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Introduction.

In this course we will be studying the subgroup structure of the finite alternating and
symmetric groups. What does the phrase “study the subgroups of symmetric groups”
mean? In this introduction I’ll suggest an answer to that question, and attempt to
convince you that answer has some merit. In the process you’ll get some idea of the
material we will be covering, and I’ll attempt to motivate that material.

First, given a finite group G and a set Ω, define a permutation representation of G
on Ω to be a homomorphism π : G → S = Sym(Ω) of G into the symmetric group
on Ω. From one point of view, the study of the subgroup structure of S amounts to
the study of such representations, since the subgroups of S are precisely the images of
these representations. At first glance it is not clear that this restatement of the problem
represents any progress, as it would appear to be equally vague. However in awhile we
will see that the reformulation does have some advantages.

The theory of permutation representations can be embedded in a much more general
representation theory of groups, and the first few sections of the notes discuss that theory.
In particular in any representation theory, we will wish to take advantage of two types
of reductions: First, reduce the study of the general representation of G to the study
of the indecomposable and irreducible representations of G. Second, reduce the study
of representations of the general finite group to the study of representations of almost
simple groups, where G is almost simple if its generalized Fitting subgroup is a nonabelian
simple group. (ie. G has a unique minimal normal subgroup, and that subgroup is a
nonabelian simple group.)
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In the case of permutation representations, the indecomposables are the transitive
representations, and the irreducibles are the primitive representations. Each transitive
representation of G is equivalent to a representation of G by right multiplication on the
space G/H of cosets of some subgroup H of G; indeed H is determined up to conjugation
as the stabilizer Gω in G of some point ω of Ω. Thus it would appear that to “study the
subgroup structure of S”, one needs to study transitive permutation representations of
all finite groups, or at least transitive representations of all finite almost simple groups.
Moreover the study of the transitive representations of a group G amounts to a study of
the subgroups of G, so it would seem that to study the subgroup structure of S, we must
also study the subgroup structure of all almost simple groups. In short, the problem is
beginning to look more difficult, rather than easier.

Our representation π is faithful if ker(π) = 1. Fortunately it turns out that the struc-
ture of a finite group G admitting a faithful primitive representation is highly restricted.
One of the important results in this course will give a precise description of those finite
groups G admitting such a representation, together with a description of the embedding
of a point stabilizer in G. This result is often called the O’Nan-Scott Theorem, although
a second weaker result also goes by the same name. We will also come to the the weaker
result shortly.

The O’Nan-Scott Theorem is the basic tool for reducing questions about general per-
mutation representations of general finite groups to the case where the group is almost
simple and the representation primitive. In broad terms the reduction goes as follows:

1. Given a question Q about general permutation representations π : G → Sym(Ω)
of general finite groups G, reduce to the case where π is faithful and primitive.

2. Now appeal to the O’Nan-Scott Theorem to conclude that G has one of several
highly restricted structures. In the most difficult case, G will be almost simple. Answer
Q in all other cases, hence reducing to the case G almost simple.

3. Use the classification of the finite simple groups to conclude that G is on a list of
known almost simple groups. Observe that as π is primitive, a point stabilizer M = Gω

is a maximal subgroup of G.
4. Develop a theory describing (in some suitable sense) the maximal subgroups of the

almost simple groups. Use this theory to generate information about the representation
of G on G/M , sufficient to answer question Q.

So at last we seem to be making progress. In order to effectively study the subgroup
structure of S, it would appear we need to do two things:
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(A) Give a precise description of the structure of finite primitive permutation groups,
and

(B) using the classification of the finite simple groups, give a useful description of the
maximal subgroups of each almost simple group.

Problem (B) is still a bit vague, but we will deal with that in a moment.
As the alternating and symmetric groups are probably the most accessible of the

almost simple groups, the study of their maximal subgroups is clearly of importance,
but also provides a good setting for exploring and illustrating how to approach the
question for other classes of almost simple groups. Moreover this supplies us with a
fairly specific problem on which to focus in this course: Describe the maximal subgroups
of the alternating and symmetric groups.

Given an almost simple group G, how can we study its subgroups, and in particular its
maximal subgroups? Once again we can hope to use representation theory. Namely we
seek an objectX in some category C such thatG is essentially the group of automorphisms
of X in C, and the representation of G on X can be used to study the subgroups of G.
Most particularly, we hope to show that most maximal subgroups of G are the stabilizers
of certain structures on X which are natural in the category C. Indeed we try to show
that any subgroup which does not stabilize one of these structures is almost simple and
irreducible on X.

Let S = Sym(Ω) be the symmetric group on Ω. In this case we take C to be the
category of sets and Ω to be our object, so indeed S is Aut(Ω). A second major result
in this course describes certain structures on Ω, and shows that if H is a subgroup of S
stabilizing none of these structures, then H is almost simple and primitive on Ω. This
result is fairly easy to derive from the O’Nan-Scott Theorem, and this weaker corollary is
also often called the O’Nan-Scott Theorem. Some of the structures that arise are: proper
nonempty subsets of Ω (substructures, coproduct structures); nontrivial partitions of Ω
(regular coproduct structures); and regular product structures on Ω. We will spend some
time studying these structures and relationships among them, since those relationships
translate into relationships among the subgroups of S.

We will also briefly discuss the important theorem of Liebeck, Praeger, and Saxl
which tells us when the stabilizer in S of a natural structure is actually maximal in S,
and gives a list of those almost simple primitive subgroups of S which are not maximal.
Together with the O’Nan-Scott Theorem, the Liebeck-Praeger-Saxl Theorem gives a
weak classification of the maximal subgroups of S, and then also a classification of the
maximal subgroups of the alternating group on Ω.
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Here is a particular question about subgroup structure of finite groups that we will
consider:

Palfy-Pudlak Question. Is every nonempty finite lattice isomorphic to the lattice
OG(H) of overgroups in some finite group G of some subgroup H of G?

Here an overgroup of a subgroup H of a group G is a subgroup of G containing H.

The answer to the Palfy-Pudlak Question is almost certainly negative. We will consider
a class D∆ of lattices, which we conjecture supply a negative answer to the Question.
To illustrate the reduction process outlined above, I will state a result which reduces the
proof of this conjecture to the case where G is almost simple. (Actually the reduction
also requires that one treat another class of sublattices of the lattice of subgroups of G.)

In addition to illustrating the reduction process, the Palfy-Pudlak Question points the
way toward larger issues involving subgroup structure. Namely, since the classification
of the finite simple groups, the majority of work on permutation groups has focused
on primitive groups, and most particularly on the maximal subgroups of almost simple
groups. Perhaps however it is now time to look deeper into the lattice Λ of subgroups of
a finite group G, beyond the maximal subgroups of G. This is all well and good, but the
question remains, what results about Λ are on the one hand useful, and on the other,
possible to prove?

The Palfy-Pudlak Question suggests that results about the set OG(H) of overgroups
of suitable subgroups H of G are important. But which subgroups H should we consider
in this context?

There are classical results about the overgroups of permutations in S moving small
numbers of points of Ω, such as transpositions. There are also more modern results
about the overgroups of root subgroups and maximal tori in groups of Lie type. More
generally, work on the Palfy-Pudlak Question suggests it is worthwhile to study OG(D),
for G almost simple and D a small normal subgroup of some maximal subgroup of G.
I will describe a few results of this type. I will also briefly discuss the overgroups of
primitive subgroups of S.

Finally, here are two specialized but interesting questions which arise in a natural way
when trying to prove the conjecture. If time permits, we will consider these questions
near the end of the course.

Define the depth of a subgroup H of a group G to be the maximal length of a chain
in the poset OG(H). Thus the maximal subgroups of G are the subgroups of depth 1.
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Our first question asks: what are the subgroups of depth 2 in the almost simple groups,
and in particular in the symmetric group S? Note that in considering this question we
are led to the following situation: M1 and M2 are maximal subgroups of G such that
H = M1 ∩M2 is maximal in both M1 and M2. In the proof of the conjecture, one can
also assume that M1 and M2 are the only maximal overgroups of H in G.

Write ∆(m) for the lattice of all subsets of an m-set, and define a pair (G,H) of finite
groups to be a ∆(m)-pair if H ≤ G and OG(H) ∼= ∆(m). Our second question asks:
what are the ∆(m)-pairs for m ≥ 2? Probably this is too ambitious a problem, but
perhaps it is feasible when G is almost simple.

Section 1 Representations

In this section C is a category. Given objects A,B in C, write Mor(A,B) for the set of
morphisms from A to B. I’ll often write α : A→ B to indicate α ∈Mor(A,B). Also I’ll
compose my morphisms from left to right, so if β ∈ Mor(B,C) then αβ ∈ Mor(A,C)
denotes the composition of α and β.

Recall an isomorphism from A to B is a morphism α : A → B which possesses an
inverse β ∈Mor(A,B) such that αβ = 1A is the identity morphism on A, and βα = 1B

is the identity morphism on B. Moreover the inverse β is unique and denoted by α−1.
Finally an automorphism of A is an isomorphism α : A → A. Write Aut(A) for the set
of automorphisms of A, and recall Aut(A) forms a group, where the group operation is
the composition in the category.

Example 1.1. The category of sets and functions. The objects are the sets, Mor(A,B)
consists of all functions from A into B, and composition is ordinary composition of func-
tions. The isomorphisms of sets are the bijections, and given a set A, the automorphisms
of A are the permutations of A. Thus the group Aut(A) of automorphisms of A is the
symmetric group Sym(A) on A: the group of all permutations on A under composition of
functions. I will apply my permutations on the right, and hence compose permutations
from left to right. Thus for a ∈ A and α, β ∈ Sym(A), aα denotes the image of A under
α, and a(αβ) = (aα)β.

(1.2) Let α : A→ B be an isomorphism in a category C and define

α∗ : Mor(A,A) →Mor(B,B)

β 7→ α−1βα



6 MICHAEL ASCHBACHER

Then
(1) α∗ is a bijection preserving composition.
(2) α∗ restricts to a group isomorphism of Aut(A) with Aut(B).
(3) If A ∼= B, then also Aut(A) ∼= Aut(B).

Proof. α∗ “preserves composition” in the sense that (βγ)α∗ = (βα∗) · (γα∗).

Example 1.3. Suppose X and Y are sets of the same cardinality. Then X ∼= Y so by
Lemma 1.2, Sym(X) ∼= Sym(Y ). Thus we write Sn for the symmetric group on a set of
order n.

Definition 1.4. Let G be a group. A representation of G in the category C is a group
homomorphism π : G→ Aut(A) for some object A in C.

Example 1.5 A permutation representation of G is a representation in the category of
sets. That is a permutation representation is a group homomorphism π : G→ Sym(A),
since Sym(A) = Aut(A) in the category of sets.

Example 1.6 Let F be a field. A linear representation or FG-representation is a rep-
resentation of G in the category of vector spaces over F . Thus π : G → GL(A), where
GL(A) is the general linear group on A; that is GL(A) is the group of all invertible linear
maps on the vector space A.

Definition 1.7. A representation π : G→ Aut(A) is faithful if π is an injection.
Two representations π : G → Aut(A) and σ : G → Aut(B) are equivalent if there

exists an isomorphism α : A→ B such that σ = πα∗, using the “*-notation” introduced
in Lemma 1.2. Moreover such an isomorphism α is said to be an equivalence of the
representations.

Observe that an isomorphism α is an equivalence iff for all g ∈ G, (gπ)α = α(gσ).
Moreover equivalence is an equivalence relation.

A
gπ−−−−→ A

α

y yα

B
gσ−−−−→ B

Similarly if πi : Gi → Aut(Ai), i = 1, 2, are representations of groups Gi on objects
Ai in C, then π1 is said to be quasiequivalent to π2 if there exists a group isomorphism
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β : G1 → G2 and an isomorphism α : A1 → A2 in the category C such that π2 = β−1π1α
∗.

Quasiequivalence is also an equivalence relation.

A1
gπ1−−−−→ A1

α

y yα

A2
gβπ2−−−−→ A2

The pair of isomorphisms α, β is said to be a quasiequivalence.

Notation 1.8. Let us examine these notions in the category of sets. So let X be a set,
G be a group, and π : G→ Sym(X) a permutation representation of G on X.

Usually we will suppress the representation π and write xg for x(gπ), when x ∈ X

and g ∈ G. One feature of this notation is that:

x(gh) = (xg)h, x ∈ X, g, h ∈ G.

The relation ∼ on X defined by x ∼ y if and only if there exists g ∈ G with xg = y is an
equivalence relation on X. The equivalence class of x under this relation is

xG = {xg : g ∈ G}

and is called the orbit of x under G. As the equivalence classes of an equivalence relation
partition a set, X is partitioned by the orbits of G on X.

Let Y be a subset of X. We say that G acts on Y if Y is a union of orbits of G. Notice
G acts on Y precisely when yg ∈ Y for each y ∈ Y , and each g ∈ G. Further if G acts
on Y then for each g ∈ G, the restriction g|Y of g to Y is a permutation of Y , and the
restriction map

G→ Sym(Y )

g 7→ g|Y

is a permutation representation of G with kernel

GY = {g ∈ G : yg = y for all y ∈ Y }.

In particular GY is a subgroup of G called the pointwise stabilizer of Y in G. For x ∈ X,
write Gx for G{x}. Thus Gx is a subgroup of G called the stabilizer of x in G.

Set NG(Y ) = {g ∈ G : Y g = Y }, and call NG(Y ) the global stabilizer of Y in
G. Write GY for the image of NG(Y ) in Sym(Y ) under the restriction map, so that
GY ∼= NG(Y )/GY .

Our representation π is transitive if G has just one orbit on X; equivalently for each
x, y ∈ X there exists g ∈ G with xg = y. We will also say that G is transitive on X.
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Example 1.9. Let H ≤ G and consider the coset space G/H = {Hx : x ∈ G} of H
in G. Then α : G → Sym(G/H) is a transitive permutation representation of G on the
coset space G/H, where

gα : Hx 7→ Hxg

for g ∈ G. We call α the representation of G on the cosets of H by right multiplication.
Notice H is the stabilizer of the coset H in this representation.

Theorem 1.10. Let G be transitive on X, x ∈ X, and H = Gx. Then

(1) The map xg 7→ Hg is an equivalence of the permutation representation of G on
X with the representation of G by right multiplication on G/H.

(2) X has cardinality |G : Gx| for each x ∈ X.
(3) Gxg = (Gx)g for each g ∈ G.
(4) If β : G→ Sym(Y ) is a transitive permutation representation and y ∈ Y , then π

is equivalent to β if and only if Gx is conjugate to Gy in G.

Proof. See 5.8 and 5.9 in [FGT].

