
A Hierarchy of Modal Event Calculi:
Expressiveness and Complexity

Iliano Cervesato1, Massimo Franceschet2, Angelo Montanari2

1 Department of Computer Science
Carnegie Mellon University

5000 Forbes Avenue – Pittsburgh, PA 15213-3891
Phone: (412)-268-3069 – Fax: (412)-268-5576

E-mail: iliano@cs.cmu.edu
2 Dipartimento di Matematica e Informatica

Università di Udine
Via delle Scienze, 206 – 33100 Udine, Italy

Phone: +39-432-558477 – Fax: +39-432-558499
E-mail: francesc@dimi.uniud.it; montana@dimi.uniud.it

Abstract. We consider a hierarchy of modal event calculi to represent
and reason about partially ordered events. These calculi are based on the
model of time and change of Kowalski and Sergot’s Event Calculus (EC):
given a set of event occurrences, EC allows the derivation of the maximal
validity intervals (MVIs) over which properties initiated or terminated
by those events hold. The formalisms we analyze extend EC with opera-
tors from modal logic. They range from the basic Modal Event Calculus
(MEC), that computes the set of all current MVIs (MVIs computed by
EC) as well as the sets of MVIs that are true in some/every refinement
of the current partial ordering of events (3-/2-MVIs), to the General-
ized Modal Event Calculus (GMEC), that extends MEC by allowing a
free mix of boolean connectives and modal operators. We analyze and
compare the expressive power and the complexity of the proposed cal-
culi, focusing on intermediate systems between MEC and GMEC. We
motivate the discussion by using a fault diagnosis problem as a case
study.

1 Introduction

The Event Calculus, abbreviated EC [11], is a simple temporal formalism de-
signed to model situations characterized by a set of events, whose occurrences
have the effect of starting or terminating the validity of determined properties.
Given a possibly incomplete description of when these events take place and of
the properties they affect, EC is able to determine the maximal validity intervals,
or MVIs, over which a property holds uninterruptedly. The algorithm EC relies
on for the verification or calculation of MVIs is polynomial [6]. It can advanta-
geously be implemented as a logic program. Indeed, the primitive operations of
logic programming languages can be exploited to express boolean combinations
of MVI computations and limited forms of quantification.

The range of the queries that can be expressed in EC is, however, too lim-
ited for modeling realistic situations, even when permitting boolean connectives.
Expressiveness can be improved either by extending the representation capa-
bilities of EC to encompass a wider spectrum of situations (e.g. by permitting
precondition-triggered events), or by enriching the query language of the formal-
ism. The first alternative is discussed in [4]; in this paper, we explore extensions
to the query language relatively to a specific subclass of EC problems.

We limit our investigation to problems consisting of a fixed set of events
that are known to have happened, but with incomplete information about the
relative order of their occurrences [1, 2, 3, 7, 8, 12]. In these situations, the MVIs
derived by EC bear little relevance since the acquisition of additional knowledge
about the actual event ordering might both dismiss current MVIs and validate
new MVIs [3]. It is instead critical to compute precise variability bounds for
the MVIs of the (currently underspecified) actual ordering of events. Optimal
bounds have been identified in the set of necessary MVIs, or 2-MVIs, and the
set of possible MVIs, or 3-MVIs. They are the subset of the current MVIs that
are not invalidated by the acquisition of new ordering information and the set
of intervals that are MVIs in at least one completion of the current ordering of
events, respectively.

The Modal Event Calculus, MEC [1], extends EC with the possibility of in-
quiring about 2-MVIs and 3-MVIs. The enhanced capabilities of MEC do not
raise the polynomial complexity of EC, but they are still insufficient to model
effectively significant situations. This limitation has been overcome with the Gen-
eralized Modal Event Calculus, GMEC [2]. This formalism reduces the compu-
tation of 2-MVIs and 3-MVIs to the derivation of basic MVIs, mediated by the
resolution of the operators 2 and 3 from the modal logic K1.1, a refinement of
S4 [14]. The query language of GMEC permits a free mix of boolean connectives
and modal operators, recovering the possibility of expressing a large number of
common situations, but at the price of making the evaluation of GMEC queries
an NP-hard problem (as we will show in Section 5). In this paper, we refine the
taxonomy of the modal event calculi by considering two intermediate formalisms
between MEC and GMEC, as shown in Figure 1. The queries of the Modal Event
Calculus with External Connectives, ECMEC, allow combining computations of
MVIs, 2-MVIs and 3-MVIs by means of boolean connectives. The approach fol-
lowed in ICMEC, the Modal Event Calculus with Internal Connectives, is dual:
boolean combinations of MVI computations can be prefixed by either 2 or 3.
Both ECMEC and ICMEC retain enough of the expressive power of GMEC
to allow a faithful and usable representation of numerous common situations.
However, while the problem of evaluating an ICMEC query is still NP-hard,
ECMEC admits polynomial implementations, making this formalism an ideal
candidate for the formalization of a number of applicative domains.

The main contributions of this paper lie in the investigation of intermedi-
ate modal event calculi between MEC and GMEC, and in the individuation of
ECMEC as an expressive but tractable sublanguage of the latter. The paper
provides also a formal analysis of the complexity of various modal event calculi,

EC

MEC

ECMEC ICMEC

GMEC

¡
¡¡

@
@@

@
@@

¡
¡¡

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
.P

NP

Fig. 1. A Hierarchy of Event Calculi

notably MEC and GMEC. We invite the interested reader to consult [8] for a
more detailed discussion of the topics treated in this paper, and for the proofs of
the statements we mention. In order to make the discussion more concrete, we
interleave the presentation of our various modal event calculi with the formal-
ization of an applicative example. The paper is organized as follows. We give an
informal description of our case study in Section 2. Section 3 defines the modal
extensions of EC we examine and discusses their main properties. In Section 4,
we come back to our case study and provide a formalization. Section 5 gives
a complexity analysis for the calculi considered in this paper. Finally, Section 6
summarizes the main contributions of the paper and outlines directions of future
work.

