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Università di Udine

Via delle Scienze, 206 – 33100 Udine, Italy
francesc@dimi.uniud.it; montana@dimi.uniud.it

Abstract

Kowalski and Sergot’s Event Calculus (EC ) is a simple temporal formalism that, given a set of
event occurrences, derives the maximal validity intervals (MVIs) over which properties initiated
or terminated by these events hold. In this paper, we conduct a systematic analysis of EC
by which we gain a better understanding of this formalism and determine ways of augmenting
its expressive power. The keystone of this endeavor is the definition of an extendible formal
specification of its functionalities. This formalization has the effects of casting MVIs determination
as a model checking problem, of setting the ground for studying and comparing the expressiveness
and complexity of various extensions of EC, and of establishing a semantic reference against which
to verify the soundness and completeness of implementations.

We extend the range of queries accepted by EC, which is limited to boolean combinations of
MVI verification or computation requests, to support arbitrary quantification over events and
modal queries. We also admit specifications based on preconditions. We demonstrate the added
expressive power by encoding a number of diagnosis problems. Moreover, we provide a systematic
comparison of the expressiveness and complexity of the various extended event calculi against
each other. Finally, we propose a declarative encoding of these enriched event calculi in the logic
programming language λProlog and prove the soundness and completeness of the resulting logic
programs.

1 Introduction

The Event Calculus, abbreviated EC [KS86] is a simple temporal formalism designed to model and
reason about scenarios characterized by a set of events, whose occurrences have the effect of starting
or terminating the validity of determined properties. Events can be temporally qualified in several
ways. We consider the case where the time at which they happen is unknown and information
about the relative order of their occurrence can be missing [DB88]. Given a (possibly incomplete)
description of when these events take place and of the properties they affect, EC is able to determine
the maximal validity intervals, or MVIs, over which a property holds uninterruptedly. In practice,
since this formalism is usually implemented as a logic program, EC can also be used to check the truth
of MVIs and process boolean combinations of MVI verification or computation requests. The range
of queries that can be expressed in this way is however too limited for modeling realistic situations.

Several extensions of the basic EC have been designed in order to accommodate constructs in-
tended to enhance its expressiveness. In particular, the addition of modal capabilities to EC has
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been addressed in [CMP93, CMP94, DMB92, Esh88, Sha89]; primitives for dealing with continuous
change, discrete processes, and concurrent actions have been proposed in [Eva90, MMCR92, Sha90];
preconditions have been incorporated in different variants of basic EC [CFM97b]. However, a uni-
form framework that allows formally defining and contrasting the expressiveness and complexity of
the various extensions to EC is still lacking.

In this paper, we unify some of this previous work and carry a systematic analysis of EC . The
novel understanding of this formalism that emerges from this investigation reveals elegant ways of
augmenting its expressive power. The keystone of this endeavor is the definition of an extendible formal
specification of functionalities of EC . This formalization has the effects of casting MVIs derivation in
EC as a model checking problem, of setting the ground for studying and comparing the expressiveness
and complexity of various extensions to EC, and of establishing a semantic reference against which
to verify the soundness and completeness of implementations. We focus on the integration of boolean
connectives, event quantifiers, modalities, and preconditions into EC . We first study the properties of
extensions that separately incorporate each individual feature; then, we consider the effects of mixing
them together.

This paper is organized as follows. In Section 2, we introduce the specification formalism and
use it to describe the basic functionalities of EC . In Section 3, we formally define a number of
extensions of EC of increasing expressive power in a uniform way. Section 4 is devoted to exemplifying
how the resulting event calculi can adequately model certain diagnosis problems. In Section 5, we
thoroughly analyze and contrast the complexity of model checking in the proposed calculi. In Section 6,
we devise suitable approximate procedures for those event calculi in which model checking is an
intractable problem. In Section 7, we briefly introduce the logic programming language λProlog, use
it to implement our various event calculi, and prove the soundness and completeness of the resulting
logic programs. We outline directions of future work in Section 8.

2 The Basic Event Calculus

The Event Calculus (EC ) [KS86] aims at modeling situations that consist of a set of events, whose
occurrences over time have the effect of initiating or terminating the validity of properties, some of
which may be mutually exclusive. [Example from Kowalski] We formalize the time-independent
component of a situation by means of the notion of EC-structure, which is defined as follows.

Definition 2.1 (EC-structure)

An Event Calculus structure (abbreviated EC-structure) is a quintuple H = (E, P, [·〉, 〈·], ]·,·[)
such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite sets of events and properties, respectively.

• [·〉 : P → 2E and 〈·] : P → 2E are the initiating and terminating maps of H. For every property
p ∈ P, [p〉 and 〈p] represent the set of events that initiate and terminate p, respectively.

• ]·,·[⊆ P×P is an irreflexive and symmetric relation, called the exclusivity relation, that models
exclusivity among properties.

The time-dependent component of an EC problem is formalized by providing a (strict) partial
order, i.e. an irreflexive and transitive relation, over the set of event occurrences. We write WH
for the set of all partial orders on the set of events E of an EC -structure H and use the letter w to
denote individual orderings, or knowledge states, in WH. The set WH of all knowledge states naturally
becomes a reflexive ordered set when considered together with the usual subset relation ⊆, which is
indeed reflexive, transitive, and antisymmetric. Given w ∈ WH, we will sometimes call a pair of events
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(e1, e2) ∈ w, with e1 6= e2, an interval. We will often indicate the condition (e1, e2) ∈ w as e1 <w e2,
and write e1 ≤w e2 for e1 <w e2 ∨ e1 = e2. For any w1, w2 ∈ WH, we denote by w1 ↑ w2 the transitive
closure of the union of w1 and w2, that is, w1 ↑ w2 = (w1 ∪w2)+. Note that w1 ↑ w2 6∈ WH if w1 and
w2 contain symmetric intervals. Finally, we will often work with extensions of an ordering w, defined
as those elements of WH which contain w as a subset. We define a completion or final extension of w
as any extension of w which is a total order.

Given an EC -structure H and a knowledge state w, EC permits inferring the maximal validity
intervals (MVIs) over which a property p holds uninterruptedly. We represent an MVI for p as
p(ei, et), where ei and et are the events that respectively initiate and terminate the interval over
which p maximally holds. For any given EC -structure H, we adopt as the query language of EC,
denoted by LH(EC), the set of atomic formulas of the form p(e1, e2), for all properties p and events
e1 and e2 in H. The task performed by EC reduces to deciding which atomic formulas are MVI s and
which are not, with respect to the current partial order of events. This is a model checking problem.

In order for p(e1, e2) to be an MVI relative to the knowledge state w, (e1, e2) must be an interval
in w, i.e. e1 <w e2. Moreover, e1 and e2 must witness the validity of the property p at the ends of this
interval by initiating and terminating p, respectively. These requirements are enforced by conditions
i, ii and iii, respectively, in the definition of valuation given below. The maximality requirement is
caught by the negation of the meta-predicate broken(p, e1, e2, w) in condition iv, which expresses the
fact that the truth of an MVI must not be broken by any interrupting event. Any event e which is
known to have happened between e1 and e2 in w and that initiates or terminates a property that is
either p itself or a property exclusive with p interrupts the truth of p(e1, e2). These conditions are
formalized as follows.

Definition 2.2 (Intended model of EC)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a EC-structure and w be a knowledge state in WH. The intended
EC -model of H is the propositional valuation υH : WH → 2LH(EC), where υH is defined in such a way
that p(e1, e2) ∈ υH(w) if and only if

i. e1 <w e2;

ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];

iv. broken(p, e1, e2, w) does not hold, where broken(p, e1, e2, w) abbreviates

there exists an event e ∈ E such that e1 <w e, e <w e2 and there exists a property
q ∈ P such that e ∈ [q〉 or e ∈ 〈q], and either ]p, q[ or p = q.

This definition adopts the strong interpretation of the initiate and terminate relations: given a pair
of events ei and et, with ei occurring before et, that respectively initiate and terminate a property
p, we conclude that p does not hold over (ei, et) if an event e which initiates or terminates p, or a
property incompatible with p, occurs during this interval, that is, (ei, et) is a candidate MVI for p,
but e forces us to reject it. The strong interpretation is needed when the occurrence of events alter the
properties (e.g. turning a switch on and off changes the light in a room). An alternative interpretation
of the initiate and terminate relations, called weak interpretation, is also possible: a property p is
initiated by an initiating event unless it does not already hold and it has not yet terminated (and
dually for terminating events). This is useful for events whose occurrence do not influence the validity
of a property (e.g. measuring the temperature of a patient does not change it). Further details about
the strong/weak distinction can be found in [CM99].
[Formalization of the example]
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3 Increasing the Expressiveness of the Basic Event Calculus

The basic Event Calculus has a simple and intuitive logical structure, but its expressive power is too
limited to model interesting problems. To overcome these limitations, it has been extended in several
directions. In this section, we illustrate the increase in expressive power that can be obtained by
adding boolean connectives, quantifiers, modal operators, and preconditions to EC . We first consider
the extension of EC with each of these features taken in isolation, and then we show how they can
be combined together. Later on, in Section 5, we will thoroughly analyze the expressiveness and
complexity of the resulting event calculi.

3.1 Boolean Connectives

The addition of the logical connectives ∧ , ∨ , and ¬ to the basic EC makes it possible to check the
truth of boolean combinations of MVI s. [Frasetta che estende l’esempio] Traditional implemen-
tations of EC exploit the primitive operations of logic programming languages to this effect. The
extension of the semantics of EC is rather straightforward. We indicate the resulting calculus with
CEC . Its query language, denoted by LH(CEC), is defined as follows.

Definition 3.1 (CEC-language)

Let H = (E, P, [·〉, 〈·], ]·,·[) be an EC-structure. The query language LH(CEC) is the set of
formulas generated by the following grammar:

ϕ ::= p(e1, e2) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

In the sequel, we will also make use of implication, where ϕ1 → ϕ2 is classically defined as ¬ϕ1 ∨ ϕ2.
The definition of the intended model of EC can be easily generalized to deal with boolean connec-

tives.

Definition 3.2 (Intended model of CEC)

Let H = (E, P, [·〉, 〈·], ]·,·[) be an EC-structure and w be a knowledge state in WH. The notion
of propositional valuation υH is given as in Definition 2.2. Given ϕ ∈ LH(CEC), the truth of ϕ with
respect to the intended model of CEC is defined as follows:

IH;w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH;w |= ¬ϕ iff IH; w 6|= ϕ;
IH;w |= ϕ1 ∧ ϕ2 iff IH; w |= ϕ1 and IH; w |= ϕ2;
IH;w |= ϕ1 ∨ ϕ2 iff IH; w |= ϕ1 or IH; w |= ϕ2.

3.2 Quantifiers

Another fairly natural extension of basic EC can be obtained by adding universal and existential
quantifiers over events1. We call the resulting formalism the Event Calculus with Quantifiers (QEC
for short). As in the case of boolean connectives, a logic programming implementation of EC can
emulate existential quantification over individual formulas in LH(EC) by means of unification, and

1In [CFM98c], we proposed the addition of universal and existential quantifiers over both events and properties.
However, quantifiers over property do not appear to enhance significantly the expressiveness of EC due to the tight
relation between properties and events, hard-coded in the initiation and termination maps. Furthermore, while the set
of events that have occurred can grow arbitrarily, the set of relevant properties characterizes the considered application
domain and thus it is usually fixed once and for all.
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moreover, universally quantified formulas in this language always have trivial solutions. We will see,
however, that their combination with other operators leads to fairly complex problems.

In order to accommodate quantifiers, we need to extend the query language of EC . We assume
the existence of infinitely many event variables, that we denote x, possibly subscripted, and we write
ē for a syntactic entity that is either an event in E or an event variable.

Definition 3.3 (QEC-language)

Let H = (E, P, [·〉, 〈·], ]·,·[) be an EC-structure. The query language of QEC, denoted by
LH(QEC), is the set of closed formulas generated by the following grammar:

ϕ ::= p(ē1, ē2) | ∀x. ϕ | ∃x. ϕ

The notions of free and bound variables are defined as usual and we identify formulas that differ
only by the name of their bound variables. We write [e/x]ϕ for the substitution of an event e ∈ E
for every free occurrence of the event variable x in the formula ϕ. Notice that this limited form of
substitution cannot lead to variable capture.

We now extend the definition of intended model of EC from formulas in LH(EC) to objects in
LH(QEC). To this aim, we need to define the notion of validity for the new constructs of QEC .

Definition 3.4 (Intended model of QEC)

Let H = (E, P, [·〉, 〈·], ]·,·[) be an EC-structure and w be a knowledge state in WH. The intended
QEC-model of H and w is the classical model IH built on top of the valuation υH. Given a (closed)
formula ϕ ∈ LH(QEC), the truth of ϕ at IH, denoted by IH |= ϕ, is inductively defined as follows:

IH |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH |= ∀x. ϕ iff for all e ∈ E, IH |= [e/x]ϕ;
IH |= ∃x. ϕ iff there exists e ∈ E such that IH |= [e/x]ϕ.

