
Pairing Transitive Closure and Reduction to
Efficiently Reason about
Partially Ordered Events

Massimo Franceschet Angelo Montanari

Dipartimento di Matematica e Informatica, Università di Udine
Via delle Scienze, 206 – 33100 Udine, Italy

{francesc|montana}@dimi.uniud.it

Abstract

In this paper, we show how well-known graph-theoretic techniques can be successfully

exploited to efficiently reason about partially ordered events in Kowalski and Sergot’s

Event Calculus and in its skeptical and credulous modal variants. We replace the tra-

ditional generate-and-test strategy of basic Event Calculus by a generate-only strategy

that operates on the transitive closure and reduction of the underlying directed acyclic

graph of events. We prove the soundness and completeness of the proposed strategy,

and thoroughly analyze its computational complexity.

1 Introduction

Reasoning about actions and change is emerging as a major requirement in
many intelligent system applications, including diagnosis, robotics, agent mod-
elling, qualitative physics, monitoring, planning and plan validation, and natural
language understanding. Considerable research efforts have been devoted to pro-
viding reasoning about actions and change tasks with a common formal basis,
so that they can defined in a uniform framework. In contrast, efficiency issues
have received a very limited attention, and this has been recognized as a major
limiting factor to its application in realistic domains.

In this paper, we show how well-known graph-theoretic techniques can be suc-
cessfully exploited to efficiently reason about partially ordered events in Kowalski
and Sergot’s Event Calculus (EC for short) [5] and in its skeptical and credu-
lous modal variants [1]. Given a set of events, EC is able to infer the set of
maximal validity intervals (MVIs) over which the properties initiated and/or
terminated by them hold uninterruptedly. Events can be temporally qualified in
several ways. We consider the relevant case where either the occurrence time of
an event is totally unspecified or its relative temporal position with respect to
(some of) the other events is given [3]. Partial ordering information about event
occurrences can be naturally represented by means of a directed acyclic graph
G = 〈E, o〉, where the set of nodes E is the set of events and, for every ei, ej ∈ E,
there exists (ei, ej) ∈ o if and only if it is known that ei occurs before ej .

EC updates are of additive nature only and they just consist in the addition
of new events and/or of further ordering information about the given events.
The set of MVIs for any given property p has been traditionally computed at
query time according to a simple (and expensive) generate-and-test strategy:
EC first blindly picks up every candidate pair of events (ei, et), where ei and et

respectively initiate and terminate p; then, it checks whether or not ei precedes
et; finally, it looks for possible events e that occur between ei and et and interrupt
the validity of p. Checking whether ei precedes et or not reduces to establish if
the edge (ei, et) belongs to the transitive closure o+ of o as well as checking if
there exists an interrupting event e requires to verify if both (ei, e) and (e, et)
belong to o+.

In [2], Chittaro et al. outline an alternative (and efficient) generate-only strat-
egy forMVIs computation when all recorded events are concerned with the same
unique property p. According to such a strategy, the graph G = 〈E, o〉 is replaced
by its transitive reduction G− = 〈E, o−〉, which must be maintained whenever a
new consistent and non-redundant pair of events (ei, ej) is entered (the addition
of a new event e to E does not affect o−). Since any event e ∈ E either initiates
or terminates p, the set of MVIs for p can be obtained by searching G− for edges
(ei, ej) such that ei initiates p and ej terminates it. Being G− the transitive
reduction of G ensures us that there are no interrupting events for p that occur
between ei and ej . In this paper, we show how such a generate-only strategy can
be generalized to the (general) multiple-property case of EC1.

The paper is organized as follows. In Section 2, we introduce some background
knowledge. In Section 3, we first revise the generate-only strategy for MVIs
computation in EC in the single-property case, and, then, we generalize it to
the multiple-property one. The increase in efficiency of the proposed strategy
with respect to the traditional generate-and-test one is demonstrated by the
complexity analysis of Section 4. In the last part of the paper, we briefly discuss
the achieved results.