(1.11) Let πi : G → Sym(Xi), i = 1, 2, be transitive permutation representations of a
group G and pick xi ∈ Xi. Then π1 and π2 are quasiequivalent iff there exists β ∈ Aut(G)
with Gx1β = Gx2 .

Proof. This is Exercise 1.1.

Now we return to the general setup where C is an arbitrary category and G is a group.

Remark 1.12. Let A be an object in C. Given a representation π of G, write [π]
for the equivalence class of the representation π. Observe that we have a permutation
representation of Aut(G) on the set of representations of G on A defined by β : π →
π · β = β−1π for β ∈ Aut(G), where β−1π is the composition of β−1 with π. Moreover
this representation induces a permutation representation of Aut(G) on the equivalence
class of representations of G via β : [π] 7→ [π] · β = [π · β], with the orbits of G the
quasiequivalence classes.

(1.13) Let πi : G→ Aut(A), i = 1, 2, be a pair of faithful representations. Then
(1) π1 is quasiequivalent to π2 iff Gπ1 is conjugate to Gπ2 in Aut(A).
(2) AutAut(A)(Gπ1) ∼= Aut(G)[π1].
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Proof. Here if X ≤ Y are groups then AutY (X) = NY (X)/CY (X) is the group of
automorphisms induced on X in Y via conjugation. Also Aut(G)[π1] is the stabilizer
in Aut(G) of the equivalence class of the representation π1 with respect to the action
defined in Remark 1.12. The proof is Exercise 1.2.

Exercises for Section 1.

1. Prove Lemma 1.11.

2. Prove Lemma 1.13.

Section 2. (Co)product structures and indecomposable and irreducible representations

In this section C is a category. We will use representations of groupsG on objects A in C
to study G and A. Further we wish to define notions of “indecomposable representation”
and “irreducible representation” in the category C. To do so, we will need information
about certain structures on A, the action of Aut(A) on these structures, and the stabilizer
in Aut(A) of each structure. Some of these structures can be defined simultaneously for
all categories in terms of coproducts and products.

Let F = (Ai : i ∈ I) be a family of objects in A. A coproduct for F in A is an object
C =

∐
iAi together with morphisms ιi : Ai → C such that whenever B is an object and

αi : Ai → B, i ∈ I, are morphisms, then there exists a unique morphism α : C → B such
that ιiα = αi for all i ∈ I.

Recall that a coproduct may or may not exist for F , but if it does exist, then it is
unique up to isomorphism.

Example 2.1. Let C be the category of sets. Then C is the disjoint union of the sets
Ai with ιi : Ai → C the inclusion map. The map α is defined by aα = aαi for a ∈ Ai.

Similarly the notion of a product is dual to that of the coproduct; that is the definition
of the product is the same as that of the coproduct, except the direction of the arrows
is reversed. Hence a product for F is an object P together with morphisms πi : P → Ai

(called the projection of P on Ai) such that whenever B is an object and βi : B → Ai,
i ∈ I are morphisms, then there is a unique morphism β : B → P such that βπi = βi for
each i ∈ I. Again a product for F may or may not exist, but if it exists it is unique up
to isomorphism.
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Example 2.2. Let C be the category of sets. Then P is the set product of the sets Ai.
For example assume I = {1, . . . , n} is finite. Then

P = A1 × · · · ×An = {(a1, . . . , an) : ai ∈ Ai},

the ith projection πi is defined by (a1, . . . , an)πi = ai, and the map β is defined by
bβ = (bβ1, . . . , bβn).

Definition 2.3. A category C is a category of sets with structure if
(SS1) the objects of C are sets A together with some “structure” on A, and
(SS2) given objects A,B, the set Mor(A,B) of morphisms from A to B is the set of

all functions from the set A to the set B “preserving structure”, and
(SS3) composition in the category is composition of functions.
Of course in any given example, we must define precisely what we mean by “structure”

and “preserving structure”, and these definitions must imply that
(SS4) the composition of structure preserving functions preserves structure, and the

identity function 1A : A→ A preserves structure.
A subobject of A is a subset of A which inherits the structure on A, to become an

object in C. A factor object of A is the set Ã = {ã : a ∈ A} of equivalence classes of a
suitable equivalence relation ∼ on A, with the structure on Ã “inherited” from A. We
will call such equivalence relations admissible.

Obvious examples of categories of sets with structure include the category of sets
(where there is no extra structure), and the category of groups, where the structure on a
group G is provided by the group operation, and a map α from G to a group H preserves
structure if (xy)α = xα · xα for all x, y ∈ G.

In the remainder of the section, we assume that our category C is a category of sets
with structure.

Definition 2.4. Define a coproduct structure on an object A in our category of sets with
structure, to be an equivalence class of families

ι = (ιi : Ai → A : i ∈ I)

of maps making A into a coproduct. Here two families ι and ῑ are equivalent if Aiιi = Aiῑi

for all i ∈ I. Write [ι] for the equivalence class of ι.



THE SUBGROUP STRUCTURE OF FINITE ALTERNATING AND SYMMETRIC GROUPS11

Remark 2.5. Observe that H = Aut(A) permutes the coproduct structures via [ι]h =
[(ιih : i ∈ I)], with the stabilizer H[ι] in H of [ι] the subgroup acting on Aiιi for all i ∈ I.

(2.6) Let ι = (ιi : Ai → A : i ∈ I) be a coproduct in A and G =
∏

iAut(Ai). Then
(1) For each g = (g1, . . . , gn) ∈ G, there exists a unique ϕ(g) ∈ Aut(A) such that

giιi = ιiϕ(g) for each i ∈ I.
(2) The map ϕ : G→ Aut(A) is a group homomorphism whose image lies in Aut(A)[ι].
(3) Assume for each i that Aiιi is a subobject of A, ιi : Ai → Aiιi is an isomorphism,

and whenever α ∈ Aut(A) acts on Aiιi, then α : Aiιi → Aiιi is an isomorphism. Then
ϕ : G→ Aut(A)[ι] is an isomorphism.

Proof. Exercise 2.1.

Example 2.7. Let C be the category of sets and A the coproduct of A1, . . . , Ar. Then A
is the disjoint union of the sets Ai and the stabilizer G in Sym(A) of the corresponding
coproduct structure is the stabilizer of this partition; that is G is the subgroup of Sym(A)
acting on each Ai. Thus by Lemma 2.6,

G ∼=
∏

i

Aut(Ai) ∼=
∏

i

Sni

More concretely, let Gi = Sym(A)A−Ai be the set of permutations Sym(A) fixing each
point in A − Ai. Then Gi

∼= Sym(Ai) and G is the direct product of the subgroups
G1, . . . , Gr. That is Gi E G and each g ∈ G can be written uniquely as a product
g = g1 · · · gr with gi ∈ Gi.

Definition 2.8. Define the coproduct structure to be nontrivial if |I| > 1. Define a
representation π : G→ Aut(A) to be decomposable if Gπ ≤ Aut(A)[ι] for some coproduct
structure [ι], and call π indecomposable otherwise.

Example 2.9. We just saw that in the category of sets, a coproduct structure is just a
partition of A (or equivalently an equivalence relation) and the stabilizer of the structure
is just the subgroup of Sym(A) acting on each block. Thus a permutation representation
is indecomposable if and only if it is transitive.

Example 2.10. In the category of vector spaces over a field F , a coproduct structure
is a nontrivial direct sum decomposition of a vector space A, and the stabilizer of the
structure is the subgroup of GL(A) acting on each summand. Thus we have the usual
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notion of indecomposability for linear representations: a linear representation of G on
a vector space A is indecomposable iff V is not the direct sum of proper G-invariant
subspaces.

Our philosophy is that if A is the coproduct of objects (Ai : i ∈ I) in a category of
sets with structure, then (essentially) complete information about A can be recovered
from the corresponding information about the Ai. Similarly if π is decomposable then π
is determined by the restrictions πi : G → Aut(Ai) obtained from Gπ ≤ NAut(A)(Aiιi).
Thus there is usually little loss in assuming a representation is indecomposable.

We can also dualize the notion of coproduct structure to that of a product structure.

Definition 2.10. A product structure on A is an equivalence class of families π = (πi :
A → Ai) of maps making A into a product, with π equivalent to π̄ if π and π̄ have the
same set of fibres; that is for all i ∈ I

{π−1
i (ai) : ai ∈ Ai} = {π̄−1

i (ai) : ai ∈ Ai}

Remark 2.12. H = Aut(A) permutes product structures via g : [π] 7→ [π]g = [g−1π],
and H[π] is the subgroup of H permuting the set {π−1

i (ai) : ai ∈ Ai} of fibres of πi, for
each i ∈ I.

(2.13) Let π = (πi : A→ Ai : i ∈ I) be a product in C and G =
∏

iAut(Ai). Then
(1) For each g = (g1, . . . , gn) ∈ G, there exists a unique ϕ(g) ∈ Aut(A) such that

πigi = ϕ(g)πi for each i ∈ I.
(2) The map ϕ : G→ Aut(A) is a group homomorphism whose image lies in Aut(A)[π].
(3) Assume for each i ∈ I, the fibres of πi define an equivalence relation ∼i on A

making Ai = A/ ∼i into a factor object, such that the map π̃i : Ai → Ai defined by
π̃i : ã 7→ ãπi is an isomorphism, and for each α ∈ Aut(A)[π], α̃ : Ai → Ai is an
isomorphism. Then ϕ : G→ Aut(A)[π] is an isomorphism.

Proof. Exercise 2.2.

Example 2.14. In the category of sets, a product structure is an equivalence class of
identifications of A with some set product

∏
iAi. This definition is a little different than

the categorical point of view we used to define product structures in general categories,
but it is easy to see the two definitions are equivalent. It takes advantage of the fact that
we have a canonical description of the product in the category of sets.
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The subgroup fixing this structure is the set of permutations g which can be repre-
sented on each Ai so that g “factors through” our identification via

g : (a1, . . . , an) 7→ (a1g1, . . . , angn),

for a (unique) gi ∈ Sym(Ai).

We can also view
∏

iAi as the set of all functions

f : I →
⋃
i∈I

Ai

such that f(i) ∈ Ai for each i ∈ I. The group action is defined by (f · g)(i) = f(i)gi.
From this point of view, the projection map πi is defined by πi(f) = f(i). The two points
of view are the same via the correspondence f 7→ (f(1), . . . , f(n)).

Example 2.15. In the category of finite dimensional F -spaces the product and coprod-
uct structures are the same, since products and coproducts are the same. However one
also encounters tensor product structures in this category.

Definition 2.16. If all members Ai of our family are isomorphic we say our family is
regular, and we have a weaker notion of “equivalence of structures” leading to larger
stabilizers. Namely two regular coproduct structures ι and ῑ are similar if there exists a
permutation σ of I such that

Aiιi = Aiσ ῑiσ,

and the stabilizer of a similarity class 〈ι〉 is the subgroup permuting the subobjects
(Aiιi : i ∈ I). There is an analogous notion for product structures.

If our category is well behaved, then the stabilizer of a similarity class is the wreath
product Aut(A1) wr Sr when I = {1, . . . , r} is of order r. Recall:

Definition 2.17. The wreath product W = L wr K of a group L by a group K,
represented as a group of permutations on {1, . . . , r}, is the semidirect product of a
normal subgroup D, which is the direct product of r copies of L, with K, where the
representation of K on D is defined by

k : (x1, . . . , xr) 7→ (x1k−1 , . . . , xrk−1).
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Notice that if we define

Li = {(x1, . . . , xr) ∈ D : xj = 1 for j 6= i}

then L ∼= Li and D = L1 × · · · × Lr is the direct product of the subgroups Li, in the
sense that each Li is a normal subgroup of D and each x ∈ D can be written uniquely
as a product x = l1 · · · lr with li ∈ Li. Further k ∈ K permutes the subgroups Li in
the same way it permutes I: Lk

i = Lik and (recalling that Ki is the stabilizer in K of i)
Ki = CK(Li).

Examples 2.18. In the category of sets, a regular coproduct structure is a partition of a
set A of order rm into r blocks of the same size m. The stabilizer of this structure is the
subgroup permuting the blocks and is the wreath product Sm wr Sr of Sm by Sr. The
subgroup Li is the group of all permutations which fix all points not in the ith block.

Example 2.19. A regular product structure on A of type (m, r) in the category of sets
is a similarity class of identifications α : A → BI , I = {1, . . . , r}, of A with the set
product BI of r copies of some set B of order m, and Sym(A) permutes such structures
via 〈α〉g = 〈g−1α〉. The stabilizer of this structure is the subgroup of all g ∈ Sym(A)
such that 〈α〉g = 〈α〉; equivalently for each f ∈ BI ,

(f · (g · α∗))(iσ(g)) = f(i)gi

for each i ∈ I, some gi ∈ Sym(B), and σ(g) ∈ Sym(I). Put another way, g · α =
α · ((

∏
i gi)σ(g)), where σ(g) and gi act on BI via

(fgi)(j) = f(j) for j 6= i and f(i)gi for j = i

and

(fσ(g))(i) = f(iσ(g)−1
)

The stabilizer of this structure is isomorphic to the wreath product Sm wr Sr.

Example 2.20. In the category of finite dimensional F -spaces, a regular coproduct
structure is a direct sum decomposition of A into r summands of equal dimension m,
with the stabilizer the subgroup permuting these summands. The stabilizer is isomorphic
to GLm(F ) wr Sr.
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We have defined the notion of an indecomposable representation which coincides with
the usual notion of indecomposability for linear representations. We next define the
notion of an irreducible representation; this notion will coincide with the usual notion
of irreducibility for linear representations. Our philosophy is that while a decomposable
representation can be retrieved from its restrictions, only partial information about a
reducible representation can be obtained from its restrictions. In essence a representation
is irreducible if G preserves no proper nontrivial subobject or factor object. We now
formalize this notion.

Definition 2.21. Assume A is a category with suitable notions of subobjects and factor
objects, and that π : G → Aut(A) is a representation of G on some object A in A. A
subobject B of A is G-invariant if Gπ ≤ NAut(A)(B). Similarly an equivalence relation
∼ on A is said to be G-invariant if a ∼ b implies ag ∼ bg for all a, b ∈ A and g ∈ G.
Finally π is irreducible if there are no nontrivial G-invariant subobjects or admissible
relations.

Example 2.22. In the category of sets every subset is a subobject and every equivalence
relation is admissible, so π is irreducible if and only if Gπ is transitive and preserves no
nontrivial equivalence relations. This is the definition of a primitive permutation group.

Example 2.23. In the category of F -spaces the admissible relations are those of the
form a ∼ b iff a ∈ b + B for some subspace B of A, so we have the usual notion of
irreducibility.

Exercises for Section 2.

1. Prove Lemma 2.6.

2. Prove Lemma 2.13.

Section 3. The generalized Fitting subgroup.

