always replace free variables by nominals.

We say that a formula of FHL is in negation normal form (NNF) if the nega-
tion symbol appears only in front of atomic subformulas. Each hybrid formula is
equivalent to a hybrid formula in NNF. For instance, ¬↓x. 3(x∧¬p) is equivalent
to ↓x. 2(¬x ∨ p).

We call universal operators the modalities 2, 2− and A, and existential
operators the modalities 3, 3− and E. We define a 2↓-formula (respectively,
3↓-formula) as a hybrid formula in NNF in which some occurrence of ↓ is in the
scope of a universal (respectively, existential) operator. Moreover, we define a
↓2-formula (respectively, ↓3-formula) as a hybrid formula in NNF in which an
occurrence of a universal (respectively, existential) operator is in the scope of a
↓. Similar definitions hold for different patterns. For example, 2↓2-formula is a
formula in NNF containing a universal operator that contains in its scope a ↓
that contains in its scope a universal operator. A ↓-formula is simply a formula
in NNF containing a ↓ binder. Given a pattern π, we define FHL \ π to be the
fragment of FHL consisting of all formulas in NNF that are not of the form π.
Notice that such fragments are not necessarily closed under negation.

Theorem 1. There exists a polynomial satisfiability-preserving translation from
FHL \ 2↓ to HL(@, 3−, E). Moreover, the translation preserves satisfiability
relative to any class of frames.

Proof. It is convenient to introduce a new hybrid binder ∃. We add to the lan-
guage formulas of the form ∃x.α, where x is a state variable, interpreted as
follows:

M, g,w ° ∃x.α iff M, gx
v , w ° α for some state v



Notice that ↓ can be defined in terms of ∃ as follows: ↓x.α ≡ ∃x.(x ∧ α).
Let us proceed with the proof. Let α0 be a hybrid formula in FHL \2↓. We

show how to polynomially translate α0 into a formula α3 in HL(@, 3−, E) such
that α0 is satisfiable if, and only if, α3 is satisfiable. The translation consists of
three steps:

1. Let α1 be obtained from α0 be replacing each subformula of the form ↓x.ϕ
by ∃x(x ∧ ϕ). Since no occurrence of the ↓ binder in α0 is in the scope of a
universal operator, the same holds for the occurrences of the ∃ binder in α1;

2. rewrite α1 into quantifier prefix form (i.e., where all occurrences of ∃ are
in front of the formula), using the following equivalences: 3∃x.ϕ ≡ ∃x.3ϕ,
3−∃x.ϕ ≡ ∃x.3−ϕ, E ∃x.ϕ ≡ ∃x.Eϕ, @t∃x.ϕ ≡ ∃x.@tϕ, ψ∧∃x.ϕ ≡ ∃x.(ψ∧
ϕ), ψ∨∃x.ϕ ≡ ∃x.(ψ∨ϕ). Note that renaming of variables might be necessary.
Let α2 be the resulting formula;

3. Let α3 be obtained from α2 by replacing each state variable by a fresh
nominal and removing the corresponding existential quantifiers.

The resulting formula α3 is in HL(@, 3−, E), the length of α3 is linear in the
length of α0, and α0 and α3 are easily seen to be equi-satisfiable. ut

To illustrate the above proof, consider the formula ↓x. 3↓y. @x(3(y ∧ q) ∧
2(2¬y ∨ p)), which does not contain the 2↓-pattern. It can be rewritten as
follows:

↓x. 3↓y. @x(3(y ∧ q) ∧2(2¬y ∨ p)) ≡
∃x. (x ∧3∃y. (y ∧@x(3(y ∧ q) ∧2(2¬y ∨ p)))) ≡
∃x.∃y. (x ∧3(y ∧@x(3(y ∧ q) ∧2(2¬y ∨ p)))) ∼=
i ∧3(j ∧@i(3(j ∧ q) ∧2(2¬j ∨ p)))

Corollary 1. The satisfiability problem for FHL \2↓ is ExpTime-complete.