2 Preliminaries

In this section, we first introduce some basic notions about ordering relations,
transitive closure and transitive reduction [7]; then, we briefly recall syntax and
semantics of the basic Event Calculus [5] and of the Modal Event Calculus [1].

2.1 On ordering relations, transitive closure and reduction

Let us first remind some basic notions about ordering relations and ordered
sets upon which we will rely in the following. EC usually represents ordering
information as a binary acyclic relation o on the set of events E, that is, as
1 The generalization to the multiple-property case of EC sketched in [2] does not

properly work whenever there exist two or more non-transitive paths of different
length between an ordered pair of events that respectively initiate and terminate a
given property.

2

an ordering relation possibly missing some transitive links, but it uses ordering
information as a (strict) partial order w that can be recovered as the transitive
closure o+ of o.

Definition 1. (DAGs, generated DAGs, induced DAGs)
Let E be a set and o a binary relation on E. o is called a (strict) partial

order if it is irreflexive and transitive (and, thus, asymmetric), while it is called
a reflexive partial order if it is reflexive, antisymmetric, and transitive. The pair
(E, o) is called a directed acyclic graph (DAG) if o is a binary acyclic relation;
a strictly ordered set if o is a partial order; a non-strictly ordered set if o is a
reflexive partial order. Moreover, given a DAG G = 〈E, o〉 and a node e ∈ E,
the subgraph G(e) of G consisting of all and only the nodes which are accessible
from e and of the edges that connect them is called the graph generated by e.
Finally, given a DAG G = 〈E, o〉 and a set T ⊆ E, the subgraph of G induced
by T consists of the nodes in T and the subset of edges in o that connect them.

In this paper, we will make a massive use of the notions of transitive closure and
reduction of a DAG.

Definition 2. (Transitive closure and reduction of DAGs)
Let G = 〈E, o〉 be a directed acyclic graph. The transitive reduction of G is

the (unique) graph G− = 〈E, o−〉 with the smallest number of edges, with the
property that, for any pair of nodes i, j ∈ E there is a directed path from i to
j in G if and only if there is a directed path from i to j in G−. The transitive
closure of G is the (unique) graph G+ = 〈E, o+〉 with the property that, for any
pair of nodes i, j ∈ E there is a directed path from i to j in G if and only if
there is an edge (i, j) ∈ o+ in G+.

Notice that, given a DAG G = 〈E, o〉 and its transitive closure G+, for every
T ⊆ E, the subgraph of G+ induced by T is a transitive closure (we will exploit
this property of transitive closure in Section 3).

In the following, we will use the notations o ↑ (e1, e2) and o ↓ (e1, e2) as
shorthands for (o ∪ {(e1, e2)})+ and (o ∪ {(e1, e2)})−, respectively.

We denote the sets of all binary acyclic relations and of all partial orders on
E as OE and WE , respectively. It is easy to show that, for any set E, WE ⊆ OE .
We will use the letters o and w, possibly subscripted, to denote binary acyclic
relations and partial orders, respectively. Clearly, if (E, o) is a directed acyclic
graph, then (E, o+), is a strictly ordered set. Two binary acyclic relations o1, o2 ∈
OE are equally informative if o+

1 = o+
2 . This induces an equivalence relation ∼

on OE . It is easy to prove that, for any set E, OE/∼ and WE are isomorphic.

2.2 Basic and Modal Event Calculus

A compact model-theoretic formalization of Kowalski and Sergot’s Event Cal-
culus (EC) [5] has been provided by Cervesato and Montanari in [1]. It distin-
guishes between time-independent and time-dependent components of EC. The
time-independent component is captured by means of the notion of EC-structure.

