
Baltzer Journals November 10, 2002

A Graph-Theoretic Approach to Efficiently
Reason about Partially Ordered

Events in (Modal) Event Calculus

M. Franceschet and A. Montanari

Dipartimento di Matematica e Informatica, Università di Udine, 33100 Udine, Italy
E-mail: {francesc,montana}@dimi.uniud.it

In this paper, we show how well-known graph-theoretic techniques can be success-
fully exploited to efficiently reason about partially ordered events in Kowalski and
Sergot’s Event Calculus and in its skeptical and credulous modal variants. To over-
come the computational weakness of the traditional generate-and-test algorithm
of (Modal) Event Calculus, we propose two alternative graph-traversal algorithms
that operate on the underlying directed acyclic graph of events representing or-
dering information. The first algorithm pairs breadth-first and depth-first visits of
such an event graph in a suitable way, while the second one operates on its tran-
sitive closure and reduction. We prove the soundness and completeness of both
algorithms, and thoroughly analyze and compare their computational complexity.

1 Introduction

The problem of efficiently computing which facts must be or may possibly be true over
certain time periods, when only partial information about event ordering is available, is
fundamental in a variety of applications, including planning and plan validation [7, 10, 14].
In this paper, we show how well-known graph-theoretic techniques can be successfully
exploited to efficiently reason about partially ordered events in Kowalski and Sergot’s
Event Calculus [13], EC for short, and in its modal variants (in contrast with the original
purely syntactical EC presentation, we adopt a model-theoretical description of EC and
of its skeptical and credulous modal variants [2, 3, 4, 6]). Given a set of events, EC is
able to infer the largest intervals in which a property holds uninterruptedly (maximal
validity intervals, MVIs for short). Events can be temporally qualified in several ways.
We consider the relevant case where either the occurrence time of an event is totally
unspecified or its relative temporal position with respect to (some of) the other events is
given. Partial ordering information about events can be naturally represented by means
of a directed acyclic graph G = 〈E, o〉, where the set of nodes E is the set of events and,
for every ei, ej ∈ E, there exists (ei, ej) ∈ o if and only if it is known that ei occurs before
ej .

EC updates are of additive nature only and they just consist in the acquisition of
new atomic events and relative information about properties initiated and terminated by
them, and/or of further ordering information about the given events [12]. Hence, update

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 2

processing in EC reduces to the addition of such data, provided that they are consistent
and non-redundant with the current stored information. The set of MVIs for any given
property p has been traditionally computed at query time according to a simple (and
expensive) generate-and-test algorithm [2]: EC first blindly picks up every candidate pair
of events (ei, ej), where ei and ej respectively initiate and terminate p; then, it checks
whether or not ei precedes ej ; finally, it looks for possible events e that occur between ei

and ej and interrupt the validity of p. Checking whether ei precedes ej or not reduces
to establish if the edge (ei, ej) belongs to the transitive closure o+ of o; checking if there
exists an interrupting event e requires to verify if both (ei, e) and (e, ej) belong to o+.
Chittaro et al. [8] outline an alternative (and efficient) graph-traversal algorithm for MVIs
computation when all recorded events are concerned with the same unique property p
(single-property case). According to such an algorithm, the graph G = 〈E, o〉 is replaced
by its transitive reduction G− = 〈E, o−〉, which must be maintained whenever a new
consistent and non-redundant pair of events (ei, ej) is entered (the addition of a new
event e to E does not affect o−). Since any event e ∈ E either initiates or terminates
p, the set of MVIs for p can be obtained by searching G− for edges (ei, ej) such that ei

initiates p and ej terminates it. Being G− the transitive reduction of G ensures us that
there are no interrupting events for p that occur between ei and ej . It is not difficult to
prove that such an algorithm properly works also when all recorded events are concerned
with a set of pairwise incompatible properties.

In this paper, we propose two efficient graph-traversal algorithms for MVIs computa-
tion in the general multiple-property case1. The first algorithm represents and maintains
temporal information as a binary acyclic relation o and, in order to compute the current
set of MVIs, it pairs breadth-first and depth-first visits of the graph G = 〈E, o〉 in a
suitable way. The second algorithm stores and maintains the transitive closure w = o+ of
a knowledge state, and, for every property p, it stores the transitive reduction w−p of the
subgraph wp induced by the set of events that are relevant to p. Such an algorithm derives
the set of MVIs for any property p by applying the procedure for the single-property case
devised in [8] to the transitive reduction w−p .

As pointed out in [6], when only partial information about the occurred events and
their exact order is available, the sets of MVIs derived by EC bear little relevance, since
the acquisition of additional knowledge about the set of events and/or their occurrence
times might both dismiss current MVIs and validate new MVIs. Cervesato and Montanari
[6] propose a modal variant of EC, called Modal Event Calculus (MEC), that allows one to
identify the set of MVIs that cannot be invalidated no matter how the ordering information
is updated, as far as it remains consistent (necessary MVIs), and the set of event pairs
that will possibly become MVIs, depending on which ordering data are acquired (possible
MVIs). They extend the generate-and-test algorithms for MVIs computation in EC to
MEC, without any rise in computational complexity. In this paper, we show that the
proposed graph-traversal algorithms for MVIs computation in EC can be easily adapted
to MEC.

The paper is organized as follows. In Section 2, we introduce some basic notions
about ordering relations, transitive closure, and transitive reduction. In Section 3, we

1The generalization to the multiple-property case sketched in [8] is not guaranteed to properly
work whenever the transitive reduction of the current knowledge state contains two or more paths
between an ordered pair of events that respectively initiate and terminate a given property.

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 3

briefly recall syntax and semantics of (Modal) Event Calculus. In Sections 4 and 5, we
describe the two alternative graph-traversal algorithms for MVIs computation in EC. In
Section 6 we show how to adapt them to cope with MEC. The increase in efficiency of
these algorithms with respect to the traditional generate-and-test one is demonstrated by
the complexity analysis of Section 7.1 and a comparison between the two algorithms is
performed in Section 7.2. In the conclusions we provide an assessment of the work done
and outline future research directions.

2 On ordering relations, transitive closure and reduction

In this section we recall some basic notions about ordering relations and ordered sets
upon which we will rely in the following.

Definition 1
(DAGs, generated DAGs, induced DAGs)

Let E be a set and o a binary relation on E. o is called a (strict) partial order if it
is irreflexive and transitive (and, thus, asymmetric), while it is called a reflexive partial
order if it is reflexive, antisymmetric, and transitive. The pair 〈E, o〉 is called a directed
acyclic graph (DAG) if o is a binary acyclic relation; a strictly ordered set if o is a partial
order; a non-strictly ordered set if o is a reflexive partial order. Moreover, given a DAG
G = 〈E, o〉 and a node e ∈ E, the subgraph G(e) of G consisting of all and only the
nodes which are accessible from e and of the edges that connect them is called the graph
generated by e. Finally, given a DAG G = 〈E, o〉 and a set T ⊆ E, the subgraph of G
induced by T consists of the nodes in T and the subset of edges in o that connect them.

When one is mainly interested in representing the path information of a DAG, two extreme
approaches can be followed [16]: (i) transitive reduction, or minimum storage represen-
tation, and (ii) transitive closure, or minimum query-time representation. In this paper,
we will make a massive use of the notions of transitive reduction and closure of a DAG.
They are formally defined as follows.

Definition 2
(Transitive reduction and closure of DAGs)

Let G = 〈E, o〉 be a DAG. The transitive reduction of G is the (unique) graph G− =
〈E, o−〉, with the smallest number of edges, such that, for any pair ei, ej ∈ E there is a
directed path from ei to ej in G if and only if there is a directed path from ei to ej in G−.
The transitive closure of G is the (unique) graph G+ = 〈E, o+〉 such that, for any pair of
nodes ei, ej ∈ E there is a directed path from ei to ej in G if and only if there is an edge
(ei, ej) ∈ o+ in G+.