The well-foundedness of this definition derives from the observation that if ∀x. ϕ is a closed formula,
so is [e/x]ϕ, for every event e ∈ E, and similarly for the formula ∃x. ϕ. Observe that, if we reject
vacuous quantifications, a formula can contain at most two quantifiers.

It is worth noting that a universal quantification over a finite domain can always be expanded
as a finite sequence of conjunctions; similarly, an existentially quantified formula is equivalent to the
disjunction of all its instances. This fact hints at the possibility of compiling any QEC query to a
formula that does not mention any quantifier. Observe, however, that this is possible only after an
EC -structure has been specified. Therefore, quantifiers are not simply syntactic sugar, but an effective
extension over the EC query language.

3.3 Modalities

As pointed out in [CMP93], when only partial information about which events have occurred and in
what order is available, the sets of MVI s derived by EC bear little relevance, since the acquisition
of additional knowledge about the set of events and/or their occurrence times might both dismiss
current MVI s and validate new MVI s. In [CCM95], Cervesato et al. proposed an extension of EC
with modal operators, called Modal Event Calculus (MEC for short), whose query language allows
enquiring about which MVIs will remain valid in every extension of the current knowledge state, and
about which intervals might become MVIs in some extension of it. Let us call intervals of these two
types necessary MVIs and possible MVIs, respectively, using 2-MVIs and 3-MVIs as abbreviations.
Given an EC -structure H, the query language L(MEC) consists of formulas of the form p(e1, e2),
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2p(e1, e2), and 3p(e1, e2), for every property p and events e1 and e2 in H. They denote the property-
labeled interval p(e1, e2) as a candidate MVI, 2-MVI, and 3-MVI, respectively, and the task of MEC
reduces to verifying this eventuality.

The intended model of MEC is given by shifting the focus from the current knowledge state w
to all knowledge states which are accessible from it, i.e., to the set ExtH(w). Since ⊆ is a reflexive
partial order, (WH,⊆) can be naturally viewed as a finite, reflexive, transitive, and antisymmetric
modal frame. This frame, together with the straightforward modal extension of the valuation υH to
an arbitrary knowledge state, provides a modal model for MEC .

Definition 3.5 (Intended model of MEC)

Let H = (E, P, [·〉, 〈·], ]·,·[) be an EC-structure and w be a knowledge state in WH. The
intended MEC-model of H is the modal model IH = (WH,⊆, υH), where the propositional valuation
υH : WH → 2LH(EC) is given as in Definition 2.2. Given w ∈ WH and ϕ ∈ LH(MEC), the truth of ϕ
at w with respect to IH, denoted by IH; w |= ϕ, is defined as follows:

IH; w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH; w |= 2p(e1, e2) iff for every w′ ∈ Ext(w), IH; w′ |= p(e1, e2);
IH; w |= 3p(e1, e2) iff there exists w′ ∈ Ext(w) such that IH; w′ |= p(e1, e2).

In the following, we will drop the subscripts H whenever this does not lead to ambiguities. Moreover,
given a knowledge state w in WH and a MEC -formula ϕ over H, we write w |= ϕ for IH; w |= ϕ.

In [CM99], Cervesato and Montanari have shown that, given an EC -structure H and w ∈ WH, the
sets of 2- and 3-MVIs can be determined by exploiting necessary and sufficient local conditions over
w, thus avoiding a complete (and expensive) search of the set ExtH(w) of all the consistent extensions
of w.

Lemma 3.6 (Local conditions)

Let H = (E, P, [·〉, 〈·], ]·,·[) be a EC-structure. For any atomic formula p(e1, e2) on H and any
w ∈ WH,

• IH;w |= 2p(e1, e2) if and only if

i′. e1 <w e2;
ii′. e1 ∈ [p〉;
iii′. e2 ∈ 〈p];
iv′. necBroken(p, e1, e2, w) does not hold, where necBroken(p, e1, e2, w) abbreviates

there exists an event e ∈ E such that e 6<w e1, e 6= e1, e2 6<w e, e 6= e2, and there
exists a property q ∈ P such that e ∈ [q〉 or e ∈ 〈q], and either ]p, q[ or p = q.

• IH;w |= 3p(e1, e2) if and only if

i′′. e2 6<w e1;
ii′′. e1 ∈ [p〉;
iii′′. e2 ∈ 〈p];
iv′′. broken(p, e1, e2, w) does not hold.

3.4 Preconditions

In many application domains, the occurrence of an event is no guaranty that a property is initiated
or terminated, because the actual production of the expected effects of the event are tied to the
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validity of a number of other properties, called preconditions, at its occurrence time. In the following,
we introduce the Event Calculus with Preconditions (PEC ), which adds preconditions to basic EC .
Unlike the previous cases, this extension requires a generalization of the notion of EC -structure to
take into account the contexts within which an event occurs. To model contexts, we replace the notion
of EC -structure by that of PEC -structure, which is defined as follows.

Definition 3.7 (PEC-structure)

A structure for the Event Calculus with Preconditions (abbreviated PEC -structure) is a quadruple
H = (E, P, [·|·〉, 〈·|·]) such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite sets of events and properties, respectively.
The subsets of P are called contexts and their elements are referred to as preconditions.

• [·|·〉 : P× 2P → 2E and 〈·|·] : P× 2P → 2E are the initiating and terminating maps of H. For
every property p ∈ P, [p|C〉 and 〈p|C] represent the set of events that respectively initiate and
terminate p, whenever all preconditions in C hold at their occurrence time.

Preconditions can easily emulate the exclusivity relation. Indeed, incompatibility among a pair
of properties p and q can be expressed in PEC by means of an auxiliary property spq that acts as a
semaphore between p and q: spq is initially true; every event that starts p or q is equipped with spq

as a precondition, and, besides activating either original property, reset spq; events that terminate p
or q are treated dually. Since exclusivity can be handled in this way, this relation is not included in
the definition of PEC -structure. Clearly, in the absence of incompatible properties, an EC problem
can be modeled by a degenerated PEC -structure where all contexts are empty.

Given a PEC -structure H, the query language of PEC coincides with the query language of EC,
that is, it consists of the set of atomic formulas of the form p(e1, e2), for all properties p and events
e1 and e2 in H. The definition of MVI differs from the case of EC by the way the initiation and
termination of a property is checked. Indeed, these relations are now conditional with respect to the
validity of a set of preconditions. Bullets ii and iii below formalize this intuition.

Definition 3.8 (Intended model of PEC)

Let H = (E, P, [·|·〉, 〈·|·]) be a PEC-structure and w be a knowledge state in WH. An intended
PEC-model of H is any propositional valuation υH : WH → 2LH(EC) defined in such a way that
p(e1, e2) ∈ υH(w) if and only if

i. e1 <w e2;

ii. pInit(e1, p, w), where pInit(e1, p, w) iff
∃C ∈ 2P. e1 ∈ [p|C〉 ∧ ∀q ∈ C. ∃e′, e′′ ∈ E.

q(e′, e′′) ∈ υH(w) ∧ e′ <w e1 ∧ e1 ≤w e′′;

iii. pTerm(e2, p, w), where pTerm(e2, p, w) iff
∃C ∈ 2P. e2 ∈ 〈p|C] ∧ ∀q ∈ C. ∃e′, e′′ ∈ E.

q(e′, e′′) ∈ υH(w) ∧ e′ <w e2 ∧ e2 ≤w e′′;

iv. pBroken(p, e1, e2, w) does not hold, where pBroken(p, e1, e2, w) iff
∃e ∈ E. e1 <w e ∧ e <w e2 ∧ (pInit(e, p, w) ∨ pTerm(e, p, w)).

Notice that the endpoints of an interval are not treated symmetrically. This implements our
convention according to which a property does not hold at the occurrence time of the event that
initiates it, while it must hold at the occurrence time of the event that terminates it.

The meta-predicates pInit, pTerm, and pBroken are mutually recursive in the above definition.
In particular, an attempt at computing MVI s by simply unfolding their definition is non-terminating
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Figure 1: The EC Cubes: a Summary of the Proposed Event Calculi

in pathological situations. In general, a PEC problem can have zero or more models. However,
most PEC problems encountered in practice satisfy syntactic conditions ensuring the termination of
this procedure and the uniqueness of the model. This is particularly important since it permits the
transcription of the above specification as a logic program that is guaranteed to terminate. We need
the following definition.

Definition 3.9 (Dependency Graph)

Let H = (E, P, [·|·〉, 〈·|·]) be a PEC-structure. The dependency graph of H, denoted by GH,
consists of one node for each property in P, and contains the edge (q, p) if and only if the following
meta-formula holds ∃e ∈ E. ∃C ∈ 2P. q ∈ C ∧ (e ∈ [p|C〉 ∨ e ∈ 〈p|C]).

In the following, we will restrict our attention to those PEC -structures H such that GH is acyclic.
Under such an assumption, for every property p ∈ P, the length of the longest path to p in GH
is finite. We denote it as BH(p). Furthermore, we set BH = maxp∈PBH(p) and write CH for the
cardinality of the largest context in [·|·〉 or 〈·|·]. Finally, we denote with DH the maximum number
of contexts in which an event initiates or terminates a property with respect to the structure H. It
is worth noting that the above restriction ensures that the computation of any MVI on the basis of
Definition 3.8 can never contain more than BH embedded MVI calculations and therefore it always
terminates.

3.5 Mixing Extended Functionalities

Only the simplest of problems can be expressed in the extended event calculi described so far. However,
many interesting situations can be modeled by combining two or more of the functionalities we have
introduced. The modular structure of the given formalization makes it possible to compose the
proposed elementary extensions by simply merging their semantic definitions. We will refer to these
hybrid calculi by prefixing the string “EC” with any subsequence of the letters Q, C, M, and P,
standing for the inclusion of quantifiers, connectives, modalities, and preconditions, respectively. For
example, the “first-order” event calculus, denoted QCEC, is obtained by adding boolean connectives
and quantifiers to the basic EC . Its query language is obtained by merging the productions of the
grammars for CEC and QEC, which then allows an arbitrary interleaving of as many quantifiers and
connectives as desired. Similarly, its intended model results from accumulating the semantic clauses
of those two calculi.

The inclusion of modalities yields various flavors of a formalism that we have proven to be an in-
stance of the modal logic K1.1, a close relative of S4 whose models are finite reflexive partial orderings
(see [CM99] for further details), in the case of CMEC [CM99]. Differently from the other elementary
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extensions, the addition of preconditions to a calculus does not change its query language, however it
forces us to modify its underlying structure and intended model. We have taken this distinction into
account in Figure 1, where we give a structured representation of our family of calculi. The cube on
the left relates all event calculi devoid of preconditions, while the language-wise isomorphic cube on
the right shows the corresponding calculi with preconditions. The most expressive language in this
hierarchy is QCMPEC, which includes boolean connectives, quantifiers, modalities, and preconditions.

Elsewhere, we have investigated meaningful subsets of the event calculi in Figure 1. In [CCM95,
CCM96, CFM97a, CM99], we concentrated on propositional modal event calculi, while, in [CFM98a,
CFM98b], we studied the interplay of modalities and quantifiers. Preliminary work on modal event
calculi with preconditions and first-order event calculus has been reported in [CFM97b] and [CFM98c],
respectively. In this paper, we give a comprehensive and systematic analysis of the expressiveness and
complexity of the whole family of event calculi. In Section 7, we will provide all calculi with a simple
modular implementation in λProlog. This implementation will take advantage of some standard logical
equivalences of S4 and few specific to K1.1.

Proposition 3.10 (QCMPEC logical equivalences)

Let ϕ, ϕ1, and ϕ2 be QCMPEC-formulas. For every knowledge state w ∈ W , it holds that

1 . w |= 2¬ϕ ⇔ w |= ¬3ϕ 2 . w |= 3¬ϕ ⇔ w |= ¬2ϕ
3 . w |= 2(ϕ1 ∧ ϕ2) ⇔ w |= 2ϕ1 ∧ 2ϕ2 4 . w |= 3(ϕ1 ∨ ϕ2) ⇔ w |= 3ϕ1 ∨ 3ϕ2

5 . w |= 22ϕ ⇔ w |= 2ϕ 6 . w |= 33ϕ ⇔ w |= 3ϕ
7 . w |= 232ϕ ⇔ w |= 23ϕ 8 . w |= 323ϕ ⇔ w |= 32ϕ
9 . w |= 2∀Xϕ(X) ⇔ w |= ∀X2ϕ(X) 10 . w |= 3∃x.ϕ(x) ⇔ w |= ∃x.3ϕ(x)

An interesting consequence of Proposition 3.10 is that any QCMPEC -formula ϕ is logically equiv-
alent to a formula of one of the following forms: ψ, 2ψ, 3ψ, 23ψ, and 32ψ, where the outermost
operator of ψ is non-modal.

4 Case studies

[Applicazioni in ambito medico — Luca, Peressi, ...] In this section, we take advantage of the
increased expressive power of our extensions to the basic Event Calculus to represent and query three
situations. The first two make an essential use of preconditions, while the third relies on quantifiers.