3

Definition 3. (EC-structure)
A structure for the Event Calculus (abbreviated EC-structure) is a quintuple

H = (E, P, [·〉, 〈·],]·,·[) such that:

– E = {e1, . . . , en} and P = {p1, . . . , pm} are finite sets of events and proper-
ties, respectively;

– [·〉 : P → 2E and 〈·] : P → 2E are respectively the initiating and terminating
map of H. For every property p ∈ P , [p〉 and 〈p] represent the set of events
that initiate and terminate p, respectively;

–]·,·[⊆ P × P is an irreflexive and symmetric relation, called the exclusivity
relation, that models incompatibility among properties.

The time-dependent component is formalized by specifying a binary acyclic re-
lation o, called knowledge state, on the set of events E.

Given a structure H = (E,P, [·〉, 〈·],]·,·[) and a knowledge state o, EC permits
inferring the maximal validity intervals (MVIs) over which a property p holds
uninterruptedly. An MVI for p is represented as p(ei, et), where ei and et are the
events that initiate and terminate the interval over which p maximally holds,
respectively. The query language of EC is the set L(EC) = {p(e1, e2) : p ∈
P and e1, e2 ∈ E} of all such property-labeled pairs of events over H. The task
performed by EC reduces to deciding which of the elements of L(EC) are MVIs
and which are not, with respect to o+. The elements of L(EC) are interpreted
relative to the set WE (hereinafter denoted WH) of partial orders among events
in E.

Definition 4. (Intended model of EC)
LetH = (E, P, [·〉, 〈·],]·,·[) be a EC-structure and w ∈ WH be the transitive

closure of a knowledge state o. The intended EC-model of H is the propositional
valuation υH : WH → 2L(EC), where υH is defined in such a way that p(e1, e2) ∈
υH(w) if and only if

i. (e1, e2) ∈ w; ii. e1 ∈ [p〉; iii. e2 ∈ 〈p];
iv. br(p, e1, e2, w) does not hold, where br(p, e1, e2, w) abbreviates

∃e ∈ E ∃q ∈ P ((e1, e) ∈ w ∧ (e,e2) ∈ w ∧ (e ∈ [q〉 ∨ e ∈ 〈q])∧ (]p, q[∨ p = q))

In the case of partially ordered events, the set of MVIs derived by EC is
not stable with respect to the acquisition of new ordering information. Indeed,
if we extend the current partial order with new pairs of events, current MVIs
might become invalid and new MVIs can emerge [1]. The Modal Event Calculus
(MEC) [1] allows one to identify the set of MVIs that cannot be invalidated no
matter how the ordering information is updated, as far as it remains consistent,
and the set of event pairs that will possibly become MVIs depending on which
ordering data are acquired. These two sets are called necessary MVIs and possible
MVIs, respectively, using 2-MVIs and 3-MVIs as abbreviations. The query
language L(MEC) of MEC consists of formulas of the form p(e1, e2), 2p(e1, e2)
and 3p(e1, e2), for every property p and events e1 and e2 defined in H. The

4

intended model of MEC is given by shifting the focus from the current knowledge
state to all knowledge states that are accessible from it. Since ⊆ is a reflexive
partial order, (WH,⊆) can be naturally viewed as a finite, reflexive, transitive
and antisymmetric modal frame. This frame, together with the straightforward
modal extension of the valuation υH to the transitive closure of an arbitrary
knowledge state, provides a modal model for MEC.

Definition 5. (Intended model of MEC)
Let H be an EC-structure and υH be the propositional valuation defined as

in Definition 4. The MEC-frame FH of H is the frame (WH,⊆). The intended
MEC-model of H is the modal model IH = (WH,⊆, υH). Given w ∈ WH and
ϕ ∈ L(MEC), the truth of ϕ at w with respect to IH, denoted by IH; w |= ϕ, is
defined as follows:
IH;w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH;w |= 2p(e1, e2) iff ∀w′ . (w′ ∈ WH ∧ w ⊆ w′) → IH; w′ |= p(e1, e2);
IH;w |= 3p(e1, e2) iff ∃w′ . w′ ∈ WH ∧ w ⊆ w′ ∧ IH;w′ |= p(e1, e2).

