
NOVEMBER 2016  |   VOL.  59  |   NO.  11  |   COMMUNICATIONS OF THE ACM     75

A “NETWORK” CONSISTS  of a crowd of actors and a set 
of binary relations that tie pairs of actors. Networks are 
pervasive in the real world. Nature, society, information, 
and technology are supported by ostensibly different 
networks that in fact share an amazing number of 
interesting structural properties. 

Networks are modeled in math-
ematics as “graphs,” with actors rep-
resented as points (also called nodes 
or vertices) and relations depicted as 
lines (also called edges or arcs) con-
necting pairs of points. In this article, 
we focus on undirected graphs, where 
the edges do not have a particular ori-
entation. A meaningful question on 
networks is: Which are the most cen-

tral (important) nodes? Many mea-
sures have been proposed to address 
it. Among them, “eigenvector central-
ity” (or simply centrality in this article) 
states that an actor is central if it is con-
nected with central actors. This circu-
lar definition is captured by an elegant 
recursive equation 

	 λx = Ax,  (1)

where x is a vector containing the 
sought centralities, A is a matrix en-
coding the network, and λ is a positive 
constant. Two actors in a network 
that are tied by an edge are said to 
be neighbors. Equation (1) claims two 
important properties of centrality: the 
centrality of an actor is directly correlat-
ed with the number of its neighbors and 
the centrality of its neighbors. Central 
actors are those with many ties or, for 
an equal number of ties, central actors 
are those connected with central others. 
This intriguing definition has been dis-
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 key insights
 ˽ Networks are everywhere; they are indeed 

the fabric of nature, society, information, 
technology, and sometimes even of art.  
All we need is an eye for them. 

 ˽ The notion of centrality claims central 
actors are connected with central 
others, a mantra repeated over the past 
70 years in econometrics, sociometry, 
bibliometrics, and information retrieval. 

 ˽ Power, on the other hand, claims that 
powerful actors are connected with 
powerless others; it is meaningful in, say, 
bargaining situations, where it is favorable 
to negotiate with those with few options. 
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covered and rediscovered many times 
over in different contexts. It has been 
investigated, in chronological order, in 
econometrics, sociometry, bibliometrics, 
Web information retrieval, and net-
work science; see Franceschet12 for 
an historical overview. 

In some circumstances, however, 
centrality—the quality of being con-
nected to central ones—has limited util-
ity in predicting the locus of “power” 
in networks.2,8,11 Consider exchange 
networks, where the relationship in 
the network involves the transfer of 
valued items like information, time, 
money, or energy. A set of exchange 
relations is positive if exchange in one 
relation promotes exchange in others 
and negative if exchange in one rela-
tion inhibits exchange in others.7 In 
“negative exchange networks,” power 
comes from being connected to those 
with few options. Being connected to 
those with many possibilities reduces 
one’s power. Think of, for instance, 
a social network in which time is the 
exchanged value. Imagine every actor 
has a limited time to listen to others 
and that each actor divides its time 
among its neighbors. Exchange of 
time in one relation clearly precludes 
exchange of the same time in other 
relations. Which actors receive the 
most attention? They are the nodes that 
are connected to many neighbors with 
few options, since they receive almost 
full attention from all their neighbors. 
On the other hand, actors connected 
to few neighbors with many options 
receive little consideration because 
their neighbors are mostly busy with 
others. 

In this article, we propose a theory 
on power in the context of networks. 
We start by this thesis: An actor is 
powerful if it is connected to power-
less actors. We implement this circu-
lar thesis through this equation 

x = Ax÷, (2)

where x is the sought power vector, 
A is a matrix encoding the network, 
and x÷ is the vector whose entries are 
the reciprocal of those of x. Equation 
(2) states two important properties 
of power: the power of an actor is 
directly correlated with the number 
of its neighbors and is inversely corre-
lated with the power of its neighbors. 
The first property seems reasonable; 

the more ties an actor has, the more 
powerful the actor is. The second 
property characterizes power; for an 
equal number of ties, actors linked to 
powerless others are powerful. On the 
other hand, actors tied to powerful 
others are powerless. 

We investigate the existence and 
uniqueness of a solution for Equation 
(2), exploiting well-known results in com-
binatorial matrix theory. We study how 
to regain the solution when it does 
not exist, by perturbing the matrix rep-
resenting the network. We formally 
relate the introduced notion of power 
with alternative notions and empiri-
cally compare them on the European 
natural gas pipeline network. 