Aho et al. [1] show that every (directed) graph has a transitive reduction, which can be
computed in polynomial time. They also show that such a reduction is unique in the case
of directed acyclic graphs. Furthermore, they prove that the time needed to compute
the transitive reduction of a graph differs from the time needed to compute its transitive

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 4

closure by at most a constant factor.
In the following, we will use the notations o ↑ (ei, ej) and o ↓ (ei, ej) as shorthands for

(o ∪ {(ei, ej)})+ and (o ∪ {(ei, ej)})−, respectively. Furthermore, we will denote the sets
of all binary acyclic relations and of all partial orders on E as OE and WE , respectively.
It is easy to show that, for any set E, WE ⊆ OE . We will use the letters o and w, possibly
subscripted, to denote binary acyclic relations and partial orders, respectively. Clearly, if
o is a binary acyclic relation, then o+ is a partial order. We say that two binary acyclic
relations oi, oj ∈ OE are equally informative if o+

i = o+
j . This induces an equivalence

relation ∼ on OE . It is easy to prove that, for any set E, OE/∼ (the quotient set of OE

with respect to ∼) and WE are isomorphic.

3 Basic and Modal Event Calculus

A compact model-theoretic formalization of Kowalski and Sergot’s Event Calculus has
been provided by Cervesato and Montanari in [2]. It distinguishes between the time-
independent and time-dependent components of EC. The time-independent component
is captured by means of the notion of EC-structure.

Definition 3
(EC-structure)

A structure for the Event Calculus (abbreviated EC-structure) is a quintuple H =
(E,P, [·〉, 〈·],]·,·[) such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite sets of atomic events and proper-
ties, respectively;

• [·〉 : P → 2E and 〈·] : P → 2E are respectively the initiating and terminating map
of H. For every property p ∈ P , [p〉 and 〈p] represent the set of events that initiate
and terminate p, respectively;

•]·,·[⊆ P ×P is an irreflexive and symmetric relation, called the exclusivity relation,
that models incompatibility among properties.

The time-dependent component is formalized by specifying a binary acyclic relation o,
called knowledge state, on the set of events E, which represents our current knowledge
about the time ordering between events. EC updates consist in the acquisition of new
atomic events and relative information about properties initiated and terminated by them,
and/or new ordering information about the given events [12]. Hence, update processing
in EC reduces to the addition of such data, provided that they are consistent and non-
redundant with respect to the already stored information.

Let H = (E, P, [·〉, 〈·],]·,·[) be a structure for EC and o be a knowledge state. The
query language L(EC) of EC is the set of property-labeled pairs of events of the form
p(e1, e2), for every property p in P and events e1 and e2 in E. Given a knowledge state
o or, equivalently, its transitive closure o+ of o (recall that path information stored in o
and o+ is the same), query processing in EC reduces to deciding which of the elements of
L(EC) are MVIs.

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 5

In order for p(e1, e2) to be an MVI relative to w = o+, (e1, e2) must belong to w.
Moreover, e1 and e2 must witness the validity of the property p at the ends of this in-
terval by initiating and terminating p, respectively. These requirements are enforced by
conditions i , ii , and iii , respectively, in the definition of valuation given below. The max-
imality requirement is caught by the negation of the meta-predicate broken(p, e1, e2, w)
in condition iv , which expresses the fact that the truth of an MVI must not be broken
by any interrupting event. Any event e which is known to have happened between e1

and e2 in w and that initiates or terminates a property that is either p or a property
incompatible with p interrupts the truth of p(e1, e2).

Definition 4
(Intended model of EC)

Let H = (E, P, [·〉, 〈·],]·,·[) be a EC-structure and w ∈ WE be the transitive
closure of a knowledge state o. The intended EC-model of H is the propositional valuation
υH : WE → 2L(EC), where υH is defined in such a way that p(e1, e2) ∈ υH(w) if and only
if

i. (e1, e2) ∈ w;
ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];
iv. broken(p, e1, e2, w) does not hold, where broken(p, e1, e2, w) abbreviates

there exists an event e ∈ E such that (e1, e) ∈ w and (e, e2) ∈ w,
and there exists a property q ∈ P such that e ∈ [q〉 or e ∈ 〈q], and
either]p, q[or p = q.

The previous definition adopts the so-called strong interpretation of the initiate and ter-
minate relations: given a pair of events e′ and e′′, with e′ occurring before e′′, that
respectively initiate and terminate a property p, we conclude that p does not hold over
(e′, e′′) if an event e which initiates or terminates p, or a property incompatible with p,
occurs during this interval, that is, (e′, e′′) is a candidate MVI for p, but e forces us to
reject it. The strong interpretation is needed when dealing with incomplete sequences
of events or incomplete information about their ordering. An alternative interpretation
of the initiate and terminate relations, called weak interpretation, is also possible. Ac-
cording to such an interpretation, a property p is initiated by an initiating event unless
it has been already initiated and not yet terminated (and dually for terminating events).
Further details about the strong/weak distinction can be found in [6].

In the case of partially ordered events, the set of MVIs derived by EC is not stable with
respect to the acquisition of new ordering information. Indeed, if we extend the current
knowledge state with new pairs of events, current MVIs might become invalid and new
MVIs can emerge. The Modal Event Calculus (MEC) [2] allows one to identify the set
of MVIs that cannot be invalidated no matter how the ordering information is updated,
as far as it remains consistent, and the set of event pairs that will possibly become MVIs
depending on which ordering data are acquired. These two sets are called necessary
MVIs and possible MVIs, respectively, using 2-MVIs and 3-MVIs as abbreviations. The
query language L(MEC) of MEC consists of formulas of the forms p(e1, e2), 2p(e1, e2),

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 6

and 3p(e1, e2), for every property p and events e1 and e2 defined in H. The intended
model of MEC is obtained by shifting the focus from the current knowledge state to all
knowledge states that are accessible from it. Since ⊆ is a reflexive partial order, (WE ,⊆)
can be naturally viewed as a finite, reflexive, transitive, and antisymmetric modal frame.
This frame, together with the straightforward modal extension of the valuation υH to the
transitive closure of an arbitrary knowledge state, provides a modal model for MEC.

Definition 5
(Intended model of MEC)

Let H be an EC-structure and υH be the propositional valuation of Definition 4. The
MEC-frame FH of H is the frame (WE ,⊆). The intended MEC-model of H is the modal
model IH = (WE ,⊆, υH). Given w ∈ WE and ϕ ∈ L(MEC), the truth of ϕ at w with
respect to IH, denoted by IH; w |= ϕ, is defined as follows:

IH; w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH; w |= 2p(e1, e2) iff for every w′ ∈ WE, w ⊆ w′ implies IH; w′ |= p(e1, e2);
IH; w |= 3p(e1, e2) iff there is w′ ∈ WE such that w ⊆ w′ and IH;w′ |= p(e1, e2).

The sets of MVIs that are necessarily and possibly true in w respectively correspond to
the 2- and 3-moded atomic formulas which are valid in w. We denote by MV I(w),
2MV I(w), and 3MV I(w) the sets of MVIs, necessary MVIs, and possible MVIs with
respect to w, respectively. Computing necessary and possible MVIs is relevant to many
applications. As an example, verifying whether a particular subgoal of a given goal is
necessarily achieved is a central task in planning and plan validation applications [7, 10,
14]. Hence, the efficiency of procedures for computing necessary and possible conditions
is crucial. Cervesato and Montanari [2] show that the sets of 2- and 3-MVIs can be
computed by exploiting local conditions over w, thus avoiding a complete and expensive
search of all the consistent refinements of w. More precisely, a property p necessarily holds
between two events e1 and e2 if and only if the interval (e1, e2) belongs to the current
order, e1 initiates p, e2 terminates p, and no event that either initiates or terminates p (or
a property incompatible with p) will ever be consistently located between e1 and e2. The
last requirement is caught by the meta-predicate posBroken(p, e1, e2, w) of Proposition 6.
Similarly, a property p may possibly hold between e1 and e2 if and only if the interval
(e1, e2) is consistent with the current ordering, e1 initiates p, e2 terminates p, and there
are no already known interrupting events between e1 and e2. Local conditions are formally
captured by the following proposition [2].

Proposition 6
(Local conditions)

Let H = (E,P, [·〉, 〈·],]·,·[) be a EC-structure. For any atomic formula p(e1, e2) on H
and any w ∈ WE,

• IH;w |= 2p(e1, e2) if and only if

i. (e1, e2) ∈ w;
ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 7

iv. posBroken(p, e1, e2, w) does not hold, where posBroken(p, e1, e2, w) ab-
breviates

there exists an event e ∈ E such that (e, e1) 6∈ w, e 6= e1,
(e2, e) 6∈ w, e 6= e2, and there exists a property q ∈ P such
that e ∈ [q〉 or e ∈ 〈q], and either]p, q[or p = q.