In this section G is a finite group.

Definition 3.1. Let L1, . . . , Ln be groups. A central product of the groups L1, . . . , Ln

is a group D which is the product of subgroups D1, . . . , Dn such that for each i, Di
∼= Li,

and for each i 6= j, [Di, Dj ] = 1. Here for subgroups X,Y of a group D, [X,Y ] = 〈[x, y] :
x ∈ X, y ∈ Y 〉 is the commutator of X and Y , and [x, y] = x−1y−1xy is the commutator
of elements x, y ∈ D. Observe [X,Y ] = 1 iff for all x ∈ X and y ∈ Y , xy = yx.
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(3.2) Let L1, . . . , Ln be groups and L = L1 × · · · ×Ln the direct product of L1, . . . , Ln.
Then

(1) Z(L) = Z(L1)× · · · × Z(Ln).

(2) Each central product of L1, . . . , Ln is isomorphic to L/Z for some some Z ≤ Z(L)
with Z ∩ Li = 1 for each i.

Proof. We identify Li with the subgroup of elements (x1, . . . , xn) ∈ L with xj = 1 for all
j 6= i, as in Section 4. Subject to this convention, (2) makes sense. The proof is Exercise
3.1.

Definition 3.3. Define a group X to be perfect if X = [X,X]; that is X is its own
commutator subgroup. The group X is quasisimple if X is perfect and X/Z(X) is
simple. Further a subgroup X of a group G is subnormal in G if there exists a subnormal
series X = X0 E · · · E Xn = G. That is subnormality is the transitive extension
of the normality relation. Finally the components of G are its subnormal quasisimple
subgroups. Write E(G) for the subgroup of G generated by the components of G.

Given a nonabelian simple group L, there is a universal covering group L̃ of L which
is the largest quasisimple group G such that G/Z(G) ∼= L. That is if G is such a group
then G ∼= L̃/Z for some Z ≤ Z(L̃). The center Z(L̃) of the universal covering group is
called the Schur multiplier of L. See section 33 in [FGT] for further discussion of such
things.

Example 3.4. The identity group is a trivial quasisimple group. Nonabelian simple
groups are quasisimple. There are also quasisimple groups which are not simple. For
example the groups SL2(q), q odd, are quasisimple with a center of order 2.

(3.5) For H ≤ G let C(H) be the set of components of H. Then

(1) E(G) is a characteristic subgroup of G.

(2) Distinct components of G commute, so E(G) is a central product of the components
of G.

(3) Set G∗ = G/Z(E(G)). Then Z(E(G)) = 〈Z(L) : L ∈ C(G)〉, G∗ is the direct
product of the groups L∗, L ∈ C(G), and for each L ∈ C(G), L∗ is a nonabelian simple
group.

(4) If L ∈ C(G) and H is a subnormal subgroup of G, then C(H) = {K ∈ C(G) : K ≤
H}, and either L ≤ H or [L,H] = 1.
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Proof. By definition of C(G), Aut(G) permutes C(G), so (1) holds. Part (4) is 31.3 and
31.4 in [FGT]. Then (4) implies distinct components of G commute, so that E(G) is a
central product of the components of G, establishing (2). Part (3) follows from (2) and
3.2.

Definition 3.6. The Fitting subgroup of G is the largest normal nilpotent subgroup of
G. Write F (G) for the Fitting subgroup. Given a prime p, write Op(G) for the largest
normal p-subgroup of G. The latter subgroup exists as the product of normal p-subgroups
is a normal p-subgroup. As a finite group is nilpotent iff it is the direct product of its
Sylow groups, F (G) exists and:

(3.7) F (G) is the direct product of the groups Op(G), p prime.

We seek a canonically defined characteristic subgroup of the general finite group G

whose structure is relatively uncomplicated, and which controls the structure of G. That
subgroup is the so-called generalized Fitting subgroup of G. Its definition is due to
Helmut Bender, building on earlier work of Wielandt and Gorenstein and Walter.

Definition 3.8. Set F ∗(G) = F (G)E(G) and call F ∗(G) the generalized Fitting subgroup
of G.

(3.9) F ∗(G) is the central product of F (G) and E(G).

Proof. By 3.5.4, each component of G commutes with each solvable normal subgroup of
G.

Theorem 3.10. CG(F ∗(G)) = Z(F (G)).

Proof. See 31.13 in [FGT].

Definition 3.11 A finite group G is almost simple if F ∗(G) is a nonabelian finite simple
group.

Given H E G, let c : G → Aut(H) be the conjugation map; that is for g ∈ G,
gc : h 7→ hg = g−1hg for g ∈ G and h ∈ H. When G = H, we write Inn(G) for
the image Gc of G in Aut(G), and call Inn(G) the group of inner automorphisms of
G. Note that Inn(G) E Aut(G), and the group of outer automorphisms of G is
Out(G) = Aut(G)/Inn(G).
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(3.12) The following are equivalent:

(1) G is almost simple.

(2) There exists a nonabelian finite simple group L such that Inn(L) E G ≤ Aut(L).

Proof. Suppose G is almost simple and set L = F ∗(G). Then L is a nonabelian simple
group, and the conjugation map c : G→ Aut(L) is faithful by 3.10, with Lc = Inn(L) E

Gc ∼= G. Thus (1) implies (2). Similarly if (2) holds, then as Aut(L) acts faithfully
on L, and as c : L → Inn(L) is an Aut(L)-equivariant isomorphism, it follows that
CAut(L)(Inn(L)) = 1, and hence also CG(Inn(L)) = 1. Thus Inn(L) = F ∗(G) by 3.5.2
and 3.9, so (2) implies (1).

Exercises for Section 3.

1. Prove Lemma 3.2.

2. Assume p is a prime and X is a nontrivial finite p-group acting on a finite group L
with CL(X) = 1. Prove L is a p′-group.

3. Let S be a nontrivial 2-group. Prove

(1) The exponent of a Sylow 2-subgroup of Aut(S) is less than |S|.
(2) Let σ ∈ Aut(S) be of order 2a, and for 1 ≤ i ≤ a, let σi ∈ 〈σ〉 be of order

2i. Then σi centralizes each σ-invariant subgroup of S of order 2a+1−i, so in particular
|CS(σi)| ≥ 2a+1−i.

4. Let G be a finite group. Define the generalized Fitting series for G recursively
by F0(G) = 1, and give Fk(G), Fk+1(G) is the preimage in G of F ∗(G/Fk(G)). The
generalized Fitting length of G is the smallest integer l(G) such that G = Fl(G). If G is
solvable then F ∗(G) = F (G) and our series is the Fitting series and l(G) is the Fitting
length of G.

Let X be a subnormal subgroup of G. Prove

(1) F ∗(X) is subnormal in F ∗(G).

(2) Fk(X) is subnormal in Fk(G) for each k.

(3) Fk(X) = X ∩ Fk(G).

(4) l(X) ≤ l(G).

(5) If Fk(G) ≤ H ≤ G and all Sylow subgroups of H are abelian, then Fk(H) = Fk(G)
and l(H) = k + l(H/Fk(H)).
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Section 4. Diagonal subgroups.

In this section L is a group, I is a set of finite order r, and D = LI is the direct
product of r copies of L.

Recall there are various ways to describe D. First

D = {(a1, . . . , ar) : ai ∈ L}

is the set of ordered r-tuples with entries in L, with the group product defined compo-
nentwise, and for i ∈ I, the ith projection map πi : D → L is defined by

πi : (a1, . . . , ar) 7→ ai

Second,
D = LI = {f : f : I → L}

is the set LI of functions from I to L with multiplication defined by

(f · g)(i) = f(i)g(i)

and with πi(f) = f(i). If I = {1, . . . , r} then the correspondence between theses two
points of view is given by the bijection f 7→ (f(1), . . . , f(r)).

Third, for i ∈ I, let

Li = {f ∈ LI : f(j) = 1 for all i 6= j}

Then πi : Li → L is an isomorphism. Let ιi : L→ Li be the inverse of this isomorphism.
Now D =

∏
i Li is the direct product of the subgroups Li in the sense that [Li, Lj ] = 1

for i 6= j and each d ∈ D can be written uniquely in the form d = d1 . . . dr with di ∈ Li,
and πi can be regarded as the map d 7→ di.

Write AutI(D) for the subgroup of Aut(D) permuting the set

∆ = {Li : i ∈ I}

and let S = Sym(I) ∼= Sr. Recall from 1.2 that the isomorphism ιi : L→ Li induces an
isomorphism

ι∗i : Aut(L) → Aut(Li)

β 7→ ι−1
i βιi
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Let D∗ = Aut(L)I be the direct product of r copies of Aut(L). Write D =
∏

i Li as
above. Similarly D∗ =

∏
i L

∗
i with L∗i

∼= Aut(L). We have a representation of S on D

defined by s : f 7→ fs, where

(!) (fs)(i) = f(is
−1

), so that Ls
i = Lis ,

and a similar representation of S on D∗. The corresponding semidirect products DS
and D∗S are, from Definition 2.17, the wreath products L wr Sr and Aut(L) wr Sr,
respectively. We record (!) as:

(4.1) In DS, Ls
i = Lis , while in D∗S, L∗si = L∗is .

Remark 4.2. From Definition 3.11, the conjugation map c : L→ Aut(L) is a homomor-
phism from L into Aut(L), whose image Inn(L) is the group of inner automorphisms
of L, and Inn(L) E Aut(L), with Out(L) = Aut(L)/Inn(L) the group of outer auto-
morphisms of L. If Z(L) = 1 then c is injective, so L ∼= Inn(L) and, identifying L with
Inn(L) via this isomorphism, we can view L as a normal subgroup of Aut(L), Li as a
normal subgroup of L∗i , D as a normal subgroup of D∗, and DS as a subgroup of D∗S.

Example 4.3. Assume L is a nonabelian simple group. Then (cf. 3.3) the groups Li,
i ∈ I, are the components of D, and hence are permuted by Aut(D), so that in this case
AutI(D) = Aut(D). Further Z(L) = 1, so by Remark 4.2, Li E L∗i .

(4.4) AutI(D) = D∗S ∼= Aut(L) wr Sr, where D∗S is embedded in Aut(D) via the
representation (fξs)(i) = f(is

−1
)ξis−1 , for f ∈ D, ξ = (ξ1, . . . , ξn) ∈ D∗, and s ∈ S.

Proof. Set A = AutI(D). By definition of A, A permutes ∆, so (cf. Notation 1.8)

A/A∆
∼= A∆ ≤ Sym(∆).

Set
Ci = CA∆(Li) and Ai =

⋂
j 6=i

Cj

Define ϕ : D∗S → Aut(D) by

(fgϕ)(i) = f(is
−1

)ξis−1 for f ∈ D and g = ξs with ξ = (ξ1, . . . , ξn) ∈ D∗ and s ∈ S.

Then ϕ is a faithful representation of D∗S on D such that L∗iϕ ≤ Ai and, using 4.1, S
acts faithfully on ∆ via Lsϕ

i = Lis . The latter fact says that S is a complement to A∆ in
A. As Ai is faithfully represented on Li, the former fact says that L∗iϕ = Ai, and hence
A∆ = D∗ϕ. Thus ϕ : D∗S → A is an isomorphism.
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Definition 4.5. Given a family

ααα = (αi : i ∈ I)

of isomorphisms αi : L→ Li, define the diagonal of ααα to be

diag(ααα) = {
∏
i∈I

aαi : a ∈ L} ≤ D.

Remark 4.6. Given a family ααα as in Definition 4.5, the map α : a 7→
∏

i aαi is an
isomorphism of L with diag(ααα) called a diagonal embedding of L in D. Further for i ∈ I,
απi = αi, so πi = αiα

−1 is the composition of isomorphisms and hence πi : diag(ααα) → Li

is an isomorphism for all i ∈ I.

(4.7) Let ιιι = (ιi : i ∈ I), and for i ∈ I, let ι∗i : Aut(L) → L∗i be the inverse of the
restriction to L∗i of the ith projection π∗i : D∗ → Aut(L). Set ι∗ι∗ι∗ = (ι∗i : i ∈ I) and
A = AutI(D). Then

NA(diag(ιιι)) = diag(ιιι∗)× S ∼= Aut(L)× Sr,

with S = CA(diag(ιιι)).

Proof. Let B = diag(ιιι) and B∗ = diag(ιιι∗). By Remark 4.6, ι : L→ B is an isomorphism,
where

aι =
∏

i

aιi = (a, . . . , a),

and by definition of the action of S on D, (aι)s = aι for all a ∈ L and s ∈ S, so
S ≤ CA(B). Similarly we have the isomorphism ι∗ : Aut(L) → B∗ and for ξ ∈ Aut(L),

(aι)ξι∗ =
∏

i

(aιi)ξιi =
∏

i

(aξ)ιi = (aξ)ι,

so B∗ ≤ NA(B). Thus 〈S,B∗〉 ≤ NA(B). Also for f ∈ D and i ∈ I,

f(i)sξι∗ = f(is
−1

)ξι∗ = f(is
−1

)ξ = F (i)ξι∗s,

so [S,B∗] = 1 and hence 〈S,B∗〉 = S ×B∗.
Next S∆ = Sym(∆) = NA(B)∆, so NA(B) = SNA∆(B), and it remains to show

NA∆(B) = B∗. We saw (aι)ξι∗ = (aξ)ι, so B∗ acts faithfully as Aut(L) = Aut(B) on B,
and hence NA∆(B) = B∗CA∆(B), and we must show CA∆(B) = 1.

Finally for x ∈ CA∆(B), x centralizes the projection aιπ1 = aιi ∈ Li, so as πi : B → Li

is an isomorphism by Remark 4.6, x centralizes Li. Therefore x ∈
⋂

i CA(Li) = 1, as
desired.
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Definition 4.8. A diagonal subgroup of D is a subgroup X of D such that for each
i ∈ I, the projection πi : X → Li is an injection. A full diagonal subgroup is a diagonal
subgroup for which each projection is an isomorphism.

(4.9) Let i0 ∈ I, D the set of full diagonal subgroups of D, and A the set of families
ααα = (αi : i ∈ I) with αi0 = ιi0 . Then

(1) The map ρ : ααα 7→ diag(ααα) is a bijection of A with D.

(2) For ξ ∈ D∗, write ξ =
∏

i ξi, where ξi is the projection of ξ on L∗i . Then
CD∗(Li0) =

∏
i∈I−{i0} L

∗
i acts on A via ξ : (αi : i ∈ I) 7→ (ξ−1

i αi : i ∈ I), ρ is
CD∗(Li0)-equivariant, and CD∗(Li0) is regular on D.

(3) If L is finite then |D| = |Aut(L)|r−1.