4.1 Diagnosing Faulty Hardware

We first focus our attention on the representation and processing of information about fault symptoms
that is spread out over periods of time and for which current expert system technology is particularly
deficient [Nök91]. Consider the following example, which diagnoses a fault in a computerized numerical
control center (CNCC) for a production chain.

A possible cause for an undefined position of a tool magazine is a faulty limit switch S.
This cause can be ruled out if the status registers IN29 and IN30 of the control system show
the following behavior: at the beginning both registers contain the value 1. Then IN29 drops
to 0, followed by IN30. Finally, both return to their original values in the reverse order.

Figure 2 describes a possible sequence of transitions, for IN29 and IN30, that excludes the even-
tuality of S being faulty. In order to verify this behavior, the contents of the status registers must
be monitored over time. Typically, measurements are made at fixed intervals, asynchronously with
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Figure 2: Expected Register Behavior, Measurements and Resulting Event Ordering

respect to the update of status registers. This is primary or routine monitoring. While primary
measurements can be taken frequently enough to guarantee that signal transitions are not lost, it is
generally impossible to exactly locate the instants at which a register changes its value. Consequently,
several transitions may take place between two measurements, making it impossible to recover their
relative order. In the case of our example, the situation is depicted in Figure 2 (left): dotted lines
indicate measurements. Moreover, we have given names to the individual transitions of state of the
different registers. From the values found at measurements m0 and m1, we can conclude that both
IN29 and IN30 were reset during this interval (transitions e1 and e2, respectively), but we have no
information about their relative ordering. Similarly, measurement m2 informs us that the registers
assumed again the value 1 (transitions e3 and e4), but we do not know which was set first. The
available ordering information is reported on the right-hand side of Figure 2.

It is conceivable that the system at hand permits finer forms of measurement that would allow
resolving the relative order of critical events, but at a substantial cost. This may involve shutting it off
and restarting it in a much slower debugging mode, feeding the overall trace to an expensive algorithm,
or calling into action a human expert. Either of these actions is too costly to be part of the normal
operation of the system, while checking the value of the registers at fixed interval is an acceptable
overhead. However, whenever the routine measurement indicates that the system may be going awry,
more precise data can be obtained through this second level monitoring. Clearly, suspected faults
should be infrequent enough to make it a viable solution.

The situation displayed in Figure 2 is represented by the PEC -structure H = (E, P, [·|·〉, 〈·|·]),
whose components are defined as follows:

• E = {e1, e2, e3, e4}
• P = {one29, zero29, one30, zero30}
• {e1} = [zero29|{}〉
{e2} = [zero30|{zero29}〉
{e3} = [one30|{}〉
{e4} = [one29|{}〉

• {e1} = 〈one29|{}]
{e2} = 〈one30|{}]
{e3} = 〈zero30|{zero29}]
{e4} = 〈zero29|{}]

We have represented transitions as events with the same name, and used mnemonic constants for the
properties corresponding to the two different values of IN29 and IN30. It is easy to check that the
dependency graph for H does not contain any loop.

10



It is worth noting that, in general, preconditions do not imply physical sequentiality. As an
example, stating that the event e2 initiates the property zero30 only if the property zero29 holds
expresses the fact that we are only interested in those situations where IN30 is reset while IN29 holds
the value 0. In such a way, we are able to a priori eliminate a number of incorrect behaviors.

The partial order of transitions, described in Figure 2 (right), is captured by the following (current)
knowledge state:

o = {(e1, e3), (e1, e4), (e2, e3), (e2, e4)}.
Let us consider the PEC -formula:

ϕ = zero30(e2, e3).

In order to verify that the switch S is not faulty, we must ensure that the registers IN29 and IN30
display the expected behavior in all refinements of the current knowledge state o. With our encoding,
this amounts to proving that the MPEC -formula 2ϕ holds in o. If this is the case, the fault is to
be excluded. If we want to determine the existence of at least one extension of o where the registers
behave correctly, we must verify the satisfiability of the MPEC -formula 3ϕ in o. If this is not the
case, the fault is certain. Since we have that o+ |= 3ϕ and o+ 6|= 2ϕ, the knowledge available in o
entitles us to assert that the fault is possible, but not certain. We need to run second-level monitoring
to determine the relative order of the unrelated events. Assume that, unlike in the actual situation of
Figure 2, e2 precedes e1. Let us denote the resulting state by o1. It holds that o+

1 6|= 3ϕ, and thus the
switch S is certainly faulty. On the other hand, if the actual ordering contains the pairs (e1, e2) and
(e3, e4), calling o2 the resulting state, we have that o+

2 |= 2ϕ. In this case the fault can be excluded.

4.2 Diagnosing Metatropic Dwarfism

As a second example, consider the following situation of illnesses taken from the domain of diagnosis
of skeletal dysplasias [KW90].

The model of the Metatropic Dwarfism specifies that at birth the thorax is narrow and after
the first year of age a mild kyphoscoliosis occurs. If the severity of the kyphoscoliosis is rel-
atively mild then the thorax will continue to be narrow. If the severity of the kyphoscoliosis
increases, then there is a period during which the thorax is perceived as relatively normal,
but when the kyphoscoliosis is progressive the thorax becomes wide. Metatropic Dwarfism
can be excluded if the symptoms do not comply to this model.

Figure 3 schematizes the evolution of a patient to be diagnosed with Metatropic Dwarfism. Both
kyphoscoliosis severity and thorax width are continuous attributes, but radiologists are only interested
in a finite set of discrete qualitative values (narrow, normal, and wide for the thorax; mild, moderate,
and progressive for the scoliosis), and hence only the events which mark the transitions from one
qualitative value to the next one are significant. In order to verify this model, the width of the
thorax and the severity of the kyphoscoliosis must be checked over time. However, as in the case of
measurements of status registers, while the radiological examinations can be done frequently enough
to guarantee that qualitative value transitions are not lost, it is generally impossible to exactly locate
the instants at which these transitions happen. Consequently, several transitions may take place
between two examinations making it impossible to recover their relative order. In the case of our
example, the situation is depicted in Figure 3. Exams x0 and x1 tell us respectively that at birth the
thorax was narrow and that after the first year a mild kyphoscoliosis had developed. We denote with
e0 and e1 the corresponding events. With exam x2, we observe that the thorax is now normal and the
kyphoscoliosis has become moderate. We write e3 and e2 for the corresponding events. We know that
they have occurred after e1, but we have no information about their relative ordering. Finally, exam
x3 informs us that the thorax has successively become wide and the kyphoscoliosis progressive. Let
e5 and e4 be the corresponding causing events. Again, we know they have happened after e2 and e3,
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Figure 3: Expected Symptom Evolution for Metatropic Dwarfism

however we are not able to order them. As in the previous example, the exact order in which these
transitions happen can be determined by further clinical examinations.

The situation displayed in Figure 3 can be represented by the PEC-structure H = (E, P, [·|·〉,
〈·|·]), whose components are defined as follows:

• E = {e0, e1, e2, e3, e4, e5, e6}
• P = {narrow, normal, wide, mild, moderate, progressive}
• {e0} = [narrow|{}〉
{e1} = [mild|{}〉
{e2} = [moderate|{}〉
{e3} = [normal|{moderate}〉
{e4} = [progressive|{}〉
{e5} = [wide|{progressive}〉

• {e2} = 〈mild|{}]
{e3} = 〈narrow|{}]
{e4} = 〈moderate|{}]
{e5} = 〈normal|{}]
{e6} = 〈wide|{}] = 〈progressive|{}]

We have added the event e6 in order to terminate the validity of the properties wide and progressive;
it corresponds to the death of the patient. As in the previous example, our use of preconditions is
instrumental to the inferences we want to achieve. Finally, observe that the dependency graph for
H does not contain loops. The partial order of transitions, described in Figure 3, is captured by the
following (current) knowledge state:

o = {(e0, e1), (e1, e2), (e1, e3), (e2, e4), (e2, e5), (e3, e4), (e3, e5), (e4, e6), (e5, e6)}.

Consider the CMPEC -formula:

ϕ = normal(e3, e5) ∧ wide(e5, e6).

In order to verify that the diagnosis of the dysplasia is certain, we must ensure that the CMPEC -
formula 2ϕ is satisfiable in o. If we want to determine if it is possible to diagnose the dysplasia,
we must verify the satisfiability of the CMPEC -formula 3ϕ in o. Since we have that o+ |= 3ϕ and
o+ 6|= 2ϕ, the knowledge contained in o entitles us to assert that the diagnosis of the dysplasia is
possible, but not certain. Assume that, unlike the actual situation of Figure 3, further examinations
extend o with the pair (e3, e2). Let us denote the resulting state with o1. It is easy to prove that

12
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Figure 4: Symptoms of Patient Jones

o+
1 6|= 3ϕ, and thus that the dysplasia can be excluded. On the other hand, if o is refined with the

pairs (e2, e3) and (e4, e5), and o2 is the resulting state, we have that o+
2 |= 2ϕ. In this case, the

dysplasia is certain.

4.3 Diagnosing Malaria

We will now consider another example taken from the domain of medical diagnosis that shows how
an extension of EC with quantifiers and connectives is applied.

We focus our attention on repeated clusters of events whose correlation, if present, can entail
conclusions about the state of the system under observation. As an example, consider the following
rule of thumb for diagnosing malaria [Sch95]:

A malaria attack begins with chills that are followed by high fever. Then the chills stop and
some time later the fever goes away as well. Malaria is likely if the patient has repeated
episodes of malaria attacks.

Figure 4 describes the symptoms of a patient, Mr. Jones, who has just returned from a vacation to
the Tropics. We have labeled the beginning and the end of chills and fever periods for reference.
According to the rule above, Mr. Jones should be diagnosed with malaria. If however he had not had
fever in the period between e6 and e8 for example, or if e7 had preceded e6, then further checks should
be made in order to ascertain the kind of ailment he suffers from. Notice that, in this situation, we
know when each event has occurred, and therefore their exact relative order.

We will now show how the rule above can be expressed as a QCEC query in order to automate the
diagnosis of malaria. For the sake of readability, we slightly extend QCEC by permitting queries to
explicitly test the relative order of two events [CFM98c]. To this end, it suffices to add the production

ϕ ::= ē1 < ē2 | . . .

to the grammar defining the language LH(QCEC), and the semantic clause

IH |= e1 < e2 iff e1 <w e2

to the definition of the QCEC intended model. Any language in Figure 1 can be enriched to acco-
modate this construct, called precedence test. Observe however that adding it does not change their
expressive power as it can be emulated by means of extra events and properties.

The first task is to give a representation to the symptoms. In the case of Mr. Jones, the factual
information of his condition is represented by the EC -structure H = (E, P, [·〉, 〈·], ]·,·[) below, which
is a direct transliteration of the data in Figure 4.

• E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12}
• P = {chills, fever}
• [chills〉 = {e1, e5, e9}

[fever〉 = {e2, e6, e10}
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• 〈chills] = {e3, e7, e11}
〈fever] = {e4, e8, e12}

• ]·,·[= ∅

The events that initiate and terminate the symptoms of Mr. Jones happened in ascending order of
their indices. We call w the corresponding ordering.

The decision rule for diagnosing malaria can then be reworded as saying that “whenever there is
an episode of chills, there is a successive period of fever that starts before the chills are over” (other
possible interpretations can easily be rendered in QCEC ). It can in turn be expressed by the following
formula in LH(QCEC):

ϕ = ∀x1. ∀x2. (chills(x1, x2) → ∃x′1. ∃x′2. (x1 < x′1 ∧ x′1 < x2 ∧ fever(x′1, x2′)))

that makes use of both universal and existential quantifiers over events, of all the connectives of QCEC
(once implication is expanded) and of the precedence test. It is easy to verify that I(H,w) |= ϕ, while
this formula is not valid in models where e6 or e8 have been eliminated, or where the relative order of
e6 and e7 has been reversed, for example.

5 Complexity Analysis

In this section, we systematically analyze the worst-case computational complexity of model checking
in the proposed event calculi. The analysis is based on the model-theoretic characterization of the
various event calculi provided in Sections 2 and 3. We assume the reader to be familiar with the
basics of computational complexity theory [Pap94]. We only remind the definition of polynomial
hierarchy. The complexity class PNP (resp. NPNP) contains all the problems for which there exists
a deterministic (resp. non-deterministic) polynomial time algorithm that makes a number calls to an
NP-oracle that is polynomial in the size of the input. The class coNPNP is the set of the complements
of the problems in NPNP. We then define the complexity classes ∆i, Σi, and Πi, for i ≥ 0, as follows:





∆0P = P
Σ0P = P
Π0P = P





∆i+1P = PΣiP

Σi+1P = NPΣiP

Πi+1P = coNPΣiP

The set PH =
⋃

i≥0 ΣiP is called the cumulative polynomial hierarchy. It holds that PH ⊆ PSPACE.
[Check ∆i and Πi]

Given an EC -structure H (or a PEC -structure H, if the event calculus under consideration en-
compasses preconditions), we assume that the set of event occurrences E can grow arbitrarily, while
the set P of relevant properties characterizes the specific application domain and thus it is fixed once
and for all. Thus, we choose the number n of events in E as the size of H, and consider the number
of properties as a constant. Notice that, in the case of event calculi with preconditions, such an
assumption allows us to identify upper bounds for the parameters BH, CH, and DH which do not
depend on the number of events in E.