• IH;w |= 3p(e1, e2) if and only if

i. (e2, e1) 6∈ w;
ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];
iv. broken(p, e1, e2, w) does not hold.

Local conditions above resemble Chapman’s modal truth criterion [7] and Nebel’s and
Bäckström’s definition of the predicate Maybe [14]. Proposition 6 also allows us to give
an alternative definition of the sets 2MV I(w) and 3MV I(w). Given w ∈ WE and p ∈ P ,
let S(w) be the set of atomic formulas p(e1, e2) such that all other events in E that initiate
or terminate p, or a property incompatible with p, are ordered with respect to e1 and
e2 in w, and let C(w) be the set of atomic formulas p(e1, e2) such that e1 initiates p, e2

terminates p, and e1 and e2 are unordered in w. Formally,

S(w) = {p(e1, e2) | ∀e ∈ E ((∃q ∈ P ((e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (q = p∨]p, q[)))
→ (((e, e1) ∈ w ∨ (e1, e) ∈ w) ∧ ((e, e2) ∈ w ∨ (e2, e) ∈ w)))}

C(w) = {p(e1, e2) | e1 ∈ [p〉 ∧ e2 ∈ 〈p] ∧ (e1, e2) 6∈ w ∧ (e2, e1) 6∈ w}
The set 2MV I(w) (resp. 3MV I(w)) can be alternatively defined as the intersection
(resp. union) of the sets MV I(w) and S(w) (resp. C(w)), as stated by the following
corollary.

Corollary 7
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure and w ∈ WE be a partial order. It holds
that 2MV I(w) = MV I(w) ∩ S(w) and 3MV I(w) = MV I(w) ∪ C(w).

Proof
We prove that 3MV I(w) = MV I(w) ∪ C(w). The proof for necessary MVIs is similar,
and thus omitted. We first prove the ⊆ inclusion. Let p(e1, e2) ∈ 3MV I(w). If (e1, e2) ∈
w, then p(e1, e2) ∈ MV I(w), and thus the thesis. Hence, suppose that (e1, e2) 6∈ w.
Since p(e1, e2) ∈ 3MV I(w), we have that e1 ∈ [p〉, e2 ∈ 〈p], and (e2, e1) 6∈ w. Hence
p(e1, e2) ∈ C(w). We now prove the ⊇ inclusion. Let p(e1, e2) ∈ MV I(w) ∪ C(w).
If p(e1, e2) ∈ MV I(w), then p(e1, e2) ∈ 3MV I(w). Now, suppose p(e1, e2) ∈ C(w).
It follows that e1 ∈ [p〉, e2 ∈ 〈p], and e1 and e2 are unordered in w. To obtain the
thesis, it remains to prove that broken(p, e1, e2, w) does not holds. By contradiction,
suppose broken(p, e1, e2, w). This means that there exists an interrupting event e such
that (e1, e) ∈ w and (e, e2) ∈ w. Since w is transitive, it follows that (e1, e2) ∈ w, which
is a contradiction, since e1 and e2 are unordered in w.

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 8

In Section 6, we will exploit Corollary 7 to devise an algorithm for MVIs computation in
MEC. Furthermore, from Corollary 7 it is immediate to conclude that the sets of necessary
MVIs, MVIs, and possible MVIs, with respect to the current state of knowledge, form an
inclusion chain, as formally stated by the following proposition.

Proposition 8
(Necessary MVIs and possible MVIs enclose MVIs)

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure and w ∈ WE be a partial order. It
holds that

2MV I(w) ⊆ MV I(w) ⊆ 3MV I(w).

Notice that if w is a total order, then S(w) = L(EC) and C(w) = ∅, and thus 2MV I(w) =
3MV I(w) = MV I(w).

In Sections 4 and 5, we will propose two graph-traversal algorithms for computing
MVIs in EC and MEC. For each of them, we will describe (i) the form in which the
algorithm stores the ordering information, (ii) the update processing, that is, the com-
putation steps executed by the algorithm to update the current knowledge state with a
new pair of events (update time), and (iii) the query processing, that is, the computation
steps executed by the algorithm to determine the current set of MVIs (query time). We
will not directly consider the case of updates consisting of the addition of single atomic
events, but we will briefly explain how to extend the algorithms to cope with such a case.

4 A first graph-traversal algorithm for MVIs computation

In this section, we describe a first graph-traversal algorithm that computes the set of
MVIs by pairing a depth-first and a breadth-first visit of the event graph representing
ordering information. We provide a high-level description of the algorithm and prove its
soundness and completeness with respect to the semantics of EC.

The algorithm stores ordering information in the form of an acyclic binary relation
o. The addition of a new pair of events (e1, e2) to o is dealt with as follows (update
processing). First, (e1, e2) is checked for consistency and non redundancy with respect to
o. If (e1, e2) is consistent ((e2, e1) 6∈ o+) and non-redundant ((e1, e2) 6∈ o+), then (e1, e2)
is added to o. Testing whether a pair of events (e′, e′′) is in o+ or not can be performed
by visiting depth-first the subgraph of (E, o) generated by e′, searching for the node e′′.

Query processing is more involved. Let H = (E,P, [·〉, 〈·],]·,·[) be an EC-structure
and o ∈ OE be an acyclic binary relation. We define an algorithm for MVIs computation
that combines a breadth-first and a depth-first visit of the graph (E, o), which is directed
and acyclic, but not necessarily connected (background knowledge on elementary graph
algorithms can be found in [9]). In the following, whenever it does not lead to ambigu-
ities, we denote the graph (E, o) by G and the subgraph of (E, o) generated by e (cf.
Definition 1) by G(e).

The algorithm behaves as follows: for every property p ∈ P and every event e1 ∈ E
initiating p, it searches the graph G(e1) for all events e2 such that the interval (e1, e2) is
an MVI for p. Given a property p and an event e1, the algorithm associates the following

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 9

labels with the nodes of G(e1):

• unmarked: it denotes nodes (events) to be visited;

• visited: it denotes nodes (events) already visited;

• marked: it denotes nodes (events) that initiate or terminate either p or a property
incompatible with p;

• cutoff: it denotes nodes (events) which are cut off from the search space, because
they cannot terminate any MVI for p initiated by e1.

The set of events e2 such that p(e1, e2) is an MVI is computed as follows. Initially, all
nodes in G(e1) are labeled with unmarked; then, the graph G(e1) is visited breadth-first.
The breadth-first visit of G(e1) starts from the successors of e1 (first layer) and proceeds,
layer by layer, until the last layer is reached. The last layer is a layer followed by an
empty layer; since G(e1) is acyclic, such a layer always exists and it is unique. At each
layer, only unmarked events are processed. Let e be an unmarked event belonging to the
current layer. The algorithm labels e as visited and checks whether or not it initiates
or terminates either p or a property incompatible with p. If the outcome of the test is
positive, then the following operations are executed before processing the next event in
the layer:

1. e is labeled as marked;

2. the label cutoff is assigned to all nodes of G(e) different from e;

3. if e terminates p, then the node e is saved.

Once the whole graph G(e1) has been visited, all the saved nodes, which are still labeled
as marked, are returned; they are all and only the events that terminate an MVI for p
initiated by e1.

A pseudo-code description of such an algorithm for MVIs computation can be given
as follows.