2 The Application Domain: an Informal Description

In this section, we introduce a real-world case study taken from the domain of
fault diagnosis. In Section 4, we will compare the formalizations obtained by
encoding it in GMEC, ICMEC and ECMEC.

We focus our attention on the representation and information processing
of fault symptoms that are spread over periods of time and for which current
expert system technology is particularly deficient [13]. Consider the following
example, which diagnoses a fault in a computerized numerical control center for
a production chain.

A possible cause for an undefined position of the tool magazine is a faulty
limit switch S. This cause can however be ruled out if the status registers
R1, R2 and R3 show the following behavior: from a situation in which
all three registers contain the value 0, they all assume the value 1 in
successive and disjoint time intervals (first R1, then R2, and last R3),
and then return to 0.

-
time

R1
0

1
e1 e2

R2
0

1
e3 e4

R3
0

1
e5 e6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m4

Fig. 2. Expected Register Behavior and Measurements

Figure 2 describes a possible sequence of transitions for R1, R2 and R3, that
excludes the eventuality of S being faulty. In order to verify this behavior, the
contents of the registers must be monitored over time. Typically, each value (0
or 1) of a register persists for at least t time units. Measurements are made at
fixed intervals (sampling periods), asynchronously with the change of value of
the status registers. In order to avoid losing register transitions, measurements
must be made frequently enough, that is, the sampling period must be less than
t. However, it is not possible to avoid in general that transitions of different
registers take place between two consecutive measurements, making it impossible
to recover their relative order.

This situation is depicted, in the case of our example, in Figure 2, where
dotted lines indicate measurements. Moreover, we have given names to the in-
dividual transitions of state of the different registers. In this specific situation,
the values found at measurements m0 and m1 allow us to determine that R1

has been set during this interval (transition e1). The contents of the registers
at measurement m2 let us infer that R1 has been reset (transition e2) and that
the value of R2 has changed to 1 (transition e3). We know that both e2 and e3

have taken place after e1, but we have no information about the relative order
of these transitions. Similarly, m3 allows us to infer that, successively, R2 has
been reset (e4) and R3 has been set (e5), but cannot decide which among e4

and e5 has taken place first. Finally, m4 acknowledges that R3 has successively
been reset to 0 (e6). The available information about the ordering of transitions
is summarized in Figure 3.

As we will see in Section 4, this example can be easily formalized in EC. We
will however need the expressive power of a modal version of this formalism to
draw conclusions about the possibility that the switch S is faulty.

e1

e2

e3

e4

e5

e6

¡
¡¡µ

@
@@R

-

@
@

@
@

@
@R¡

¡
¡

¡
¡

¡µ

-

@
@@R

¡
¡¡µ

Fig. 3. Ordering of the Events

3 A Hierarchy of Modal Event Calculi

In this section, we recall the syntax and semantics of the modal event calculi
MEC [1] and GMEC [2] and adapt it to define the intermediate calculi ECMEC
and ICMEC. We present some relevant properties of these formalisms. These
systems form the linguistic hierarchy shown in Figure 1. Implementations in the
language of hereditary Harrop formulas have been given in [8], together with
formal proofs of soundness and completeness with respect to the specifications
below. Space limitations do not allow us to further discuss this aspect.

The Event Calculus (EC) [11] and the modal variants we consider aim at
modeling situations that consist of a set of events, whose occurrences over time
have the effect of initiating or terminating the validity of properties, some of
which may be mutually exclusive. We formalize the time-independent aspects of
a situation by means of an EC-structure, defined as follows.

Definition 1. (EC-structure)
A structure for the Event Calculus (abbreviated EC-structure) is a quintuple

H = (E, P, [·〉, 〈·],]·,·[) such that:

– E = {e1, . . . , en} and P = {p1, . . . , pm} are finite sets of events and proper-
ties, respectively.

– [·〉 : P → 2E and 〈·] : P → 2E are respectively the initiating and terminating
map of H. For every property p ∈ P , [p〉 and 〈p] represent the set of events
that initiate and terminate p, respectively.

–]·,·[⊆ P × P is an irreflexive and symmetric relation, called the exclusivity
relation, that models exclusivity among properties.

Unlike the original presentation of EC [11], we focus our attention on situa-
tions where the occurrence time of events is unknown. Indeed, we only assume
the availability of incomplete information about the relative order in which these
events have happened. Therefore, we formalize the time-dependent aspects of an
EC problem by providing a (strict) partial order for the involved event occur-
rences. We write WH for the set of all partial orders on the set of events E of an

EC-structureH and use the letter w to denote individual orderings, or knowledge
states, in WH (that is, a knowledge state w is an irreflexive and transitive subset
of E×E). Given w ∈ WH, we will sometimes call a pair of events (e1, e2) ∈ w an
interval. For reasons of efficiency, implementations generally represent the cur-
rent situation w as a binary acyclic relation o, from which w can be recovered
as the transitive closure o+ of o [2, 6]. In the following, we will often work with
extensions of an ordering w, defined as any element of WH that contains w as a
subset. We define a completion of w as any extension of w that is a total order.
We denote with ExtH(w) and CompH(w) the set of all extensions and the set of
all completions of the ordering w in WH, respectively. We will drop the subscript
H when clear from the context.