Proof. The lower bound follows from the fact that FHL \ 2↓ embeds the basic
modal language with global modality, which is known to have an ExpTime-
complete satisfiability problem [14]. The upper bound follows from Theorem 1
since satisfiability of HL(@, 3−, E)-formulas can be decided in ExpTime [15].

We now prove the mirror image of Theorem 1: satisfiability for FHL \ ↓2 is
decidable. The technique we use is similar to the one used by Marx [13]: we em-
bed FHL\↓2 into the ∀-guarded fragment. The ∀-guarded fragment of first-order
logic consists of all formulas constructed from atomic formulas and their nega-
tions using conjunction, disjunction, existential quantification, and guarded uni-
versal quantification. Hence only the universal quantification is constrained. The
satisfiability problem for ∀-guarded first-order formulas is 2ExpTime-complete.
It is ExpTime-complete when there is a uniform bound on the width of the
formula. For more details, cf. [16].

Theorem 2. The satisfiability problem for FHL\↓2 is in 2ExpTime. The sat-
isfiability problem for FHL\↓2-formulas of bounded width is ExpTime-complete.



Proof. Let α be any FHL \ ↓2-sentence. We will show by induction on α that
STx(α) is ∀-guarded. Since STx(α) can be obtained from α in polynomial time,
this proved that the satisfiability problem for FHL \ ↓2 is in 2ExpTime.

To smoothen the induction, we will prove the result for any subformula α
of a FHL \ ↓2-sentence. If α is a (negated) atomic formula, then STx(α) is
quantifier-free, hence ∀-guarded. If α is of the form α1 ∧ α2 or α1 ∨ α2, then by
the induction hypothesis, STx(α) is the conjunction (respectively, disjunction)
of two ∀-guarded formulas, and hence is ∀-guarded.

Next, suppose α is of the form Xα1, where X is an existential operator or
an @-operator. By the induction hypothesis, STy(α1) is ∀-guarded. Inspection
of the relevant clauses of the Standard Translation shows that STx(α) is also
∀-guarded.

Next, suppose α is of the form Xα1, where X is a universal operator. Again,
by induction hypothesis, STy(α1) is ∀-guarded. Moreover, by assumption α is a
subformula of a FHL \ ↓2-sentence. It follows α1 cannot contain any free state
variables (for, these would have to be bound higher up). It follows that STy(α1)
contains no free variables besides (possibly) y. Inspection of the relevant clauses
of the Standard Translation shows that this variable y is appropriately guarded
in STx(α), and hence STx(α) is ∀-guarded.

Finally, suppose α is of the form ↓z.α1. Then, STx(α) = ∃z.(z = x∧STx(α1)).
By induction hypothesis, STx(α1) is ∀-guarded. It follows that STx(α) is also
∀-guarded.

It is easy to see that, if a hybrid formula α has width w, then the width of
STx(α) is at most w + 2. Hence, a bound on the width of the FHL \ ↓2-formula
implies a bound on the width of its ∀-guarded standard translation. Since the
satisfiability problem for ∀-guarded formulas of bounded width is ExpTime-
complete, this gives us an ExpTime upper bound. The lower bound follows
from the ExpTime-hardness of the basic modal logic extended with the global
modality [14]. ut

Satisfiability for FHL \ ↓2 is ExpTime-hard, since satisfiability for modal
logic with the global modality is already ExpTime-hard [14]. We don’t know the
exact complexity of FHL \ ↓2, but we conjecture that it is ExpTime-complete.

By combining the techniques used to prove Theorems 1 and 2, we have the
main result of this section:

Theorem 3. The satisfiability problem for FHL \ 2↓2 is in 2ExpTime. The
satisfiability problem for FHL \ 2↓2-formulas of bounded width is ExpTime-
complete.