MV I ← ∅
for each p ∈ P do

for each e1 ∈ [p〉 do
S ← ∅
for each e ∈ G(e1) do

set(e, unmarked)
L ← nextlayer({e1})
while L 6= ∅ do

for each e ∈ L do
if is relevant to(e,p) then

set(e, marked)
cutoff(e)
if e ∈ 〈p] then

S ← S ∪ {e}
L ← nextlayer(L)

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 10

for each e2 ∈ S do
if label(e2, marked) then

MV I ← MV I ∪ {p(e1, e2)}
return MV I

The procedure set(e,l) assigns a unique label l to the event e, possibly overwriting
the previous one. The boolean function label(e,l) checks whether label l is associated
with the event e or not, and the boolean function is relevant to(e,p) tests whether or
not e initiates or terminates either p or a property incompatible with p. The procedure
nextlayer(L) computes the next layer in the breadth-first visit of the graph G(e1):

nextlayer(L)
L′ ← ∅
for each e ∈ L do

if label(e, unmarked) or label(e, visited) then
for each successor e′ of e do

if label(e′, unmarked) then
set(e′, visited)
L′ ← L′ ∪ {e′}

return L’

Finally, the procedure cutoff(l) visits depth-first the subgraph generated by the event
e and labels as cutoff all its nodes:

cutoff(e)
for each successor e′ of e do

if not label(e′, cutoff) then
set(e′, cutoff)
cutoff(e′)

Before proving that such an algorithm in sound and complete with respect to the se-
mantics of EC, we illustrate its behaviour by means of two simple examples. Let e1,
e2, and e3 be three event occurrences, p and q be two incompatible properties, and
o = {(e1, e2), (e1, e3), (e2, e3)} be the current knowledge state depicted in Figure 1, left
side. It is worth noticing that the event graph of the example contains a transitive edge
(e1 → e3). Suppose that e1 initiates p, e2 initiates q, and e3 terminates p. The set of
MVIs for p, which are initiated by e1, is computed as follows. The algorithm first labels
as unmarked all nodes of G(e1), and then it visits breadth-first G(e1). The first layer
contains both e2 and e3. Suppose that the algorithm first processes e3 and then e2. The
node e3 is labeled as marked and saved, because it terminates p. The propagation of the
label cutoff has no effect, since e3 has no successors. Hence, the node e2 is processed and
labeled as marked, because it initiates a property q which is incompatible with p. The
effect of propagating the label cutoff is that of replacing the label marked of e3 by the
label cutoff. Then, the visit of G(e1) terminates (all nodes have already been visited)
and the algorithm returns no MVIs for p initiated by e1, because the label associated
with e2 (the only saved event) is cutoff and not marked.

The above example clarifies the role of the label cutoff: some events may be labeled
as marked along a “short” path (e1 → e3 in the example) and saved as candidate ending

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 11

e1

e2

e3
e1

e3

e2

e4 e5

e6

Figure 1: Two graphs representing two ordering relations.

points of an MVI for the considered property. However, an interval is an MVI for a
property if and only if all paths leading from the initiating event to the terminating one
do not contain interrupting events, that is, events that initiate or terminate either the
considered property or a property incompatible with it. If there exists a longer path
(e1 → e2 → e3 in the example) which contains an interrupting event, then the candidate
node is cut off during the propagation of the label cutoff.

The next example shows that cutoff labels are needed also for reasoning about
event graphs devoid of transitive edges, that is, even in the case in which we store and
maintain the transitive reduction of the current knowledge state the cutoff procedure is
necessary. Consider a scenario consisting of six event occurrences e1, e2, e3, e4, e5, and
e6, two incompatible properties p and q, and the knowledge state o depicted in Figure 1,
right side, which has no transitive edges. Suppose that e1 initiates p, e5 initiates q, e6

terminates p, and e2, e3, and e4 affect neither p nor a property incompatible with p. The
interval (e1, e6) is not an MVI for p, because there exists an interrupting event, namely
e5, which occurs between e1 and e6. The algorithm removes the node e6 from the set of
candidate terminating events associated with initiating event e1 when it propagates the
label cutoff during the processing of e5.

The following theorem proves that the proposed algorithm computes exactly the set
of MVIs as defined in Definition 4.

Theorem 9
The proposed graph-traversal algorithm is sound and complete.

Proof
By definition, p(e1, e2) is an MVI w.r.t. the current knowledge state if and only if e1

initiates p, e2 terminates p, e2 belongs to G(e1), and every path e1 ; e2 from e1 to
e2 in G(e1) does not contain events relevant to p, that is, events that affect (initiate or
terminate) either p or a property incompatible with p and differ from both e1 and e2.

We first prove that the algorithm is sound, that is, if p(e1, e2) is generated by the
algorithm, then p(e1, e2) is an MVI. Given a property p and an event e1, the algorithm
searches the acyclic graph G(e1) for terminating events e2. Since the visit is breadth-first,
each node is reached along the shortest path on G(e1) starting from e1. Given a node e,
we denote by D(e) the length of the shortest path on G(e1) connecting e1 to e.

We proceed by contradiction. Suppose that p(e1, e2) is returned by the algorithm, but
it is not an MVI. If e1 does not initiate p or e2 does not terminate p, then p(e1, e2) cannot
be retrieved. Moreover, if e2 does not belong to G(e1), then the visit of G(e1) does not
retrieve e2, and hence p(e1, e2) cannot be generated. Finally, suppose that there exists at
least one path e1 ; e2 in G(e1) that contains at least one node z which affects either p

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 12

or a property incompatible with p and is different from e1 and e2. If D(z) < D(e2), then
the node z is visited before e1, it is labeled as marked, and the label cutoff is propagated
to the nodes of G(z) different from z. In particular, e2 is labeled as cutoff during such
a propagation and thus it cannot be chosen as the terminating event of an MVI for p
initiated by e1. Hence, p(e1, e2) cannot be generated by the algorithm. If D(z) > D(e2)
(notice that D(z) 6= D(e2), since z 6= e2 and there are not simultaneous events), then the
node e2 is visited before z, it is labeled as marked, and the label cutoff is propagated
to the nodes of G(e2) different from e2. Since the graph G(e1) is acyclic and there exists
a path from z to e2, there are no paths from e2 to z; hence the propagation of the label
cutoff does not reach the node z. The node z is processed at some later stage, it is
labeled as marked, and the label cutoff is propagated to the nodes of G(z) different from
z. In particular, the label of e2 is changed from marked to cutoff, and thus p(e1, e2)
cannot be generated by the algorithm.

We now prove that the algorithm is complete, that is, if p(e1, e2) in an MVI, then
p(e1, e2) is generated by the algorithm. Since (e1, e2) is an interval, e2 is reachable from
e1 in the graph G(e1). Since p(e1, e2) is an MVI, every path e1 ; e2 from e1 to e2 in
G(e1) does not contain interrupting events for p different from e1 and e2. Hence, the
node e2 is not cut off and, since it terminates p, it is labeled as marked and retrieved as
the terminating event of an MVI for p initiated by e1. Thus, p(e1, e2) is generated by the
algorithm.

Notice that the proposed algorithm is based on a forward strategy: given a property p and
an initiating event e1, it visits the graph G(e1), looking for a terminating event e2 such
that p(e1, e2) is an MVI. Nothing prevents us to define an equivalent backward algorithm
as follows. Given a directed graph G, let us denote by Ĝ the converse of G, i.e. the graph
in which each edge (ei, ej) of G has been replaced by the edge (ej , ei). Given a property
p and a terminating event e2, we visit the graph Ĝ(e2) as before, looking for initiating
events e1 such that p(e1, e2) is an MVI.

5 A second graph-traversal algorithm for MVIs computation

In this section, we first propose a sound (resp. complete) graph-traversal algorithm for
MVIs computation in EC that exploits the notion of transitive reduction (resp. closure) of
the ordering graph; then, we show how to pair transitive reduction and closure to devise
a sound and complete algorithm.