Given a structure H and a knowledge state w, EC offers a means to in-
fer the maximal validity intervals, or MVIs, over which a property p holds
uninterruptedly. We represent an MVI for p as p(ei, et), where ei and et are
the events that initiate and terminate the interval over which p maximally
holds, respectively. Consequently, we adopt as the query language of EC the
set AH = {p(e1, e2) : p ∈ P and e1, e2 ∈ E} of all such property-labeled inter-
vals over H. We interpret the elements of AH as propositional letters and the
task performed by EC reduces to deciding which of these formulas are MVIs
and which are not, with respect to the current partial order of events. This is a
problem of model checking.

In order for p(e1, e2) to be an MVI relatively to the knowledge state w,
(e1, e2) must be an interval in w, i.e. (e1, e2) ∈ w. Moreover, e1 and e2 must
witness the validity of the property p at the ends of this interval by initiating
and terminating p, respectively. These requirements are enforced by conditions
(i), (ii) and (iii), respectively, in the definition of valuation given below. The
maximality requirement is caught by the meta-predicate nb(p, e1, e2, w) in con-
dition (iv), which expresses the fact that the validity of an MVI must not be
broken by any interrupting event. Any event e which is known to have happened
between e1 and e2 in w and that initiates or terminates a property that is either
p itself or a property exclusive with p interrupts the validity of p(e1, e2). These
observations are formalized as follows.

Definition 2. (EC intended model)

Let H = (E, P, [·〉, 〈·],]·,·[) be a EC-structure. The intended EC-model of
H is the propositional valuation υH : WH → 2AH , where υH is defined in such a
way that p(e1, e2) ∈ υH(w) if and only if

i. (e1, e2) ∈ w;
ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];
iv. nb(p, e1, e2, w), where nb(p, e1, e2, w) iff

¬∃e ∈ E. (e1, e) ∈ w ∧ (e, e2) ∈ w
∧ ∃q ∈ P. ((e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q))).

The set of MVIs of an EC problem (H, w) is not stable with respect to the
acquisition of new ordering information. Indeed, as we move to an extension of
w, current MVIs might become invalid and new MVIs can emerge [3]. The Modal
Event Calculus, or MEC [1], extends the language of EC with the possibility
of enquiring about which MVIs will remain valid in every extension of the cur-
rent knowledge state, and about which intervals might become MVIs in some
extension of it. We call intervals of these two types necessary MVIs and possible
MVIs, respectively, using 2-MVIs and 3-MVIs as abbreviations. Formally, the
query language BH of MEC consists of formulas of the form p(e1, e2), 2p(e1, e2)
and 3p(e1, e2), for every property p and events e1 and e2 defined in H. We in-
tend representing in this way the property-labeled interval p(e1, e2) as an MVI,
a 2-MVI and a 3-MVI, respectively. Clearly, AH ⊆ BH.

In order to provide MEC with a semantics, we must shift the focus from the
current knowledge state w to all knowledge states that are reachable from w, i.e.
ExtH(w), and more generally to WH. Now, by definition, w′ is an extension of w
if w ⊆ w′. Since ⊆ is a reflexive partial order, (WH,⊆) can be naturally viewed
as a finite, reflexive, transitive and antisymmetric modal frame. If we consider
this frame together with the straightforward modal extension of the valuation
υH to an arbitrary knowledge state, we obtain a modal model for MEC.

Definition 3. (MEC intended model)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure. The MEC-frame FH

of H is the frame (WH,⊆). The intended MEC-model of H is the modal model
IH = (WH,⊆, υH), where the propositional valuation υH : WH → 2AH is defined
as in Definition 2. Given w ∈ WH and ϕ ∈ BH, the truth of ϕ at w with respect
to IH, denoted by IH; w |= ϕ, is defined as follows:

IH; w |= p(e1, e2) iff p(e1, e2) ∈ υH(w) as from Definition 2;
IH; w |= 2p(e1, e2) iff ∀w′ ∈ WH such that w ⊆ w′, IH; w′ |= p(e1, e2);
IH; w |= 3p(e1, e2) iff ∃w′ ∈ WH such that w ⊆ w′ and IH; w′ |= p(e1, e2).

A MEC-formula ϕ is valid in IH, written IH |= ϕ, if IH;w |= ϕ for all
w ∈ WH.

We will drop the subscripts H whenever this does not lead to ambiguities. More-
over, given a knowledge state w in WH and a MEC-formula ϕ over H, we write
w |= ϕ for IH; w |= ϕ. Similarly, we abbreviate IH |= ϕ as |= ϕ.

It is interesting to notice that it would have been equivalent to consider
completions instead of extensions in the previous definition. Instead, the two
notions are not interchangeable in general in the refinements of MEC discussed
in the remainder of this section, as shown in [4, 8].

To determine the sets of 2- and 3-MVIs, it is possible to exploit necessary
and sufficient local conditions over the given partial order, thus avoiding a com-
plete (and expensive) search of all the consistent extensions of the given order.
More precisely [2], a property p necessarily holds between two events e1 and e2

if and only if the interval (e1, e2) belongs to the current order, e1 initiates p, e2

terminates p, and no event that either initiates or terminates p (or a property
incompatible with p) will ever be consistently located between e1 and e2. Simi-
larly, a property p may possibly hold between e1 and e2 if and only if the interval
(e1, e2) is consistent with the current ordering, e1 initiates p, e2 terminates p,
and there are no already known interrupting events between e1 and e2. This is
precisely expressed by the following lemma [2].