The sets of MVIs that are necessarily and possibly true in w correspond respec-
tively to the 2- and 3-moded atomic formulas which are valid in w. We denote
with MV I(w), 2MV I(w) and 3MV I(w) the sets of MVIs, necessary MVIs and
possible MVIs with respect to w, respectively.

Given w ∈ WH and p ∈ P , let S(w) be the set of atomic formulas p(e1, e2)
such that all other events in E that initiate or terminate p, or a property incom-
patible with p, are ordered with respect to e1 and e2 in w, and let C(w) be the
set of atomic formulas p(e1, e2) such that e1 initiates p, e2 terminates p, and e1

and e2 are unordered in w. Formally,

S(w) = {p(e1, e2). ∀e ∈ E (∃q ∈ P (e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (]p, q[∨ p = q)) →
(((e, e1) ∈ w ∨ (e1, e) ∈ w) ∧ ((e, e2) ∈ w ∨ (e2, e) ∈ w))

C(w) = {p(e1, e2). e1 ∈ [p〉 ∧ e2 ∈ 〈p] ∧ (e1, e2) 6∈ w ∧ (e2, e1) 6∈ w))

It easily follows that the sets 2MV I(w) and 3MV I(w) can be alternatively
defined in terms of the sets MV I(w), S(w) and C(w) as follows:

Corollary 6. Let H = (E,P, [·〉, 〈·],]·,·[) be an EC-structure and w ∈ WH be the
transitive closure of a knowledge state o. It holds that:

2MV I(w) = MV I(w) ∩ S(w) and 3MV I(w) = MV I(w) ∪ C(w)

3 A generate-only strategy for EC

In this section, we first revise the generate-only strategy for MVIs computation
in the special case of EC-structures whose set of properties is a singleton, which
has been originally proposed by Chittaro et al. in [2]. Then, we generalize it
to the (general) multiple-property case. We provide a high-level description of
the algorithms for update and query processing and prove their soundness and
completeness with respect to the given EC semantics.

5

3.1 The single-property case (revisited)

In this section, we describe a generate-only strategy for MVIs computation in
EC in the single-property case. Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure,
with P = {p}, o− ∈ OE (hereinafter denoted OH) be the transitive reduction of
a knowledge state o, and (e1, e2) be a pair of events. The addition of the ordered
pair (e1, e2) to o− is dealt with as follows (update processing): (e1, e2) is first
checked for consistency and redundancy with respect to o−. If (e1, e2) is neither
inconsistent ((e2, e1) 6∈ o+) nor redundant ((e1, e2) 6∈ o+), then o− is replaced
by o− ↓ (e1, e2). The set o− ↓ (e1, e2), which can be proved to be the transitive
reduction of o ∪ {(e1, e2)}, is obtained as follows: first, the ordered pair (e1, e2)
is added to o−; then, the set of nodes from which e1 is accessible (let us denote
this set by Pred(e1)) and the set of nodes which are accessible from e2 (let us
denote this set by Succ(e2)) are computed; finally, all pairs (e′, e′′) of o− such
that e′ ∈ Prec(e1) and e′′ ∈ Succ(e2) are deleted from o− ∪ {(e1, e2)}.
if (e1, e2) 6∈ o+ and (e2, e1) 6∈ o+ then

o− ← o− ∪ {(e1, e2)}
put in Prec(e1) the nodes from which e1 is accessible
put in Succ(e2) the nodes accessible from e2

for each e′ ∈ Prec(e1) do
for each e′′ ∈ Succ(e2) do

if (e′, e′′) ∈ o− then
o− ← o− \ {(e′, e′′)}

Given two events ei and ej , testing whether (ei, ej) ∈ o+ or not can be performed
by visiting depth-first the subgraph of (E, o−) generated by ei and searching
for the node ej . The set Succ(e2) can be computed by exploiting a depth-first
visit of the subgraph of (E, o− ∪ {(e1, e2)}) generated by e2 and retrieving all
the visited nodes. In order to compute the set Prec(e1), we first replace each
(e′, e′′) ∈ o− ∪ {(e1, e2)} by (e′′, e′); then, we executed a depth-first visit of the
subgraph (of the resulting graph) generated by e1 and retrieve all the visited
nodes.