5.1 Two partial graph-traversal algorithms

We start by describing a sound (but incomplete) and a complete (but unsound) graph-
traversal algorithm for MVIs computation in EC. The first algorithm stores and maintains
the transitive reduction of a knowledge state. Let H = (E,P, [·〉, 〈·],]·,·[) be an EC-
structure, o− be the transitive reduction of a knowledge state o, and (e1, e2) be an ordered
pair of events. The addition of (e1, e2) to o− is dealt with as follows (update processing).
First, (e1, e2) is checked for consistency and redundancy with respect to o−. If (e1, e2) is
neither inconsistent ((e2, e1) 6∈ o+) nor redundant ((e1, e2) 6∈ o+), then o− is replaced by

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 13

e1 e2e

[p> <p][q>

Figure 2: An example of incompleteness.

o− ↓ (e1, e2). The set o− ↓ (e1, e2), which can be proved to be the transitive reduction
of o ∪ {(e1, e2)}, is obtained as follows: first, the ordered pair (e1, e2) is added to o−;
then, the set of nodes from which e1 is accessible (Pred(e1)) and the set of nodes which
are accessible from e2 (Succ(e2)) are computed; finally, any pair (e′, e′′) ∈ o− such that
e′ ∈ Pred(e1) and e′′ ∈ Succ(e2) is deleted from o− ∪ {(e1, e2)}.

if (e1, e2) 6∈ o+ and (e2, e1) 6∈ o+ then
o− ← o− ∪ {(e1, e2)}
put in Pred(e1) the nodes from which e1 is accessible
put in Succ(e2) the nodes accessible from e2

for each e′ ∈ Pred(e1) do
for each e′′ ∈ Succ(e2) do

if (e′, e′′) ∈ o− then o− ← o− \ {(e′, e′′)}

Given two events e′ and e′′, testing whether (e′, e′′) ∈ o+ or not can be performed by
visiting depth-first the subgraph of (E, o−) generated by e′, searching for the node e′′.
The set Succ(e2) can be computed by executing a depth-first visit of the subgraph of
(E, o− ↓ (e1, e2)) generated by e2 and retrieving all the visited nodes. Similarly, in order
to compute the set Pred(e1), we visit depth-first the subgraph generated by e1 with
respect to the converse graph Ĝ of the graph G = o− ↓ (e1, e2) (the notion of converse
graph has been given in the previous section).

At query time, for every property p, the algorithm selects as MVIs for p the p-edges
of the transitive reduction o−, i.e. the edges (e1, e2) ∈ o− such that e1 initiates p and e2

terminates p.

MV I ← ∅
for each p ∈ P do

for each (e1, e2) ∈ o− do
if e1 ∈ [p〉 and e2 ∈ 〈p] then MV I ← MV I ∪ {p(e1, e2)}

return MV I

Such an algorithm is sound: (e1, e2) is selected as an MVI for p if e1 initiates p, e2

terminates p, e1 precedes e2, and there are no events between e1 and e2 (the truth of this
last condition immediately follows from the fact that (e1, e2) is an edge of the transitive
reduction o−); hence, by definition, p(e1, e2) is an MVI. As shown in [8], this algorithm
is also complete in the single-property case. Unfortunately, it is incomplete in the general
multiple-property case. Consider the simple scenario depicted in Figure 2, where p and
q are two compatible properties. Since e does not interrupt the validity of p, p(e1, e2) is
an MVI for p; however, since there is not an edge from e1 to e2, the proposed algorithm
does not return p(e1, e2).

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 14

e1 e2e

[p> <p][q>

Figure 3: An example of unsoundness.

Let us now describe a complete (but not sound) graph-traversal algorithm for MVIs
computation. The idea is to store and maintain the transitive closure of the knowledge
state, instead of its transitive reduction. Let H = (E,P, [·〉, 〈·],]·,·[) be an EC-structure,
w ∈ WE be the transitive closure of a knowledge state o, and (e1, e2) be an ordered
pair of events. The addition of (e1, e2) to w is dealt with as follows (update processing).
Whenever both (e1, e2) 6∈ w and (e2, e1) 6∈ w, the update procedure determines w ↑ (e1, e2)
by executing the following steps: first, the edge (e1, e2) is added to w; then, for every
pair of events e′, e′′ ∈ E such that (e′, e1) ∈ w, (e2, e

′′) ∈ w, and (e′, e′′) 6∈ w, the edge
(e′, e′′) is added to w ∪ (e1, e2). It is worth noting that, since w is transitive, the set of
predecessors (resp. successors) of e1 (resp. e2) coincides with the set of nodes from which
e1 is accessible (resp. accessible from e2).

if (e1, e2) 6∈ w and (e2, e1) 6∈ w then
w ← w ∪ {(e1, e2)}
for each predecessor e′ of e1 do

for each successor e′′ of e2 do
if (e′, e′′) 6∈ w then w ← w ∪ {(e′, e′′)}

At query time, for every property p, the algorithm retrieves as MVIs for p the p-edges of
w as before.

The proposed algorithm is complete: if p(e1, e2) is an MVI, then, by definition, e1

initiates p, e2 terminates p, and e1 precedes e2; hence, the interval (e1, e2) is selected as an
MVI for the property p. Unfortunately, it is immediate to show that such an algorithm is
not sound. Consider the scenario of Figure 3, where p and q are incompatible properties.
The interval p(e1, e2) is not an MVI for p, since e interrupts the validity of p over (e1, e2).
However, since there is an edge from e1 to e2, p(e1, e2) is retrieved as an MVI for p.

5.2 Pairing transitive closure and reduction

In this section, we pair the notions of transitive closure and reduction to obtain a sound
and complete graph-traversal algorithm for MVIs computation in EC. The algorithm
stores and maintains the transitive closure w of a knowledge state and, for every property
p, it stores the transitive reduction of the subgraph wp induced by the set of events that
are relevant to p. Let H be an EC-structure, w be the transitive closure of a knowledge
state o, and (e1, e2) be an ordered pair of events. The addition of (e1, e2) to w is dealt
with as follows (update processing):

1. if (e1, e2) 6∈ w and (e2, e1) 6∈ w, then w is replaced by w ↑ (e1, e2);

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 15

2. for every property p ∈ P , the subgraph wp induced by the set of events that are
relevant to p, that is, the events that initiate or terminate either p or a property
incompatible with p, is extracted from w ↑ (e1, e2);

3. for every property p ∈ P , the transitive reduction w−p of the graph wp is computed
by using one of the standard algorithms, e.g. [11, 15].

// computing w ↑ (e1, e2)
if (e1, e2) 6∈ w and (e2, e1) 6∈ w then

w ← w ∪ {(e1, e2)}
for each predecessor e′ of e1 do

for each successor e′′ of e2 do
if (e′, e′′) 6∈ w then w ← w ∪ {(e′, e′′)}

// computing wp for every property p
for each p ∈ P do

wp ← ∅
for each (e′, e′′) ∈ w do

if is relevant to(e′,p) and is relevant to(e′′,p) then wp ← wp ∪ {(e′, e′′)}

// computing w−p for every property p
for each p ∈ P do

compute the transitive reduction w−p

Notice that computing the transitive closure of the knowledge state (point 1. above) is
necessary since neither the transitive reduction of the subgraph induced by p, nor the
subgraph of the transitive reduction induced by p would work, as shown by the example
depicted in Figure 2.

The set of MVIs for p includes all and only the p-edges of w−p . Hence, for every
property p, query processing reduces to the retrieval of the p-edges of w−p .

MV I ← ∅
for each p ∈ P do

for each (e1, e2) ∈ w−p do
if e1 ∈ [p〉 and e2 ∈ 〈p] then MV I ← MV I ∪ {p(e1, e2)}

return MV I

An example of MVIs computation using the proposed graph-traversal algorithm is given
in Figure 4. Let the initial situation be that depicted in Figure 4 - A, where p and q
are two compatible properties. Once the edge (e2, e3) is entered, the transitive closure of
the resulting graph is computed (cf. Figure 4 - B). Then, the subgraphs induced by the
events that respectively are relevant to q and p are extracted from the original graph (the
two resulting subgraphs are described in Figure 4 - C). Finally, the transitive reductions
w−q and w−p are computed (cf. Figure 4 - D). At query time, q(e1, e3) and p(e2, e3) are
returned as MVIs for q and p, respectively.

Theorem 10
The proposed graph-traversal algorithm for MVIs computation is sound and complete with
respect to the given semantics of EC.

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 16

e1 e2 e3

[p> <p][q>
<q]

e4

<p]

e1 e2 e3

[p> <p][q>
<q]

e4

<p]

e1 e3

<q][q>
e2 e3
[p> <p]

e4
<p]

e1 e3

<q][q>

e2 e3
[p> <p]

e4
<p]

(A)

(B)

(C)

(D)

Figure 4: MVIs computation using the proposed graph-traversal algorithm.