Motivating Example
In his seminal work on power-depen-
dence relations, from 1962, Richard 
Emerson11 claimed that power is a 
property of the social relation, not 
an attribute of the person: “X has 
power” is meaningless, unless we 
specify “over whom.” Power resides 
implicitly in others’ dependence, and 
dependence of an actor A upon actor 
B is directly proportional to A’s moti-
vational investment in goals medi-
ated by B and inversely proportional 
to the availability of those goals to A 
outside the A–B relation. The availabil-
ity of such goals outside that relation 
refers to alternative avenues of goal 
achievement, most notably through 
other social relations.11 This type of 
relational power is endogenous with 
respect to the network structures, 
meaning it is a function of the position 
of the node in the network. Exogenous 
factors (such as allure or charisma) 
external to the network structure 
might be added to endogenous power 
to complete the picture. 

We begin with some small archetypal 
examples typically used in exchange-
network theory to informally illustrate 
the notion of power and sometimes 
to distinguish it from the intersecting 
concept of centrality.10 Consider a two-
node path 

A−B. 

The situation is perfectly symmetric, 
and a reasonable prediction is that 
both actors have the same power. In a 
three-node path 

Central actors  
are those with  
many ties or, for  
an equal number  
of ties, central 
actors are those 
connected with 
central others. 
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A−B−C,

much is changed. Intuitively, B is pow-
erful and A and C are not. Indeed, both 
A and C have no alternative venues 
besides B (both depend on B), while B 
can exclude one of them by choosing 
the other.a In a four-node path 

A−B−C−D
,

actors B and C hold power, while A 
and D are dependent on either B or C. 
Nevertheless, the power of B is less here 
than in the three-node path; in both 
cases, A depends on B, but in the three-
node path, C also depends on B, while 
in the four-node path, C has an alterna-
tive, node D. Hence, node B is less pow-
erful in the four-node path with respect 
to the three-node path since its neigh-
bors are more powerful. Finally, the 
five-node path 

A−B−C−D−E

is interesting since it discriminates 
power from centrality. All traditional 
central measures (eigenvector, closeness, 
betweenness) claim that C is the central 
one. Nevertheless, B and D are reasonably 
the powerful ones. Again, this is because 
they negotiate with weak partners (A and  
C or E and C), while C bargains with 
strong parties (B and D). This example 
is useful for illustrating an additional 
subtle aspect of power. Notice that in 
both the five-node path and the four-
node path, B is surrounded by nodes 
(A and C) that are locally similar; for 
instance, they have the same degree 
in both paths. However, the power of 
C is reasonably less in the five- node 
path than in the four-node path; 
hence, we might expect the power 
of B is greater in the five-node path 
with respect to the four-node path. 
This separation is possible only if the 
notion of power spans beyond the local 
neighborhood of a node, if, say, power 
is recursively defined. 

As a larger and more realistic exam-
ple, consider Figure 1, which depicts 
the European natural gas pipeline 

a We assume here the so-called “1-exchange 
rule,” meaning each node may exchange with at 
most one neighbor. Likewise, we consider a neg-
ative exchange network in which the exchange 
in one relation inhibits exchange in others.

network. Nodes are European coun-
tries (country codes according to ISO 
3166-1), and there is an undirected 
edge between two nations if  a natu-
ral gas pipeline crosses the borders 
of the two countries. Data has been 
downloaded from the website of the 
International Energy Agency (http://
www.iea.org). The original data cor-
responds to a directed, weighted 
multigraph, with edge weights corre-
sponding to the maximum flow of the 
pipeline. We simplified and symme-
trized the network, mapping the edge 
weights in a consistent way. 

This is a negative exchange network 
because the exchange of gas with a 
country precludes the exchange of the 
same gas with others. Intuitively, pow-
erful countries are those that are con-
nected with states with few options 
for exchanging the gas. Suppose coun-
try B is connected to countries A and 
C, and B is the only connection for 
them, or A−B−C. Countries A and C 
can sell or buy gas only from B, while 
country B can choose between A and 
C. Reasonably, the bargaining power 
of B is greater, which traduces in 
higher revenues or less expense for B 
in the gas negotiation. 

A Theory on Power 
Let G be an undirected, weighted 
graph. The graph G may contain 
“loops,” or edges from a node to itself. 
The edges of G are labeled with posi-
tive weights. Let A be the adjacency 

matrix of G; that is, Ai, j is the weight of 
edge (i, j) if such edge exists and Ai, j = 0 
otherwise. Hence, A is a square, sym-
metric, nonnegative matrix. Loops in 
G correspond to elements in the main 
diagonal of A. 