Lemma4. (Local conditions)

Let H = (E, P, [·〉, 〈·],]·,·[) be a EC-structure. For any pair of events
e1, e2 ∈ E, any property p ∈ P , and any w ∈ WH,

– IH;w |= 2p(e1, e2) if and only if
i. (e1, e2) ∈ w;
ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];
iv. nsb(p, e1, e2, w), where nsb(p, e1, e2, w) iff

¬∃e ∈ E. (e, e1) 6∈ w ∧ e 6= e1 ∧ (e2, e) 6∈ w ∧ e 6= e2

∧ ∃q ∈ P. ((e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q))).

– IH;w |= 3p(e1, e2) if and only if
i. (e2, e1) 6∈ w;
ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];
iv. nb(p, e1, e2, w).

The Generalized Modal Event Calculus, GMEC [2], broadens the scope of
MEC by interpreting a necessary MVI 2p(e1, e2) and a possible MVI 3p(e1, e2)
as the application of the operators 2 and 3, respectively, from an appropriate
modal logic to the MVI p(e1, e2). On the basis of this observation, it extends the
language of MEC by allowing the combination of property-labeled intervals by
means of propositional connectives and modal operators. The query language of
GMEC is defined as follows.

Definition 5. (GMEC-language)

LetH = (E, P, [·〉, 〈·],]·,·[) be an EC-structure. Given the EC-language AH,
the GMEC-language ofH, denoted LH, is the modal language with propositional
letters in AH and logical operators in {¬, ∧ , ∨ ,2,3}.

Clearly, BH ⊆ LH. Definition 3 can be easily generalized to GMEC as follows.

Definition 6. (GMEC intended model)

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure. The GMEC-frame FH and
the intended GMEC-model IH ofH are defined as in Definition 3. Given w ∈ WH
and ϕ ∈ LH, the truth of ϕ at w with respect to IH, denoted by IH;w |= ϕ, is
defined as follows:

IH; w |= p(e1, e2) iff p(e1, e2) ∈ υH(w) as in Definition 2;
IH; w |= ¬ϕ iff IH;w 6|= ϕ;
IH; w |= ϕ1 ∧ ϕ2 iff IH;w |= ϕ1 and IH; w |= ϕ2;
IH; w |= ϕ1 ∨ ϕ2 iff IH;w |= ϕ1 or IH;w |= ϕ2;
IH; w |= 2ϕ iff ∀w′ ∈ WH such that w ⊆ w′, IH; w′ |= ϕ;
IH; w |= 3ϕ iff ∃w′ ∈ WH such that w ⊆ w′ and IH; w′ |= ϕ.

The attempt of characterizing GMEC within the rich taxonomy of modal
logics reveals Sobocinski logic, also known as system K1.1 [14], as its clos-
est relative. Syntactically, this logic extends S4 for the validity of the formula
2(2(p → 2p) → p) → p, added as a further axiom to the traditional formula-
tion of that system. Semantically, it is characterized by the class of the finite,
reflexive, transitive and antisymmetric frames, i.e. by the class of all finite partial
orders. The relationship between GMEC and K1.1 is captured by the following
theorem, where the validity relation of Sobocinski logic has been indicated as
|=K1.1.

Theorem 7. (GMEC and K1.1)
Each thesis of K1.1 is a valid formula of GMEC, i.e., for each GMEC-

formula ϕ, if |=K1.1 ϕ, then |= ϕ.

Since the intended GMEC-model IH is based on a finite, reflexive, transitive
and antisymmetric frame, Theorem 7 immediately follows from the (soundness
and) completeness of K1.1 with respect to the class of all finite partial orders
[14]. From the above syntactic characterization of Sobocinski logic, every formula
valid in S4 is valid in K1.1. Therefore, Theorem 7 permits lifting to GMEC the
following well-known equivalences of S4 .

Corollary 8. (Some equivalent GMEC-formulas)
Let ϕ, ϕ1 and ϕ2 be GMEC-formulas. Then, for every knowledge state w ∈

W ,

• w |= 2¬ϕ iff w |= ¬3ϕ

• w |= 3¬ϕ iff w |= ¬2ϕ

• w |= 2(ϕ1 ∧ ϕ2) iff w |= 2ϕ1 ∧ 2ϕ2

• w |= 3(ϕ1 ∨ ϕ2) iff w |= 3ϕ1 ∨ 3ϕ2

• w |= 22ϕ iff w |= 2ϕ

• w |= 33ϕ iff w |= 3ϕ

• w |= 2323ϕ iff w |= 23ϕ

• w |= 3232ϕ iff w |= 32ϕ

Also specific properties of K1.1 turn out to be useful in order to implement
GMEC. The following equivalences can be obtained by exploiting the McKinsey
formula, 23ϕ → 32ϕ, valid in K1.1 (but not in S4).

Corollary 9. (Further equivalent GMEC-formulas)

Let ϕ be a GMEC-formula. Then, for every knowledge state w ∈ W ,

• w |= 232ϕ iff w |= 23ϕ

• w |= 323ϕ iff w |= 32ϕ

An interesting consequence of Corollaries 8 and 9 is that each GMEC-formula
ϕ is logically equivalent to a formula of one of the following forms: ψ, 2ψ, 3ψ,
23ψ, 32ψ, where the main operator of ψ is non-modal. In [2], we provided
GMEC with a sound and complete axiomatization in the language of hereditary
Harrop formulas that heavily exploits the above reductions. Unfortunately, there
is no way, in general, of reducing formulas of the form 2(ϕ1 ∨ ϕ2) and 3(ϕ1 ∧ ϕ2)
(such a reduction would be quite significant from a computational point of view):
we only have that (2ϕ1 ∨ 2ϕ2) → 2(ϕ1 ∨ ϕ2) and 3(ϕ1 ∧ ϕ2) → (3ϕ1 ∧ 3ϕ2).
Furthermore, the attempt at overcoming these difficulties by adding to K.1.1
the axiom 2(p ∨ q) → (2p ∨ 2q), distributing the 2 operator over ∨ , or,
equivalently, the axiom (3p ∧ 3q) → 3(p ∧ q), has the effect of collapsing K.1.1
onto the Propositional Calculus as stated by the following (general) theorem [8].