Proof
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure and w be the transitive closure of a knowl-
edge state o. To prove that the proposed algorithm is sound, we must show that if (e1, e2)
is a p-edge of w−p , then p(e1, e2) is an MVI for p with respect to w and H. The proof is
by contradiction. If p(e1, e2) is not an MVI, then one of the following propositions must
hold: e1 does not initiate p, e2 does not terminate p, (e1, e2) 6∈ w, or there exists an inter-
rupting event e for p that occurs between e1 and e2. If e1 does not initiate p or e2 does
not terminate p, then (e1, e2) is not a p-edge. If (e1, e2) 6∈ w, then (e1, e2) 6∈ w−p , since
w−p ⊆ w, and thus (e1, e2) is not a p-edge of w−p . Finally, if there exists an interrupting
event e for p such that both (e1, e) ∈ w and (e, e2) ∈ w, then there exist a path e1 ; e
and a path e ; e2 in w−p . Hence, the edge (e1, e2) is a transitive one, and thus it does
not belong to w−p . This allows us to conclude that (e1, e2) is not a p-edge of w−p .

To prove that the proposed algorithm is complete, we must show that if p(e1, e2) is
an MVI for p with respect to w and H, then (e1, e2) is a p-edge of w−p . By hypothesis,
e1 initiates p, e2 terminates p, and (e1, e2) ∈ w. It follows that (e1, e2) is a p-edge of wp.
Moreover, since there are no interrupting events for p that occur between e1 and e2, the
edge (e1, e2) is the unique path from e1 to e2 in wp. This implies that the edge (e1, e2) is
not transitive, and thus it is a p-edge of w−p .

6 Adapting the algorithms to the Modal Event Calculus

Two efficient algorithms, that respectively compute necessary and possible MVIs of MEC,
can be obtained from Corollary 7 taking advantage of the algorithms for MVIs compu-
tation in EC described in Sections 4 and 5. Let o be a knowledge state and w = o+

be its transitive closure. In order to compute the sets C(w) and S(w) (cf. Section 3),
we proceed as follows. C(w) is obtained by selecting all property-labeled pairs of events
p(e1, e2) such that e1 initiates p, e2 terminates p, and e1 and e2 are unordered in w:

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 17

compute w = o+

sort w
C ← ∅
for each p ∈ P do

for each (e1, e2) ∈ E × E do
if e1 ∈ [p〉 and e2 ∈ 〈p] and

(e1, e2) 6∈ w and (e2, e1) 6∈ w then
C ← C ∪ {p(e1, e2)}

return C

The computation of S(w) is more involved. First, we compute the set U(w) containing
all pairs (e, p) ∈ E × P such that there exists another event e′, which affects either p or
a property incompatible with p and is unordered with respect to e in w. It is easy to
see that if (e, p) ∈ U(w), then e neither initiates nor terminates a 2-MVI for p. The set
S(w) is obtained by selecting those atomic formulas p(e1, e2) such that neither (e1, p) nor
(e2, p) belong to U(w):

// compute U(w)
compute w = o+

sort w
U ← ∅
S ← ∅
for each p ∈ P do

for each e ∈ E do
Found ← False
V ← E
while not Found and V 6= ∅ do

let e′ ∈ V
if (e, e′) 6∈ w and

(e′, e) 6∈ w and
is relevant to(e′, p) then
Found ← True
U ← U ∪ {(e, p)}

else
V ← V \ {e′}

// compute S(w) taking advantage of U(w)
for each p ∈ P do

for each (e1, e2) ∈ E × E do
if (e1, p) 6∈ U and

(e2, p) 6∈ U then
S ← S ∪ {p(e1, e2)}

return S

Let us first consider the algorithm for MVIs computation in MEC obtained by exploiting
the procedure for MVIs computation in EC described in Section 4. Update processing in
MEC consists in checking whether the new pair of events is consistent and non-redundant
with respect to the current knowledge state, as in EC. As for query processing, the set

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 18

MV I(w) is obtained as shown in Section 4 and, in addition, it is sorted. The sets C(w)
and S(w) are computed by the above described algorithms. The set 2MVI(w) is obtained
by intersecting MV I(w) and S(w), while the set 3MVI(w) is computed by taking the
union of MV I(w) and C(w).

We now describe the algorithm for MVIs computation in MEC obtained by using the
procedure for MVIs computation in EC described in Section 5. Update processing first
determines w ↑ (e1, e2) and then, for every property p, derives w−p as shown in Section 5.
In addition, w−p is sorted. The sets C(w) and S(w) are obtained as in the previous
case (notice that in such a case the computation of the transitive closure of the current
knowledge state is actually not necessary). Query processing reduces to the computation
of the sets MV I(w), by means of the procedure for MVIs computation in EC shown in
Section 5, 2MVI(w), by intersecting MV I(w) and S(w), and 3MVI(w), by taking the
union of MV I(w) and C(w).

It is worth noting that the proposed algorithms can be easily extended to cope with
updates consisting of the addition of new events. It is easy to see that the addition of a
new event to the structure does not affect the set of MVIs derived by EC. On the contrary,
when a new event is added, the sets C(w) and S(w) grows and shrinks, respectively. It
follows that, in order to cope with such updates, it is sufficient to recompute the sets
C(w) and S(w), while the set MV I(w) remains unchanged.

7 Complexity analysis

In this section, we first analyze and then compare the computational complexity of the
proposed algorithms for MVIs computation.

Given an EC-structure H = (E, P, [·〉, 〈·],]·,·[) and an acyclic binary relation o ∈ OE ,
we determine the complexity of computing the set of MVIs with respect to o andH, i.e. the
set of formulas p(e1, e2) (resp. 2p(e1, e2) and 3p(e1, e2)) such that o+ |= p(e1, e2) (resp.
o+ |= 2p(e1, e2) and o+ |= 3p(e1, e2)), by using the proposed algorithms. We measure the
complexity in terms of the size n of the structure H (where n is the number of recorded
events in E) and the size m of the relation o, or the size m− of its transitive reduction o−.
This choice can be explained as follows. Given an EC-structure H, the set E of events
can be arbitrarily large, while the set P of properties is fixed once and for all, since it
is an invariant characteristic of the considered domain. Since the cardinality of P does
not change from one problem instance to another one (unless we change the application
domain), while the cardinality of E may grow arbitrarily, we choose the cardinality of E
as the size of H and consider the number of properties as a constant. Moreover, when
analyzing the complexity of graph algorithms, it is standard to consider the number m of
edges as a relevant complexity parameter, albeit it is known that m = O(n2).

7.1 The complexity of query and update processing

We assume P and E to be sorted. Furthermore, we assume that the knowledge state o
as well as the sets [p〉 and 〈p], for every property p ∈ P , are maintained sorted. Under
such assumptions, given an event e and a property p, the tests e ∈ [p〉 and e ∈ 〈p] can be
performed, by using a binary search, in time O(log n). Similarly, given two distinct events

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 19

e1 and e2, the test (e1, e2) ∈ o costs O(log m). These logarithmic factors can actually be
eliminated by using suitable hashing techniques. Finally, the test (e1, e2) ∈ o+ can be
performed in O(m+n) by executing a depth-first visit of the subgraph of (E, o) generated
by e1.

In the following, we will denote by GO0 the traditional generate-and-test algorithm
for MVIs computation in EC [2], by GO1 the graph-traversal algorithm proposed in Sec-
tion 4, and by GO2 the graph-traversal algorithm described in Section 5. We first recall
complexities of GO0 during update and query processing [3, 4].

Theorem 11
(Complexities of update and query processing in GO0)

The complexity of update processing is O(n + m), while the complexity of query pro-
cessing is O(n3(n + m)).

The algorithm GO0 can be extended to compute necessary and possible MVIs in MEC
without any increase in computational complexity [3, 4].

We now analyze the complexity of the algorithm GO1.

Theorem 12
(Complexities of update and query processing in GO1)

The complexity of update processing is O(n + m), while the complexity of query pro-
cessing is O(nm + n2 log n).

Proof
Update processing consists in checking whether or not a pair of events (e1, e2) is consistent
with o, i.e. whether (e2, e1) ∈ o+ or not, and whether it is non-redundant with respect
to o, i.e. whether (e1, e2) ∈ o+ or not. This can be performed by visiting depth-first the
subgraph generated by e2 (resp. e1) and looking for e1 (resp. e2). Since a depth-first visit
of a graph costs O(n + m), this is also the cost of update processing.