Given a structure H, a knowledge state w ∈ WH, and a formula ϕ relative to any of the proposed
event calculi, we want to study the complexity of the problem of establishing whether IH;w |= ϕ
is true or not, which is a model checking problem. We measure the complexity of testing whether
IH;w |= ϕ holds in terms of the size n of the input database, where n is the number of events in
E, and the size k of the input formula (without loss of generality, we can interpret k as the number
of logical operators occurring in ϕ). In the standard terminology, n and k are the parameters that
characterize data and query complexity, respectively.

For each event calculus in Figure 1, we establish whether model checking is a tractable problem or
not. In the positive case, we actually provide a polynomial upper bound to the problem by exhibiting
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a polynomial algorithm that solves it; in the negative case, we identify the complexity classes the
intractable problems belong to and investigate the (possibly different) role of the query and data
complexity parameters.

The notion of cost we adopt is as follows: we assume that verifying the truth of the propositions
e ∈ [p〉, e ∈ [p|C〉, e ∈ 〈p], e ∈ 〈p|C], and ]p, q[ has constant cost O(1). We have two choices as far as
e1 <w e2 is concerned, corresponding to two alternative ways to represent the relation <w:

• Recording <w as specified by its definition, in particular as a closed transitive relation, has
the advantage that checking whether e1 <w e2 has constant cost O(1). The pitfalls of this
representation are that it will in general require a lot of space, and that updating it with an
edge (e1, e2) costs O(n2) since the transitive closure w ↑ {(e1, e2)} has to be regenerated. This
possibility has however been successfully pursued by showing that the graph-theoretic notions
of transitive closure and reduction can be exploited to efficiently reason about partially ordered
events in EC and MEC [FM99b].

• As an alternative, we can record an acyclic binary relation o on events, whose transitive closure
o+ is the current state of knowledge w. Then, an update (e1, e2) of the current acyclic relation
o is implemented in time O(1) by simply taking the union o∪ {(e1, e2)}. However, verifying the
truth of e1 <w e2 becomes an accessibility problem in o, which can be solved in O(n2) time,
where n is the number of event occurrences, as shown in [CMC95, FM99a].

We will report our results for both options. We will perform our calculations for the first, but enclose
the figures corresponding to the second in square brackets. This distinction makes sense only for
calculi for which model checking can be solved in polynomial time.

Theorem 5.1 (Polynomial event calculi)

Model checking in EC, CEC, QEC, MEC, PEC, QMEC, CPEC, and QPEC is polynomial-time
bound.

Proof.

EC: O(n) [O(n3)]

Let H be an EC -structure, p(e1, e2) ∈ LH(EC), and w be a knowledge state. To prove that
p(e1, e2) holds in w, we must go through conditions i–iv of Definition 2.2. Step i costs O(1)
[O(n2)]. Verifying the validity of propositions e1 ∈ [p|C〉 and e2 ∈ 〈p|C] (conditions ii and
iii, respectively) has constant cost O(1). Step iv consists of O(n) tests, each one of the same
complexity of the test performed at step i, O(n) tests equal to that performed at step ii, and
O(n) tests equal to that performed at step iii, and thus it costs O(n) [O(n3)]. This allows us to
conclude that the complexity of model checking in EC is O(n) [O(n3)].

CEC: O(kn) [O(kn3)]

A CEC -formula can be viewed as a boolean combination of EC -formulas. Therefore, checking a
CEC -formula that contains k atomic formulas actually reduces to testing k EC -formulas. Since
each test costs O(n) [O(n3)], and the outcomes of the k tests can be combined in O(k) time to
determine the truth value of the given formula, model checking in CEC costs O(k ·n) [O(k ·n3)].

QEC: O(n3) [O(n5)]

As we observed in Section 3.2, we can limit ourselves to QEC -formulas with at most two nested
quantifiers. Let ϕ = Q1x.Q2y. p(x, y) be such a formula with Q1, Q2 ∈ {∃, ∀}. In the worst case,
testing the truth of ϕ may require validating the EC -formulas p(e1, e2), for every e1, e2 ∈ E.
Since checking an EC -formulas costs O(n) [O(n3)], the complexity of model checking in QEC
is O(n2) · O(n) = O(n3) [O(n2) · O(n3) = O(n5)].
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MEC: O(n) [O(n3)]

By Lemma 3.6, testing the truth of 3- and 2-moded atomic formulas reduces to testing the
truth of local conditions. These conditions differ from those given in Definition 2.2 (intended
model of EC ) only for the replacement of some tests of the form e1 <w e2 with other tests of
the form e2 6<w e1. These changes do not affect the computational complexity of the testing
procedure, and thus model checking in EC and in MEC have the same cost, i.e., O(n) [O(n3)].

PEC: O(n3·BH+1) [O(n3·(BH+1))]

Let H be a PEC -structure, p(e1, e2) ∈ LH(PEC), and w be a knowledge state. To verify
whether or not p(e1, e2) holds in w we must go through steps i–iv of Definition 3.8.

We prove that model checking in PEC costs Comp(BH = O(n2·BH+1) [= O(n3·(BH+1))] by
induction on the value of BH:

• If BH = 0, model checking in PEC reduces to that in EC, and thus it costs Comp(0) = O(n)
[= O(n3)].

• When BH > 0, step i still costs O(1) [O(n2)], while steps ii and iii become context
dependent. Both of them involve the evaluation of at worst DH · CH preconditions. The
evaluation of each precondition results in O(n2) truth tests with nesting level BH − 1.
Step iv involves O(n) tests equal to that of step i, O(n) tests equal to that of step ii
and O(n) tests equal to that of step iii, and thus it results in O(n3) [O(n3)] tests with
nesting level BH − 1. Hence, the complexity Comp(BH) can be expressed in terms of the
complexity Comp(BH − 1) by means of the recurrence expression Comp(BH) = O(n3) ·
Comp(BH − 1) [Comp(BH) = O(n3) · Comp(BH − 1)]. By induction, it follows that
Comp(BH) = O(n3·BH+1) [Comp(BH) = O(n3·(BH+1))].

QMEC: O(n3) [O(n5)]

The proof is similar to that for QEC .

CPEC: O(kn3·BH+1) [O(kn3·(BH+1))]

The proof is similar to that for CEC .

QPEC: O(n3·(BH+1)) [O(n3·(BH+1)+2)]

The proof is similar to that for QEC .

In order to determine the complexity of model checking in MPEC and QMPEC, we first analyze
the complexity of testing the truth of 3-moded (resp. 2-moded) atomic formulas. Let us call this
problem the 3-MPEC (resp. 2-MPEC ) problem.

Lemma 5.2 (The complexity of the 3-MPEC problem)

The 3-MPEC problem is NP-complete.

Proof.
We first prove that 3-MPEC is in NP. Let ψ be an atomic formula and w a knowledge state.

Any “yes” instance of the problem has a succinct certificate of its being a “yes” instance and this
certification has polynomial time complexity. The certificate is the extension w′ of w in which ψ holds.
Any “yes” instance has this certificate. The test w′ |= ψ is polynomial by Theorem 5.1.

In order to prove that the considered problem is NP-hard, we define a (polynomial) reduction of
3SAT [Pap94] into the 3-MPEC problem.
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Let q be a boolean formula in 3CNF, p1, p2, . . ., and pn be the propositional variables that occur
in q, and q = c1 ∧ c2 ∧ . . . ∧ cm, where ci = li,1 ∨ li,2 ∨ li,3 and, for each li,j , either li,j = pk or
li,j = ¬pk, for some k.

We define a PEC -structure H = (E, P, [·|·〉, 〈·|·], ) such that:

E = {ei
1, e

i
2 : 1 ≤ i ≤ n} ∪ {e1(ci), e2(ci) : 1 ≤ i ≤ m} ∪ {e1(q), e2(q)};

P = {pi, pi : 1 ≤ i ≤ n} ∪ {ci : 1 ≤ i ≤ m} ∪ {q},
and the context-dependent initiating and terminating maps are defined as follows:

• for any 1 ≤ i ≤ n, [pi|{}〉 = 〈pi|{}] = {ei
1} and [pi|{}〉 = 〈pi|{}] = {ei

2};
• for any 1 ≤ i ≤ m, 1 ≤ j ≤ 3, [ci|{l′i,j}〉 = {e1(ci)} and 〈ci|{}] = {e2(ci)}, where for each i, j, if,

for some k, li,j = pk, then l′i,j = pk; otherwise (li,j = ¬pk) l′i,j = pk;

• [q|{c1, c2 . . . cm}〉 = {e1(q)} and 〈q|{}] = {e2(q)}.

Moreover, let w = ∅ and ψ = c′1 ∧ c′2 ∧ . . . ∧ c′m, where c′i = l′i,1 ∨ l′i,2 ∨ l′i,3, and, for each i, j, if
li,j = pk, then l′i,j = pk(ek

1 , ek
2); otherwise (li,j = ¬pk) l′i,j = pk(ek

2 , ek
1).

We have that w |= 3ψ if and only if q is satisfiable.

Since 2 = ¬3¬, it easily follows from Lemma 5.2 that the problem of testing whether an atomic
formula is necessarily true in MPEC is coNP-complete.

Corollary 5.3 (The complexity of the 2-MPEC problem)

The 2-MPEC problem is coNP-complete.

Theorem 5.4 (Event calculi in PNP)

Model checking in MPEC and QMPEC is in PNP, and it is both NP- and coNP-hard.

Proof.
We first prove that model checking in MPEC and QMPEC is in PNP.
Let ϕ be a MPEC -formula and w a knowledge state. If ϕ is a propositional formula, then model

checking has polynomial cost by virtue of Theorem 5.1; if ϕ is a 3-moded atomic formula, then
verifying w |= ϕ is NP-complete by Lemma 5.2; finally, if ϕ is a 2-moded atomic formula, then
Lemma 5.3 proves that testing w |= ϕ is coNP-complete. Thus, the whole problem of testing w |= ϕ
for MPEC involves either a polynomial check, or an NP-check, or a coNP-check. This means that
it can be computed by a Turing machine which can access an NP-oracle and runs in deterministic
polynomial time, and hence the problem is in PNP. Since only one call to the oracle is needed, it is
actually in PNP[1].

Any QMPEC -formula may have at most two nested quantifiers. Hence, model checking for a
formula of QMPEC involves at most O(n2) evaluations of MPEC -formulas. As we have just shown,
each of these evaluations is in PNP[1], and thus model checking in QMPEC is in PNP[n2].

The hardness results follow from Lemma 5.2 and Corollary 5.3.

Theorem 5.5 (PSPACE-complete event calculi)

Model checking in QCEC, CMEC, QCMEC, QCPEC, CMPEC, and QCMPEC is PSPACE-
complete.
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Figure 5: The Complexity of the EC cube

Proof.
It suffices to prove that (i) model checking in QCEC and CMEC is PSPACE-hard and (ii) model

checking in QCMPEC is polynomial-space bounded. The proof of PSPACE-hardness for QCEC and
CMEC can be found in [CFM98b] and [CM99], respectively.

In order to prove that the problem of model checking in QCMPEC is in PSPACE, we show that
this problem belongs to AP, that is, we define an alternating polynomial time algorithm that solves
it. Let ϕ be a QCMPEC -formula and w a knowledge state. If ϕ = α ∧ β (resp. ϕ = α ∨ β), the
algorithm enters in an AND (resp. OR) state. It nondeterministically chooses one among α and β
and evaluates it in w. If ϕ = ¬(α ∧ β) (resp. ϕ = ¬(α ∨ β)), the algorithm evaluates ¬α ∨ ¬β (resp.
¬α ∧ ¬β). If ϕ = ¬¬α, the algorithm verifies α. If ϕ = 2α (resp. ϕ = 3α), the algorithm enters
in an AND (resp. OR) state. It nondeterministically chooses one extension w′ of w and evaluates α
in w′. If ϕ = ¬2α (resp. ϕ = ¬3α), the algorithm evaluates 3¬α (resp. 2¬α). If ϕ = ∀x. α (resp.
ϕ = ∃x. α), the algorithm enters in an AND (resp. OR) state. It nondeterministically chooses one
event, say e, and evaluates the formula obtained by replacing all occurrences of x in α that are in the
scope of the quantifier by e. If ϕ = ¬∀x. α (resp. ϕ = ¬∃x. α), the algorithm evaluates ∃x.¬α (resp.
∀x.¬α). If ϕ = p(e1, e2) (resp. ϕ = ¬p(e1, e2)), the algorithm accepts it if and only if all conditions
(resp. at least one condition) from i to iv of Definition 3.8 hold (resp. do not hold).

From the definition of acceptance of alternating machines [Pap94], it follows that an QCMPEC -
instance (H, ϕ, w) is accepted if and only if IH; w |= ϕ. Moreover, the time needed is polynomial in
the size of H and ϕ. Thus, model checking in EQCMEC is in AP. Since AP = PSPACE [Pap94],
it is in PSPACE.