The “centrality problem” is as fol-
lows: find a vector x with positive 
entries such that 

	 λx = Ax, (3)

where λ > 0 is a constant. This means 
λxi = ∑j Ai, j xj; that is, the centrality of 
a node is proportional to the weighted 
sum of centralities of its neighbors. 
This is the main idea behind PageRank, 
Google’s original webpage ranking 
algorithm. PageRank determines the 
importance of a webpage in terms of 
the importance assigned to the pages 
that hyperlink to it. Besides Web infor-
mation retrieval, this thesis has been 
successfully exploited in disparate con-
texts, including bibliometrics, sociom-
etry, and econometrics.12 

We define the “power problem” as 
follows: find a vector x with positive 
entries such that 

 x = Ax÷, (4)

where we denote with x÷ the vector 
whose entries are the reciprocal of those 
of x. This means xi = ∑j Ai, j/xj; that is, the 
power of a node is equal to the weighted 
sum of reciprocals of power of its neigh-
bors. Notice that if λx = Ax÷, then, setting 

Figure 1. The European natural gas pipeline network.
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y = , we have that y = Ay÷; hence, 
the proportionality constant λ is not 
necessary in the power equation. This 
notion of power is relevant on negative 
exchange networks.2,8 In these networks, 
when a value is exchanged between 
actors along a relation, it is consumed 
and cannot be exchanged along another 
relation. Hence, important actors are 
those in contact with many actors with 
few exchanging possibilities. 

Finally, the “balancing problem” is 
the following: find a diagonal matrix D 
with positive main diagonal such that 

S = DAD

is doubly stochastic; that is, all rows 
and columns of S sum to 1. The balanc-
ing problem is a fundamental question 
that is claimed to have first been used 
in the 1930s to calculate traffic flow4 
and since then has been applied in 
many disparate contexts.14 

It turns out that the power problem 
is intimately related to the balancing 
problem. Given a vector x, let Dx be 
the diagonal matrix whose diagonal 
entries coincide with those of x. We 
thus have the following result. 

Theorem 1. The vector x is a solution 
of the power problem if and only if the 
diagonal matrix Dx÷ is a solution for the 
balancing problem. 

Proof. If DAD is doubly stochastic, 
then DADe = e and eT DAD = eT, where e 
is a vector of all 1s. Actually, since A and D 
are symmetric, it holds that DADe = e ⇔ 
eT DAD = eT. If the vector x does not have 
zero entries, then Dx is invertible and Dx 

−1 = 
Dx÷. We have that x = Ax÷ ⇔ Dxe = ADx÷e 
⇔ e = Dx 

−1 ADx÷e ⇔ e = Dx÷ ADx÷e. 

Existence and unicity of a solu-
tion. The link between the balanc-
ing problem and the power problem 
we established in Theorem 1 allows 
us to investigate a solution of the 
power problem (Equation 4) using 
the  well-established theory of matrix 
balancing. 

Recall that the “diagonal” of a 
square n × n matrix is a sequence of 
n elements that lies on different rows 
and columns of the matrix. A permu-
tation matrix is a square n × n matrix 
that has exactly one entry equal to one 
in each row and each column, while 
all the other entries are equal to zero. 
Each diagonal clearly corresponds to 
a permutation matrix where the posi-
tions of the diagonal elements corre-
spond to those of the unity entries of 
the permutation matrix. In particu-
lar, the identity matrix I is a permu-
tation matrix, and the diagonal of A  
associated with I is called the main 
diagonal of A. A diagonal is positive if 
all its elements are greater than 0. A 

matrix A is said to have “support” if 
it contains a positive diagonal and is 
said to have “total support” if A ≠ 0 
and every positive element of A lies 
on a positive diagonal. Total support 
clearly implies support. 

A matrix is “indecomposable (irre-
ducible” if it is not possible to find a 
permutation matrix P such that 

,

where X and Z are both square matrices 
and 0 is a matrix of 0s; otherwise A is 
“decomposable (reducible).” A matrix 
is “fully indecomposable” if it is not 
possible to find permutation matrices 
P and Q such that 

,

where X and Z are both square matri-
ces; otherwise, A is “partly decom-
posable.” Clearly, a matrix (fully 
indecomposable) is also irreducible. 
It also holds that full indecomposabil-
ity implies total support.5 Moreover, 
the adjacency matrix of a bipartite 
graph is never fully indecomposable, 
while the adjacency matrix of a non-
bipartite graph is fully indecompos-
able if and only if it has total support 
and is irreducible.9 We say a graph has 
support, has total support, is irreduc-
ible, and is fully indecomposable if 
the corresponding adjacency matrix 
has these properties. 

The combinatorial notions just out-
lined are rather terse. Fortunately, most 
of them have a simple interpretation in 
graph theory. It is known that irreduc-
ibility of the adjacency matrix corre-
sponds to connectedness of the graph. 
Moreover, given an undirected graph G, 
let us define a “spanning cycle forest” of 
G a spanning subgraph of G whose con-
nected components are single edges or 
cycles, including loops that are cycles 
of length 1. It is easy to realize that 
there exists a correspondence between 
diagonals in the adjacency matrix and 
spanning cycle forests in the graph. 
Hence, a graph has support if and only 
if it contains a spanning cycle forest and  
total support if and only if each edge 
is included in a spanning cycle forest. 
Four examples are given in Figure 2. 