As for query processing, GO1 behaves as follows. For every property p and every event
e1 initiating p, the algorithm visits the graph G(e1) and retrieve all the events e2 such
that p(e1, e2) is an MVI. Since the number of properties is constant, the complexity is
O(n · f(n, m)), where f(n,m) is the complexity of the procedure that visits the graph
G(e1) and retrieves the nodes that terminate the MVIs for p initiated by e1. It holds that
f(n, m) is the sum of the costs of the visit of G(e1) and of the processing of the nodes of
G(e1).

The graph G(e1) is visited breadth-first to construct the layers and to retrieve the
terminating events, while it is visited depth-first to propagate the labels cutoff. Each
edge of the graph G(e1) is visited at least once (depth-first or breadth-first) and at most
twice (first breadth-first, and then depth-first). Indeed, if an edge (e1, e2) is depth-first
visited, then e1 is labeled as marked or cutoff. Hence, neither a breadth-first visit nor a
depth-first one will later reconsider it. However, edges which have been already breadth-
first visited can also be visited depth-first in order to propagate the label cutoff. It
follows that the cost of visiting G(e1) is O(m).

Similarly, each node of the graph G(e1) is processed at least once (depth-first or
breadth-first) and at most twice (first breadth-first, and then depth-first). Indeed, if the

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 20

depth-first visit cuts off a node, then it will not be processed anymore. However, nodes
labeled as marked or visited, which have been already processed during the breadth-first
visit, can also be processed during a depth-first visit and labeled as cutoff. The process-
ing of a node consists of the operations of labeling and testing for relevant events. Both
these operations cost O(log n). Therefore, processing all nodes of G(e1) costs O(n log n).

Putting together the above results, we conclude that f(n,m) = O(m) +O(n log n) =
O(m+n log n). This allows us to conclude that the cost of the algorithm isO(n·f(n,m)) =
O(nm + n2 log n).

A bit surprisingly, the complexity of query processing in GO1 does not increase when
moving from the computation of MVIs in EC to the (more significant) computation of
possible and necessary MVIs in MEC (the complexity of update processing for EC and
MEC in GO1 is exactly the same). Let o be the current knowledge state and w = o+

be its transitive closure. The set 2MVI(w) is obtained by intersecting the sets MV I(w)
and S(w), while the set 3MVI(w) can be obtained by taking the union of MV I(w) and
C(w). It is easy to see that computing the sets C(w) and S(w) costs O(m−n + n2 log n),
where m− is the size of o−. Indeed, computing the transitive closure w = o+ costs
O(m−n), and sorting w costs O(n2 log n). Computing the set C(w), whenever w is
sorted, costs O(n2 log n). The same for the set S(w). Hence, obtaining C(w) and S(w)
costs O(m−n + n2 log n). Since, by hypothesis, E and P are sorted, the resulting sets
C(w) and S(w) are sorted too. Moreover, MV I(w) can be sorted in O(n2 log n). Finally,
taking the intersection or the union of two sorted sets of size O(n2) can be performed
in time O(n2) by using a simple variant of the algorithm for merging sorted vectors. It
follows that 2MVI(w) and 3MVI(w) can be computed in O(m−n + n2 log n), which is
not worse than the time needed to compute MVI(w).

We conclude the analysis by determining the computational complexity of the algo-
rithm GO2.

Theorem 13
(Complexities of update and query processing in GO2)

The complexity of update processing is O(nm− + n2 log n), while the complexity of
query processing is O(m− log n).

Proof
Update processing in GO2 is performed in three steps. At the first step, EC verifies
that neither (e1, e2) nor (e2, e1) belong to w. If this is the case, it determines the set
ŵ = w ↑ (e1, e2). Let m = |w|, m− = |w−|, m̂ = |ŵ|, and m̂− = |ŵ−|. The tests
(e1, e2) 6∈ w and (e2, e1) 6∈ w cost O(log m) = O(log n). The set ŵ is computed as follows:
first, the edge (e1, e2) is added to w; then, for every pair of events e′, e′′ ∈ E such that
(e′, e1) ∈ w, (e2, e

′′) ∈ w, and (e′, e′′) 6∈ w, the edge (e′, e′′) is added to w ∪ (e1, e2).
The sets of predecessors and successors of a given node can be computed in O(n) and
have cardinality O(n), and the addition of (e′, e′′) to w ∪ (e1, e2) (checking whether or
not (e′, e′′) ∈ w) costs O(log m̂) = O(log n); hence, the complexity of computing ŵ is
O(n2 log n).

The second step consists in the extraction of ŵp from ŵ, for every property p. Since
ŵp contains the edges (e′, e′′) of ŵ such that both e′ and e′′ are relevant to p and since

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 21

each test costs O(log n), this step has complexity O(m̂ log n).
The last step is the computation of the transitive reduction ŵ−p , for every property

p. Since ŵp is acyclic, ŵ−p can be computed in O(nm̂−). The resulting cost of update
processing is thus O(nm̂−+m̂ log n+n2 log n) = O(nm̂−+n2 log n). Since m̂− is O(m−),
update processing is O(nm− + n2 log n).

Given the transitive closure w of a knowledge state, query processing consists in
picking up, for every property p, the p-edges of w−p . Since the cardinality of w−p is O(m−)
and verifying whether or not an edge is a p-edge costs O(log n), the complexity of query
processing is O(m− log n).

Moving from EC to MEC does not change the complexity of update processing. Indeed,
computing the sets C(w) and S(w) costs O(n2 log n) (note that in this case we do not
need to compute and sort the transitive closure of the current knowledge state, because we
store it and maintain it sorted). Since, by hypothesis, E and P are sorted, the resulting
sets C(w) and S(w) are sorted too. Moreover, for every property p, the set w−p can be
sorted in O(n2 log n).

As for query processing in MEC, there is a little increase in complexity. The set
MVI(w) can be computed in O(m− log n). Notice that, since both P and w−p , for every
property p, are sorted, the resulting set MV I(w) is sorted without any additional cost.
The set 2MVI(w) is obtained by intersecting the ordered sets MV I(w) and S(w) by
using a simple variant of the algorithm for merging sorted vectors. In a similar way, the
set 3MVI(w) can be obtained by taking the union of MV I(w) and C(w). Since the
intersection or the union of two sorted sets of size O(n2) can be determined in O(n2),
query processing costs O(m− log n + n2).

7.2 A comparison of GO0, GO1, and GO2

In this section, we compare the complexities of query and update processing in GO0, GO1,
and GO2. The following table summarizes the complexity results that have been proved
in the previous section.

EC-Update EC-Query MEC-Update MEC-Query
GO0 O(n + m) O(n3(n + m)) O(n + m) O(n3(n + m))
GO1 O(n + m) O(nm + n2 log n) O(n + m) O(nm + n2 log n)
GO2 O(nm− + n2 log n) O(m− log n) O(nm− + n2 log n) O(m− log n + n2)

First, notice that the complexity bounds for EC and MEC may differ only in the case
of query processing in GO2, when O(m−) is strictly less than O(n2). For this reason, we
will confine our analysis to EC. In order to properly compare the proposed algorithms,
we must take into account that algorithms GO0 and GO1 are query-driven, that is, they
perform most of their computation at query time, whereas GO2 is update-driven, that is, it
mostly works at update time. As a consequence, GO0 and GO1 are easily comparable: query
processing in GO1 is more efficient than query processing in GO0, while the complexity of
update processing in GO0 and GO1 is the same. Comparing GO0 and GO1 with GO2 is a more
difficult task, because (i) GO2 is an update-driven algorithm, whereas GO0 and GO1 are
query-driven algorithms, and (ii) the complexity bounds for GO2 are expressed in terms of
the number m− of edges of the transitive reduction of the knowledge state, whereas those

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 22

Figure 5: Examples of scenarios A1, A2, and A3 (left to right).

for GO0 and GO1 refer to the number m of edges of the knowledge state. To cope with
these problems, we execute a case-based analysis, that distinguishes among the following
alternative possibilities (cf. Figure 5):

A1 both the current knowledge state and its transitive reduction are dense graphs,
i.e. both m and m− are Θ(n2);

A2 both the current knowledge state and its transitive reduction are sparse graphs,
i.e. both m and m− are Θ(n);

A3 the current knowledge state is a dense graph, while its transitive reduction is
a sparse graph, i.e. m = Θ(n2) and m− = Θ(n).