It is worth noting that the (deterministic) time complexity of the model checking procedure we
exploited in the proof of Theorem 5.5 is exponential in the query complexity (length of the formula)
for event calculi provided with quantifiers, but devoid of modalities (QCEC and QCPEC ), it is
exponential in the data complexity (number of events) for event calculi with modalities, but devoid
of quantifiers (CMEC and CMPEC ), and it is exponential in both the data and query complexities
for event calculi with both modalities and quantifiers (QCMEC and QCMPEC ). In most problems
of interest, we need to deal with situations where there is a large number of events, but the size of
relevant queries is generally limited. The examples given in Section 4 fall into this category. In such
a case, the fact that a calculus is polynomial in the number of events is essential, because being the
exponent dependent on the length of the formula may at worst lead to polynomials of high degree.

These complexity results are summarized in Figure 5, which is isomorphic to Figure 1.

18



6 Approximate Event Calculi

The complexity results given in Section 5 allow us to conclude that model checking in the calculi
analyzed in Theorems 5.4 and 5.5 (probably) involves an exponential-time cost in the data complexity
(number of events) and/or in the query complexity (size of the formula). As already pointed out in
Section 5, data complexity is the critical factor in problems of practical relevance. In this section,
we present approximate model checking procedures, that are in many cases either sound (but not
complete) or complete (but not sound) with respect to the semantics of the corresponding event
calculi, but which are polynomial at least in the number of events.

We first consider the case of 2- or 3-moded atomic formulas. In the context-independent case,
Lemma 3.6 guarantees the existence of a polynomial time algorithm to test the truth of such formulas.
When considering preconditions, the problem of checking a 2-moded (resp. 3-moded) atomic formula
is complete in NP (resp. coNP) as shown in Lemma 5.2 (resp. Corollary 5.3). Hence, it is unlikely
that there exists a polynomial algorithm that computes exactly the set of necessary and possible
MVI s.

In the following, we present a polynomial algorithm that approximates the computation of neces-
sary and possible MVI s in the context-dependent case. In order to make the notion of approximation
more precise, we rely on the sets MV I(w), 2MV I(w) and 3MV I(w), defined as follows:

MV I(w) = {p(e1, e2) : w |= p(e1, e2)};
2MV I(w) = {p(e1, e2) : w |= 2p(e1, e2)};
3MV I(w) = {p(e1, e2) : w |= 3p(e1, e2)}.

They respectively denote the sets of MVIs, necessary MVIs, and possible MVIs with respect to w.
They can be viewed as functions of the knowledge state w.

The basic idea will be to compute, in polynomial time, useful bounds on 2MVI(·) and 3MVI(·),
that is, subsets of 2MVI(·) and supersets of 3MVI(·). Both functions have a trivial bound, as shown
by the following inclusion chain [CM99]:

∅ ⊆ 2MVI(·) ⊆ MVI(·) ⊆ 3MVI(·) ⊆ L(PEC) = L(EC).

To identify useful bounds, we generalize the local conditions of Lemma 3.6 to deal with precondi-
tions. Such a generalization yields the definition of two meta-predicates, necHolds and posHolds, which
specify local conditions for 2- and 3-moded atomic formulas with non-empty contexts, respectively.

Definition 6.1 (The necHolds and posHolds meta-predicates)

Let H = (E, P, [·|·〉, 〈·|·]) be a PEC-structure. Given two events e1, e2 ∈ E, a property p ∈ P,
and a state of knowledge w ∈ WH, the meta-predicates necHolds and posHolds are mutually defined
as follows:

necHolds(p, e1, e2, w) iff

i. e1 <w e2

ii. necInit(e1, p, w), where necInit(e1, p, w) iff
∃C ∈ 2P. e1 ∈ [p|C〉 ∧ ∀q ∈ C. ∃e′, e′′ ∈ E. necHolds(q, e′, e′′, w) ∧ e′ <w e1 ∧ e1 ≤w e′′

iii. necTerm(e2, p, w), where necTerm(e2, p, w) iff
∃C ∈ 2P. e2 ∈ 〈p|C] ∧ ∀q ∈ C. ∃e′, e′′ ∈ E. necHolds(q, e′, e′′, w) ∧ e′ <w e2 ∧ e2 ≤w e′′

iv. ¬necBroken(p, e1, e2, w), where necBroken(p, e1, e2, w) iff
∃e ∈ E. e 6≤w e1 ∧ e2 6≤w e ∧ (posInit(e, p, w) ∨ posTerm(e, p, w))

19



posHolds(p, e1, e2, w) iff

i. e2 6<w e1

ii. posInit(e1, p, w), where posInit(e1, p, w) iff
∃C ∈ 2P. e1 ∈ [p|C〉 ∧ ∀q ∈ C. ∃e′, e′′ ∈ E. posHolds(q, e′, e′′, w) ∧ e1 6≤w e′ ∧ e′′ 6<w e1

iii. posTerm(e2, p, w), where posTerm(e2, p, w) iff
∃C ∈ 2P. e2 ∈ 〈p|C] ∧ ∀q ∈ C. ∃e′, e′′ ∈ E. posHolds(q, e′, e′′, w) ∧ e2 6≤w e′ ∧ e′′ 6<w e2

iv. ¬posBroken(p, e1, e2, w), where posBroken(p, e1, e2, w) iff
∃e ∈ E. e1 <w e ∧ e <w e2 ∧ (necInit(e, p, w) ∨ necTerm(e, p, w))

These definitions merge the contents of Lemma 3.6 and Definition 3.8. In particular, they differ from
the latter only by the replacement of conditions of the form e <w e′ with their negation or with the
symmetric condition.

The following theorem proves that the meta-predicates necHolds and posHolds respectively com-
pute a subset of 2MVI(·) and a superset of 3MVI(·). Moreover, it is possible to show that if there
are no preconditions (context-independent case), they compute exactly 2MVI(·) and 3MVI(·), re-
spectively.

Theorem 6.2 (Approximation procedures for the 2-MPEC and 3-MPEC problems)

Let H = (E, P, [·|·〉, 〈·|·]) be a MPEC-structure. Given e1, e2 ∈ E, p ∈ P, and w ∈ WH, it holds
that

i. if necHolds(p, e1, e2, w), then w |= 2p(e1, e2);

ii. if w |= 3p(e1, e2), then posHolds(p, e1, e2, w).

Proof.
We only outline the structure of the proof. A rigorous proof is simple, but long and somewhat

tedious.
Since the meta-predicates necHolds and posHolds are defined in term of each other, we prove the

statements i and ii by mutual induction on the length BH of the longest path on the dependency
graph for H. If BH = 0, the thesis easily follows from Definition 6.1 and Lemma 3.6.

Assume then that BH > 0. The following statements hold:

(1) if e1 <w e2, then ∀w′ ∈ Ext(w). e1 <w′ e2

(2) if necInit(e1, p, w), then ∀w′ ∈ Ext(w). init(e1, p, w′)
(3) if necTerm(e2, p, w), then ∀w′ ∈ Ext(w). term(e2, p, w′)
(4) if ¬necBroken(p, e1, e2, w), then ∀w′ ∈ Ext(w). ¬br(p, e1, e2, w

′)

The proof of (1) is simple. Statements (2) and (3), and statement (4) can be proved by exploiting the
induction hypothesis on i and ii, respectively. The conjunction of the antecedents of (1), (2), (3), and
(4) defines the meta-predicate necHolds(p, e1, e2, w), while the conjunction of the consequents of (1),
(2), (3), and (4) defines the semantics of w |= 2p(e1, e2). Therefore, if necHolds(p, e1, e2, w), then
w |= 2p(e1, e2).

Analogously, we have the following statements:

(5) if ∃w′ ∈ Ext(w). e1 <w′ e2, then e2 6<w e1

(6) if ∃w′ ∈ Ext(w). init(e1, p, w′), then posInit(e1, p, w)
(7) if ∃w′ ∈ Ext(w). term(e2, p, w′), then posTerm(e2, p, w)
(8) if ∃w′ ∈ Ext(w). ¬br(p, e1, e2, w

′), then ¬posBroken(p, e1, e2, w)

20



e1

e2

e3 e4

@
@@R

¡
¡¡µ

-

[p|{}〉
〈q|{}]

[s|{q}〉

[q|{}〉
〈p|{}]

[r|{p}〉

[t|{r, s}〉
〈r|{}]
〈s|{}]

〈t|{}]
e0

e1

e2

e3 e4

¡
¡¡µ

@
@@R

@
@@R

¡
¡¡µ

-
[r|{}〉

〈r|{}]
[p|{r}〉

〈r|{}]
[q|{r}〉

[s|{p}〉
[s|{q}〉
〈p|{}]
〈q|{}]

〈s|{}]

Figure 6: Approximations of Modal Event Calculi with Preconditions

The proof of (5) is simple. We can prove statements (6) and (7), and statement (8) by exploiting
the induction hypothesis on i and ii, respectively. If w |= 3p(e1, e2), then the conjunction of the
antecedents of (5), (6), (7), and (8) holds. Moreover, the conjunction of the consequents of (5),
(6), (7), and (8) defines the meta-predicate posHolds(p, e1, e2). Therefore, if w |= 3p(e1, e2), then
posHolds(p, e1, e2, w).

We will now show that the inclusions of Theorem 6.2 are strict. The first example (Figure 6, left
side) models the following situation. Let e1, e2, e3, and e4 be four events, and p, q, r, s, and t be
five properties. Suppose that e1 initiates p and terminates q, without preconditions, and it initiates
s, with precondition q; e2 initiates q and terminates p, without preconditions, and it initiates r, with
precondition p; e3 terminates both r and s, without preconditions, and it initiates t, with preconditions
r and s; finally, e4 terminates t, without preconditions. Consider a knowledge state w according to
which e1 precedes e3, e2 precedes e3, the relative order of e1 and e2 is unknown, and e3 precedes
e4. Under such hypotheses, posHolds(t, e3, e4, w) is true, but w 6|= 3t(e3, e4). The second example
(Figure 6, right side) describes a dual situation. It is not difficult to verify that w |= 2s(e3, e4), but
necHolds(s, e3, e4, o

+) is false.
The complexity of the procedures necHolds and posHolds can be easily shown to be polynomial

in the number of events. The semantics of the meta-predicates necHolds and posHolds indeed differ
from the intended PEC -model (Definition 3.8) only for the fact that some tests of the form e1 <w e2

are replaced by tests of the form e2 6<w e1. This replacement does not affect the overall complexity;
thus the cost of computing the meta-predicates necHolds and posHolds is equal to the cost of model
checking in PEC (cf. Theorem 5.1). We use the same conventions as in Section 5.

Corollary 6.3 (Complexity of MPEC approximations)

The cost of the meta-predicates necHolds and posHolds is O(n2·BH+1) [O(n3·(BH+1))].

It is straightforward to extend the above approximation procedures to deal with QMPEC -formulas.
The complexity of the resulting procedures is equal to the complexity of model checking in QPEC,
i.e., O(n2·BH+3) [O(n3·(BH+1)+2)].

We now turn to our most general event calculus, QCMPEC . We want to identify general classes of
formulas that enjoy approximations that are either sound (but not necessarily complete) or complete
(but not necessarily sound), in the same sense as for atomic modal formulas above.

To this effect, we can try to take advantage of some logical equivalences that hold in QCMPEC
(e.g. those in Proposition 3.10) to push modalities as close to the atomic subformulas as possible,
in order to apply the approximation procedure necHolds and posHolds to 2-moded and 3-moded
atomic formulas, respectively. Unfortunately, this goal cannot be always successfully accomplished.
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In particular, there is no general way of reducing formulas of the forms 2(ϕ1 ∨ ϕ2), 2∃Xϕ(X),
3(ϕ1 ∧ ϕ2), and 3∀Xϕ(X). Moreover, formulas of the forms 23ϕ and 32ϕ can be reduced only
for some classes of argument formulas ϕ. To deal with these critical cases, we exploit the following
logical implications between QCMPEC -formulas

Proposition 6.4 (QCMPEC logical implications)

Let ϕ, ϕ1, and ϕ2 be QCMPEC-formulas, and p(e1, e2) be an atomic formula. For every knowledge
state w ∈ W , it holds that

i . w |= (2ϕ1 ∨ 2ϕ2) ⇒ w |= 2(ϕ1 ∨ ϕ2)
ii . w |= ∃X2ϕ(X) ⇒ w |= 2∃Xϕ(X)
iii . w |= 2p(e1, e2) ⇒ w |= 23p(e1, e2)

and

iv . w |= 3(ϕ1 ∧ ϕ2) ⇒ w |= (3ϕ1 ∧ 3ϕ2)
v . w |= 3∀Xϕ(X) ⇒ w |= ∀X3ϕ(X)
vi . w |= 32p(e1, e2) ⇒ w |= 3p(e1, e2)

Now consider a QCMPEC -formula ϕ2 that does contain neither 3, nor ¬ (once implications have
been expanded). Then, we can apply the logical equivalences in Proposition 3.10 and the logical
implications i–ii in Proposition 6.4 (backwards) to push modal operators inside ϕ2. Observe that
this procedure terminates with a formula φ2 where all 2 are applied to atomic formulas only, that it
does not introduce any 3 (only pushing a 2 inside a negation can produce a 3), and that the resulting
chain of formulas is sound with respect to ϕ2, but not necessarily complete. This means that if φ2

is provable (using necHolds as a test for 2-moded atoms) so is ϕ2, but that ϕ2 could be true even if
φ2 does not hold.