Proof. Let α ∈ FHL \ 2↓2. If α ∈ FHL \ ↓2, then the satisfiability of α can
be decided in 2ExpTime by Theorem 2. Suppose therefore that α 6∈ FHL \ ↓2.
Let β be a minimal ↓2-subformula of α. Since α ∈ FHL \ 2↓2, β cannot be in
the scope of a universal operator in α. It follows that this occurrence of ↓ can
be removed as in the proof of Theorem 1. Repeating this step for each minimal
↓2-subformula of α, we obtain a formula β ∈ FHL \ ↓2 that is satisfiable iff α is
satisfiable. By Theorem 2, satisfiability of β can be checked in 2ExpTime. The



ExpTime-completeness in the case of bounded width follows from the bounded
width case of Theorem 2. ut

To illustrate the above proof, consider the formula α = 3↓x.2↓y.@y3x. It
contains both the ↓2- and the 2↓-pattern, hence neither Theorem 1 nor Theorem
2 can be applied. However, α does not contain the 2↓2-pattern, hence Theorem
3 can be invoked. There exists only one minimal ↓2-subformula of α, that is
β = ↓x.2↓y.@y3x. The outermost occurrence of ↓ in β is not in the scope of
any universal operator in α, hence it can be removed as done in Theorem 1.
The resulting equi-satisfiable formula is α′ = 3(i ∧ 2↓y.@y3i), which does not
contain the ↓2-pattern anymore. Hence Theorem 2 can be applied to it.

Since the negation of an FHL \3↓3-formula is equivalent to an FHL \2↓2-
formula, we have as a corollary the following dual result.

Corollary 2. The validity problem for FHL\3↓3 is in 2ExpTime. The validity
problem for FHL \3↓3-formulas of bounded width is ExpTime-complete.

In particular, if a hybrid formula φ contains neither the 2↓2 pattern nor the
3↓3 pattern, then both satisfiability and validity of φ are decidable.

5 Semantic Restrictions

In this section, we restrict attention to uni-modal models of bounded width, i.e.,
models with only one binary relation R, in which each node is R-related only
to a restricted number of points. More precisely, for any cardinal κ, let Kκ be
the class of uni-modal models in which for every node d there are strictly less
than κ nodes e such that (d, e) ∈ R. In particular, K2 is the class of models in
which every points has at most one R-successor, and Kω is the class of models in
which every node has only finitely many R-successors. We will refer to elements
of Kκ as κ-models for short. In what follows we will consider the satisfiability
problem of HL(@, ↓) and of the first-order correspondence language on κ-models,
for particular κ. Our results are summarized in Table 1. All results generalize to
the case with multiple modalities, except for the decidability of the first-order
correspondence language on K2.

The terminology and results used in this section can be found in [17] and [10],
or in other texts on computational complexity. In particular, we follow the usual
terminology from recursion theory: the language of second-order arithmetic is
the second-order language with constants 0, 1, function symbols + and ×, and
equality. Formulas of second-order arithmetic are interpreted over the natural
numbers. A Σ1

1 formula of second order arithmetic is a formula of the form
∃R1 . . . Rn.φ where φ contains no second-order quantifiers. A set A of natural
numbers is said to be in Σ1

1 if it is defined by a Σ1
1 formula that has one free first-

order variable and no free second-order variables. A set A of natural numbers is
Σ1

1 -hard if for every B in Σ1
1 there is a computable function f : N→ N such that

for all n ∈ N, n ∈ B iff f(n) ∈ A. A set of natural numbers is Σ1
1 -complete if it is

both in Σ1
1 and Σ1

1 -hard. It is well known that Σ1
1 -hard sets are not recursively



Table 1. Complexity of the satisfiability problem on κ-models.

HL(@, ↓) first-order correspondence language

κ = 1 NP-complete NExpTime-complete
κ = 2 NP-complete Decidable, not elementary recursive
3 ≤ κ < ω NExpTime-complete Π0

1 -complete (co-r.e., not decidable)
κ = ω Σ0

1 -complete (r.e., not decidable) Σ1
1 -complete (highly undecidable)

κ > ω Π0
1 -complete (co-r.e., not decidable) Π0

1 -complete (co-r.e., not decidable)

enumerable. When one speaks of an arbitrary decision problem as being in Σ1
1 or

Σ1
1 -hard, it is implicitly understood that the instances of the decision problem

are coded into natural numbers (under some computable encoding).
Following [17], we call a decidable problem elementary recursive if the time

complexity can be bounded by a constant number of iterations of the exponential
function.