Proof. For X ∈ D, define αX
i = ιi0π

−1
i0
πi : L → Li and αX = (αX

i : i ∈ I), where πi0 is
the isomorphism from X to Li0 . Then αααX ∈ A with X = diag(αααX). Conversely if βββ ∈ A
then αααdiag(βββ) = βββ, so (1) holds.

The first two remarks in (2) are straightforward, and visibly CD∗(Li0) is regular on
A, so the first two remarks imply the third. Then as |CD∗(Li0)| = |Aut(L)|r−1, (1) and
(2) imply (3).

(4.10) Assume L is a nonabelian finite simple group. Then

(1) Aut(D) = D∗S ∼= Aut(L) wr Sr and D = F ∗(Aut(D)), subject to the identification
of D with {f ∈ D∗ : f(i) ∈ Inn(L) for all i ∈ I}.

(2) D∗ is transitive on the full diagonal subgroups of D.

(3) If B is a full diagonal subgroup of D then NAut(D)(B) = K×S, where K ∼= Aut(L)
is the kernel of the action of NAut(D)(B) on the set L = {Li : i ∈ I} of components of
D, and S acts faithfully as Sym(L) on L with NS(J) = CS(J) for J ∈ L. Further
B = ND(B).

Proof. Part (1) follows from Example 4.3 and and Lemma 4.4. Part (2) is 4.8.2. Then
(2) and 4.7 imply (3).

(4.11) Assume L is a nonabelian finite simple group and H ≤ D such that πi : H → Li

is a surjection for all i ∈ I. Then there exists a partition P of I such that H =
∏

J∈P HπJ

is the direct product of the full diagonal subgroups HπJ of DJ , where πJ : H → DJ is
the projection with respect to the direct sum decomposition D =

∏
J∈P DJ and DJ =∏

j∈J Lj.
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Proof. Let J ⊆ I be minimal subject to K = H ∩B 6= 1, where B = DJ . By minimality
of J , πi : K → Li is nontrivial for each i ∈ J . As B E D, K = H ∩ B E H, so
1 6= Kπi E Hπi = Li. Therefore as Li is simple, πi : K → Li is a surjection. Next

ker(πi) ≤
∏

i 6=j∈J

Lj

so by minimality of J , ker(πi) = 1. Thus πi is an isomorphism and hence K is a full
diagonal subgroup of B.

Let E = DI−J , so that D = B ×E. Let π : H → B be the projection with respect to
this direct sum decomposition; again K = Kπ E Hπ. But by 4.10.3, K = NB(K), so
Hπ = K. Thus H = K ×CH(K) with CH(K) = ker(π) = H ∩E. Finally for i ∈ I − J ,
Li = Hπi = (H ∩ E)πi, so the lemma holds by induction on r.

Exercises for Section 4

1. Let D be the direct product of r > 1 isomorphic nonabelian finite simple groups,
let B be a full diagonal subgroup of D, and assume G is a finite group such that D E G,
G = DNG(B), and G acts primitively on the set of components of D. Prove NG(B) is a
maximal subgroup of G.

Section 5 Posets and lattices

Definition 5.1. A poset is a partially ordered set; thus a poset is a set X together with
a partial order ≤ on X. The category of posets is a category of sets with structure, where
the structure is provided by the order relation. A function α : X → Y from X to a poset
Y is a map of posets (ie. preserves structure) if a ≤ b in X implies aα ≤ bα in Y .

Each subset Z of X is a poset under the restriction of the partial order on X to Z.
Thus each subset is a subposet.

A lattice is a poset Λ with the property that for all x, y ∈ Λ, there exists a least upper
bound x ∨ y and a greatest lower bound x ∧ y for x and y in the poset Λ. Observe the
elements x ∨ y and x ∧ y are unique, and we can regard ∨ and ∧ as operations on Λ.

A sublattice of Λ is a subposet of Λ closed under the operations ∨ and ∧. Given x ≤ y

in Λ, define the interval in Λ determined by x and y to be

[x, y] = {z ∈ Λ : x ≤ z ≤ y}.

Observe that the interval [x, y] is a sublattice of Λ.
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Example 5.2. Let G be a group and Λ the set of subgroups of G, partially ordered by
inclusion. Thus Λ is a poset. Indeed Λ is a lattice, where for H,K ≤ G, H ∨K = 〈H,K〉
and H ∧K = H ∩K.

Given H ≤ G, define
OG(H) = {K ≤ G : H ≤ K}.

Call OG(H) the set of overgroups of H in G. Observe OG(H) is the interval [H,G] in Λ,
and hence is a sublattice of Λ.

(5.3) Let Λ be a lattice and X = {x1, . . . , xn} a finite subset of Λ. Then
(1) X has a least upper bound x1 ∨ · · · ∨ xn and a greatest lower bound x1 ∧ · · · ∧ xn.
(2) (x1 ∨ x2)∨ x3 = x1 ∨ x2 ∨ x3 = x1 ∨ (x2 ∨ x3) and (x1 ∧ x2)∧ x3 = x1 ∧ x2 ∧ x3 =

x1 ∧ (x2 ∧ x3).
(3) ∨ and ∧ are associative operations.
(4) If Λ is finite then Λ has a greatest element ∞ and a least element 0.

Proof. Exercise 5.1.

Theorem 5.4. (Palfy-Pudlak) The following are equivalent:
(1) Each nonempty finite lattice is isomorphic to an interval in the lattice of subgroups

of some finite group.
(2) Every finite lattice is isomorphic to a congruence lattice of a finite algebra.

Proof. The proof appears in [PP]. See the expository article [G] for more discussion of
lattices and in particular representations of lattices as congruences lattices of algebras.

The Palfy-Pudlak Theorem suggest the following question:

Palfy-Pudlak Question 5.5. Is each nonempty finite lattice isomorphic to a an over-
group lattice OG(H) for some finite group G and subgroup H of G?

The answer to the Palfy-Pudlak Question is almost certainly negative. However the
question has remained open for almost 30 years since the paper of Palfy and Pudlak was
published. There are however several approaches to proving the question has a negative
answer. In each approach one defines a class C of finite lattices, and attempts to show
no lattice in C is isomorphic to an overgroup lattice OG(H) for any finite group G and
subgroup H. To do so, one “reduces” the problem to the case where G is almost simple.
More precisely, one shows that no lattice in C is an overgroup lattice, if some suitable set
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of properties of almost simple groups can be verified. Of course one of those properties
is that no lattice in C is of the form OG(H) with G almost simple and H a subgroup of
G.

We now consider two classes of lattices which are candidates for such an approach.

Definition 5.6. Let Λ be a finite lattice and set Λ′ = Λ − {0,∞}. Regard Λ as a
graph, where the adjacency relation is the comparability relation on Λ. Define Λ to be
disconnected if the graph Λ′ is disconnected.

Example 5.7 Given a positive integer n, define Mn to be the lattice Λ such that the
graph Λ′ has n elements but no edges. An M-lattice is a lattice of the form Mn for some
positive integer n. Notice that (with the exception of M1) M -lattices are disconnected.

Example 5.8 Given a positive integer m, write ∆(m) for the lattice of all subsets of a
set of order m. Define a D∆-lattice to be a lattice such that Λ′ has r > 1 connected
components Λ′i, 1 ≤ i ≤ r, and for each i, Λ′i ∼= ∆(mi)′ for some integer mi > 2. Again
D∆-lattices are disconnected.

There are an infinite number of M-lattices which are intervals in subgroup lattices.
For example if p is a prime and G ∼= Ep2 , then OG(1) ∼= Mp+1. However it seems to
be the consensus that the set of integers n such that Mn is an interval lattice is fairly
sparse. Moreover there is a reduction by Baddeley and Luccini in [BL] which shows that
for a given n, Mn is not an interval lattice if four or five questions about almost simple
groups have positive answers.

Conjecture 5.9. (Aschbacher-Shareshian) No D∆-lattice is isomorphic to a lattice
OG(H) for G a finite group and H a subgroup of G.

Moreover there is a reduction theorem for this conjecture. To describe that reduction,
we need to define the notion of a lower signalizer lattice.

Definition 5.10. Let L be a nonabelian finite simple group. Define T (L) to be the set
of triples τ = (G,H, I) such that:

(T1) G is a finite group and I E H ≤ G, and
(T2) F ∗(H/I) ∼= L.
Assume τ ∈ T (L) and defineW to consist of those H-invariant subgroups W of G such

that W ∩H = I and W ≤ IF ∗(G). Call W the set of signalizers for H in G. Partially
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order W by inclusion, and write Ξ(τ) for the poset obtained by adjoining a greatest
element ∞ to W. Observe Ξ(τ) is a lattice. Call such lattices Ξ(τ) lower signalizer
lattices.

Theorem 5.11. Assume Λ is a D∆-lattice which is isomorphic to an overgroup lattice
in some finite group. Then there exists an almost simple group G such that either:

(1) Λ ∼= OG(H) for some H ≤ G, or

(2) There exists a nonabelian finite simple group L and τ = (G,H, I) ∈ T (L) such
that Λ ∼= Ξ(τ) and G = 〈W,H〉.

Proof. The proof appears in [A1] and [A2]. This result is the reduction theorem for
Conjecture 5.9.

The class of M-lattices is of interest beyond the context of the Palfy-Pudlak Question.

Definition 5.12. Let G be a finite group. Define a subgroup H of G to be of depth d in
G if d is the maximal length of a chain in the poset OG(H). Observe that the maximal
subgroups of G are the subgroups of depth 1, while H is of depth 2 iff OG(H) is an
M-lattice.

Question 5.13. What are the subgroups H of depth 2 in the almost simple groups,
and what are the possible M-lattices OG(H) that can occur when G is almost simple?
In particular describe the subgroups of depth 2 and the corresponding M-lattices in the
alternating and symmetric groups.

Exercises for Section 5

1. Prove Lemma 5.3.

Section 6. Primitive permutation groups.

In this section Ω is a finite set of order n and S = Sym(Ω) is the symmetric group on
X.

We use the cycle notation for describing elements of S. In particular recall a transpo-
sition is a permutation with one cycle of length 2 and n− 1 cycles of length 1.
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Notation 6.1. For g ∈ S we write Fix(g) for the set of fixed points of g on Ω, and
Mov(g) for the set of points moved by g. Here g fixes ω ∈ Ω if ωg = ω and g moves ω
if ωg 6= ω. More generally if g acts on ∆ ⊆ Ω, let Fix∆(g) and Mov∆(g) be the set of
fixed points of g on ∆ and the set of points of ∆ moved by g, respectively. Observe that
if h, g ∈ S with Mov(g) ∩Mov(h) = ∅, then gh = hg.

Recall S is is generated by its transpositions. Further a permutation is an even permu-
tation if it is the product of an even number of transpositions, and an odd permutation if
it is the product of an odd number of transpositions. Recall also that a permutation can’t
be both even an odd (cf. 15.5 in [FGT]), so that the set Alt(Ω) of all even permutations
is a subgroup of S of index 2. This subgroup is the alternating group of degree n, and is
normal as subgroups of index 2 are always normal. In this section we write A for Alt(Ω).

Moreover it turns out:

(6.2) A permutation is even iff it has an even number of cycles of even length.

The cycle structure of g is the function Cycg : N → N counting the number of cycles
of G of length m for each natural number m. It is an easy exercise to show

(6.3) Two permutations are conjugate in S iff they have the same cycle structure.

Let π : G→ S be a permutation representation of G on Ω. We recall:

(6.4) If π : G → Sym(Ω) is a transitive representation then ker(π) = kerH(G) is the
largest normal subgroup of G contained in H.

Proof. See 5.7 in [FGT].

Definition 6.5. The representation π is semiregular if Fix(g) = ∅ for each g ∈ G.
Equivalently the restriction of G to each of its orbits is equivalent to the regular repre-
sentation of G: the representation of G by right multiplication on itself. We say G is
regular if it is transitive and semiregular. A regular normal subgroup of G is a normal
subgroup of G which is regular on X.

(6.6) (1) If K E G and H is a complement to K in G then K is a regular normal
subgroup in the representation of G on G/H.
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(2) If K is a regular normal subgroup of G in its action on Ω then for ω ∈ Ω, Gω is a
complement to K in G and the map α : K → Ω defined by α : k → ωk is an equivalence
of the representation of Gω on K via conjugation with its representation on Ω.

Proof. Assume the hypotheses of (2). As K is regular on Ω, the map α is a bijection.
For h ∈ Gω and k ∈ K,

(kh)α = (ωkh) = ωh−1kh = ωkh = (ωα)h

so the map α is a permutation equivalence.

Recall the partitions of Ω are in 1-1 correspondence with the equivalence relations on
Ω, with an equivalence relation corresponding to the partition defined by the equivalence
classes of the relation. The equivalence relation (or partition) is trivial if either all
elements of Ω are equivalent or all equivalence classes are of order 1.

Definition 6.7. Our group G is said to be primitive on Ω if G is transitive and it
preserves no nontrivial equivalence relation. That is there is no nontrivial partition of G
such that G permutes the blocks of the partition.

Remark 6.8. Recall from Example 2.2 in Section 2 that the primitive representations
are the irreducible permutation representations. Namely the subobjects in the category
of sets are the subsets, so G is transitive iff it preserves no proper nontrivial subobjects,
and all equivalence relations onX are admissible in the category of sets so G is irreducible
iff G is primitive.

(6.9) Let G be transitive on Ω with n > 1 and ω ∈ Ω. Then
(1) G is primitive iff Gω is a maximal subgroup of G.
(2) If G preserves a nontrivial partition P of Ω, then n = |P | · |B|, where B ∈ P is a

block in P .
(3) If n is prime then G is primitive.

Proof. Under the hypotheses of (2), as G is transitive on Ω and permutes the blocks in
P , G is transitive on P , so all blocks of P are of order |B|. Thus (2) holds and of course
(2) implies (3). Further ω is contained in some B ∈ P , and for g ∈ Gω, ω = ωg ∈ B∩Bg,
so as G permutes P , B = Bg and hence Gω ≤ NG(B). Further the same argument shows
NG(B) is transitive on B, so as B 6= Ω, Gω 6= NG(B). Also

1 < |P | = |G : NG(B)|
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so G 6= NG(B) and hence Gω is not maximal in G.
Conversely if Gω is not maximal in G then Gω < H < G. Let B = ωH and P =

{Bg : g ∈ G}. To complete the proof we show P is a nontrivial G-invariant partition
of Ω. First as G is transitive on X, Ω is transitive on P and Ω =

⋃
g∈GBg. Suppose

β ∈ B ∩ Bg; to show P is a partition we must show B = Bg. But as H is transitive on
B, βh = ω for some h ∈ H, so

ω = βh ∈ Bh ∩Bgh = B ∩Bgh

so replacing g by gh and β by ω, we may assume ω = β ∈ Bg. Thus ω = ωkg for some
k ∈ H. But then kg ∈ Gω ≤ H, so g ∈ k−1H = H and hence Bg = B, as desired. This
also shows NG(B) = H. Finally

|B| = |H : Gω| > 1

and
|P | = |G : NG(H)| = |G : H| > 1

so P is nontrivial.