The set of MVIs for p can be easily derived from the transitive reduction
o− of the given knowledge state o. Let us define a p-edge of o− as any edge
(e1, e2) ∈ o− such that e1 initiates p and e2 terminates p. Given an EC-structure
H = (E,P, [·〉, 〈·],]·,·[), with P = {p}, and a knowledge state o, the set of MVIs
for p consists of all and only the p-edges of o−; thus, query processing in the
single-property case reduces to the retrieval of the p-edges of o−.

MV I ← ∅
for each (e1, e2) ∈ o− do

if e1 ∈ [p〉 and e2 ∈ 〈p] then
MV I ← MV I ∪ {p(e1, e2)}

return MV I

The following theorem proves that the proposed generate-only strategy is
sound and complete with respect to the given semantics of EC.

6

Theorem 7. The proposed generate-only strategy for MVIs computation in EC
in the single-property case is sound and complete.

3.2 The multiple-property case

In this section, we generalize the proposed generate-only strategy for MVIs com-
putation in EC to the multiple-property case. Let H be an EC-structure, w be
the transitive closure of a knowledge state o, and (e1, e2) be a pair of events.
The addition of (e1, e2) to w is dealt with in three steps as follows (update
processing):

1. if (e2, e1) 6∈ w and (e1, e2) 6∈ w, then w is replaced by w ↑ (e1, e2);
2. for every property p ∈ P , the subgraph wp induced by the set of events

interfering with p, that is, events that initiate or terminate p or a property
which is incompatible with p, is extracted from w ↑ (e1, e2);

3. for every property p ∈ P , the transitive reduction w−p of the graph wp is
computed.

Whenever both (e2, e1) 6∈ w and (e1, e2) 6∈ w, the update procedure computes
w ↑ (e1, e2) as follows: first, the edge (e1, e2) is added to w; then, for every pair
of events e′, e′′ ∈ E such that (e′, e1) ∈ w, (e2, e

′′) ∈ w, and (e′, e′′) 6∈ w, the edge
(e′, e′′) is added to w∪(e1, e2). It is worth noting that, since w is transitive, the set
of predecessors (resp. successors) of e1 (resp. e2) coincides with the set of nodes
from which e1 is accessible (resp. accessible from e2). Then, for every property
p ∈ P , the subgraph wp is computed by extracting the edges of w ↑ (e1, e2) such
that both their endpoints interfere with p. Finally, the transitive reduction w−p
of wp is computed by using one of the standard algorithms, e.g. [4, 6].

if (e1, e2) 6∈ w and (e2, e1) 6∈ w then
w ← w ∪ {(e1, e2)}
put in I Pred(e1) the predecessors of e1

put in I Succ(e2) the successors of e2

for each e′ ∈ I Pred(e1) do
for each e′′ ∈ I Succ(e2) do

if (e′, e′′) 6∈ w then
w ← w ∪ {(e′, e′′)}

for each p ∈ P do
wp ← ∅
for each (e′, e′′) ∈ w do

if both e′ and e′′ interfere with p then
wp ← wp ∪ {(e′, e′′)}

for each p ∈ P do
compute the transitive reduction w−p

The set of MVIs for a given property p consists of all and only the p-edges of
w−p . Hence, for every property p, query processing reduces to the retrieval of the
p-edges of w−p .

7

MV I ← ∅
for each p ∈ P do

for each (e1, e2) ∈ w−p do
if e1 ∈ [p〉 and e2 ∈ 〈p] then

MV I ← MV I ∪ {p(e1, e2)}
return MV I

The next theorem shows that the above generate-only strategy for the general
multiple-property case is sound and complete with respect to the given semantics
of EC.