A dual situation holds for negation-free QCMPEC -formulas ϕ3 that may contain 3, but that do
not mention 2. Now, applying Proposition 3.10 and the logical implications iv–v of Proposition 6.4
(forward), we obtain a formula φ3, where 3 appears in front of atoms only, that is complete but not
necessarily sound with respect to ϕ3: if φ3 is not provable (using posHolds as a test for 3-moded
atoms) neither is ϕ3, but that ϕ3 could be false even if φ3 holds.

We call the procedure we just outlined approx. The classes of formulas it handles can be slightly
extended to admit negation outside of modalities, or formulas where one of the modalities always
clings to an atomic formula and is preceded by the other (we can then use the implications iii and vi
of Proposition 6.4 to get rid of it). In general, any formula whose reduction and validity check does
not mix unsound and incomplete steps is acceptable. Notice that the formulas appearing in all of
our case studies in Section 4 satisfy this criterion. We continue to use ϕ2 and ϕ3 for formulas of the
two extended classes. When applied to an arbitrary QCMPEC -formula, approx does not maintain
provability: is is neither sound nor complete in general. Nevertheless, it can actually serve as a useful
approximation in many concrete cases. We implement this more general procedure in Section 7.

It is possible to show that applying the procedure approx and evaluating the resulting formula is
polynomial-time bound in the data complexity: (i) the replacement of the original formula ϕ∗ (for
∗ ∈ {2,3}) by the formula φ∗ takes polynomial time in the length of ϕ∗, and constant time in the
number of events; (ii) model checking φ∗ in QCPEC is polynomial in the data complexity; (iii) the
approximation procedures necHolds and posHolds have polynomial cost in the number of events by
virtue of Corollary 6.3. Furthermore, by Theorem 6.2, approx is sound for formulas ϕ2 (resp. complete
for formulas ϕ3), that is, if approx yields reduced formulas φ2 (resp. φ3), we have that if w |= φ2

then w |= ϕ2 (resp. if w |= ϕ3 then w |= φ3).

22



The procedure approx applies transparently to approximately checking basic modalities in the
subcalculi CMEC, CMPEC, and QCMEC . In particular, the resulting validity test for CMEC and
CMPEC are polynomial in both data and query complexities.

7 Implementation

The Event Calculus [KS86] has traditionally been implemented in Prolog. In recent years, we have
instead investigated the use the language of hereditary Harrop formulas [MNPS91] and its concrete
realization as the logic programming language λProlog [Mil96], which declaratively extends Prolog
with a number of constructs. This has enabled us to achieve declarative yet simple encodings of
various extensions of the event calculus [CFM97b, CFM98c, CM99]. Similar attempts using Prolog
produces complex encodings [CMP94] that do not lend themselves to formally establishing correctness
issues. In [CM99], we instead proved the soundness and completeness of an encoding of CMEC (then
called GMEC ) as a program in the language of hereditary Harrop formulas, with respect to the
semantic rules outlined in the previous sections.

In this section, we use λProlog and its module facilities to achieve an economical implementation
of all the calculi discussed in this paper. We also summarize relevant correctness statements.

7.1 λProlog in a Nutshell

We shall assume the reader familiar with the logic programming language Prolog, for which we
adopt [SS94] as a reference. We will instead illustrate some of the characteristic constructs of λProlog
at an intuitive level. We invite the interested reader to consult [Mil96] for a more complete discussion
of this language, and [CM99] for a detailed presentation in the context of the Event Calculus.

Differently from Prolog which is first-order, λProlog is a higher-order language, which means that
the terms in this programming language are drawn from a simply typed λ-calculus. More precisely,
the syntax of terms is given by the following grammar:

M ::= c | x | F | M1 M2 | x \M

where c ranges over constants, x stands for a bound variable and F denotes a logical variable (akin to
Prolog ’s variables). Identifiers beginning with a lowercase and an uppercase letter stand for constants
and logical variables, respectively. Terms that differ only by the name of their bound variables
are considered indistinguishable. “x \M” is λProlog ’s syntax for λ-abstraction, traditionally written
λx. M . In this language, terms and atomic formulas are written in curried form (e.g. “before E1 E2”
rather than “before(E1, E2)”). Syntax is provided for declaring infix symbols. We will rely on two
predefined symbols: the infix list constructor, written “::”, and the empty list, denoted “nil”.

Every constant, bound variable and logical variable is given a unique type A. Types are either
user-defined base types, or functional types of the form A1 ->A2. By convention, the predefined base
type o classifies formulas. A base type a is declared as “kind a.”, and a constant c of type A is
entered in λProlog as “type c A.”. Application and λ-abstraction can be typed if their subexpression
satisfy certain constraints. A list of elements of type A has predeclared type “list A”. λProlog will
reject every term that is not typable.

While first-order terms are equal solely to themselves, the equational theory of higher-order
languages identifies terms that can be rewritten to each other by means of the β-reduction rule:
(x \M)N = [N/x]M , where the latter expression denotes the capture-avoiding substitution of the
term N for the bound variable x in M . A consequence of this fact is that unification in λProlog must
perform β-reduction on the fly in order to equate terms or instantiate logical variables. A further
difference from Prolog is that logical variables in λProlog can stand for functions (i.e. expressions of
the form x \M) and this must be taken into account when unification is performed.
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For our purposes, the language of formulas of λProlog differs from Prolog for the availability of
implication, intensional universal quantification, and of an explicit existential quantifier in the body
of clauses. The goal D ⊃ G, written “D =>G” in the concrete syntax of this language, is solved by
resolving the goal G after having assumed D as an additional program clause. Solving the goal ∀x.G,
denoted “pi x \G” in the concrete syntax, amounts to inventing a new constant c of the appropriate
type and finding a solution to [c/x]G. Finally, the goal ∃x.G is entered as “sigma x \G”. We will
also take advantage of negation-as-failure, denoted not. Other connectives are denoted as in Prolog :
“,” for conjunction, “;” for disjunction, “:-” for implication with the arguments reversed. The only
predefined predicate we will use is the infix “=” that unifies its arguments. Given a well-typed λProlog
program P and a goal G, the fact that there is a derivation of G from P, i.e. that G is solvable in P,
is denoted P ` G. See [CM99, Mil96] for details.

λProlog offers also the possibility of organizing programs into modules. A module m is declared as
“module m.” followed by the declarations and clauses that define it. Modules can access other modules
by means of the accumulate declaration. Whenever “accumulate m1.” occurs in the preamble of a
module m2, it specifies a module consisting of all the clauses of m1 followed by all the clauses of m2.

Finally, % starts a comment that extends to the end of the line.

7.2 Encoding

We will now give a λProlog implementation of EC and of the extensions discussed above. We report
the resulting code in Appendix A as a collection of modules named after the corresponding calculi.
An encoding of the case studies presented in Section 4 can be found in Appendix B. This code
has been tested using the Terzo implementation of λProlog, version 1.2b, which is available from
http://www.cse.psu.edu/~dale/lProlog/.

We now define a family of representation functions p·q that relate the mathematical entities we have
been using in Sections 2, 3, and 6 to terms in λProlog. Specifically, we need to encode EC -structures,
the associated orderings, and the language of each of our calculi.

Orderings

For implementation purposes, it is more convenient to compute the relative ordering of two events on
the basis of fragmented data (a binary acyclic relation) than to maintain this information as a strict
order. We rely on the binary predicate symbol beforeFact to represent the edges of the binary acyclic
relation. We encapsulate the clauses for the predicate before, which implements its transitive closure,
in the module ordering, shown in Appendix A.1. We have proved in [CMC95] that, in pathological
cases, this code can establish an ordering relation in a time exponential in the number of events. A
quadratic implementation can however be found in [CMC95].

EC -structures and MVIs

We represent a generic EC -structure H = (E, P, [·〉, 〈·], ]·,·[) by giving an encoding of the entities
that constitute it. We introduce the types event and property so that every event in E (property
in P) is represented by a distinct constant of type event (of type property). Event variables are
represented as λProlog variables of the relative type. The initiation, termination and exclusivity
relations, and event occurrences (traditionally represented in EC ) are mapped to the predicate symbol
initiates, terminates, exclusive, and happens, respectively, applied to the appropriate arguments.
Declarations for these constants can be found in Appendix A.2.

In order to encode the syntax of EC and of its extensions, we define the type mvi, intended to
represent the formulas of those language (as opposed to the formulas of λProlog, that have predefined
type o). We then represent an atomic formula to be tested for MVI-hood by means of the function
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symbol period:
pp(e1, e2)q = period pe1q ppq pe2q

The truth of a formula is expressed by means of the predicate holds, which accepts an object of type
mvi as an argument. These declarations have been collected in the module mvis in Appendix A.2.

The predicates init, term, and excl have the purpose of providing a uniform interface to initiation,
termination and exclusivity relations, both in the presence and in the absence of preconditions. We
will describe them in more detail when illustrating the encoding of EC and of preconditions.

Connectives

The syntax and semantics of the boolean connectives can be introduced independently from the above
formalization of EC (except for having them operate on expressions of type mvi). We represent them
by means of the constants neg, and, or, and implies:

p¬ϕq = neg pϕq
pϕ1 ∧ ϕ2q = pϕ1q and pϕ2q
pϕ1 ∨ ϕ2q = pϕ1q or pϕ2q

pϕ1 → ϕ2q = pϕ1q implies pϕ2q

Clauses CONN-1 to CONN-4 in module connectives (Appendix A.3) reduce the truth check for the
boolean connectives to the derivability of the corresponding λProlog constructs. Notice that implica-
tion is translated back to a combination of negation and disjunction in clause CONN-4. This module
implements the vertical edges in Figure 1.

Quantifiers

Quantifiers differ from the other syntactic entities of a language by the fact that they bind a variable
in their argument (e.g. x in ∃x. ϕ). Bound variables are then subject to implicit renaming to avoid
conflicts and to substitution. Encoding binding constructs in traditional programming languages such
as Prolog is painful since these operations must be explicitly programmed. λProlog and other higher-
order languages permit a much leaner emulation since λ-abstraction (x \ M) is itself a binder and
their implementations come equiped with (efficient) ways of handling it. The idea, known as higher-
order abstract syntax [Mil96], is then to use λProlog ’s abstraction mechanism as a universal binder.
Binding constructs in the object language are then expressed as constants that takes a λ-abstracted
term as its argument. The quantified formulas of our calculus are indeed represented as follows:

p∀x. ϕq = forAllEvent (x \ pϕq)
p∃x. ϕq = forSomeEvent (x \ pϕq)

Both forAllEvent and forSomeEvent are declared of type (event -> mvi) -> mvi in Appendix A.4.
Variable renaming happens behind the scenes, and substitution is delegated to the meta-language as
β-reduction.

An example will shed some light on this technique. Consider the formula ϕ = ∃x. p(x, e2), whose
representation is

forSomeEvent (x \ (period x p e2))

where we have assumed that p and e2 are encoded as the constants p and e2, of the appropriate type.
It is easy to convince oneself that this expression is well-typed. In order to ascertain the truth of ϕ,
we need to check whether p(e, e2) holds for successive e ∈ E until such an event is found. Automating
this implies that, given a candidate event e1 (represented as e1), we need to substitute e1 for x in
period x p e2. This can however be achieved by simply applying the argument of forSomeEvent
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to e1. Indeed, (x \ (period x p e2)) e1 is equal to period e1 p e2, modulo β-reduction. This
technique is used in Appendix A.4, that contains the code implementing quantifiers.

Although λProlog offers a form of universal quantification, we are forced to take a detour and
express our universal quantifiers as negations and existentials in clause QUANT-1. A lengthy discussion
of the logical reasons behind this step can be found in [CM99]. Existential quantification is instead
mapped to the corresponding λProlog construct in clause QUANT-2. Module quantifiers implements
the oblique edges in Figure 1.

Generic Modalities

A implementation of the unrestricted modal operators 2 and 3 is contained in the module modalities,
displayed in Appendix A.5. With the exception of MEC, it implements the horizontal edges in Figure 1.
A specialized (and more efficient) code in the case of MEC and the approximate calculi is discussed
below. Modal formulas are represented below by means of the constants must and may:

p2ϕq = must pϕq
p3ϕq = may pϕq

The clauses MOD-1 to MOD-4 implement the Unfolding Lemma proved in [CM99]. Intuitively, this
results states that the truth test for an arbitrary formula having a modality as its main connective
can be reduced to first testing the truth of its immediate subformula in the current world and then
checking the truth of the original formula in the ‘one-step’ extensions of the current knowledge state.