(6.10) Let H E G. Then
(1) If M is a maximal subgroup of G and H � M then G = HM .
(2) If G is faithful and primitive on X and H 6= 1 then H � Gω and H is transitive

on X.

Proof. (1) As H E G, HM ≤ G. Then as H � M , M < HM , so HM = G by
maximality of M .

(2) Let M = Gω; as G is primitive, M is a maximal subgroup of G of 6.9.1. As G is
faithful and transitive, M contains no nontrivial normal subgroup of G. Thus as H 6= 1,
H � M and G = MH by (1). But then H is transitive; ie. Ω = ωG = ωMH = ωH.

Definition 6.11. Recall G is 2-transitive on Ω if G is transitive on ordered pairs of dis-
tinct points of Ω. Recall also (cf. 15.14 in [FGT]) that 2-transitive groups are primitive.

Theorem 6.12. (Jordon) Assume G is primitive on Ω and ∆ is a subset of Ω such that
0 < |∆| < n− 1 and G∆ is transitive on Ω−∆. Then

(1) G is 2-transitive on Ω.
(2) If G∆ is primitive on Ω−∆ then for ω ∈ Ω, Gω is primitive on Ω− {ω}.

Proof. See 15.17 in [FGT].
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(6.13) Assume G is primitive on Ω. Then
(1) If G contains a transposition then G = S.
(2) If G contains a 3-cycle then G = A or S.

Proof. These are consequences of Jordon’s Theorem 6.12. For example if t = (α, β) is a
transposition in G, then apply 6.12 with ∆ = Ω − {α, β}. By 6.12.1, G is 2-transitive
on Ω, so as G contains one transposition, it contains all transpositions. Then as S is
generated by its transpositions, (1) holds. Part (2) is Exercise 5.6.2 in [FGT].

Exercises for Section 6

1. Let G be a transitive permutation group on a finite set Ω and ω ∈ Ω. Prove:
(1) NG(Gω) is transitive on Fix(Gω).
(2) Assume G is k-transitive on Ω and let ∆ be a k-subset of Ω. Then NG(G∆) is

k-transitive on Fix(G∆).

2. Let Ω be a finite set and D a regular abelian subgroup of S = Sym(Ω). Prove
D = CS(D).

3. Let Ω be a finite set of order n ≥ 5, and H a subgroup of S = Sym(Ω) such that
H has two orbits θ and Γ = Ω − θ on Ω, and |θ| = 2. Assume G ∈ OS(H) is transitive
on Ω. Then one of the following holds:

(1) {θg : g ∈ G} is a G-invariant partition of Ω.
(2) G is 3-transitive on Ω.
(3) Hθ has two orbits Γ1 and Γ2 on Γ, interchanged by H, and either:
(i) G is 2-transitive on Ω and Gθ acts on Γ1 and Γ2, or
(ii) setting θ = {α1, α2} and Ωi = {αi} ∪ Γi, P = {Ω1,Ω2} is a G-invariant partition

of Ω such that NG(Ωi) is 2-transitive on Ωi for i = 1, 2.
(Hint: You may use the theory of rank 3 permutation groups in section 16 of [FGT].)

Section 7. Partitions, equivalence relations, and chamber systems

In this section we assume that Ω is a finite set and let S = Sym(Ω) be the symmetric
group on Ω and A = Alt(Ω) the alternating group on Ω.

We begin our study of the subgroup structure of S and A by investigating the sub-
groups of G stabilizing suitable relations or families of relations on Ω. In particular such
subgroups are candidates for maximal subgroups of S and/or A. This leads us to the
following definition:



THE SUBGROUP STRUCTURE OF FINITE ALTERNATING AND SYMMETRIC GROUPS31

Definition 7.1. Let R be an m-ary relation on Ω; that is R is a subset of the set product
of m copies of Ω. Observe that S permutes the m-ary relations on Ω via s : R 7→ Rs for
s ∈ S. The stabilizer NS(R) of R in S is the subgroup of all g ∈ S such that Rg = R.

Definition 7.2. Write P = P(Ω) for the set of partitions of Ω. Each P ∈ P determines
an equivalence relation ∼P on Ω, whose equivalence classes are the blocks of P . Of course
in the other direction, P is also determined by ∼P as the set of equivalence classes of the
relation.

The stabilizer NS(P ) of P in S is the stabilizer in S of the relation ∼P . For B ∈ P ,
set κB = AΩ−B and κ(P ) = 〈κB : B ∈ P 〉. Observe κB acts faithfully as Alt(B) on B,
and κ(P ) =

∏
B∈P κB is a direct product.

A partition P is a regular (m, k)-partition if P has k blocks, each of size m. An
equivalence relation is regular if its partition is regular.

Define a partial order on P by P ≤ Q if Q is a refinement of P . Equivalently, if
α, β ∈ Ω and α ∼Q β then also α ∼P β.

Write 0 for the member of P with a unique block Ω, and set

∞ = {{ω} : ω ∈ Ω} ∈ P.

Thus 0 is the least element and ∞ the greatest element of the poset P. Set P ′ = P ′(Ω) =
P − {0,∞}. Thus P ′ is the set of nontrivial partitions of Ω.

For G ≤ S, set P(G) = {P ∈ P ′ : G ≤ NS(P )}. Thus P(G) is the set of nontrivial
G-invariant partitions of Ω.

If Q ≤ P and B ∈ Q, set PB = {C ∈ P : C ⊆ B} and observe that PB ∈ P(B), and
Q/P = {PB : B ∈ Q} ∈ P(P ).

(7.3) P is a lattice.

Proof. For P,Q ∈ P,

P ∨Q = {A ∩B : A ∈ P, B ∈ Q, and A ∩B 6= ∅},

while P ∧Q is the partition such that ∼P∧Q is the equivalence relation generated by ∼P

and ∼Q.

Definition 7.4. Let I be a finite set. A chamber system X on Ω over I is a collection
X = {∼i: i ∈ I} of equivalence relations on Ω. The members of Ω are called the chambers
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of X. A morphism α : X → X ′ of chamber systems over I is a function α : Ω → Ω′

preserving all the relations; that is for each i ∈ I, if ω, λ ∈ Ω with ω ∼i λ then ωα ∼i λα.
The stabilizer of X is the subgroup

NS(X) =
⋂
i∈I

NS(∼i).

The rank of the chamber system X is the order of I. The definitions are due to Tits; cf.
section 2.1 in [T]).

In the terminology of [T], X is connected if ∼1 ∧ · · · ∧ ∼r= 0, where I = {1, . . . , r};
ie. the equivalence relation generated by the relations ∼i, i ∈ I, is the trivial relation
0. Define X to be injective if ∼1 ∨ · · · ∨ ∼r= ∞; that is for each ω ∈ Ω, if [ω]i is the
equivalence class of ∼i containing ω, then [ω]1 ∩ · · · ∩ [ω]r = {ω}.

Define X to be regular if all the partitions ∼i, i ∈ I, are regular.
Define a CIR-chamber system to be a connected, injective, regular rank 2 chamber

system on Ω.
For J ⊆ I, write ∼J for the equivalance relation ∧j∈J ∼j generated by {∼j : j ∈ J}.

For ω ∈ Ω, write [ω]J for the equivalence class of ω under ∼J . Write J ′ = I − J for the
complement to J in I. Define X to be nondegenerate if for each ω ∈ Ω and each j ∈ I,

{ω} =
⋂
i∈I

[ω]i′ and [ω]j =
⋂
i∈j′

[ω]i′ .

Example 7.5. Let V be an r+1-dimensional vector space and I = {1, . . . , r}. Form the
projective geometry PG(V ) of V . Thus PG(V ) is the simplicial complex whose vertices
are the proper nonzero subspaces of V , with simplices the chains in the poset of such
subspaces ordered by inclusion. The maximal simplices are the chains (V1 < · · · < Vr)
with dim(Vi) = i. Form the chamber system X = X(PG(V )) over I whose chambers are
the maximal simplices, and with (V1 < · · · < Vr) ∼i (U1 < · · · < Ur) iff Uj = Vj for all
i 6= j. Then X is connected and nondegenerate.

Observe that, as defined in Exercise 7.4, PG(V ) is a geometric chamber system with
type function τ(U) = dim(U), and X is indeed the image of PG(V ) under the functor
X defined in Exercise 7.4. Moreover by the same exercise, CCC(X) is naturally isomorphic
to PG(V ) as a geometric complex.

(7.6) Let P,Q ∈ P and assume H ≤ NS(P ) ∩NS(Q) is transitive on Ω. Then
(1) P , Q, P ∨Q, and P ∧Q are regular partitions.
(2) H acts on P ∨Q and P ∧Q.



THE SUBGROUP STRUCTURE OF FINITE ALTERNATING AND SYMMETRIC GROUPS33

(3) For B ∈ Q, NH(B) is transitive on B, and if Q ≤ P then NH(B) ≤ NS(PB), so
PB is a regular partition of B.

(4) If P ∨ Q = ∞ then for B ∈ P ∧ Q, ρB = (PB , QB) is a CIR-chamber system on
B, and NH(B) ≤ NS(ρB).

(5) If P ∨Q = ∞ and P ∧Q = 0, then ρ = (P,Q) is a CIR-chamber system on Ω and
H ≤ NS(ρ).

Proof. As S is a group of automorphisms of the lattice P, and as H acts on P and Q,
(2) holds.

As H ≤ NS(Q), H permutes the blocks of Q. Then as H is transitive on Ω, H is
transitive on the blocks of Q, and for B ∈ Q, NH(B) is transitive on B. As H is transitive
on Q, Q is regular. Similarly P is regular, as are P ∨ Q and P ∧ Q by (2). Thus (1)
holds.

Suppose Q ≤ P and let B ∈ Q. Recall PB ∈ P(B). As P and B are NH(B)-invariant,
so is PB , so PB is regular by (1). Thus (3) holds.

Suppose P ∨Q = ∞ and let B ∈ P ∧Q. By (3), PB and QB are regular. As B ∈ P ∧Q,
we have PB ∧ QB = 0, and then as P ∨ Q = ∞, also PB ∨ QB = ∞. Thus (4) follows,
and then (4) implies (5).

We now begin to investigate the question of when the stabilizer in T ∈ {S,A} of a
nontrivial partition P ∈ P is maximal in T . Trivially a necessary condition is that either
|P | = 2, or P is regular. It will turn out that these conditions are usually also sufficient.
When P is regular, κ(P ), SP , and AP are normal subgroups of NS(P ), and we also go
a long way toward determining the maximal overgroups of these subgroups in S and A.
Recall from the introduction that results of that sort are very useful in investigating the
lattice of subgroups of S and A.

(7.7) Let ∆ ⊆ Ω and assume either

(i) |∆| ≥ 2 and set K = SΩ−∆, or

(ii) |∆| > 2 and set K = AΩ−∆.

Let G ∈ OS(K). Then

(1) If G is primitive on Ω then A ≤ G.

(2) If Q ∈ P(G) then K ≤ GQ and ∆ is contained in some block B of Q.

(3) If ∆ ⊆ B ⊆ Ω and NG(B) is primitive on B then κB ≤ G.

Proof. Observe that in (ii), |∆| > 2 and K acts faithfully as Alt(∆) on ∆, so K is
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generated by 3-cycles t. Similarly in (i), K is generated by transpositions t. Now t ∈
K ≤ G, so (1) follows from 6.13.

Assume Q ∈ P(G). Let B ∈ Q. Then either t acts on Q or the orbit of 〈t〉 on
Q containing B is of order |t|. In the latter case, |t| = |Mov(t)| ≥ |t||B| > |t|, a
contradiction. Therefore t acts on B, and then as 〈t〉 is transitive on Mov(t), B is
contained in Fix(t) or Mov(t) ⊆ B. Now K is generated by 3-cycles or transpositions,
which all act on each B in Q, so K ≤ NS(B). Indeed there exists B ∈ Q such that
t moves a point of B, so Mov(t) ⊆ B. Then as K acts on B and is transitive on ∆,
∆ = Mov(t)K ⊆ B. This establishes (2).

Finally assume the hypothesis of (3). Applying (1) to NG(B)B in the role of G, we
conclude that NG(B)B contains Alt(B). Thus κB ≤ 〈tNG(B)〉 ≤ G, so (3) holds.

(7.8) Let P ∈ P ′ be regular. Assume either
(i) |P | < n/2 and set K = κ(P ), or
(ii) K is the kernel SP of the action of NS(P ) on P .

Let G ∈ OS(K). Then
(1) If G is primitive on Ω then A ≤ G.
(2) P is the greatest member of P(K), and K ≤ GQ for each Q ∈ P(K).
(3) If G is transitive on Ω and A � G, then P(G) has a greatest member Q. Moreover

P = Q if |Q| = n/2 while κ(Q) ≤ G if |Q| < n/2.
(4) Suppose G is transitive on P , let Γ(G) be the set of G-invariant partitions of P ,

and for γ ∈ Γ(G) define P (γ) to be the partition of Ω with blocks Bσ, σ ∈ γ, where

Bσ =
⋃

∆∈σ

∆.

Then the map γ 7→ P (γ) is a bijection of Γ(G) with P(G) and {NAG(Q) : Q ∈ P(G)} is
the set of maximal overgroups of G in AG.

Proof. We apply 7.7 to a block ∆ of P . Then (1) is immediate from 7.7.1, while if
Q ∈ P(K) then by 7.7.2, each block ∆ of P is contained in some block of Q. Thus
Q ≤ P , establishing (2). Similarly under the hypothesis of (3), P(G) 6= ∅ by (1), and
for each Q ∈ P(G) and B ∈ Q, B contains some block ∆ of P , so by 7.7.3, κB ≤ G.
Thus κ(Q) ≤ G. Further Q ≤ P by (2), so if |Q| = n/2, then P = Q and hence P is
the greatest member of P(G). On the other hand if |Q| < n/2 then as κ(Q) ≤ G, we
conclude from (2) that Q is the greatest member of P(G). This completes the proof of
(3).
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Finally assume the hypothesis and notation of (4). By (2), the map γ 7→ P (γ) is a
bijection of Γ(G) with P(G), while by (1), {NAG(Q) : Q ∈ P(G)} is the set of maximal
overgroups of G in AG.

(7.9) Assume n > 2 and let P ∈ P be regular with blocks of size 2. Then

(1) P is the greatest member of P(AP ).