Theorem 8. The proposed generate-only strategy for MVIs computation in EC
is sound and complete.

Proof. Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure and w be the transitive
closure of a knowledge state o. To prove that the proposed strategy is sound, we
must show that if (e1, e2) is a p-edge of w−p , then p(e1, e2) is an MVI for p with
respect to w and H. The proof is by contradiction. If p(e1, e2) is not an MVI,
then one of the following propositions must hold: e1 does not initiate p, e2 does
not terminate p, (e1, e2) 6∈ w, or there exists an interrupting event e for p that
occurs between e1 and e2. If e1 does not initiate p or e2 does not terminate p,
then (e1, e2) is not a p-edge. If (e1, e2) 6∈ w, then (e1, e2) 6∈ w−p , since w−p ⊆ w,
and thus (e1, e2) is not a p-edge of w−p . Finally, if there exists an interrupting
event e for p such that both (e1, e) ∈ w and (e, e2) ∈ w, then there exist a path
e1 ; e and a path e ; e2 in w−p . Hence, the edge (e1, e2) is a transitive one,
and thus it does not belong to w−p . This allows us to conclude that (e1, e2) is
not a p-edge of w−p .

To prove that the proposed strategy is complete, we must show that if
p(e1, e2) is an MVI for p with respect to w and H, then (e1, e2) is a p-edge
of w−p . By hypothesis, e1 initiates p, e2 terminates p, and (e1, e2) ∈ w. It follows
that (e1, e2) is a p-edge of wp. Moreover, since there are no interrupting events
for p that occur between e1 and e2, the edge (e1, e2) is the unique path from e1

to e2 in wp. This implies that the edge (e1, e2) is not transitive, and thus it is a
p-edge of w−p . ut

It is easy to devise two efficient algorithms, that respectively compute the
necessary and possible MVIs, exploiting Corollary 6 and taking advantage of the
algorithm for basic MVIs proposed in Section 3.

4 Complexity analysis

In this section, we analyze the worst-case computational complexity of the pro-
posed algorithms for update and query processing in EC and MEC.

Given an EC-structure H = (E, P, [·〉, 〈·],]·,·[) and a knowledge state o ∈ OH,
we determine the complexity of computing the set of MVIs with respect to o and
H, that is, of determining the set of formulas p(e1, e2) such that w |= p(e1, e2),

8

by means of the proposed generate-only strategy. We assume that the set of
events E can grow arbitrarily, while the set P of relevant properties characterizes
the considered application domain and thus it is fixed once and for all. As a
consequence, we choose the number n of events in E as the size of H, and
consider the number of properties as a constant. We measure the complexity in
terms of the size n of H and the size m of the knowledge state o, or the size m−

(resp. m+) of its transitive reduction o− (resp. closure o+)2. We assume P to be
lexicographically sorted. Furthermore, we assume that the knowledge state o as
well as the sets [p〉 and 〈p], for every property p ∈ H, are (maintained) sorted.
Under such an assumption, given an event e and a property p, the tests e ∈ [p〉
and e ∈ 〈p] cost O(log n), while given two distinct events e1 and e2, the test
(e1, e2) ∈ o costs O(log m). Finally, the test (e1, e2) ∈ o+ can be performed in
O(m+n) by executing a depth-first visit of the subgraph of (E, o) generated by
e1.

The complexity of the generate-only strategy for the single-property case in
EC is given by the following theorem.

Theorem 9. Let H = (E,P, [·〉, 〈·],]·,·[) be an EC-structure, with P = {p}, o−

be the transitive reduction of a knowledge state o, and (e1, e2) be a pair of events.
The complexity of update processing is O(n2 · log m−), while the complexity of
query processing is O(m− · log n), where m− is the cardinality of o−.

The following theorem determines the complexity of the generate-only strat-
egy for the multiple-property case in EC.