The following is a well-known nec-
essary and sufficient condition for the 
solution of the balancing problem.9,17  

Figure 2. (top left) The graph has no support since a spanning cycle forest is missing. (top-
right). The graph has support formed by edges (1, 4) and (2, 3), but the support is not total; 
(edges (1, 3) and (1, 2) are not part of any spanning cycle graph. (bottom left) The graph has 
total support but is not irreducible, hence is not fully indecomposable. (bottom right) The 
graph has total support and is irreducible and not bipartite, so is fully indecomposable. 
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Theorem 2. Let A be a symmetric 
nonnegative square matrix. A necessary 
and sufficient condition for the existence 
of a doubly stochastic matrix S of the 
form DAD, where D is a diagonal matrix 
with positive main diagonal, is that A has 
total support. If S exists, then it is unique. 
If A is fully indecomposable, then matrix 
D is unique. 

It follows that the power problem  
x = Ax÷ has a solution on the class 
of graphs that has total support. 
Moreover, if the graph is fully inde-
composable, then the solution is also 
unique. 

Perturbation (regaining the solu-
tion). What about the power problem 
on graphs whose adjacency matrix 
lacks total support? For such graphs, 
the power problem has no solu-
tion. Nevertheless, a solution can be 
regained by perturbing the adjacency 
matrix of the graph in a suitable way. 
We investigate two perturbations on 
the adjacency matrix A 

1. Diagonal perturbation: Aα
D = A + αI, 

where α > 0 is a damping parame-
ter and I is the identity matrix. 

2. Full perturbation: Aα
F = A + αE, 

where α > 0 is a damping param-
eter and E is a full matrix of all 1s.

Matrix Aα
F is clearly fully indecompos-

able, has total support, and is irreduc-
ible. Hence, the power problem (as well 
as the centrality problem) on a fully 
perturbed matrix has a unique solu-
tion. On the other hand, matrix Aα

D  has 
total support. Indeed, if Ai, j > 0 and i = 
j, then the main diagonal Ak,k for 1 ≤ k 
≤ n is positive and contains Ai, j. If i ≠ j, 
then the diagonal Ai, j, Aj,i, Ak,k for 1 ≤ k 
≤ n and k ≠ i, j is positive and contains 
Ai, j. The power problem on a diagonally 
perturbed matrix thus has a solution. 
Moreover, the solution is unique if A 
is irreducible, since it is known that 
for a symmetric matrix A it holds that 
A is irreducible if and only if A + I is 
fully indecomposable.6 Interestingly, 
the diagonal perturbation, besides 
providing convergence of the method, 
is useful for incorporating exogenous 
power in the model. By setting a posi-
tive value in the ith position of the 
diagonal, we are saying that node i 
has a minimal amount of power, or not 
a function of the position of the node 

original power; power with diagonal 
perturbation is closer to original power 
than power with full perturbation; and 
the larger the damping parameter, the 
lower the adherence of perturbed solu-
tions to the original one. 

Computing power. Due to the 
established relationship between 
the balancing problem and the power 
problem, we can use known meth-
ods for the former in order to solve 
the latter. The simplest approach for 
solving Equation (4) is to set up the 
iterative method 

 
xk+1 = Ax÷

k  ,
 (5)

known as the Sinkhorn–Knopp method 
(SKM).17 If we set x0 = e, the vector of all 
1s, then the first iteration x1 = Ae; that 
is, x1(i) = ∑j Ai, j is the degree di of i. The 
second iteration x2 = A(Ae)÷; that is, 
x2(i) = ∑j Ai, j/ di is the sum of reciprocals 
of the degrees of the neighbors of i. 

If A has total support, then the SKM 
converges, or, more precisely, the 
even and odd iterates of the method 
converge to power vectors that dif-
fer by a multiplicative constant. The 
convergence is linear with a rate of 
convergence that depends of the sub-
dominant eigenvalue of the balanced 
matrix S = DAD (see Theorem 2).17 In 
some cases, however, the convergence 
can be very slow. Knight and Ruiz14 
proposed a faster algorithm based on 
Newton’s method (NM) that we now 
describe according to our setting and 
notations. In order to solve Equation 
(4), we apply NM for finding the zeros of 
the function f: Rn → Rn defined by f (x) = 
x − Ax÷. It is not difficult to check that 

in the network. We can thus play with 
the diagonal of the adjacency matrix to 
assign nodes with potentially different 
entry levels of exogenous power.