Theorem10. (Collapse of Modal Logics onto the Propositional Calculus)

The addition of the axiom 2(p ∨ q) → (2p ∨ 2q) to the axiom system of
any modal logic over T causes its collapse onto the Propositional Calculus.

In the following, we propose two intermediate modal event calculi, that lie
linguistically between MEC and GMEC. They are aimed at extending the expres-
sive power of MEC, while preserving as much as possible its computational effi-
ciency. Unlike GMEC, the proposed calculi only allow a restricted mix of boolean
and modal operators. The first calculus, called ICMEC (Modal Event Calculus
with Internal Connectives), can be obtained from MEC by replacing atomic for-
mulas (property-labeled intervals) with propositional formulas (boolean combi-
nations of property-labeled intervals), that is, ICMEC-formulas are propositional
formulas, possibly prefixed by at most one modal operator. The query language
of ICMEC is defined as follows.

Definition 11. (ICMEC-language)

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure. The ICMEC-language of
H is the class of formulas CH = {ϕ,3ϕ, 2ϕ : ϕ is a boolean combination of
formulas over AH}. Any element of CH is called an ICMEC-formula.

Clearly, we have BH ⊆ CH ⊆ LH. The semantics of ICMEC is given as
for GMEC. The second calculus, called ECMEC (Modal Event Calculus with
External Connectives), extends MEC by supporting boolean combinations of
MEC-formulas. The query language of ECMEC is defined as follows.

Definition 12. (ECMEC-language)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure. The ECMEC-language of

H is the class of formulas DH = {ϕ : ϕ is a boolean combination of formulas
over BH}. Any element of DH is called an ECMEC-formula.

Clearly, we have BH ⊆ DH ⊆ LH, completing in this way the diagram in
Figure 1. Again, the semantics of this modal event calculus is given as in the
case of GMEC.

We will now consider the expressiveness of the intermediate calculi we just
defined by showing how they can be used to encode our case study from Section 2.
In Section 5, we will instead analyze the complexity of these calculi.

4 A Formalization of the Application Domain

In this section, we give a formalization of the example presented in Section 2, and
use various modal event calculi to draw conclusions about it. The situation de-
picted in Figure 2 can be represented by the EC-structureH = (E, P, [·〉, 〈·],]·,·[),
whose components are defined as follows:

– E = {e1, e2, e3, e4, e5, e6};
– P = {R1, R2, R3, R12, R13, R21, R23, R31, R32};
– [R1〉 = {e1}, [R2〉 = {e3}, [R3〉 = {e5}, [R12〉 = [R13〉 = {e2}, [R21〉 =

[R23〉 = {e4}, [R31〉 = [R32〉 = {e6};
– 〈R1] = {e2}, 〈R2] = {e4}, 〈R3] = {e6}, 〈R21] = 〈R31] = {e1}, 〈R12] =
〈R32] = {e3}, 〈R13] = 〈R23] = {e5};

–]·,·[= ∅.
We have represented transitions as events with the same name, and denoted by
Ri the property that register Ri has value 1, for i = 1, 2, 3. Furthermore, we
have denoted by Rij the fact that the end point of the interval over which Ri

assumes value 1 precedes the starting point of the interval over which Rj takes
value 1, for i, j ∈ {1, 2, 3} and i 6= j. Properties Rij can be exploited to order
the time intervals over which the status registers are set to 1.

The partial order of transitions, described in Figure 3, is captured by the
following (current) knowledge state:

o = {(e1, e2), (e1, e3), (e2, e4), (e2, e5), (e3, e4), (e3, e5), (e4, e6), (e5, e6)}.
Consider the formulas

ϕ = R1(e1, e2) ∧ R12(e2, e3) ∧ R2(e3, e4) ∧ R23(e4, e5) ∧ R3(e5, e6);
ψ1 = R1(e1, e2) ∧ R12(e2, e3) ∧ R2(e3, e4);
ψ2 = R2(e3, e4) ∧ R23(e4, e5) ∧ R3(e5, e6).

which are in the query language of ECMEC, ICMEC and GMEC. In order to
verify that the switch S is not faulty, we must ensure that the registers R1, R2

and R3 display the expected behavior in all refinements of the current knowledge

state o. This amounts to proving that the GMEC-formula 2ϕ is true in o. If this
is the case, the fault is to be excluded. If we want to determine the existence of at
least one extension of o where the registers behave as displayed in Figure 2, we
must verify the truth of 3ϕ in o. If this GMEC-formula is true, we cannot be sure
whether S is faulty or not. Finally, formulas ψ1 and ψ2 (which are subformulas
of ϕ), prefixed by the modal operators 2 or 3, can be exploited to locally verify
the behavior of status registers.