Theorem 4. The satisfiability problem of HL(@, ↓) on Kκ is:

1. NP-complete, for κ = 1, 2.
2. NExpTime-complete, for 3 ≤ κ < ω.
3. Recursively enumerable but not decidable, for κ = ω.
4. Co-recursively enumerable but not decidable, for κ > ω.

Proof. Point 1. The lower bound follows from the NP-hardness of propositional
satisfiability. The upper bound is proved by establishing the polynomial size
model property.

For κ = 1, 2, every κ-satisfiable HL(@, ↓)-formula is satisfiable in a κ-model
with at most O(|φ|2) nodes. For, suppose M, g, w ° φ for some κ-model M =
(W,R, V ) and assignment g. Let W ′ ⊆ W consist of all worlds that are reachable
from w or from a world named by one of the nominals occurring in φ in at most
md(φ) steps, where md(φ) is the modal depth of φ. Let M ′ be the submodel of
M with domain W ′. Clearly, M ′ is a κ-model and M ′ satisfies the cardinality
requirements and a straightforward induction argument shows that M ′, g, w ° φ.

This leads to a non-deterministic polynomial time algorithm for testing sat-
isfiability of an HL(@, ↓)-formula φ on κ-models, for κ = 1, 2. The algorithm first
non-deterministically chooses a candidate model (M, g, w) of size O(|φ|2), and
then it tests whether M, g, w ° φ and M ∈ Kκ. The latter tests can be performed
in polynomial time using a top down model checking algorithm (cf. Theorem 6).

Point 2 (Upper bound). For 3 ≤ κ < ω, every formula satisfiable on a κ-
model is satisfiable on a κ-model with at most O(|φ|·κmd(φ)) nodes. For, suppose
M, g, w ° φ for some κ-model M = (W,R, V ) and assignment g. Let W ′ ⊆ W
consist of all worlds that are reachable from w or from a world named by one of
the nominals occurring in φ in at most md(φ) steps. Let M ′ be the submodel of
M with domain W ′. Note that the cardinality of M ′ is O(|φ| · κ|φ|), and M ′ is
still a κ-model. Furthermore, a straightforward induction argument shows that
M ′, g, w ° φ.



This leads to a non-deterministic ExpTime algorithm for testing satisfiability
of an HL(@, ↓)-formula φ on κ-models. The algorithm first non-deterministically
chooses a candidate model (M, g,w) of size O(|φ| · κ|φ|), and then tests whether
M, g, w ° φ. The latter test can be performed in time O(|M ||φ|) [8], which is
O((|φ| · κ|φ|)|φ|) = O(|φ||φ| · κ(|φ|2)).

Point 2 (Lower bound). Consider monadic first-order formulas without equal-
ity, i.e., first-order formulas containing unary predicates only, without equality.
Any such satisfiable formula φ of length n has a model with at most 2n nodes, and
the satisfiability problem for such formulas is NExpTime-complete [17, Section
6.2.1]. We will reduce this problem to the satisfiability problem for HL(@, ↓)-
formulas on κ-models (for 3 ≤ κ < ω), thus showing that the latter problem is
NExpTime-hard.

Fix a nominal i, and for any monadic first-order formula φ without equality,
define φ+ inductively, such that (x = y)+ = @xy, (Px)+ = @xp, (·)+ commutes
with the Boolean connectives and (∃x.ψ)+ = @i3

|φ|↓x.ψ. In words, φ+ states
that φ holds in the submodel consisting of all points reachable from the point
named i in exactly |φ| many steps. In general, there can be up to (κ−1)|φ| many
points reachable from the point named i in exactly |φ| many steps (in particular,
this will be the case if the submodel generated by i is a (κ− 1)-ary tree). Thus,
φ is satisfiable iff φ is satisfiable in a model with at most 2|φ| nodes iff φ+ is
satisfiable in a κ-model, for κ ≥ 3.

Point 3. We will provide polynomial reductions between this problem and
the finite satisfiability problem for first-order logic. The satisfiability problem
for first-order logic on finite models is Σ0

1 -complete, even in the case with only
a single, binary relation [17, Section 3.2].