Intuitively, the diagonal perturbation  
is less invasive than its full counter-
part; the former modifies the diago-
nal elements only, and the latter 
touches all matrix elements. But 
how invasive is the perturbation with 
respect to the resulting power? To 
investigate this issue, we computed 
the correlation between original and 
perturbed power solutions. A simple 
and intuitive measure of the correla-
tion between two rankings of size n is 
Kendall rank correlation coefficient 
k, which is the difference between 
the fraction of concordant pairs c (the 
number of concordant pairs divided 
by n(n − 1)/2) and that of discordant 
pairs d in the two rankings: k = c − d.  
The coefficient runs from −1 to 1, with 
negative values indicating negative cor-
relation, positive values indicating pos-
itive correlation, and values close to 0 
indicating independence. We used the 
following network datasets: a social 
network among dolphins, the Madrid 
train bombing terrorist network, a 
social network of jazz musicians, a net-
work of friendships between members 
of a karate club, a collaboration net-
work of scholars in the field of network 
science, and a co-appearance network 
of characters in the novel Anna Karenina 
by Lev Tolstoj.

The main outcomes of the current 
experiment are as follows (see Figure 3):  
as soon as the damping parameter is 
small, both diagonal and full perturba-
tions do not significantly change the 

Figure 3. Correlation between original and perturbed powers varying the damping parameter 
from 0 to 1 on the largest biconnected component of the social network among dolphins 
(which has total support). The horizontal line corresponds to the correlation with diagonal 
perturbation and maximum damping. The correlation on the other networks is similar. 
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where δi, j = 1 if i = j and δi, j = 0 other-
wise. We collect these partial deriva-
tives in the Jacobian matrix of f that 
turns to be 

Jf (x) = I + AD (x
2

) 
÷,

where the squaring of x is to be intended 
entrywise. Formally, the NM applied to 
the equation f (x) = 0 becomes 

To apply NM precisely it is neces-
sary to solve a linear system at each 
step, but this would be too expen-
sive. Nevertheless, an approximate 
solution of the system obtained by 
means of an iterative method is suf-
ficient, giving rise to an inner–outer 
iteration. This approach is appealing 
when the matrix that has to be bal-
anced is symmetric and sparse, which 
is the case for the power problem on 
real networks.14  

We experimentally assessed the 
complexity of computation of power 
on the real social networks; in fact, we 
used the largest biconnected compo-
nent for the first three networks in or-
der to also work with totally supported 
graphs. We use both SKM and NM. We 
consider the computation on the orig-
inal matrix, as well as on the perturbed 
ones. We use as a benchmark the com-
plexity of the computation of central-
ity using the power method (PM). The 
complexity is expressed as the overall 
number of matrix-vector product op-
erations. If a matrix is sparse (the case 
for all tested networks), such opera-
tion has linear complexity in the num-
ber of nodes of the graph. The main 
empirical findings are summarized 
as follows (see Table 1): SKM on the 
original matrix is significantly slow-
er than PM, and diagonal perturba-
tion does not significantly change its 
speed; full perturbation significantly 
increases the speed of SKM, so the 
complexity of SKM with full perturba-
tion and that of PM are comparable 
(moreover, the larger the damping pa-
rameter, the faster the method); NM 
on the original matrix is much faster 
than SKM: its complexity is compa-
rable to that of fully perturbed SKM 

and PM; and NM with diagonal per-
turbation is even faster than NM, and 
the larger the damping parameter, the 
faster the method. 

Relationship with alternative power 
measures. Bonacich2 proposed a fam-
ily of parametric measures depend-
ing on two parameters: α and β. If A is 
the adjacency matrix of the graph, the 
Bonacich index x is defined as 

x = αAe + βAx.	 (6)

The index for a node is the sum of 
two components: a first one (weighted 
by the parameter α) depends on the 
node’s degree, and a second one 
(weighted by the parameter β ) depends 
on the index on the node’s neighbors. 
From Equation (6), under the condition 
that I − βA is not singular, it is possible 
to obtain the following explicit repre-
sentation of the proposed measure 

 (7)

The equivalence with the infinite 
sum holds when |β| < 1/r, where r = 
maxi|λi|, with λi the eigenvalues of 
A; that is, r is the spectral radius of 
A. When the parameter β is positive, 
the index is a centrality measure. In 
particular, the measure approaches 
eigenvector centrality as a limit as β 
approaches 1/r. On the other hand, 
when β is negative, the index is a 
power measure; it corresponds to a 
weighted sum of odd-length paths 
(with positive sign) and even-length 
paths (with negative sign).2 Hence, 
powerful nodes correspond to nodes 
with many powerless neighbors. 
Finally, when β = 0, the measure boils 
down to degree centrality. 

The difficulty with this measure 
is that it is parametric; that is, it 
depends on parameters α and β. 
While it is simple to set the param-
eter α, and it can be used to assign 
exogenous power to nodes, the choice 
for the parameter β is more delicate. 
In particular, the index makes sense 
when the parameter |β| < 1/r, hence 
the spectral radius r must be com-
puted or at least approximated. 