(2) If M ∈ OS(AP ) acts primitively on P then P(M) = {P}.

Proof. Let K = AP and Q ∈ P(K). We first prove (1), so we must show Q ≤ P . This
holds if K ≤ AQ as P is the set of orbits of K on Ω. Thus we may assume K � AQ. Let
T = {t ∈ K : |Mov(t)| = 4}. Then K = 〈T 〉, so there is t ∈ T −MQ. We conclude from
the proof of 7.7 that |Q| = n/2 and tQ = (α, β) is a transposition with Mov(t) = α ∪ β.
As n > 4 there is s ∈ T with γ = Mov(t) ∩ Fix(s) of order 2. Then γ ⊆ α ∪ β, so we
may take α ∩ γ 6= ∅, so s acts on α and then α = γ. But now as [s, t] = 1, t acts on
FixMov(t)(s) = α, a contradiction. This establishes (1).

Now assume the hypothesis of (2), and let Q ∈ P(M). By (1), Q ≤ P . Then from
7.2, Q/P = {PB : B ∈ Q} is an M -invariant partition of P , so as M is primitive on P ,
Q/P is trivial, and hence P = Q.

Theorem 7.10. Let P ∈ P ′ be regular and let T be S or A. Then either

(1) NT (P ) is maximal in T , or

(2) n = 8, |P | = 4, T = A, NA(P ) is a minimal parabolic subgroup of A ∼= L4(2), and
OA(NA(P )) = {NA(P ),M1,M2, A}, where M1 and M2 are maximal parabolic subgroups
of A and stabilizers of affine structures on Ω.

Proof. First observe that NS(P ) contains a transposition t with Mov(t) ⊆ B ∈ P , so

(a) NS(P ) � A.

Next as P is nontrivial, n ≥ 4, and when n = 4 we have |P | = 2 and (1) holds trivially.
Thus we may assume:

(b) n > 4.

Let M = NT (P ). If |P | < n/2 or T = S, then as M is primitive on P , applying 7.8.4
to M in the role of “G”, we conclude that M is maximal in AM . But T = AM by (a),
so that (1) holds. Therefore we may assume:

(c) T = A and |P | = n/2.

Suppose n = 8. Then A ∼= L4(2) is of Lie type over F2, and we appeal to the theory of
such groups; cf. [GLS3] or [FGT] sections 43 and 47. As |M |2 = 64 = |A|2, M contains
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a Sylow 2-subgroup U of A. As A ∼= L4(2) is of Lie type over F2, U is a Borel subgroup
of A, so if follows from the theory of groups of Lie type (cf. 43.7.2 in [FGT]) that M is a
parabolic subgroup of A. Indeed as |M : U | = 3, M is a minimal parabolic, so as A is of
Lie rank 3 there are exactly two maximal parabolics M1 and M2 over M (cf. 4.3.7.2 in
[FGT]). Indeed one can check that each Mi is a split extension of O2(Mi) ∼= E8 by L3(2),
and that O2(Mi) is regular on Ω, so from 8.4, Mi is the stabilizer of an affine structure
on Ω. We have shown that conclusion (2) of Theorem 7.9 holds in this case, so we may
assume:

(d) n 6= 8.
It remains to show that M is maximal in A, so we may assume G is a maximal

overgroup of M in A and M < G. As M < G, P /∈ P(G), so as M is primitive on P we
conclude from 7.9.2 that:

(e) G is primitive on Ω.
If T = S, then M � A by (a), so in any event as G is proper in T , we conclude that
(f) A � G.
We may assume Ω = {1, . . . , n} and P = {{1, 2}, {3, 4}, . . . }. Then (using (b) and

(c)), t = (1, 2)(3, 4) and s = (1, 2)(5, 6) are in K = AP , and r = (1, 3)(2, 4) ∈ M . Thus
E4

∼= R = 〈t, r〉 ≤ M with Mov(R) = θ = {1, 2, 3, 4}. Applying Jordon’s Theorem 6.12
to ∆ = Ω − θ, we conclude that G is 2-transitive on Ω. Indeed M1,2 is transitive on
Γ = Ω− {1, 2}, so

(g) G is 3-transitive on Ω.
(h) G1,2 = M1,2.
For tΓ is a transposition, so by 6.13.1, either GΓ = Sym(Γ) or GΓ is imprimitive. But

MΓ is the stabilizer of the partition P ′ = P − {1, 2} of Γ, so as we’ve proved 7.10 in the
case where T = S, it follows that GΓ = MΓ when GΓ is imprimitive, so that (h) holds in
that case. However if GΓ = Sym(Γ), then G1,2 acts faithfully as Alt(Γ) on Γ, so by (b),
G contains a 3-cycle, contrary to (e), (f), and 6.13.2. This completes the proof of (h).

It follows from (h) that Fix(G1,2,3) = θ, so by (g) and Exercise 6.1, Gθ is 3-transitive.
Then as sθ is a transposition, Gθ = Sym(θ). In particular there is g ∈ NG(θ) such that
u = sg = (1, 3)(α, β) for some α, β ∈ ∆. Then v = su = (1, 2, 3) · w, where w = (5, 6),
(5, 6)(α, β), or (5, 6, β), when (α, β) = (5, 6), α, β > 6, or α = 5 and β > 6, respectively.
In the first two cases, G contains a 3-cycle, contrary to (e), (f), and 6.13.2. In the third
case, we may take β = 7, so v∆ = (5, 6, 7) /∈ M∆. But then as M∆ is maximal in
Sym(∆) (as we’ve proved 7.10 when T = S), we have G∆ = Sym(∆). Further n ≥ 10
by (d), so NG(θ)∞ ≤ Gθ contains a 3-cycle, for our usual contradiction.
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Theorem 7.11. Let Γ be a proper nonempty subset of Ω, let 1 6= T be S or A, and let
M = NT (Γ). Then either

(1) M is maximal in T , or

(2) |Γ| = n/2, and NT (P ) is the unique maximal overgroup of M in T , where P =
{Γ,Ω− Γ} ∈ P.

Proof. The proof is similar to that of 7.10, only much easier, and is left as Exercise 7.1.

(7.12) Let P = {∆1, . . . ,∆r} be a regular (m, r)-partition and set M = NS(P ), K =
SP , and for 1 ≤ i ≤ r, set Ki = SΩ−∆i

. Then

(1) Ki acts faithfully on ∆i as Sym(∆i).

(2) K = K1 × · · · ×Kr.

(3) There is a complement T to K in M , and a faithful representation of T on I =
{1, . . . , r}, so that T acts on P and {K1, . . . ,Kr} via Kt

i = Kit and ∆t
i = ∆it. Moreover

Ti centralizes Ki and ∆i.

Proof. Exercise 7.2.

Exercises for Section 7

1. Prove Theorem 7.11.

2. Prove Lemma 7.12.

3. Let G be a group, H a subgroup of G, I = {1, . . . ,m} a finite set, and P = (Pi :
i ∈ I) a family of overgroups of H in G. For J ⊆ I, set PJ = 〈Pj : j ∈ J〉, with P∅ = H.
Define a relation ∼J on G/H by Hu ∼J Hv iff vu−1 ∈ PJ . Define X = X(G,H,P) to
be the set G/H together with the relations ∼i, i ∈ I, regarded (after part (1) of this
problem) as a chamber system on G/H over I. Prove:

(1) For each J ⊆ I, ∼J is an equivalence relation on G/H, so X is a chamber system
on G/H over I.

(2) Under the representation π of G on G/H by right multiplication, G preserves ∼J

for each J ⊆ I, so Gπ ≤ Aut(X).

(3) For J ⊆ I and α ∈ G/H, write [α]J for the equivalence class of ∼J containing α.
Then [H]J is the orbit of H under PJ , and PJ is the stabilizer in G of [H]J ∈∼J .

(4) For each ∅ 6= J ⊆ I, ∼J is the equivalence relation generated by {∼j : j ∈ J}.
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(5) X is injective iff
⋂

i∈I Pi = H, and X is nondegenerate iff for each j ∈ I,⋂
i∈I

Pi′ = {H} and
⋂
i∈j′

Pi′ = Pj .

(6) X is connected iff G = 〈P〉.
(7) Assume Y = {'i: i ∈ I} is a chamber system on Ω over I, and Ḡ is a group

of automorphisms of Y transitive on Ω. Pick ω ∈ Ω, set H̄ = Ḡω, and for i ∈ I, set
P̄i = NḠ([ω]i). Set P̄ = {P̄i : i ∈ I} and X̄ = X(Ḡ, P̄). Define ϕ : Ω → Ḡ/H̄ by
ϕ : ωg 7→ H̄g for g ∈ Ḡ. Then ϕ : Y → X̄ is a Ḡ-equivariant isomorphism of chamber
systems.

4. Let I = {1, . . . ,m} be a finite set. A geometric complex over I is a simplicial
complex C = (V,Σ), together with a surjective function τ : V → I on the vertex set V of
C, such that for each σ in the set Σ of simplices of C, we have τ : σ → I is an injection,
and each simplex is contained in a simplex of order m. Define τ(σ) to be the type of σ.
The chambers of C are the simplices of type I; write Ω(C) for the set of chambers of C. A
morphism α : C → C′ of complexes over I is a simplicial map α : V → V ′ which preserves
type.

Define X(C) to be the set Ω(C) together with the relations (∼i: i ∈ I) on Ω(C)
defined by ω ∼i λ iff the subsimplices of ω and λ of type i′ are the same. Define
X(α) : X(C) → X(C′) by ωX(α) = ωα.

Let X = ('i: i ∈ I) be a chamber system over I on a set Ω. Define CCC(X) =
(V (X),Σ(X) to be the geometric complex over I with

V (X) =
∐
i∈I

Ωi′ ,

where Ωi′ is the set of equivalence classes of 'i′ , and σ ⊆ V (X) is a simplex iff
⋂

v∈σ v 6=
∅. Define τ(X)(v) = i, where v ∈ Ωi′ . Given a morphism β : X → X ′ of chamber
systems over I, define CCC(β) : CCC(X) → CCC(X ′) by CCC(β) : [ω]i′ 7→ [ωβ]i′ .

Prove:
(1) X is a functor from the category C of geometric complexes over I to the category

X of chamber systems over I.
(2) CCC is a functor from X to C.
(3) For J ⊆ I and σ ∈ Σ(C) of type J ′, define σϕ = {ω ∈ Ω(C) : σ ⊆ ω}. Then

σϕ ∈∼J= {∼j : j ∈ J} and ∼J= {σϕ : σ ∈ Σ(C) and τ(σ) = J ′}.
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(4) The map ϕ : V → V (X(C)) defined in (3) is an isimorphism ϕ : C → CCC(X(C)) of
geometric complexes over I.

(5) For ω ∈ Ω set ωψ = {[ω]i′ : i ∈ I}. Then ψ : X → X(CCC(X)) is a surjective
morphism of chamber systems over I, and ψ is an isomorphism iff X is nondegenerate.

(6) X(C) is nondegenerate, so that X(C) ∼= X(CCC(X(C))).
(7) Let T = X ◦CCC regarded as a functor from the category X to X. Then ψ : 1 → T is

a natural transformation, where 1 is the identity functor on X; that is for X,Y ∈ X and
β ∈Mor(X,Y ), βψ = ψT (β).

(8) Let T̃ = CCC ◦X regarded as a functor from C to C. Then ϕ : 1 → T̃ is a natural
equivalence.

(9) Let Y be the category of nondegenerate chamber systems over I. Then X : C → Y

and CCC : Y → C define equivalences of categories.

Section 8. Affine structures

In this section p is a prime, e is a positive integer, and Ω is a finite set of order pe.
Set S = Sym(Ω). We discuss affine structures on Ω. Recall the discussion of relations
and their stabilizers in Definition 7.1.

Definition 8.1. An affine structure on Ω is a 4-ary relation A = A(Ω,+) on Ω of the
form

A = {(a, b, c, b+ c− a) : a, b, c ∈ Ω},

defined by some e-dimensional vector space structure (Ω,+) on Ω over the field Fp of
order p. The stabilizer in S of the affine space structure A is the subgroup NS(A) of S
defined in 7.1.

(8.2) Let V = (Ω,+) be an e-dimensional vector space structure over Fp, A = A(V )
the corresponding affine structure on Ω, and M = NS(A) the stabilizer of A. Then

(1) For each a ∈ Ω, the translation τa : b 7→ a+ b is in M .
(2) D = D(A) = {τa : a ∈ Ω} is a subgroup of M isomorphic to Epe , and D is regular

on Ω.

Proof. We first prove (1). Let d ∈ Ω and τ = τd. Then

(a, b, c, b+ c− a)τ = (a+ d, b+ d, c+ d, b+ c− a+ d)

= (a+ d, b+ d, c+ d, (b+ d) + (c+ d)− (a+ d)) ∈ A,
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so τ ∈M , establishing (1).
Visibly τaτb = τa+b, so D = {τd : d ∈ Ω} is a subgroup of M , and the map a 7→ τa is

an isomorphim of D with the group V . Therefore D ∼= Epe . For a, b ∈ Ω, aτb−a = b, so
D is transitive on Ω, and visibly D0 = 1, so D is regular on Ω, establishing (2).

Definition 8.3. Given an Fp-space structure (Ω,+) on Ω, define the group D(A(Ω,+))
of 8.2.2 to be the group of translations of A(Ω,+). Given Epe ∼= D ≤ S with D regular
on S, and given a base point ω ∈ Ω, define a relation + = +D,ω on Ω by ωa+ ωb = ωab

for a, b ∈ D. This is well defined as D is regular on Ω, so for each α ∈ Ω, there is a
unique d ∈ D with α = ωd.

(8.4) Let Epe ∼= D ≤ S be regular on Ω and pick ω ∈ Ω. Then
(1) (Ω,+D,ω) is an Fp-space with zero vector ω.
(2) A(D) = A(Ω,+D,ω) is an affine structure on Ω independent of ω.
(3) D = D(A) is the group of translations of A.
(4) NS(A(D)) = NS(D).
(5) NS(D)ω is a complement to D in NS(D), and NS(D)ω acts faithfully on D as

GL(D).

Proof. Write D additively, and set + = +D,ω. By construction the map ϕ : d 7→ ωd is
an isomorphism of the group D with (Ω+) in the category of sets with binary operation,
so (1) holds. Thus A = A(D) is an affine structure on Ω. If δ is a second base point,
then δ = ωd for some d ∈ D and for a, b, c ∈ D,

(δa, δb, δc, δ(b+ c− a)) = (ω(a+ d), ω(b+ d), ω(c+ d), ω((b+ d) + (c+ d)− (a+ b))) ∈ A,

so A is independent of the choice of ω, establishing (2).
Part (3) is immediate from the definitions.
Set G = NS(D) and J = Gω. As D is abelian and regular on Ω, D = CS(D) by

Exercise 6.2. Then by 1.13.2, G/D ∼= GL(D). As D is regular on Ω, J is a complement
to D in G, so J ∼= GL(D), and as D = CS(D), J acts faithfully on D. This completes
the proof of (5).