These clauses are interesting since they make use of an additional construct of λProlog not found
in Prolog : embedded implication. Clause MOD-2 attempts to prove the validity of a formula of the form
3ϕ by selecting a pair of unordered events, temporarily augmenting the current knowledge state with
either ordering, and checking whether 3ϕ is valid in that extension. At worst, the process terminates
when we reach a total ordering since no unordered pairs of events can be found. In case of failure,
another pair of unordered events is selected. As expected from our complexity results, this trial and
error strategy has an exponential cost in the worst case. We have shown in [CM99] how to alleviate
the burden in specific cases. Efficient approximations are instead discussed below.

The validation of formulas of the form 2ϕ in clauses MOD-3 and MOD-4 reduces to the previous case
by exploiting a form of double negation. A direct representation of the semantics of this operator in
λProlog cannot be achieves since this language (as well as Prolog) lack an extensional form of universal
quantification. This issue is discussed at length in [CM99].

EC

The core of the code that test whether an EC formula is an MVI can be found in the module ec_base
in Appendix A.7. Clauses EC-1 and EC-2 provide a direct encoding of Definition 2.1, where clause
EC-2 faithfully emulates the meta-predicate broken. This representation is almost identical to the
standard Prolog implementation presented in [KS86].

Notice that these clauses do not rely on the predicates initiates, terminates, and exclusive
declared in the module ec_structure in Appendix A.2; this module is not even imported in ec_base.
They instead call init, term, and excl defined in module mvis. The connection is made in module ec
(also in Appendix A.7), which merges ec_base and ec_structure, and defines init, term, and excl
in terms of initiates, terminates, and exclusive in the obvious way. Queries must be directed to
this module, and not to ec_base.
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PEC -structures and Preconditions

PEC -structures differ from EC -structures by the form of the initiation and termination conditions, and
by the omission of the exclusivity relation, unnecessary in the presence of preconditions. This forces
us to provide distinct declarations for the corresponding entities, that we have grouped in the module
pec_structure in Appendix A.6. Specifically, given a PEC -structure H = (E, P, [·|·〉, 〈·|·]), we
continue to rely on the types event and property to classify the elements of E and P, respectively. We
instead give alternative definitions of initiates and terminates in order to accommodate contexts.
Specifically, we adopt the following encoding for these entities:

p[·|·〉q = {initiates peq ppq pCq : e ∈ E, p ∈ P, C ∈ 2P, e ∈ [p|C〉};
p〈·|·]q = {terminates peq ppq pCq : e ∈ E, p ∈ P, C ∈ 2P, e ∈ 〈p|C]};

where contexts are represented by using the list datatype of λProlog. Notice that the predicate
exclusive is not defined.

Module precon in Appendix A.6 contains the code that completes module ec_base to obtain a
faithful encoding of Definition 3.8. It is best to compare this definition with the result of merging
those two modules together (which is what module pec does in Appendix A.9). It is then evident that
the predicates init, term and broken to implement the meta-predicates pInit, pTerm and pBroken
in Definition 3.8. Finally, we use the auxiliary predicate recHolds to iterate the MVI check over the
elements of a context: clauses PRECON-3 and PRECON-4 emulate the context quantification appearing
in the definition of pInit and pTerm as iteration over lists. Clause PRECON-5 defines excl as an
identity check, with the effect of making the last two lines of clause EC-2 equivalent to

(init E P; term E P)

as prescribed in Definition 3.8. This module stands as the basis for the implementation of the calculi
in the right-hand side cube in Figure 1.

MEC

The core of a polynomial implementation of MEC and the approximate subcalculi is contained in
the module mec_base in Appendix A.8. It extends ec_base with the function symbols must and
may, defined as in the case of generic modalities. The validity of modal MEC formulas is efficiently
implemented by relying on the local conditions in Lemma 3.6. In particular, the predicate necBroken
corresponds to the meta-predicate necBroken in the first part of that result.

The module mec, also shown in Appendix A.8, enables issuing MEC -queries by merging ec and
mec_base.

An alternative way of implementing MEC is to bundle the modules ec and modalities, but
proving the validity of a modal MVI may then take a time exponential in the number of recorded
events.

Other Calculi

The other possible Event Calculi combinations of connectives, quantifiers, modalities, and precondi-
tions are obtained by merging the appropriate modules defining the basic components, as specified in
Figure 1. They are listed in Appendix A.9. In particular, all calculi that do not make preconditions
available inherit from ec, while the calculi that rely on preconditions accumulate module pec.

Approximations

As we saw in Section 6, by applying Propositions 3.10 and 6.4, an arbitrary QCMPEC -formula can
be rewritten into a formula where modalities enclose at most atoms of the form p(e1, e2). This
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transformation, that we called approx in Section 6, is inexpensive and has the benefit of lowering the
cost of queries to a polynomial level. However, this procedure does not maintain provability: it is
neither sound nor complete in general, although either property holds for specific sublanguages. It
can however serve as a useful approximation in many cases.

The λProlog implementation of this transformation as the module approx can be found in Ap-
pendix A.10. It relies on two predicates, “eqcmec” and “approx”. The first checks whether the
formula represented as its argument is an QCMEC -formula with the property that modalities enclose
only atomic formulas. It is implemented by checking the nature of the main operator of its argument,
and recursively examining its subformulas. The only clauses that deserves some discussion are the
ones that traverse quantifiers. Remember that forSomeEvent and forAllEvent accept an argument
of type event -> mvi. Therefore, when analyzing the subformula represented by their argument, we
need to instantiate it with some event to obtain an object of type mvi. Any event would do, in this
case. However, event names are chosen when encoding a specific EC -problem, while we would like
our code to apply to arbitrary situations. We achieve the desired effect by temporarilly introducing a
new event in the system by means of the universal quantification construct available in λProlog (pi).

The clauses defining approx carry the transformations expressed by Propositions 3.10 and 6.4. The
first argument is the original formula, while the second argument holds a representation of the rewritten
formula. The predicate approx operates by analyzing the structure of the source formula, usually two
levels of connectives at a time. Clauses APP-1 to APP-6 deal with the cases where the topmost operator
of the source formula is non-modal. Clauses APP-7 to APP-18 implement Proposition 3.10. Clauses
APP-19 to APP-24 instead realize the approximate equivalences in Proposition 6.4. Finally, clause
APP-25 checks those formulas that are already in the target form. In this module, implications are
systematically translated into negations and disjunctions, for simplicity, while quantifiers are treated
as in the case of eqcmec.

The approximate calculi with and without preconditions are implemented in module app_qcmec
and app_pqcmec, respectively. Both define the predicate app_holds. It validates a formula by
first translating it using approx, and then calling holds on the resulting expression. Notice that
app_qcmpec does not rely on the module modalities, as mpec does, but on mec and therefore transi-
tively on mec_base. This allows for a modular and transparent implementation of the meta-predicates
necHolds and necHolds introduced in Section 6.

7.3 Soundness and Completeness

The encoding we have chosen as an implementation of our family of event calculi permits an easy
proof of its faithfulness with respect to the formal specification of this formalism. Key factors in the
feasibility of this endeavor are the precise semantic definitions given in Section 3, and the exploitation
of the declarative features of λProlog.

In the rest of this section, we denote with XEC any of the event calculi discussed in this paper.
Moreover, we write |=XEC for the associated validity relation. Finally, we indicate with xec the
corresponding λProlog module from Appendix A.

We first recall the following lemma from [CM99], which specifies that before is a sound and
complete implementation of the ordering relation in the current world.

Lemma 7.1 (Soundness and completeness of before w.r.t. transitive closure)

Let H be an EC- or PEC-structure with events in E, and o a state of knowledge, then for any
e1, e1 ∈ E

xec, pHq, poq ` before pe1q pe2q iff e1 <o+ e2.
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In the absence of preconditions, the soundness and completeness results for broken and holds
can be conveniently staged [CM99]. In the more general setting, they dependent on each other, as
well as on the similar results for init, term and recHolds. We have the following soundness and
completeness theorem for atomic queries

Theorem 7.2 (Soundness and completeness for atomic queries)

Let H be an EC- or PEC-structure with events in E and o a state of knowledge, then

a. xec, pHq, poq ` holds(period pe1q ppq pe2q) iff p(e1, e2) ∈ υH(o+);

b. xec, pHq, poq ` broken ppq pe1q pe3q iff br(p, e1, e2, o
+) holds in H;

c. xec, pHq, poq ` init peq ppq iff init(e, p, o+) holds in H;

d. xec, pHq, poq ` term peq ppq iff term(e, p, o+) holds in H;

e. xec, pHq, poq ` recHolds pCq peq iff ∀q ∈ C. ∃e′, e′′ ∈ E. q(e1, e2) ∈ υH(o+) ∧ e1 <o+ e ∧
e ≤o+ e2 (only if H is a PEC-structure).

Proof.
(⇒) This part of the proof proceeds by simultaneous induction on the structure of the given λProlog
derivations.

(⇐) In order to proved this direction of the statement of the theorem, we must proceed by simultaneous
induction on the definition of the expressions that appear on its right-hand side. More precisely, we
will admit appealing to the induction hypothesis in the following circumstances:

• From a to b, c or d if the property does not change.

• From b to c, d if the property does not change.

• From c or d, to e if maxq∈C(BH(q)) < BH(p).

• From e to a if BH(p) ≤ maxq∈C(BH(q)).

The latter two cases are applicable only if H is a PEC -structure. It is easy to prove that, under the
assumption that the dependency graph of H is acyclic (i.e. if BH is finite), then this specification
constitutes a well-ordering, enabling us to proceed by induction.

On the basis of this result, it is relatively simple to prove that the semantic characterization that
enriches atomic queries with any or all of boolean connectives, quantifiers, and modalities justifies
the corresponding λProlog module implementing them. This is succinctly captured by the following
theorem:

Theorem 7.3 (Soundness and Completeness)

Let H be an EC- or PEC-structure with events in E, o a binary acyclic relation over E, and ϕ a
formula in LH(XEC ), then

xec, pHq, poq ` holds pϕq iff IH; o+ |=XEC ϕ

The forward direction of each instance of this theorem is proved by induction on the structure of
a λProlog derivation of the sequent on the left-hand side. The base case relies on Theorem 7.2.

The backward direction results from unfolding the inductive definition of validity given in Section 3.
These techniques have been rigorously deployed in [CM99] in the case of the sole CMEC (then called
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GMEC ). Therefore, we refrain from presenting a more detailed account of this simple but rather long
and tedious argument. The treatment of quantifiers can instead be found in [CFM98c]. The interested
reader is invited to consult those sources.

Similar results hold also in the case of the approximate calculi. Indeed, although the transformation
they rely on is neither sound nor complete with respect to the source calculus of the translation, our
implementation realizes it faithfully. We omit stating this property for the sake of brevity.

8 Conclusions

In this paper, we proposed an original specification framework that allows us to formally characterize
the functionalities of basic EC and of several useful extensions. We used this formalization to define
a number of event calculi that extend the range of queries accepted by EC by supporting advanced
functionalities such as arbitrary quantification over events, modal queries, mixed connectives, and
preconditions. We systematically analyzed and compared the expressiveness and complexity of the
various calculi against each other. Furthermore, we provided a declarative encoding of all of these
calculi in the logic programming language λProlog and proved the soundness and completeness of the
resulting logic programs.

As for future work, we intend to use the proposed framework to formally characterize other exten-
sions of basic EC, such as those adding discrete processes, time granularity, and continuous change.
We are also looking for algorithms that improve the efficiency of model checking in the polynomial
cases (cf. Theorem 5.1). In particular, we are working at the generalization of the graph-theoretic
approach to model checking in EC and MEC, that we proposed in [FM99a, FM99b], to the other
polynomial calculi. Furthermore, we are considering the issue of finding a lower bound to the com-
plexity of the model checking problem in the tractable cases, in order to obtain a definitive yard-stick
to measure the quality of the proposed polynomial model checking algorithms.

Finally, although we developed our analysis in the context of the Event Calculus, we expect it
to be applicable to any formalisms for reasoning about partially ordered events. In particular, we
intend to explore the applicability of the proposed approach to frameworks such as the Situation
Calculus [CH69] and the Features and Fluents formalism [San94].
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A Code

A.1 Orderings
module ordering.

kind event type.

type beforeFact event -> event -> o.
type before event -> event -> o.

before E1 E2 :- % Ord-1 %
beforeFact E1 E2.

before E1 E2 :- % Ord-2 %
beforeFact E1 E, before E E2.

A.2 EC -structures and MVIs
module ec_structure.

kind event type.
kind property type.

type initiates event -> property -> o.
type terminates event -> property -> o.
type exclusive property -> property -> o.
type happens event -> o.

module mvis.

kind event type.
kind property type.

type init event -> property -> o.
type term event -> property -> o.
type excl property -> property -> o.
type happens event -> o.

kind mvi type.
type period event -> property -> event -> mvi.

type holds mvi -> o.