The precise relationship between 
Bonacich power (Bonacich index 
with negative β) and power defined 
in Equation (4) is explained as fol-
lows: If we set x0 = (1/γ)e in Newton’s 

Table 1. Complexity of computation of power with different methods: PM (benchmark); SKM 
(SKM without perturbations for totally supported networks); SKM-D (SKM with diagonal 
perturbation and damping 0.15); SKM-F (SKM with full perturbation and damping 0.01); NM 
(NM without perturbations for totally supported networks); and NM-D (NM with diagonal 
perturbation and damping 0.15). 

Network PM SKM SKM-D SKM-F NM NM-D

Dolphin 73 294 300 72 47 30
Madrid 28 416 320 78 46 27
Jazz 42 300 288 78 37 27
Karate 42 – 494 52 – 31
Collab 65 – 9740 30 – 33
Karenina 24 – 1006 32 – 32

Table 2. Correlation of power, as defined in this article, with degree (D), centrality (C), 
Bonacich power (B), Shapley power (S), and Nash power (N). 

Network D C B S N

Dolphin 0.81 0.35 0.89 0.91 0.72
Madrid 0.62 0.33 0.69 0.68 0.48
Jazz 0.85 0.62 0.91 0.85 0.17
Karate 0.77 0.36 0.74 0.96 0.75
Collaboration 0.77 0.05 0.77 0.85 0.60
Karenina 0.75 0.45 0.62 0.89 0.86

For the computation of power, we used diagonal perturbation (damping 0.15). For Bonacich power we used α = 1 
and β = −0.85/r, where r is the spectral radius of the graph.
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iteration for the computation of power 
described earlier we obtain 

x1 = 2γ	(I + γ2 A)−1 Ae. 

But this first approximation is a member 
of the family of Bonacich’s measures, 
with α = 2γ and β = −γ2. Since β is nega-
tive, we indeed are facing a measure of 
power. Hence, Bonacich power can be 
considered as a first-order approxima-
tion of power using NM. 

Bozzo et al.3 investigated power mea-
sures on sets of nodes. Given a node set 
T let B(T) be the set of nodes whose 
neighbors all belong to T. Notice that 
nodes in B(T) do not have connections 
outside T, hence are potentially at the 
mercy of nodes in T. We define a power 
function p such that p(T) = |B(T)| − |T|. 
Hence, a set T is powerful if it has poten-
tial control over a much larger set of 
neighbors B(T). The power measure is 
interpreted as the characteristic func-
tion of a coalition game played on the 
graph and the “Shapley value” of the 
game; or the average marginal contri-
bution to power carried by a node when 
it is added to any node set is proposed 
as a measure of power for single nodes. 
Interestingly, the discovered game-theo-
retic power measure corresponds to the 
second iteration of SKM for the compu-
tation of power as defined by Equation 
(4); that is, to the sum of reciprocals of 
neighbors’ degrees. 

The study of power has a long his-
tory in economics (in its recognition 
of bargaining power) and sociol-
ogy (in its interpretation of social 
power).10 Consider the most basic 
case where just two actors, A and B, 
are involved in a negotiation over 
how to divide one unit of money. 
Each actor has an alternate option—
a backup amount it can collect in 
case negotiations fail, say, α for A 
and β for B. A natural prediction, 
known as “Nash’s bargaining solu-
tion,”15 is that the two actors will 
split the surplus s = 1 − α − β, if any, 
equally between them; that is, if s < 
0 no agreement between A and B is 
possible, since any division is worse 
than the backup option for at least 
one of the parties. On the other hand, 
if s >= 0, then A and B will agree on 
α+s/2 for A and β+s/2 for B. 

A natural extension of the Nash bar-
gaining solution from pairs of actors 

to networks of actors was proposed 
in Cook et al.8 and Rochford16 and fur-
ther investigated, particularly in Bayati 
et al.1 and Kleinberg et al.13 In the fol-
lowing, we describe the dynamics that 
capture such an extension. Let A be 
the adjacency matrix of an undirected, 
unweighted graph G. Hence, Ai,j = 1 if 
there is an edge (i, j) in G and Ai,j = 0 
otherwise. Negotiation among actors 
is possible only along edges; each pair 
of actors on an edge negotiates for a 
fixed amount of €1, and each actor may 
conclude a negotiation with at most 
one neighbor (one-exchange rule). For 
every edge (i, j), define 

•• Ri,j as the amount of “revenue” 
actor i receives in a negotiation 
with j. 

•• Li, j as the amount of revenue actor i 
receives in the best alternative 
negotiation, excluding the one with 
j. 