Let T = NS(A); it remains to show that G = T . Identifying Ω with D via the bijection
ϕ, we may assume Ω = D and ω = 0 is the identity of D. Subject to this identification,
J acts on Ω via conjugation by 6.6.2. As D is regular on Ω, T = T0D, where T0 is the
stabilizer in T of 0. Thus it remains to show T0 = J . First for j ∈ J ,

(a, b, c, b+ c− a)j = (aj , bj , cj , (b+ c− a)j) = (aj , bj , cj , bj + cj − aj)
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as j preserves addition on D. Thus J ≤ T0. Second, for t ∈ T0,

(0, at, bt, (a+ b)t) = (0, a, b, a+ b)t ∈ A

for all a, b ∈ D, as T preserves A, so (a+ b)t = at+ bt, and hence t ∈ J . This completes
the proof of (4).

(8.5) Let V = (Ω,+) be an e-dimensional vector space structure over Fp, A = A(V )
the corresponding affine structure on Ω, M = NS(A) the stabilizer of A, 0 ∈ Ω the zero
vector in V , and D the group of translations of A. Then

(1) F ∗(M) = D ∼= Epe , and D is regular on Ω.
(2) The stabilizer M0 of 0 in M is a complement to D in M , M0

∼= GL(V ), and the
map a 7→ τa is an equivalence of the representation of M0 on Ω with the representation
of M0 on D via conjugation.

(3) A = A(D).
(4) The map D 7→ A(D) is an S-equivariant bijection between the set of elementary

abelian regular subgroups of S and the set of affine structures on Ω.
(5) S is transitive on its affine space structures.

Proof. By 8.2.2, D ∼= Epe is regular on Ω, so by 8.4, B = A(D) is an affine structure on
Ω. Consider the Fp space U = (Ω,�), where � = +D,0, and 0 ∈ Ω is the zero vector of
V . Observe for a, b ∈ Ω,

a+ b = 0τa + 0τb = 0(τaτb) = 0τa � 0τb = a� b,

so U = V , and hence B = A, establishing (3). Then by (3) and 8.4.3, the map ψ : D →
A(D) of (4) has inverse A 7→ D(A), so ψ is a bijection. Visibly ψ is S-equivariant, so
(4) holds.

By (4), M = NS(D). By 8.4.3, M/D ∼= GL(D), so in particular Op(M/D) = 1. Thus
D = Op(M). We saw during the proof of 8.4 that D = CS(D). Therefore D = F ∗(M)
by 3.7 and 3.9, completing the proof of (1).

As M = NS(D), (2) follows from 8.4.5.
The representation of D on Ω is the regular representation, which is determined up

to quasiequivalence, so S is transitive on such subgroups D by 1.13.1. Then (4) implies
(5).

Section 9. Diagonal structures
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In this section we assume the following hypothesis:

Hypothesis 9.1. L is a nonabelian finite simple group, r > 1 is an integer, and Ω is a
finite set of order |L|r−1. Set S = Sym(Ω).

Definition 9.2. Define Diag(L,Ω) to be the set of transitive subgroups D of S such that
D is the direct product of r copies of L, and for ω ∈ Ω, Dω is a full diagonal subgroup of
D. (See Definition 4.8 for the definition of a full diagonal subgroup of the direct product
of isomorphic groups.)

(9.3) S acts transitively via conjugation on Diag(L,Ω).

Proof. Let D ∈ Diag(L,Ω). By 4.10.2, Aut(D) is transitive on the set of full diagonal
subgroups of D. Thus by 1.11, for each D′ ∈ Diag(L,Ω), the inclusion maps ι : D → S

and ι′ : D′ → S are quasiequivalent. Then the lemma follows from 1.13.1.

(9.4) Let D ∈ Diag(L,Ω), ω ∈ Ω, F = Dω, and M = NS(D). Let L = {L1, . . . , Lr} be
the set of components of D. Then

(1) D = L1 × · · · × Lr with Li
∼= L for each i.

(2) There exists a family ααα = (α1, . . . , αr) of isomorphisms αi : L1 → Li with α1 = 1
the identity map on L1, such that

F = diag(ααα) = {
∏

i

aαi : a ∈ L1}.

(3) M = MωD with Mω
∼= NAut(D)(F ) and D = F ∗(M).

(4) Mω = NM (F ) = T ×K, where T acts faithfully on L as Sym(L) with NT (L1) =
CT (L1), K is the kernel of the action of Mω on L, and K acts faithfully on L1 via
conjugation as Aut(L1) with F = F ∗(K).

Proof. By 9.2, (1) holds and F is a full diagonal subgroup of D. Then (2) follows from
4.9.1. By 9.2, D is transitive on Ω, so M = MωD.

Let X = L1 · · ·Lr−1. As F is a full diagonal subgroup of D, F is a complement to
X in D, so X is regular on Ω. Thus X is a regular normal subgroup of D, so by 6.6.2,
the map x 7→ ωx is an equivalence of the representation of F on X via conjugation with
the representation of F on Ω. In particular as CX(F ) = 1, Fix(F ) = {ω}. Thus CS(D)
fixes ω, so as D is transitive on Ω we conclude that CS(D) = 1. Then by 1.13.2 and 1.11,
Mω

∼= NAut(D)(F ). As D E M and CS(D) = 1, D = F ∗(M) by 3.5.2 and 3.9. This
completes the proof of (3).
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Next F = Dω E Mω as D E M . But by 4.10.3, F = ND(F ), so as M = MωD, it
follows that Mω = NM (F ). Now 4.10.3 completes the proof of (4).

Remark 9.5. We wish to define a notion of a “diagonal structure” on Ω determined by
L in such a way that there exists an S-equivariant bijection D 7→ d(D) of Diag(L,Ω)
with the set diag(L,Ω) of diagonal structures on Ω. The easiest way to accomplish this
goal is to define diag(L,Ω) to be Diag(L,Ω). The reader is free to adopt this definition
and ignore the remainder of this section. On the other hand, the classes of “structures”
we have considered so far are all defined to be families of relations on Ω, so it would be
nice to give a definition of diag(L,Ω) in that language. In the remainder of the section,
we work toward such a definition. It should be noted however that it is not clear the
point of view we introduce below is all that useful, although it is used in our proof of a
theorem of Burnside in 11.6, and in the proof of 14.6.4.

Definition 9.6. Let ∆ be a finite set. An orbital structure on ∆ is a partition O =
{Oi : i ∈ I} of ∆×∆. Thus O is a collection of relations Oi on ∆. Alternatively on can
regard O as a coloring of the complete directed graph on ∆ with the set I of colors. The
stabilizer NSym(∆)(O) of O in Sym(∆) is the subgroup

NSym(∆)(O) =
⋂
i∈I

NSym(∆)(Oi)

of Sym(∆) preserving each of the relations in O.

Example 9.7. Let ∆ be a finite set and G a transitive subgroup of T = Sym(∆). Define
the orbital structure O(G) of G to be the set of orbits of G on ∆ ×∆. Visibly O(G) is
an orbital structure on ∆, and G ≤ NT (O(G)).

Observe that if G is 2-transitive on ∆, then O(G) = {O1, O2}, where O1 = {(δ, δ) :
δ ∈ ∆} is the diagonal orbital, and O2 = ∆×∆−O1. Hence in this case, T = NT (O(G)).
But if G is not 2-transitive, then NT (O(G)) is a proper subgroup of T . In particular if
G is maximal in T , then G = NT (O(G)).

Indeed the various graphs G on Ω preserved by G can be retrieved from O(G) by
defining G = (Ω, E), where the set E of edges of G is the union of some suitable subset
of the relations in O(G). By construction, G ≤ Aut(G), and if G is maximal in S then
G = Aut(G) for each such graph G.
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Definition 9.8. Define diag(L,Ω) to be the set of orbital structures on Ω isomor-
phic to O(NS(D)) for some D ∈ Diag(L,Ω). In particular by Example 9.7, NS(D) ≤
NS(O(NS(D)), and ifNS(D) is maximal in S (which it is) thenNS(D) = NS(O(NS(D))).
Hence the mapD 7→ O(NS(D)) is a S-equivariant bijection of Diag(L,Ω) with diag(L,Ω).

Example 9.9. Here is a nice description of the members of diag(L,Ω) when r = 2.
There is a similar, but less attractive, description for larger r. See Exercise 9.1 for this
description.

Assume r = 2. Then |Ω| = |L|, so we take Ω = L. Let

D = {(a, b) : a, b ∈ L}

be the direct product of two copies of L, and let

F = {(a, a) : a ∈ L}

be the standard full diagonal subgroup of D. Define t ∈ Aut(D) by (a, b)t = (b, a), and
for α ∈ Aut(L), define kα ∈ Aut(D) by (a, b)kα = (aα, bα). Then the map k : α 7→ kα is
an embedding of Aut(L) in Aut(D); write K for the image of this embedding. Observe
t centralizes F , and, identifying D with Inn(D) via d 7→ cd where cd ∈ Aut(D) is
conjugation by d ∈ D, we have Inn(L)k = F . Thus K ∩D = F . By 4.10, B = K〈t〉 =
NAut(D)(F ). Set G = DB ≤ Aut(D).

Represent D on Ω = L via c · (a, b) = a−1cb for a, b, c ∈ L. Represent B on L

via c · kα = cα and c · t = c−1. These representations embed G in S as a transitive
subgroup with the stabilizer G1 of 1 ∈ L in G equal to B. Therefore D ∈ Diag(L,Ω)
and G = NS(D) by 4.10.

We next define an orbital structure OL on Ω. Let C be the set of orbits of B on L,
and for C ∈ C, define

OC = {(a, b) ∈ L× L : ba−1 ∈ C}.

Finally set OL = {OC : C ∈ C}. The next lemma says that OL = O(G), so that
OL ∈ diag(L,Ω).

(9.10) Assume r = 2 and take Ω = L and define D, G, and OL as in Example 9.9.
Then

(1) OL = O(G).
(2) OL ∈ diag(L,Ω).

Proof. Exercise 9.1.
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Exercises for Section 9

1. Assume Hypothesis 9.1, let D ∈ Diag(L,Ω), and adopt the notation of 9.4. Set
I = {1, . . . , r}, X = L2 · · ·Lr and regard D as LI and F = {ι(a) : a ∈ L}, where
ι(a)(i) = a for all i ∈ I. Prove:

(1) X is regular on Ω, so we can take X = Ω via the identification x 7→ ωx for x ∈ X.

(2) For a ∈ L, define ξ(a) ∈ X by ξ(a)(i) = a for each 1 < i ∈ I. Let πX : D → X

be the projection map of D = L1 ×X onto X. Then, subject to the identification of Ω
with X in (1), D acts on Ω via y · d = ξ(d(1))−1y(dπX), for d ∈ D and y ∈ X.

(3) The kernel K of the action of Mω on L can be regarded as Aut(L). Further K
acts on D by conjugation via (dk)(i) = d(i)k for k ∈ K and d ∈ D, and, subject to the
identification of Ω with X in (1), K acts on Ω via conjugation on X.

(4) We can choose T = Sym(I) to act on D by conjugation via dt(i) = d(it
−1

) for
d ∈ D and t ∈ T .

(5) For 1 < i ∈ I and a ∈ L, define ζi(a) ∈ X by ζi(a)(j) = 1 for j 6= i and ζi(a)(i) = a.
Define σi ∈ Sym(X) by xσi = ξ(x(i))−1xζi(x(i))−1. Then T1 acts on Ω via restriction
to X from D, while (1, i) ∈ T acts as σi.

(6) Let C be the set of orbits of K × T on X, and for C ∈ C, set OC = {(x, y) ∈
X ×X : yx−1 ∈ C}. Then the map C 7→ OC is a bijection of C with O(M).

(7) For x ∈ X, the orbit of x under K × T is {xkt, xktσi : k ∈ K, t ∈ T1, 1 < i ∈ I}.
(8) For each a ∈ L, Ca = {ξ(b), ζi(b)−1 : 1 < i ∈ I, b ∈ aK} ∈ C.
(9) Let m = |{|a| : a ∈ L}|. Then |C| ≥ m > 3, so |O(M)| ≥ m > 3.

Section 10. Regular product structures

In this section Ω is a finite set of order n and S = Sym(Ω). We record results about
regular product structures on Ω. We begin by recalling some definitions from Section 2.

Definition 10.1. Let m, k be integers with m ≥ 5 and k > 1. We recall the notion
of a regular (m,k)-product structure on Ω. From Example 2.19, such a structure is a
(similarity class of) bijection(s) f : Ω → ΓI , where I = {1, . . . , k} and Γ is an m-set.
The function f may be thought of as a family of functions (fi : Ω → Γ : i ∈ I) via
f(ω) = (f1(ω), . . . , fk(ω)) for ω ∈ Ω.

Observe that if Ω admits a regular (m, k)-product structure, then n = mk.
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While the definition given in 10.1 is often useful, there is a second equivalent definition
in terms of chamber systems which is usually more useful. When we wish to distinguish
between the two types of objects, we refer to the functions f in Definition 10.1 as informal
regular product structures, and call the chamber systems defined in the next definition as
formal regular product structures.

Definition 10.2. Again let m, k be integers with m ≥ 5 and k > 1. Formally a product
structure is a family F = (Ωi : i ∈ I) of partitions Ωi of Ω into m blocks of size mk−1,
such that F is injective: For each ω ∈ Ω,⋂

i∈I

[ω]i = {ω},

where [ω]i is the block in Ωi containing ω.
Observe that if 'i=∼Ωi

is the equivalence relation on Ω whose set of equivalence
classes is Ωi, then (cf. Definition 7.4) we can regard F as an injective chamber system
on Ω over I.

Remark 10.3. The class of chamber systems defined in Definition 10.2 are also con-
sidered in [BPS1], where such objects are called Cartesian decompositions of Ω. Various
properties of Cartesian decompositions are derived in [BPS1] and [BPS2].

Let us now see how to pass between our two definitions, and in particular convince
ourselves that they are indeed equivalent.

Definition 10.4. Let f : Ω → ΓI be an informal (m, k)-product structure. We define
a family F = F(f) of partitions of Ω. The ith partition of the family is Ωi = {f−1

i (γ) :
γ ∈ Γ}, the set of fibers of fi. By construction, Ωi has m blocks of size mk−1. As the
function f is an injection, the chamber system F(f) is injective.