Trivially, if an HL(@, ↓)-formula is satisfiable in a finite model, it is satisfiable
in an ω-model. Conversely, if an HL(@, ↓)-formula is satisfiable in an ω-model
then is satisfiable in a finite model, since the modal depth of the formula provides
a bound on the depth of the model. Hence, the satisfiability problem of HL(@, ↓)
on ω-models reduces (by the Standard Translation) to the satisfiability problem
for first-order logic on finite models.

Conversely, the finite satisfiability problem for first-order logic can be reduced
to satisfiability of HL(@, ↓) on ω-models. Fix a nominal i, and for any first-order
formula φ, define φ+ inductively, such that (x = y)+ = @xy, (Rxy)+ = @x3y,
(·)+ commutes with the Boolean connectives and (∃x.ψ)+ = @i3↓x.ψ+. In
words, φ+ states that φ holds in the submodel consisting of the successors of the
point named i. It follows that φ is satisfiable in a finite model iff the HL(@, ↓)-
formula φ+ is satisfiable on an finitely branching ω-model.

Point 4. By the Löwenheim-Skolem theorem, a first-order formula is sat-
isfiable if and only if it is satisfiable on a finite or countably infinite model.
Since HL(@, ↓) is a fragment of first-order logic, the Löwenheim-Skolem theo-
rem also applies to HL(@, ↓)-formulas. It follows that the satisfiability problem
for HL(@, ↓) on countably branching models coincides with the general satisfi-
ability problem of HL(@, ↓), which is in Π0

1 by the Standard Translation and
Π0

1 -hard by the tiling argument from Section 3. ut



As the following theorem shows, the first-order correspondence language per-
forms much worse.

Theorem 5. The satisfiability problem of first-order sentences of the correspon-
dence language on Kκ is:

1. NExpTime complete, for κ = 1.
2. decidable but not elementary recursive, for κ = 2.
3. Co-recursively enumerable but not decidable, for 3 ≤ κ < ω.
4. Σ1

1 -hard, and hence neither recursively enumerable nor co-recursively enu-
merable, for κ = ω.

5. Co-recursively enumerable but not decidable, for κ > ω.

Proof. We prove here only the decidable cases (points 1 and 2). The reader is
referred to the full version of this paper [18] for a full proof of the theorem.

Point 1. This case coincides with the satisfiability problem for monadic first-
order logic (on 1-models, every formula of the form Rst is equivalent to ⊥),
which is known to be NExpTime complete [17].

Point 2. Consider the satisfiability problem for first-order logic with one
unary function symbol, an arbitrary number of unary relation symbols and equal-
ity (“the Rabin class”). This problem is decidable, but not elementary recursive
[17]. We will provide reductions between this problem and the satisfiability prob-
lem for first-order logic on 2-models.

Let φ be any first-order formula containing one unary function symbol f and
any number of unary relation symbols and equality. Let R be a binary relation
symbol, and let φR be obtained from φ by repeatedly applying the rewrite rules

– replace atomic formulas of the form Pf(t) by ∃x.(Rtx ∧ Px)
– replace atomic formulas of the form f(s) = t or t = f(s) by ∃x.(Rsx∧x = t)

until the function symbol f does not occur in the formula anymore (in case of
nested function symbols, the above rules might need to be applied several times).
It is not hard to see that φ is satisfiable iff φR ∧ ∀x∃y.Rxy is satisfiable on a
2-model.

Let φ be any first-order formula with one binary relation symbol R and any
number of unary relation symbols. Let f be a unary function symbol and let P
be a new unary relation, and let φf be the result of replacing all subformulas of
φ of the form Rst by Ps∧ (t = fs). Intuitively, the unary predicate P represents
the existence of a successor, and the unary function f encodes the successor of
a node, if it exists. One can easily see that φ is satisfiable on a 2-model iff φf is
satisfiable (simply let R denote the graph of f , or viceversa).

It follows that the satisfiability problem of first-order logic on 2-models is
decidable but not elementary recursive. ut

6 Model Checking

So far, we only studied the satisfiability and the validity problems. It is natural
to ask how our syntactic and semantic restrictions affect the complexity of the
model checking problem.