Notice that matrices R and L have 
the same zero-non-zero pattern as A. 
More precisely, consider the following 
iterative process. We start with Ri, j

(0) = 1/2 
for all edges (i, j) and Ri, j

(0) = 0 elsewhere. 
Let N(i) be the set of neighbors of node 
i. For t > 0, the best alternative matrix 
L(t) at time t is 

Let the surplus Si, j
(t) = 1 − Li, j

(t) − Lj,i
(t) be 

the amount for which actors i and j will 
negotiate at time t; notice that actor 
i will never accept an offer from j less 
than his alternate option Li, j

(t), and actor 
j will never accept an offer from i less 
than her alternate option Lj, i

(t). The profit 
matrix R(t) at time t is then 

Notice that Ri, j
(t) + Rj, i

(t) = 1; that is, Ri, j
(t)

and Rj, i
(t) is the Nash’s bargaining solu-

tion of a negotiation between actors i and 
j, given their alternate options Li, j

(t)  and 
Lj, i

(t). Let R be the fixpoint of the itera-
tive process R(t) for growing time t. The 
“Nash power” xi of node i is the best 
revenue of actor i among its neighbors; 
that is 

The power of  
an actor somewhat 
inversely depends 
on the power  
of its neighbors.  
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xi = mjax Ri, j. 

Among many other attractive results, 
Bayati et al.1 showed that the dynamics 
always converge to a fixpoint solution. 

Nash power bears some analogy with 
the one we propose and investigate 
here; in particular, both notions share 
the same recursive powerful-is-linked-
with-powerless philosophy. Nash power 

for an actor i depends directly on the rev-
enues of i among its neighbors, which 
directly depend on the alternate options 
of i among its neighbors, which inversely 
depends on the revenues of neighbors of 
i, which determine the power of neigh-
bors of i. Hence, power of an actor some-
what inversely depends on the power of 
its neighbors. 

Using Kendall correlation, we 
assessed the overlapping of power, as 
defined in this article, with central-
ity and degree, as well as Bonacich power 
(Bonacich index with negative param-
eter β), Shapley power (the sum of 
reciprocals of neighbors’ degrees), and 
Nash power on the social networks 
mentioned earlier. The main empirical 
outcomes are summarized in the fol-
lowing (see Table 2): as expected, both 
power and centrality are positively 
correlated with degree, but power is 
negatively correlated with centrality 
when the effect of degree is excluded 
(we used partial correlation); power 
is positively correlated with Bonacich 
power, and the association increases 
as the parameter β declines below 
0 down to −1/r, with r the spectral 
radius of the adjacency graph matrix 
(moreover, the association is greater 
when the adjacency matrix is per-
turbed); power is positively corre-
lated with Shapley power, and the 
association is generally stronger 
than with Bonacich power; and power 
is positively correlated with Nash 
bargaining network power, but the 
strength of the correlation is gener-
ally weaker than with Shapley power 
and Bonacich power. In particular, we 
noticed that the Nash-based method 
maps the power scores of the nodes 
of the surveyed networks into a small 
set of values, with very high frequency 
for values close to 0, 0.5, and 1. Hence, 
it is difficult to discriminate different 
gradations of power for nodes. 

Motivating Example Reloaded 
Here, we revisit examples from the 
“Motivating Example” section, using 
them as a benchmark to compare the 
different notions of power described 
in the “Relationship with Alternative 
Power Measures” section. When the 
graphs are not totally supported (all 
cases but the two-node path), we used 
diagonal perturbation with damping 
0.15 to obtain a solution. Moreover, 

Table 3. Matrix of correlations among power and centrality measures.

S B P N C

S 1.00 0.82 0.90 0.69 0.41

B 0.82 1.00 0.84 0.61 0.46

P 0.90 0.84 1.00 0.72 0.47

N 0.69 0.61 0.72 1.00 0.36

C 0.41 0.46 0.47 0.36 1.00

 S, Shapley power; B, Bonacich power; P, power as defined in this article; N, Nash power; C, centrality.

Figure 4. Scatterplot of power versus centrality. Vertical and horizontal lines correspond to 
third quartile.
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Table 4. The top 10 powerful and central countries in the European natural gas exchange 
network.

P TR DE IT ES HU RU BG BE AT UK

6.26 6.09 5.54 5.50 4.62 4.53 3.99 3.60 3.29 3.09

B DE IT HU TR AT RU ES BE NO BG

7.07 4.58 4.06 3.73 3.41 3.37 3.29 3.23 2.92 2.76

S TR ES IT DE RU HU BG RO UK AT

2.92 2.70 2.56 2.54 2.46 2.23 1.95 1.67 1.53 1.51

N ES TR BG RU IT HU UK RO DK LV

1.00 1.00 1.00 0.87 0.83 0.83 0.75 0.75 0.75 0.75

C DE NO BE NL FR AT DK CH CZ UK

1.00 0.71 0.68 0.62 0.56 0.52 0.46 0.45 0.40 0.39

 P, power as defined in this article; B, Bonacich power; S, Shapley power; N, Nash power; C, centrality.
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we set Bonacich index parameters 
α = 1 and β = −0.85/r, where r is the 
spectra radius of the graph. 