A.3 Connectives
module connectives.
accumulate mvis.

type neg mvi -> mvi.
type and mvi -> mvi -> mvi. infixr and 5.
type or mvi -> mvi -> mvi. infixr or 5.
type implies mvi -> mvi -> mvi. infixl implies 4.

holds (neg X) :- not (holds X). % CONN-1 %
holds (X and Y) :- holds X, holds Y. % CONN-2 %
holds (X or Y) :- holds X; holds Y. % CONN-3 %
holds (X implies Y) :- holds ((neg X) or Y). % CONN-4 %

A.4 Quantifiers
module quantifiers.
accumulate mvis.

type forAllEvent (event -> mvi) -> mvi.
type forSomeEvent (event -> mvi) -> mvi.

holds (forAllEvent X) :- % QUANT-1 %
not (sigma E \ (happens E,

not (holds (X E)))).
holds (forSomeEvent X) :- % QUANT-2 %
sigma E \ holds (X E).

A.5 Generic Modalities
module modalities.
accumulate mvis, ordering.

type must mvi -> mvi.
type may mvi -> mvi.

% ------- May-formulas
holds (may X) :- % MOD-1 %

holds X.

holds (may X) :- % MOD-2 %
happens E1, happens E2,
not (E1 = E2),
not (before E1 E2),
not (before E2 E1),
beforeFact E1 E2 =>

holds (may X).

% ------- Must-formulas
type auxMust mvi -> o.

holds (must X) :- % MOD-3 %
holds X,
not (auxMust X).

auxMust X :- % MOD-4 %
happens E1, happens E2,
not (E1 = E2),
not (before E1 E2),
not (before E2 E1),
beforeFact E1 E2 =>

not (holds (must X)).

A.6 PEC -structures and Precondi-
tions

module pec_structure.

kind event type.
kind property type.

type initiates event -> property -> list property -> o.
type terminates event -> property -> list property -> o.
type happens event -> o.

module precon.
accumulate ordering, mvis, pec_structure.

type recHolds event -> list property -> o.

init E P :- % PRECON-1 %
initiates E P C,
recHolds E C.

term E P :- % PRECON-2 %
terminates E P C,
recHolds E C.

recHolds E (Q :: C) :- % PRECON-3 %
holds (period E’ Q E’’),
before E’ E,
(before E E’’; E = E’’).

recHolds E nil. % PRECON-4 %

excl P P. % PRECON-5 %

A.7 EC
module ec_base.
accumulate mvis, ordering.
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type broken event -> property -> event -> o.

holds (period Ei P Et) :- % EC-1 %
happens Ei, init Ei P,
happens Et, term Et P,
before Ei Et, not (broken Ei P Et).

broken Ei P Et :- % EC-2 %
happens E,
before Ei E, before E Et,
(P = Q; excl P Q),
(init E Q; term E Q).

module ec.
accumulate ec_base, ec_structure.

init E P :- initiates E P. % ECAUX-1 %
term E P :- terminates E P. % ECAUX-2 %
excl P Q :- exclusive P Q. % ECAUX-3 %
excl P Q :- exclusive Q P. % ECAUX-4 %

A.8 MEC
module mec_base.
accumulate ec_base.

type must mvi -> mvi.
type may mvi -> mvi.
type necBroken event -> property -> event -> o.

holds (must (period Ei P Et)) :- % MEC-1 %
happens Ei, init Ei P,
happens Et, term Et P,
before Ei Et,
not (necBroken Ei P Et).

necBroken Ei P Et :- % MEC-2 %
happens E,
not (E = Ei), not (E = Et),
not (before E Ei),
not (before Et E),
(init E Q; term E Q),
(excl P Q; P = Q).

holds (may (period Ei P Et)) :- % MEC-3 %
happens Ei, init Ei P,
happens Et, term Et P,
not (before Et Ei),
not (broken Ei P Et).

module mec.
accumulate ec, mec_base.

A.9 Other Calculi
module cec.
accumulate ec, connectives.

module qec.
accumulate ec, quantifiers.

module pec.
accumulate ec_base, precon.

module cmec.
accumulate ec, connectives, modalities.

module qmec.
accumulate ec, modalities, quantifiers.

module mpec.
accumulate pec, modalities.

module qcec.
accumulate ec, connectives, quantifiers.

module cpec.
accumulate pec, connectives.

module qpec.
accumulate pec, quantifiers.

module qcmec.
accumulate ec, connectives, modalities, quantifiers.

module cmpec.
accumulate pec, connectives, modalities.

module qmpec.
accumulate pec, modalities, quantifiers.

module qcpec.
accumulate pec, connectives, quantifiers.

module qcmpec.
accumulate pec, connectives, modalities, quantifiers.

A.10 Approximations
module approx.
accumulate connectives, quantifiers.

type must mvi -> mvi.
type may mvi -> mvi.

type approx mvi -> mvi -> o.
type eqcmec mvi -> o.

% Non-modal formulas

approx (neg X) (neg Z) :- % APP-1 %
approx X Z.

approx (X1 and X2) (Z1 and Z2) :- % APP-2 %
approx X1 Z1,
approx X2 Z2.

approx (X1 or X2) (Z1 or Z2) :- % APP-3 %
approx X1 Z1,
approx X2 Z2.

approx (X1 implies X2) Z) :- % APP-4 %
approx ((neg X1) or X2) Z.

approx (forAllEvent E \ (X E))
(forAllEvent E \ (Z E)) :- % APP-5 %
pi e \ approx (X e) (Z e).

approx (forSomeEvent E \ (X E))
(forSomeEvent E \ (Z E)) :- % APP-6 %
pi e \ approx (X e) (Z e).

% Equivalences

approx (must (neg X)) (neg Z) :- % APP-7 %
approx (may X) Z.

approx (may (neg X)) (neg Z) :- % APP-8 %
approx (must X) Z.

approx (must (X1 and X1)) (Z1 and Z2) :- % APP-9 %
approx (must X1) Z1,
approx (must X2) Z2.

approx (may (X1 or X1)) (Z1 or Z2) :- % APP-10 %
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approx (may X1) Z1,
approx (may X2) Z2.

approx (must (X1 implies X2)) Z :- % APP-11 %
approx (must ((neg X1) or X2)) Z.

approx (may (X1 implies X2)) Z :- % APP-12 %
approx (may ((neg X1) or X2)) Z.

approx (must (forAllEvent E \ (X E)))
(forAllEvent E \ (Z E)) :- % APP-13 %

pi e \ approx (must (X e)) (Z e).

approx (may (forSomeEvent E \ (X E)))
(forSomeEvent E \ (Z E)) :- % APP-14 %

pi e \ approx (may (X e)) (Z e).

approx (must (must X)) Z :- % APP-15 %
approx (must X) Z.

approx (may (may X)) Z :- % APP-16 %
approx (may X) Z.

approx (must (may X)) Z :- % APP-17 %
approx (may X) Y,
approx (must Y) Z.

approx (may (must X)) Z :- % APP-18 %
approx (must X) Y,
approx (may Y) Z.

% Complete but unsound approximations

approx (may (X1 and Y1)) (Z1 and Z2) :- % APP-19 %
approx (may X1) Z1,
approx (may X2) Z2.

approx (may (forAllEvent E \ (X E)))
(forAllEvent E \ (Z E)) :- % APP-20 %

pi e \ approx (may (X e)) (Z e).

approx (may (must (period Ei P Et)))
(may (period Ei P Et)). % APP-21 %

% Sound but incomplete approximations

approx (must (X1 or Y1)) (Z1 or Z2) :- % APP-22 %
approx (must X1) Z1,
approx (must X2) Z2.

approx (must (forSomeEvent E \ (X E)))
(forSomeEvent E \ (Z E)) :- % APP-23 %

pi e \ approx (must (X e)) (Z e).

approx (must (may (period Ei P Et)))
(must (period Ei P Et)). % APP-24 %

% Base case

approx X X :- eqcmec X. % APP-25 %

% E-QCMEC formulas

eqcmec (period Ei P Et). % EQCMEC-1 %

eqcmec (must (period Ei P Et)). % EQCMEC-2 %

eqcmec (may (period Ei P Et)). % EQCMEC-3 %

eqcmec (neg X) :- eqcmec X. % EQCMEC-4 %

eqcmec (X1 and X2) :- % EQCMEC-5 %
eqcmec X1,
eqcmec X2.

eqcmec (X1 or X2) :- % EQCMEC-6 %
eqcmec X1,
eqcmec X2.

eqcmec (X1 implies X2) :- % EQCMEC-7 %
eqcmec ((neg X1) or X2.

eqcmec (forAllEvent E \ (X E)) :-
pi e \ eqcmec (X e). % EQCMEC-8 %

eqcmec (forSomeEvent E \ (X E)) :- % EQCMEC-9 %
pi e \ eqcmec (X e).

module app_qcmec.
accumulate approx, qcmec.

type app_holds mvi -> o.

app_holds X :- % AQCM %
approx X Z,
holds Z.

module app_qcmpec.
accumulate approx, mec, connectives, quantifiers, precon.

type app_holds mvi -> o.

app_holds X :- % APQCM %
approx X Z,
holds Z.

B Case Studies

B.1 Diagnosing Faulty Hardware
module cncc.
accumulate cmpec.

type test_plain o.
type test_must o.
type test_may o.

type zero29 property.
type one29 property.
type zero30 property.
type one30 property.

type e1 event. happens e1.
type e2 event. happens e2.
type e3 event. happens e3.
type e4 event. happens e4.

initiates e1 zero29 nil.
initiates e2 zero30 (zero29 :: nil).
initiates e3 one30 nil.
initiates e4 one29 nil.

terminates e1 one29 nil.
terminates e2 one30 nil.
terminates e3 zero30 (zero29 :: nil).
terminates e4 zero29 nil.

% Original state
beforefact e1 e3. beforefact e1 e4.
beforefact e2 e3. beforefact e2 e4.

% Expected completion
%beforefact e1 e2.
%beforefact e3 e4.

% Alternative extension
%beforefact e2 e1.
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test_plain :- holds (period e2 zero30 e3).
test_must :- holds (must (period e2 zero30 e3)).
test_may :- holds (may (period e2 zero30 e3)).

B.2 Diagnosing Metatropic Dwarfism
module dwarfism.
accumulate cmpec.

type test_plain o.
type test_must o.
type test_may o.

type narrow_th property.
type normal_th property.
type wide_th property.
type mild_sc property.
type moderate_sc property.
type progressive_sc property.

type e0 event. happens e0.
type e1 event. happens e1.
type e2 event. happens e2.
type e3 event. happens e3.
type e4 event. happens e4.
type e5 event. happens e5.
type e6 event. happens e6.

initiates e0 narrow_th nil.
initiates e1 mild_sc nil.
initiates e2 moderate_sc nil.
initiates e3 normal_th (moderate_sc :: nil).
initiates e4 progressive_sc nil.
initiates e5 wide_th (progressive_sc :: nil).

terminates e2 mild_sc nil.
terminates e3 narrow_th nil.
terminates e4 moderate_sc nil.
terminates e5 normal_th nil.
terminates e6 wide_th nil.
terminates e6 progressive_sc nil.

% Original state
beforeFact e0 e1. beforeFact e1 e2.
beforeFact e1 e3. beforeFact e2 e4.
beforeFact e2 e5. beforeFact e3 e4.
beforeFact e3 e5. beforeFact e4 e6.
beforeFact e5 e6.

% Expected completion
%beforeFact e2 e3.
%beforeFact e4 e5.

% Alternative extension
%beforeFact e3 e2.

test_plain :-
holds ( (period e3 normal_th e5)

and (period e5 wide_th e6)).
test_must :-

holds (must ( (period e3 normal_th e5)
and (period e5 wide_th e6))).

test_may :-
holds (may ( (period e3 normal_th e5)

and (period e5 wide_th e6))).

B.3 Diagnosing Malaria
module malaria.
accumulate qcec.

% Ordering
type precedes event -> event -> mvi. infixr precedes 6.

holds (E1 precedes E2) :- before E1 E2. % PREC %

type fever property. prop fever.
type chills property. prop chills.
type malaria o.

malaria :- holds (forAllEvent E1 \
forAllEvent E2 \

((period E1 chills E2) implies
(forSomeEvent E1’ \
forSomeEvent E2’ \
((E1 precedes E1’) and
(E1’ precedes E2) and
(period E1’ fever E2’))))).

type e1 event. happens e1. initiates e1 chills.
type e2 event. happens e2. initiates e2 fever.
type e3 event. happens e3. terminates e3 chills.
type e4 event. happens e4. terminates e4 fever.
type e5 event. happens e5. initiates e5 chills.
type e6 event. happens e6. initiates e6 fever.
type e7 event. happens e7. terminates e7 chills.
type e8 event. happens e8. terminates e8 fever.
type e9 event. happens e9. initiates e9 chills.
type e10 event. happens e10. initiates e10 fever.
type e11 event. happens e11. terminates e11 chills.
type e12 event. happens e12. terminates e12 fever.

beforeFact e1 e2. beforeFact e2 e3.
beforeFact e3 e4. beforeFact e4 e5.
beforeFact e5 e6. beforeFact e6 e7.
beforeFact e7 e8. beforeFact e8 e9.
beforeFact e9 e10. beforeFact e10 e11.
beforeFact e11 e12.
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