Since we have that o+ |= 3ϕ and o+ 6|= 2ϕ, the knowledge contained in o
entitles us to assert that the fault is possible but not certain. Moreover, we are
not able to localize the fault. In fact, we have that both o+ 6|= 2ψ1 (the fault
may involve the relative transition of registers R1 and R2) and o+ 6|= 2ψ2 (the
fault may involve the relative transition of R2 and R3 as well). Let us denote
with o1 the state of knowledge obtained by adding the pair (e2, e3) to o. As in
the previous state, we have that o+

1 |= 3ϕ and o+
1 6|= 2ϕ. In this case, however,

we are able to localize the possible fault. Since o+
1 |= 2ψ1, we can conclude that

the fault does not involve the relative transition of registers R1 and R2. On the
contrary, o+ 6|= 2ψ2, and hence the relative transition of registers R2 and R3 may
be incorrect. Assume now that, unlike the actual situation depicted in Figure 2,
we extend o with the pair (e3, e2). Let us denote the resulting state with o2. We
have that o+

2 6|= 3ϕ, that is, the evolution of the values in the registers hints at
a fault in switch S. Finally, let us refine o1 by adding the pair (e4, e5), and call
o3 the resulting knowledge state. In this case, we can infer o+

3 |= 2ϕ, and hence
we can conclude that the switch S is certainly not faulty.

The formulas we have used so far belong to the language of both GMEC and
ICMEC. As we will see in Section 5, this is unfortunate since model checking
in these languages is intractable. However, the results presented in Section 3
postulate the existence of approximations of these formulas, within the language
of ECMEC, that have a polynomial validity test. We will use these formulas to
analyze the example at hand.

By Corollary 8, 2ϕ is equiprovable with the ECMEC-formula:

ϕ′ = 2R1(e1, e2) ∧ 2R12(e2, e3) ∧ 2R2(e3, e4) ∧ 2R23(e2, e3) ∧ 2R3(e5, e6).

Therefore, we can use ECMEC and ϕ′ to establish whether the switch S is fault-
free or is possibly defective. For example, since o+

3 |= ϕ′ entails o+
3 |= 2ϕ, we

can exclude the possibility of a misbehavior of S in situation o3.
The best ECMEC-approximation of 3ϕ we can achieve is the formula

ϕ′′ = 3R1(e1, e2) ∧ 3R12(e2, e3) ∧ 3R2(e3, e4) ∧ 3R23(e2, e3) ∧ 3R3(e5, e6)

which is not equivalent to 3ϕ. However, we know that for every knowledge state
w ∈ WH , if w |= 3ϕ, then w |= ϕ′′. We can use this fact to draw negative
consequences about our example. In particular, we can use ϕ′′ to determine that
S is faulty assuming the trace o2. Indeed, we have that o+

2 6|= ϕ′′, from which it
must be the case that o+

2 6|= 3ϕ. This allows us to conclude that the behavior of
S is certainly incorrect.

Finally, in the knowledge state o, both o+ 6|= ϕ′ and o+ |= ϕ′′ hold. The
former implies o+ 6|= 2ϕ, and thus a faulty behavior of S cannot be excluded in
the current state. Instead, o+ |= ϕ′′ neither allows us to conclude that o+ |= 3ϕ
nor that o+ 6|= 3ϕ. In this case, using ECMEC we are not able to establish
whether the system is certainly faulty or not. The same holds for the knowledge
state o1.

5 Complexity Analysis

This section is dedicated to studying the complexity of the various modal event
calculi presented in Section 3. We model our analysis around the satisfiability
relation |= given in Definitions 3 and 6, but we also take into account the numer-
ous results that permit improving its computational behavior (in particular, the
locality conditions for the computation of 2-MVIs and 3-MVIs — Lemma 4).
This approach is sensible since these specifications can be directly turned into
the clauses of logic programs implementing these calculi [8].

The notion of cost we adopt is as follows: we assume that verifying the truth of
the propositions e ∈ [p〉, e ∈ 〈p] and]p, p′[has constant cost O(1), for given event
e and properties p and p′. Although possible in principle, it is disadvantageous in
practice to implement knowledge states so that the test (e1, e2) ∈ w has constant
cost. We instead maintain an acyclic binary relation o on events whose transitive
closure o+ is w (cf. Section 3). Verifying whether (e1, e2) ∈ w holds becomes a
reachability problem in o and it can be solved in quadratic time O(n2) in the
number n of events [6].

Given an EC-structure H, a knowledge state w ∈ WH and a formula ϕ
relatively to any of the modal event calculi presented in Section 3, we want to
characterize the complexity of the problem of establishing whether IH;w |= ϕ
is true (which is an instance of the general problem of model checking). We call
the triple (H, w, ϕ) an instance and generally prefix this term with the name
of the calculus we are considering. In the following, we will show that, given an
instance (H, w, ϕ), model checking for ϕ in the intended model IH is polynomial
in EC, MEC and ECMEC, while it is NP-hard in ICMEC and GMEC. The
reason for such a different computational behavior for the various modal event
calculi is that MEC and ECMEC can exploit local conditions for testing (boolean
combinations of) atomic formulas, possibly prefixed by a modal operator, while
the latter two cannot avoid of explicitly searching the whole set of extensions of
the given partial ordering, whose number is, in general, exponential with respect
to the number of events.

Given an EC-instance (H, w, ϕ), the cost of the test w |= ϕ can be derived
to be O(n3) directly from the relevant parts of Definition 2, as proved in [6].
Exploiting the local conditions yields an identical bound in the case of MEC :

Theorem 13. (Complexity of model checking in MEC)

Given a MEC-instance (H, w, ϕ), the test w |= ϕ has cost O(n3).