Theorem 10. Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure, w be the transitive
closure of a knowledge state o and (e1, e2) be a pair of events. The complexity
of update processing is O(n · m− + n2 · log m+), while the complexity of query
processing is O(m− · log n), where m+ is the cardinality of ŵ = w ↑ (e1, e2) and
m− is the cardinality of ŵ−.

Proof. Update processing is performed in three steps. At the first step, it controls
that neither (e1, e2) nor (e2, e1) belong to w. If this is the case, it computes the set
ŵ = w ↑ (e1, e2). The tests (e1, e2) 6∈ w and (e2, e1) 6∈ w cost O(log m+). The set
ŵ is computed as follows: first, the edge (e1, e2) is added to w; then, for every pair
of events e′, e′′ ∈ E such that (e′, e1) ∈ w, (e2, e

′′) ∈ w, and (e′, e′′) 6∈ w, the edge
(e′, e′′) is added to w∪(e1, e2). The sets of predecessors and successors of a given
node have both cardinality O(n), and the addition of (e′, e′′) to w∪ (e1, e2) costs
O(log m+); hence, the complexity of computing ŵ is O(n2 · log m+). The second
step consists in the extraction of ŵp from ŵ, for every property p. For every
property p, ŵp contains the edges (e′, e′′) of ŵ such that both e′ and e′′ interfere
with p. Since each “interference” test costs O(log n), this step has complexity
O(m+ · log n). The last step is the computation of the transitive reduction ŵ−p ,
for every property p. Since ŵp is acyclic, ŵ−p can be computed in O(n ·m−). The
resulting cost of update processing is thus O(n ·m−+m+ · log n+n2 · log m+) =

2 It is well-known that m, m−, and m+ are O(n2).

9

O(n·m−+n2·log m+). Query processing consists in picking up, for every property
p, the p-edges of ŵ−p . Since the cardinality of ŵ−p is O(m−) and verifying whether
or not an edge is a p-edge costs O(log n), the complexity of query processing is
O(m− · log n). ut

5 Conclusions

In this paper, we have shown how the graph-theoretic notions of transitive clo-
sure and reduction of a directed acyclic graph can be successfully exploited to
efficiently reason about partially ordered events in EC and MEC. Even though
we developed our solution in the (Modal) Event Calculus context, we expect it
to be applicable to any formalism for reasoning about partially ordered events.

The complexities of update and query processing of the standard generate-
and-test strategy for EC are O(1) and O(n5), respectively. The alternative
generate-only strategy we outlined moves computational complexity from query
to update processing and features an absolute improvement of performance. In
particular, whenever the size of the transitive reduction is O(n) (we expect this
case to be the most frequent) update and query processing can be performed
in O(n2 · log n) and O(n · log n), respectively (the factor log n can actually be
eliminated by using suitable hashing techniques).

References

1. I. Cervesato and A. Montanari. A general modal framework for the event calculus
and its skeptical and credulous variants. Journal of Logic Programming, 38(2):111–
164, 1999.

2. L. Chittaro, A. Montanari, and I. Cervesato. Speeding up temporal reasoning by
exploiting the notion of kernel of an ordering relation. In Proc. of the 2nd Inter-
national Workshop on Temporal Representation and Reasoning — TIME’95, pages
73–80, Melbourne Beach, FL, 26 April 1995.

3. Thomas Dean and Mark Boddy. Reasoning about partially ordered events. Artificial
Intelligence, 36:375–399, 1988.

4. A. Goralcikova and V. Koubek. A reduct and closure algorithm for graphs. In Proc.
of the 8th Symposium on Mathematical Foundations of Computer Science. LNCS
74, pages 301–307, Olomouc, CZ, 1979. Springer.

5. R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4:67–95, 1986.

6. K. Simon. An improved algorithm for transitive closure on acyclic digraphs. Theo-
retical Computer Science, 58(1-3):325–346, 1988.

7. J. van Leeuwen. Graph algorithms. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science. Volume A: Algorithms and Complexity, pages 525–
632. Elsevier, 1990.

10