Given a hybrid model M , an assignment g, a state w, and a hybrid formula
α, the model checking problem is to check whether M, g, w ° α. We will restrict
ourselves to hybrid sentences. This is not a limitation, since one can always
replace the free variables by fresh nominals, expanding the model accordingly.

In [8], the authors give a polynomial time model checker for HL(@, 3−, E).
Moreover, they prove that the model checking problem for HL(@, ↓) is PSpace-
complete (as it is for full first-order logic), even for formulas without nominals,
@-operators and proposition letters.

Theorem 6. The model checking problem for HL(@, ↓) on κ-models can be
solved in polynomial time for κ ≤ 2, and is PSpace-complete for κ ≥ 3.

Proof. The first part of the theorem can be proved using a straightforward top-
down model checking algorithm. Since each state in the model has at most one
successor, the algorithm takes time linear in the length of the input formula.
As for the second part, the proof of PSpace-hardness of model checking for
HL(@, ↓) given in [8] uses a model with out-degree 2. It follows that the model
checking problem for HL(@, ↓) on κ-models, with κ ≥ 3, is PSpace-complete.

ut

For HL(@, E, ↓) and first-order logic, on the other hand, the model checking
problem is PSpace-complete even on 1-models [8].

In the following, we investigate how restrictions on the syntax of hybrid for-
mulas affect the complexity of model checking. Our first result is that, if formulas
containing the ↓2↓ pattern are excluded, then the model checking problem drops
from PSpace to NP.

Theorem 7. The model checking problem for FHL \ ↓2↓ is NP-complete.

Proof. To prove NP-hardness, we embed the satisfiability problem for propo-
sitional formulas (SAT) into the model checking problem for FHL \ ↓2↓. Let
φ(p1, . . . , pn) be any propositional formula, and let M = (W,R, V ), where W =
{0, 1} and R = W ×W (the valuation V is irrelevant). For each pk occurring in
φ, pick a corresponding state variable xk. Furthermore, let y be a state variable
distinct from all x1, . . . , xn. Let φ′ be obtained from φ by replacing each occur-
rence of a proposition letter pk by 3(xk ∧ y). Intuitively, the two states of M
represent truth and falsity, and among these two states the variable y denotes
the truth state. It is easily seen that the propositional formula φ is satisfiable
iff 3↓y3↓x13↓x2 . . . 3↓xn.φ′ is true in M (at any of the nodes 0, 1). The latter
formula contains no universal operators, and hence belongs to FHL \ ↓2↓.

To show that the problem is in NP, we give a nondeterministic algorithm that
solves the model checking problem in polynomial time. Let α be an FHL \ ↓2↓
sentence, M = (W,R, V ) be a model, v ∈ W and g be an assignment. Replace
each subformula of α of the form ↓x.ϕ by ∃x.(x∧ϕ), and apply the equivalences
given in the proof of Theorem 1 in order to move the existential quantifiers out
of the scope of as many connectives as possible. The resulting sentence α′ is
equivalent to α and has the following properties:



1. α′ is built up from literals (i.e., formulas of the form (¬)p, (¬)i or (¬)x)
using conjunction, disjunction, existential operators (3, 3−, E), universal
operators (2, 2−, A), and existential quantifiers.

2. All existential quantifiers in α′ either immediately follow a universal operator
(e.g., as in 2∃x1 . . . xnγ) or occur at the start of the formula.

3. For all subformulas of α′ of the form X∃x1 . . . xnγ, with X a universal op-
erator, γ contains no free variables besides x1, . . . , xn.

List all subformulas of α′ of the form Xβ, with X a universal operator and
β = ∃x1 . . . ∃xm.γ(x1 . . . xm), in order of increasing length. For each such β do
the following: create a new proposition symbol pβ and replace β by pβ in α′. For
each state w ∈ W , check whether M, g,w ° β, and, if the answer is positive,
then insert the state w in V (pβ).