Unlike EC and MEC, where the input formula ϕ is an atomic formula, pos-
sibly prefixed by a modal operator in MEC, ϕ can be arbitrarily large in the
case of the remaining calculi in the hierarchy in Figure 1. As a consequence, the
dimension of the input formula, that does not come into play in the complexity
analysis of EC and MEC, becomes a relevant parameter for the analysis of the
cost of the remaining calculi. Thus, their complexity will be measured in terms of
both the dimension k of the input formula (the number of occurrences of atomic
formulas it includes) and the size n of the input structure (the number of events
in E).

An ECMEC-formula ϕ is the boolean combination of a number of MEC-
formulas. If ϕ contains k atomic formulas, this number is precisely k. Therefore,
by virtue of Definition 6, the test for ϕ can be reduced to the resolution of k
MEC problems. Thus, ECMEC has polynomial complexity.

Theorem14. (Complexity of model checking in ECMEC)
Given an ECMEC-instance (H, w, ϕ), the test w |= ϕ has cost O(kn3).

The placement of the modal operators in ICMEC prevents us, in general,
from being able to use local conditions in tests. An exhaustive exploration of
the extensions of the current knowledge state is unavoidable. This raises the
complexity of the problem beyond tractability, as expressed by the following
theorem.

Theorem15. (Complexity of model checking in ICMEC)
Given an ICMEC-instance (H, w, ϕ), the test w |= ϕ is NP-hard.

Proof.
If ϕ is a propositional formula, then model checking reduces to verifying

whether it evaluates to true with respect to the current state of knowledge. It
has a polynomial cost. The remaining cases are ϕ = 3ψ and ϕ = 2ψ.

We first prove that if ϕ = 3ψ, then model checking in ICMEC is NP-
complete. It is easy to see that this problem belongs to NP. Indeed, in order to
establish whether w |= 3ψ holds, we non-deterministically generate extensions
w′ of w, and then test the truth of ψ in w′ until an extension where ψ holds is
found. There are exponentially many such extensions. Since the formula ψ does
not include any modal operator, the test in each extension is polynomial. In
order to prove that the considered problem is NP-hard, we define a (polynomial)
reduction of 3SAT [9] into ICMEC.

Let q be a boolean formula in 3CNF, p1, p2, .., pn be the propositional vari-
ables that occur in q, and q = c1 ∧ c2 ∧ . . . ∧ cm, where ci = li,1 ∨ li,2 ∨ li,3
and for each i, j either li,j = pk or li,j = ¬pk for some k.

Let us define an EC-structure H = (E, P, [·〉, 〈·],]·,·[) such that:
E = {e(pi), e(¬pi) : 1 ≤ i ≤ n};
P = {pi : 1 ≤ i ≤ n};
[pi〉 : {e(pi)} and 〈pi] : {e(¬pi)}, for 1 ≤ i ≤ n;
]·,·[= ∅.

Moreover, let w = ∅ and ψ = c′1 ∧ c′2 ∧ . . . ∧ c′m, where c′i = l′i,1 ∨ l′i,2 ∨ l′i,3,
and for each i, j, if li,j = pk, then l′i,j = pk(e(pk), e(¬pk)), otherwise (li,j = ¬pk)
l′i,j = ¬pk(e(pk), e(¬pk)) It is not difficult to see that w |= 3ψ if and only if q is
satisfiable.

Let us show now that if ϕ = 2ψ, then model checking in ICMEC is NP-
hard. We prove this result by defining a (polynomial) reduction of the problem
of propositional validity into ICMEC.

Let q be a boolean formula in 3DNF, p1, p2, .., pn be the propositional vari-
ables that occur in q, and q = d1 ∨ d2 ∨ . . . ∨ dm, where di = li,1 ∧ li,2 ∧ li,3
and for each i, j, either li,j = pk or li,j = ¬pk. We define the EC-structure
H = (E, P, [·〉, 〈·],]·,·[) as in the previous subcase. Let w = ∅ and ψ =
d′1 ∨ d′2 ∨ . . . ∨ d′m, where d′i = l′i,1 ∧ l′i,2 ∧ l′i,3, and for each i, j, if li,j = pk,
then l′i,j = pk(e(pk), e(¬pk)), otherwise (li,j = ¬pk) l′i,j = ¬pk(e(pk), e(¬pk)). It
is straightforward to see that w |= 2ψ if and only if q is valid in propositional
logic.

Since ICMEC is a linguistic fragment of GMEC, Theorem 15 allows us to
conclude that model checking for GMEC is NP-hard too.

Corollary 16. (Complexity of model checking in GMEC)
Given a GMEC-instance (H, w, ϕ), the test w |= ϕ is NP-hard.

We summarize the results obtained in this section in the following table.

Calculus EC MEC ECMEC ICMEC GMEC

Parameters n events n events
n events
k atomic

formulas

n events
k atomic

formulas

n events
k atomic

formulas

Model checking O(n3) O(n3) O(kn3) NP-hard NP-hard

6 Conclusions and Further Developments

In this paper, we have established a hierarchy of modal event calculi by inves-
tigating ECMEC and ICMEC as intermediate languages between the modal
event calculus MEC [1] and the generalized modal event calculus GMEC [2].
In particular, we showed that ECMEC retains enough of the expressive power
of GMEC while admitting an efficient polynomial implementation in the style
of MEC . We supported our claims by showing the formalization of an example
from the applicative domain of fault diagnosis. Moreover, we gave a rigorous
analysis of the complexity of the modal event calculi we considered.