Let #q and q (resp. #u and u = 1− q) be the number of queries and the query frequency
(resp. the number of updates and the update frequency) of the EC-system. We will consider
the following cases:

B1 #q À #u (we can assume q = 1 and u = 0);
B2 #u À #q (we can assume q = 0 and u = 1);
B3 neither #q À #u nor #u À #q, and n À 0;
B4 neither #q À #u nor #u À #q, and n is small.

The complexity bounds (EC only) in case A1 are the following:

EC-Update EC-Query
GO0 O(n2) O(n5)
GO1 O(n2) O(n3)
GO2 O(n3) O(n2 log n)

The global (i.e. update plus query) computational cost is G(q, n) = (1−q)·Cu(n)+q·Cq(n),
where Cu(n) and Cq(n) are the complexities of update and query processing, respectively
(Figure 6, left side). As for the global cost, in case B1, GO2 is better than GO1, which,
in its turn, is better than GO0, while, in case B2, GO0 and GO1 are equivalent and better
than GO2. In case B3, the actual value of q and u does not matter, since q and u are
comparable and n is large. Hence, the global cost is Cu(n) + Cq(n), that is, O(n5) for
GO0, and O(n3) for GO1 and GO2. It follows that, in this case, GO1 and GO2 are equivalent

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 23

and both of them are more efficient than GO0. On the contrary, in case B4, the actual
value of q and u must be taken into account, because n is small. However, if we do not
know the actual value of q or u, we can compute the average value µ(n) of the function
G(q, n) varying q over the interval [0, 1]. It holds that

µ(n) =
∫ 1

0

G(q, n)dq.

We have that µ(n) = 1
2n2(n3 + 1) for GO0, µ(n) = 1

2n2(n + 1) for GO1, and µ(n) =
1
2n2(n + log n) for GO2. Hence, regarding to the average value of G(q, n), GO1 is the best
solution.

The complexity bounds in case A2 are the following ones:

EC-Update EC-Query
GO0 O(n) O(n4)
GO1 O(n) O(n2 log n)
GO2 O(n2 log n) O(n log n)

This case is similar to the previous one, and the outcomes of the comparison are exactly
the same (cf. Figure 6, middle).

Finally, in case A3, the complexity bounds are the following ones:

EC-Update EC-Query
GO0 O(n2) O(n5)
GO1 O(n2) O(n3)
GO2 O(n2 log n) O(n log n)

The global computational cost G(q, n) = (1−q) ·Cu(n)+q ·Cq(n) is illustrated in Figure 6,
right side. Cases B1 and B2 are as above, while cases B3 and B4 are different. In case
B3, the global cost of GO2 (O(n2 log n)) is less than the global cost of GO1 (O(n3)). The
same in case B4. Indeed, µ(n) = 1

2n2(n + 1) for GO1 and µ(n) = 1
2n log n(n + 1) for GO2.

8 Conclusions and future work

In this paper, we have shown how well-known graph-theoretic techniques can be success-
fully exploited to efficiently reason about partially ordered events in EC and MEC. Even
though we developed our solution in the context of (Modal) Event Calculus, we expect it
to be applicable to any formalism for reasoning about partially ordered events.

Whenever the system is regularly queried and updated, i.e. the frequencies of queries
and updates are comparable, and the number of recorded events is quite large (the usual
case), both the alternative graph-traversal algorithms GO1 and GO2 are much more efficient
than the standard generate-and-test one GO0. Moreover, GO2 is better than GO1 whenever

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 24

2n

n3

n 5

n log n
2

GO0

GO1

GO2
n log n

2

G(q,n)

q
0 1

 n
n log n

n4
GO0

GO1

GO2

2n

n3

n 5

n log n
2

G(q,n)

q
0 1

G(q,n)

q
0 1

GO0

GO1

GO2n log n

Figure 6: The behaviour of the global cost function G(q, n) in cases A1 (left), A2 (middle),
and A3 (right).

the transitive reduction of the current knowledge state is sparse and the current knowledge
state is dense (this was conjectured by Chittaro et al. [8]). In the other relevant cases,
the two algorithms are equivalent.

As for future work, we are mainly interested in the following two research directions.
On the one hand, we are looking for meaningful lower bounds to the (tractable instances
of the) problem of reasoning about partially ordered events. On the other hand, we would
like to apply the proposed graph-traversal algorithms to other (polynomial) extensions
of EC [4, 5]. As an example, Cervesato et al. [4] studied the effects of the addition of
preconditions to (Modal) Event Calculus. The resulting Event Calculus with Precondi-
tions (PEC) and its modal variant (MPEC) aim at modeling situations that consist of
a set of events, whose occurrences over time have the effect of initiating or terminating
the validity of properties when given preconditions are met. Computing MVIs in PEC
remains a polynomial task, albeit the polynomial degree depends on the nesting level
of preconditions. On the contrary, as already pointed out by Dean and Boddy [10], an
unconstrained use of preconditions makes the problem of deriving the set of necessary
and possible MVIs intractable. To overcome this negative complexity outcome, Cervesato
et al. [4] developed polynomial approximate procedures for the computation of necessary
and possible MVIs in MPEC, that are in general either sound (but not complete) or com-
plete (but not sound) with respect to the semantics of the corresponding modal event
calculi. We believe that the graph-traversal algorithms we have proposed in this paper
can be successfully exploited in order to speed up the computation of MVIs in PEC and
of the approximations of MVIs in MPEC.

Acknowledgments

The authors were supported by the MURST Project SALADIN (Software Architectures
and LAnguages to coordinate DIstributed mobile compoNents).

M. Franceschet and A. Montanari / A Graph-Theoretic Approach 25

References

[1] A.V. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a directed graph.
SIAM Journal on Computing, 1(2):131–137, 1972.

[2] I. Cervesato, L. Chittaro, and A. Montanari. A modal calculus of partially ordered events
in a logic programming framework. In L. Sterling, editor, Proceedings of the Twelfth Inter-
national Conference on Logic Programming — ICLP’95, pages 299–313, Kanagawa, Japan,
13–16 June 1995. MIT Press.

[3] I. Cervesato, M. Franceschet, and A. Montanari. The complexity of model checking in
modal event calculi with quantifiers. Electronic Transactions on Artificial Intelligence, 2:1–
23, 1998.

[4] I. Cervesato, M. Franceschet, and A. Montanari. A guided tour through some extensions of
the event calculus. Computational Intelligence, 16(2):307–347, 2000.

[5] I. Cervesato, M. Franceschet, and A. Montanari. A hierarchy of modal event calculi: Ex-
pressiveness and complexity. In H. Barringer, M. Fisher, D. Gabbay, and G. Gough, editors,
Advances in Temporal Logic, pages 1–20. Kluwer Academic Publisher, Applied Logic Series,
2000.

[6] I. Cervesato and A. Montanari. A general modal framework for the event calculus and its
skeptical and credulous variants. Journal of Logic Programming, 38(2):111–164, 1999.

[7] D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333–377, 1987.
[8] L. Chittaro, A. Montanari, and I. Cervesato. Speeding up temporal reasoning by exploiting

the notion of kernel of an ordering relation. In Proc. of the 2nd International Workshop on
Temporal Representation and Reasoning — TIME’95, pages 73–80, Melbourne Beach, FL,
26 April 1995.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. The MIT
Press, 1989.

[10] T. Dean and M. Boddy. Reasoning about partially ordered events. Artificial Intelligence,
36:375–399, 1988.

[11] A. Goralcikova and V. Koubek. A reduct and closure algorithm for graphs. In Proc. of
the 8th Symposium on Mathematical Foundations of Computer Science. LNCS 74, pages
301–307, Olomouc, CZ, 1979. Springer.

[12] R. Kowalski. Database updates in the event calculus. Journal of Logic Programming,
12:121–146, 1992.

[13] R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Computing,
4:67–95, 1986.

[14] B. Nebel and C. Bäckström. On the computational complexity of temporal projection,
planning, and plan validation. Artificial Intelligence, 66:125–160, 1994.

[15] K. Simon. An improved algorithm for transitive closure on acyclic digraphs. Theoretical
Computer Science, 58(1-3):325–346, 1988.

[16] J. van Leeuwen. Graph algorithms. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science. Volume A: Algorithms and Complexity, pages 525–632. Elsevier, 1990.