In the two-node path, all methods 
agree to give identical power to both 
nodes. In the three-node path A−B−C, 
all methods agree B is the powerful 
one. Notably, Nash power assigns all 
power (1) to B and no power (0) to A 
and C, while the other methods say A 
and C hold a small amount of power. 
In the four-node path A−B−C−D, all 
methods claim B and C are the pow-
erful ones. Moreover, all methods 
recognize that the power of B in this 
instance is less than its power in the 
three-node path. Finally, in the five-
node path A−B−C−D−E, all methods 
discriminate B and D as the most 
powerful nodes, followed by C and 
finally A and E, with the only excep-
tion of Nash power, which assigns all 
power (1) to B and D and null power 
(0) to all other nodes; hence, the cen-
tral node C has the same power as the 
peripheral nodes A and E, according 
to this method. All methods, with the 
exception of Shapley, notice that the 
power of B is greater in the five-node 
path with respect to the three-node 
path. This is because Shapley is a 
local method, while the others are 
global (recursive) methods. 

Let us now revisit the natural gas 
pipeline example. We ranked all 
countries according to the follow-
ing power and centrality measures: 
Shapley power (S), Bonacich power 
(B), power as defined in this article 
(P), Nash power (N), and eigenvec-
tor centrality (C). Table 3 shows the 
corresponding Kendall correlation 
matrix. As expected, P is well corre-
lated with its approximations B and S.  
Moreover, P is positively correlated 
with N, but the correlation strength is 
weaker. Also, the association between 
P and C is positive but weak and 
mostly explained by the association 
with degree of both measures. Indeed, 
if we exclude the effect of degree, this 
correlation is negative. 

These associations are mirrored in 
the top-10 rankings and ratings listed 
in Table 4, as well as in the scatter-
plot comparing power and centrality 
in Figure 4. Notice how Germany (DE) 
is both powerful and central; Italy 
(IT) and Turkey (TR) are powerful but 
not central; Norway (NO) is central 

parametric; and it is global (the power 
of a node depends on the entire net-
work) and can be approximated with 
a simple local measure—the sum of 
reciprocals of node degrees—that has 
a game-theoretic interpretation and 
can be efficiently computed on all net-
works. The definition has limitations 
as well, mainly that an exact solution 
exists only on the class of totally sup-
ported networks and is not immedi-
ately normalizable, so care is needed 
when comparing power values for 
nodes in different networks. 
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but not powerful; and there are many 
countries that are neither powerful 
nor central outside the rankings. For 
instance, Italy contracts with nations 
that are both powerless and periph-
eral, namely Austria, Switzerland, 
Croatia, Tunisia, Libya, and Slovenia, 
with only Austria included in the top-
10 power list and only Austria and 
Switzerland included in the top-10 
centrality list (not in the first posi-
tions). The ranking according to 
Nash power is somewhat unusual 
if compared with the other power 
measures; for instance, Germany 
has bargaining power 0.5 and only 
in 14th postion, tied with the other 
countries. It is fair to note that the 
generalized Nash bargaining solu-
tion was originally proposed in 
the context of assignment problems 
(such as in matching apartments to 
tenants and students to colleges) 
and was not suggested as a rating-
and-ranking method for nodes in a 
network. For instance, in balanced 
matching over the gas network, Italy 
preferably negotiates with Libya and 
Turkey with Georgia. In fact, Cook 
and Yamagishi8 proposed using the 
negotiation values obtained by each 
node in such a solution as a struc-
tural power measure; see also Easley 
and Kleinberg10 (chapter 12) for a 
similar interpretation. According 
to the experiments we conducted 
for this article, this interpretation 
might seem opinable, but further 
investigation is necessary to gain a 
solid conclusion. 

Conclusion
We proposed a theory on power in the 
context of networks. The philosophy 
underlying our notion of power main-
tains that an actor is powerful if it is 
connected with many powerless actors. 
This thesis has its roots and applica-
tions mainly in sociology and econom-
ics and traces an historical parallel 
with its celebrated linear counterpart, 
namely eigenvector centrality.12  

The virtues of our definition of 
power are: it is a simple, elegant, and 
understandable measure; it is theo-
retically well-grounded and directly 
related to the well-studied balanc-
ing problem, making it possible to 
borrow results and techniques from 
this setting; the formulation is not 