We are developing the proposed framework in several directions. First, the
complexity results given in Section 5 can actually be improved. In the proof
of Theorem 15, we showed that checking ICMEC -formulas of the form 3ψ is
NP-complete. Since 2 = ¬3¬, it easily follows that checking 2ψ formulas is co-
NP(-complete). Thus, the whole problem of testing w |= ϕ (for ICMEC) involves

either a polynomial check, or an NP-check, or a co-NP check. This means that
it can be computed by a Turing machine which can acces an NP-oracle and runs
in deterministic polynomial time, and hence the problem is in PNP (since only
one call to the oracle is needed, it is actually in PNP [1]) [15]. We are currently
working at the characterization of the exact complexity of model checking in
both ICMEC and GMEC .

Another issue of interest when working with EC and in its modal refine-
ments is the generation of MVIs, which can be solved using the same logic
programs that implement model checking. In this problem, we replace some,
possibly all, events in a formula ϕ by logical variables and ask which instantia-
tions of these variables make ϕ true. The problem of MVI generation can still
be viewed as a problem of model checking in modal event calculi extended with
limited forms of existential quantification. Let QEC , QMEC , ECQMEC , IC-
QMEC , and GQMEC respectively be the quantified counterparts of EC , MEC ,
ECMEC , ICMEC , and GMEC . It is possible to show that model checking for
all quantified modal event calculi essentially lies in the same complexity class
of model checking for their unquantified counterparts, except for ECMEC , for
which the addition of quantification makes the problem NP-hard.

Finally, we are considering the effects of the addition of preconditions to
our framework. This step would enlarge the range of applicability of the modal
event calculi. However, as proved in [7], an indiscriminated use of preconditions
immediately makes the problem NP-hard. Nevertheless, we believe that a formal
study of various modal event calculi with preconditions can shed some light on
the dynamics of preconditions, and possibly lead to polynomial approximations
of the computation of MVIs. Preliminary results in this direction can be found
in [4].

Acknowledgments

We would like to thank the reviewers for their useful comments. The first au-
thor was partially supported by NFS grant CCR-9303383 and by a scholarship
for specialization overseas from the University of Udine. The work of the third
author was partially supported by the CNR project Ambienti e strumenti per la
gestione di informazioni temporali.

References

1. I. Cervesato, L. Chittaro, A. Montanari. “A Modal Calculus of Partially Ordered
Events in a Logic Programming Framework”, Proc. of ICLP’95: 12th Int. Confer-
ence on Logic Programming, Kanegawa, Japan, MIT Press, 1995, 299–313.

2. I. Cervesato, A. Montanari. “A General Modal Framework for the Event Cal-
culus and its Skeptical and Credulous Variants (extended and revised version of
A. Montanari, L. Chittaro, and I. Cervesato, “A General Modal Framework for the
Event Calculus and its Skeptical and Credulous Variants”, Proc. of ECAI’96: 12th
European Conference on Artificial Intelligence, W. Wahlster (ed.), John Wiley &
Sons, 1996, 33–37)”, submitted for publication, July 1996.

3. I. Cervesato, A. Montanari, A. Provetti. “On the Non-Monotonic Behavior of
Event Calculus for Deriving Maximal Time Intervals”, Interval Computations,
3(2), 1993, 83–119.

4. I. Cervesato, M. Franceschet, A. Montanari. “Modal Event Calculi with Precon-
ditions”, Proc. of TIME’97: 4th Int. Workshop on Temporal Representation and
Reasoning, L. Khatib, R. Morris (eds.), IEEE Computer Society Press, 1997, 38–
45.

5. L. Chittaro, A. Montanari, A. Provetti. “Skeptical and Credulous Event Calculi
for Supporting Modal Queries”, Proc. of ECAI’94: 11th European Conference on
Artificial Intelligence, A. Cohn (ed.), John Wiley & Sons, 1994, 361–365.

6. L. Chittaro, A. Montanari, I. Cervesato. “Speeding up temporal reasoning by ex-
ploiting the notion of kernel of an ordering relation”, Proc. of TIME’95: 2nd Int.
Workshop on Temporal Representation and Reasoning, S. Goodwin, H. Hamilton
(eds.), University of Regina, Canada, 1995, 73–80.

7. T. Dean, M. Boddy. “Reasoning about partially ordered events”, Artificial Intel-
ligence, 36, 1988, 375–399.

8. M. Franceschet. Una Gerarchia di Calcoli Modali degli Eventi: Espressività e Com-
plessità (in Italian), Tesi di Laurea in Scienze dell’Informazione, Università di
Udine, Italy, 1996 (to appear as a Research Report in English).

9. M.R. Garey and D.S. Johnson. Computing and Intractability: A Guide to the The-
ory of NP-Completeness, Freeman & Cie, 1979.

10. J. Harland. On Hereditary Harrop Formulae as a basis for Logic Programming.
PhD thesis, University of Edinburgh, UK, 1991.

11. R. Kowalski, M. Sergot. “A Logic-based Calculus of Events”, New Generation
Computing, 4, Ohmsha Ltd and Springer-Verlag, 1986, 67–95.

12. D.C. Moffat, G.D. Ritchie. “Modal Queries about Partially-ordered Plans”, Jour-
nal of Expt. Theor. Artificial Intelligence, 2, 1990, 341–368.

13. K. Nökel. Temporarily Distributed Symptoms in Technical Diagnosis, Springer-
Verlag, 1991.

14. K. Segerberg. An Essay in Classical Modal Logic. Uppsala Filosofiska Studier,
1971.

15. L. Stockmeyer. “Classifying the computational complexity of problems”, Journal
of Symbolic Logic, 52(1), 1987, 1–43.

This article was processed using the LATEX macro package with LLNCS style