The nondeterminism is hidden in the test M, g, w ° β. Indeed, to check
whether M, g,w ° ∃x1 . . . ∃xm.γ(x1 . . . xm), the algorithm guesses an assign-
ment w1, . . . , wm for the variables x1, . . . , xm, respectively, and then it checks
whether M, gx1,...,xm

w1,...,wm
, w ° γ(x1 . . . xm). Since γ does not contain any existen-

tial quantifiers (the subformulas were processed in order of increasing length),
it belongs to HL(@, 3−, E) and hence the model checking can be performed in
polynomial time.

The resulting formula is in HL(@, 3−, E) and thus it can be model checked
in polynomial time. ut

Notice that the NP-hardness holds even for formulas without proposition letters,
nominals and @-operators. A typical example of a formula to which Theorem 7
does not apply is ↓x.22↓y.@x3y, which expresses a local form of transitivity.

In Section 4, we saw that FHL \2↓2 has a decidable satisfiability problem.
We leave it as an open question whether the model checking complexity of that
fragment is also below PSpace (since the SAT problem can be embedded into
the model checking problem for FHL \2↓2 as done in the proof of Theorem 7,
the problem is at least NP-hard). Conversely, the fragment FHL\↓2↓, for which
we have just proved that the model checking problem is NP-complete, has an
undecidable satisfiability problem: it suffices to note that the encoding of the
tiling problem given in Section 3 does not make use of ↓2↓-formulas.

We conclude this section with a hierarchy of fragments of the full hybrid
language with ↓ binder that admits polynomial time model checking. If a hybrid
formula α has width w, then STx(α) has width at most w+2. Hence, a bound on
the width of the hybrid formulas implies a bound on the width of the standard
translations. Moreover, model checking for first-order formulas using a bounded
number of variables can be performed in polynomial time [19]. It is known that
first-order formulas of a bounded width can be rewritten using a bounded number
of variables (cf. [20] for an explicit proof). Thus, we obtain the following.

Theorem 8. The model checking problem for formulas of the full hybrid lan-
guage of bounded width can be solved in polynomial time.



7 Conclusion

In this paper, we described two ways to tame the power of hybrid logic with
binders. These are: (i) restricting the syntax by excluding formulas containing
the pattern 2↓2, and (ii) restricting the class of models by assuming a bound
on the branching degree of the models. Furthermore, we showed that similar
restrictions can be used to lower the complexity of the model checking task.

Our decidability result for FHL \2↓2 may be seen from a more general per-
spective: one could consider any sequence π ⊆ {2, 3, ↓,@}∗, where 2 stands for
“a sequence of universal modalities”, and 3 stands for “a sequence of existential
modalities”, and ask whether the satisfiability problem for FHL \π is decidable.
In particular, one could ask if there is such a sequence π that contains 2↓2 as
a subsequence and such that the satisfiability problem for FHL \ π is still decid-
able. Our undecidability proof in Section 3 (and more in particular the shape of
the formulas β and γ used there) shows that the answer is negative, and hence
Theorem 3 is tight.

Some results in this paper show that, under certain natural conditions, the
language HL(@, ↓) behaves better than the first-order correspondence language,
computationally speaking. Incidentally, the full hybrid language FHL has the
same expressive power as the first-order correspondence language, as was shown
in [21] by means of a translation HT mapping formulas of the first-order corre-
spondence to FHL-formulas. The most interesting clause of this translation says
HT(∃x.φ) = E↓x.HT(φ). It shows that, in some sense, the first-order quantifier
∃x consist of two parts, namely the picking a state of the model part, which is
captured by the global modality, and the variable binding part, which is cap-
tured by the ↓. The syntax of HL(@, E, ↓, 3−) allows us to distinguish these two
parts. One could say that our results identify computationally tractable frag-
ments of first-order logic that can only be distinguished once these two parts of
the quantifiers are split. In this sense, our paper can be seen as a fine study of
the structure of first-order quantifiers.

Finally, the outcomes of our investigation show once more that, from a com-
putational point of view, the satisfiability problem and the model checking prob-
lem for a logic are sensitive to different sources of complexity. Restricting the
model width makes satisfiability easier, but it does not lower the complexity of
model checking. On the other hand, restricting the formula width makes model
checking more tractable, but it does not affect the undecidability of satisfiability.
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