Definition 10.5. Next assume F = (Ωi : i ∈ I) is a formal (m, k)-product structure. An
indexing of F is an indexing Ωi = {Ωi,γ : γ ∈ Γ} of the blocks of the various partitions
Ωi by our m-set Γ. The function f in Definition 10.4 defines the indexing Ωi,γ = f−1

i (γ)
of F(f). In the other direction, an indexing I of F defines a function f = fF,I : Ω → ΓI

via ω ∈ Ωi,fi(ω). As F is injective, the function f defined by the indexing is injective, so
as |Ω| = |ΓI |, f : Ω → ΓI is a bijection, and hence defines a informal product structure
on Ω.
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In short, the formal definition is a “coordinate free” definition of product structure,
in that the various indexings of F define various (similar) informal product structure
functions, corresponding to a choice of “coordinate system” for the description of Ω as a
set product.

Write FFF = FFF(Ω) for the set of all formal regular product structures on Ω. Observe
that S is represented on FFF via s : F 7→ Fs = {Ωis : i ∈ I} for s ∈ S. Recall from
Definition 7.4 that the stabilizer NS(F) in S of F is the subgroup consisting of those
s ∈ S such that Fs = F ; that is NS(F) is the stabilizer of F in the representation of S
on FFF .

(10.6) (1) The map ϕ : 〈f〉 7→ F(f) is a bijection between the set of similarity classes
of informal regular (m, k)-product structure on Ω, and the set FFF(Ω) of formal regular
(m, k)-product structures on Ω.

(2) The inverse of ϕ is ψ : F → 〈fF,I〉, for any indexing I of F .
(3) Represent S on the set P̃ of similarity classes of informal product structures via

s : 〈f〉 7→ 〈s−1f〉. Then ϕ is S-equivariant.
(4) S is transitive on FFF(Ω).

Proof. Let P be the set of informal regular product structures on Ω, and set P̃ = {〈f〉 :
f ∈ P}. Let f, g ∈ P and πi : ΓI → Γ the ith projection. Then fi = fπi and gi = gπi,
i ∈ I, are the corresponding projection maps from Ω to Γ. From Definition 2.10, 〈f〉 = 〈g〉
iff

Ωf
i = {f−1

i (γ) : γ ∈ Γ} = {g−1
i (γ) : γ ∈ Γ} = Ωg

i .

Thus 〈f〉 = 〈g〉 iff F(f) = F(g), so the map ϕ : P̃ →FFF is a well defined injection.
Similarly if I, J are indexings of F ∈ FFF , and f = fF,I and g = fF,J , then from the

definition of f, g in 10.4, for each i ∈ I,

{f−1
i (γ) : γ ∈ Γ} = Ωi = {g−1

i (γ) : γ ∈ Γ},

so 〈f〉 = 〈g〉 by the previous paragraph. Hence ψ : FFF → P̃ is well defined. Moreover
this says that F(f) = {Ωi : i ∈ I}, so F(f) = F , and hence ψϕ = 1 is the identity map.
Therefore ϕ is a surjection, while from the previous paragraph, ϕ is an injection, so ϕ is
a bijection. Then as ψϕ = 1, ψ = ϕ−1, completing the proof of (1) and (2).

Let h ∈ P . Then fh−1 = α ∈ S with f = αh, so for i ∈ I, fi = fπi = αhπi = αhi,
and hence

Ωf
i = {f−1

i (γ) : γ ∈ Γ} = {h−1
i (γ)α−1 : γ ∈ Γ} = Ωh

i α
−1,
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so that Ωf
i α = Ωh

i . Therefore F(f)α = F(h), so the representation of S on P̃ in (3) is
well defined, and ϕ is S-equivariant. That is (3) holds. Further as f = αh, 〈f〉α−1 = 〈h〉,
proving (4).

We next establish a criterion for a group D to preserve a regular product structure.

(10.7) Assume |Ω| = mk and let ω ∈ Ω and I = {1, . . . , k}. Assume D is a transitive
subgroup of S which is the direct product of a set D = {Di : i ∈ I} of subgroups such that

Dω =
∏
i∈I

Di,ω,

with |Di : Di,ω| = m for each i ∈ I. Define F = F(D) = (Ωi : i ∈ I) to be the chamber
system on Ω such that Ωi is the set of orbits of Di′ = 〈Dj : j ∈ I − {i}〉 on Ω. Then

(1) F ∈ FFF(Ω).
(2) D is contained in the kernel of the action of NG(F) on F .
(3) Di′ is the kernel of the action of D on Ωi, and Di acts faithfully and transitively

on Ωi.
(4) If G is a subgroup of S permutating D via conjugation then G ≤ NS(F).

Proof. By hypothesis, Dω =
∏

i∈I Di,ω. Hence as |Dj : Dj,ω| = m for each j ∈ I,
|Di′ : Di′,ω| = mk−1, so the orbit ωDi′ is of order mk−1.

As Di′ E D and D is transitive on Ω, the set Ωi of orbits of Di′ on Ω is a partition of
Ω into m blocks of size mr−1. Thus F is indeed a chamber system on Ω, and to complete
the proof of (1) it remains to show F is injective. Suppose α ∈ ωDi′ for each i ∈ I.
Then for each i ∈ I, there is gi ∈ Di′ with ωgi = α. Now gi = di,1 · · · di,r with di,l ∈ Dl.
Further for j 6= i, gig

−1
j ∈ Dω, so as Dω =

∏
iDi,ω, xi,lx

−1
j,l ∈ Dl,ω for each l. However

xj,j = 1, so xi,j ∈ Dj,ω for each j ∈ I, and hence gi ∈ Dω, so that α = ωgi = ω. This
completes the proof of (1).

Part (2) follows by construction of F , as does the fact that Di′ is contained in the
kernel K of the action of D on Ωi. Thus K = Di′X, where X = Di ∩K. But X ≤ Dj′

for each j 6= i, so X fixes all blocks in each partition Ωj . But then as F is injective, for
each α ∈ Ω, X acts on the intersection {α} of the blocks containing α, so X ≤ SΩ = 1.
Thus Di is faithful on Ωi, and as D = Di′Di is transitive on Ωi, so is Di. This completes
the proof of (3).

Let G = NS(D). Then D E G, and G permutes D via conjugation, so G permutes
{Di′ : i ∈ I} and hence the set F of orbits of those groups. This establishes (4).
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(10.8) Assume the setup of 10.7, and assume for each i ∈ I that Ei ≤ Di with Di =
Di,ωEi. Set E = {Ei : i ∈ I}. Then F(D) = F(E).

Proof. As Di = Di,ωEi for each i ∈ I, ωDi′ = ωEi′ and Ωi is the set of orbits of Ei′ .

Set Up 10.9. Assume Ω = ΓI for some set Γ of order m and I = {1, . . . , k}. Thus
the members of Ω are functions from I into Γ. Let πi : Ω → Γ be the ith projection
πi(u) = u(i).

Let id : Ω → Ω be the identity map and F = F(id) ∈ FFF(Ω). Hence F = {Ωi : i ∈ I},
where Ωi = {π−1

i (γ) : γ ∈ Γ}. Let T = Sym(I) and represent T on Ω via (u · t)(i) =
u(it

−1
) for u ∈ Ω, i ∈ I, and t ∈ T . Identifying T with its image in S under this

representation, we may regard T as a subgroup of S.

For σ ∈ Sym(Γ) and i ∈ I, define ki(σ) ∈ S by (u · ki(σ))(j) = u(j) for j 6= i, and
(u · ki(σ))(i) = u(i)σ. Set Ki = {ki(σ) : σ ∈ Sym(Γ)}, so that the map ϕ : σ 7→ ki(σ) is
an isomorphism of Ki with Sym(Γ). Set K = 〈Ki : i ∈ I〉 ≤ S.

Let ∆ =
∐

i∈I Ωi. Observe each Ki acts on each Ωj , for j 6= i, Ki is trivial on Ωj , and
defining ψ : γ 7→ π−1

i (γ), the pair ψ, ϕ defines a quasiequivalence of the representation of
Sym(Γ) on Γ, with the representation of Ki on Ωi. That is Ki acts faithfully as Sym(Ωi)
on Ωi.

It follows that K = K1 × · · · ×Kk is the direct product of k copies of Sm. Further
〈K,T 〉 ≤ Sym(∆) preserves the regular partition F on ∆. By 7.11, the stabilizer M̄ in
Sym(∆) of this partition is isomorphic to the wreath product of Sm by Sk, with M̄F = K̄

the direct product of k copies of Sm and M̄F = Sym(F). As K ≤ K̄ it follows that
K = K̄, and then as T ∼= TF = Sym(F), it follows that M̄ = KT with T a complement
to K in M̄ . Observe by construction, NT (K1) = CT (K1).

Finally let M = NS(F). Then M also permutes ∆ and by an argument in the proof
of 10.7.3, M is faithful on ∆. Thus M ≤ M̄ , so M = M̄ .

(10.10) Let F = (Ωi : i ∈ I) ∈ FFF , pick ω ∈ Ω, and set M = NS(F). Let K be the
kernel of the action of M on F . Then

(1) K = K1×· · ·×Kk, where Ki is the subgroup of K trivial on Ωj for each j ∈ I−{i}.
Moreover Ki acts faithfully as Sym(Ωi) on Ωi.

(2) K has a complement T in M , such that T acts faithfully on F as Sym(F) and
NT (K1) = CT (K1).

(3) M is isomorphic to the wreath product of Sm by Sk.
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(4) F ∗(M) = D = D1 × · · · ×Dk, where for i ∈ I, Di = F ∗(Ki) acts faithfully on Ωi

as the alternating group, and Di′ =
∏

j 6=i acts transitively on each block in Ωi.

(5) F = F(D), where D = {Di : i ∈ I}.

Proof. Pick a set Γ of order n and an isomorphism f : Ω → ΓI with F(f) = F . Identi-
fying Ω with ΓI via f , we may assume Ω = ΓI and f is the identity map id on Ω. Thus
we are in Set Up 10.9. Then (1)-(3) follows from the discussion in Set Up 10.9. Next
(1)-(3) imply (4), while (4) implies (5).

Exercises for Section 10

1. Let m, k > 1 be integers, I = {1, . . . , k}, Γ an m-set, f : Ω → ΓI an informal
product structure on Ω, and F = F(f) = (Ωi : i ∈ I) ∈ FFF . For i ∈ I, let 'i be the
equivalence relation on Ω with set of equivalence classes Ωi, and regard F = ('i: i ∈ I)
as a chamber system on Ω over I. If k > 2 then F is not nondegenerate. In this exercise
we form the dual chamber system F∗ of F , and show that F∗ is nondegenerate. Then,
using Exercise 7.4, we can naturally associate to F the simplicial complex CCC(F∗), which
we investigate in later exercise. For J ⊆ I, set

∼J= ∨i∈J′ 'i,

let πJ : ΓI → ΓJ be the projection map πJ(u) = u|J for u ∈ ΓI and j ∈ J , and set
fJ = πJ ◦ f : Ω → ΓJ . Define the dual of F to be the chamber system F∗ = (∼i: i ∈ I)
on Ω over I. Prove:

(1) For each i ∈ I, 'i=∼i′= {f−1
i (u) : u ∈ Γi}.

(2) For each J ⊆ I, ∼J has equivalence classes {f−1
J′ (u) : u ∈ ΓJ′}.

(3) For each J ⊆ I,

∼J= ∧j∈J ∼j ,

is the equivalence relation generated by {∼j : j ∈ J}.
(4) For each J ⊆ I and ω ∈ Ω,

∨j∈J ∼j′=∼J′ and
⋂
j∈J

[ω]j′ = [ω]J′ ,

where [ω]J is the equivalence class of ∼J containing ω. Moreover [ω]I′ = {ω}.
(5) F∗ is a nondegenerate chamber system.
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2. Let G be a group, I = {1, . . . ,m} a finite set, and F = (Gi : i ∈ I) a family
of subgroups of G. Define a simplicial complex C(G,F) = (V (G,F),Σ(G,F)) by V =
V (G,F) =

∐
i∈I G/Gi and Σ = Σ(G,F) = {σJ,x : ∅ 6= J ⊆ I, x ∈ G}, where σJ,x =

{Gjx : j ∈ J}. Define τ : V → I by τ(Gix) = i.
Let C̄ = (V̄ , Σ̄) be a geometric complex over I. (cf. Exercise 7.4) For σ ∈ Σ̄ of type

J ⊂ I, the residue or link of σ is the geometric complex lk(σ) over J ′ with simplices λ−σ
for σ ⊂ λ ∈ Σ̄. We say C̄ is residually connected if for all J ⊆ I with |J ′| > 1, and for all
σ ∈ Σ̄ of type J , lk(σ) is connected.

Prove:
(1) C = C(G,F) is a geometric complex over I, and the representation of G on V by

right multiplication maps G to a flag transitive group of automorphisms of C; that is for
each J ⊆ I, G is transitive on simplices of type J .

(2) For each J ⊆ I, set GJ =
⋂

j∈J Gj , with G∅ = G. Then GJ is the stabilizer in G
of σJ = σJ,1.

(3) Assume Ḡ is a flag transitive group of automorphisms of C̄, and pick a chamber
σ = {vi : i ∈ I} of C̄ with vi ∈ V̄ of type i. Set Ḡi = Ḡvi

and F̄ = (Ḡi : i ∈ I). Define
ξ : V̄ → V (Ḡ, F̄) by ξ : vig 7→ Ḡig. Then ξ is a Ḡ-equivariant isomorphism of C̄ with
C(Ḡ, F̄).

(4) For i ∈ I set Pi = Gi′ and P = (Pi : i ∈ I). Set H = GI and form the chamber
system X = X(G,H,P) of Exercise 7.3, and the chamber system X = X(C) of Exercise
7.4. Define ζ : G/H → Ω = {σI,x : x ∈ G} by ζ : Hx 7→ σI,x. Then ζ : X → X is a
G-equivariant isomorphism of chamber systems.

(5) C ∼= CCC(X), where CCC(X) is defined in Exercise 7.4.
(6) C is connected iff G = 〈F〉.
(7) For J ⊆ I, set FJ = (GJ∪{i} : i ∈ J ′). Show GJ is flag transitive on lk(σJ), and

lk(σJ) ∼= C(GJ ,FJ).
(8) C is residually connected iff for all J ⊆ I, GJ = PJ′ .

3. Let Cr = (Vr,Σr, τr) be geometric complexes over Ir for r = 1, 2. Set V = V1

∐
V2,

I = I1
∐
I2, and define τ : V → I by τ|Vr

= τr. Let Σ consist of the nonempty sets
σ1

∐
σ2 such that σr ∈ Σr ∪ {∅} for r = 1, 2. Set C1 ⊕ C2 = (V,Σ, τ). Prove:

(1) C1 ⊕ C2 is a geometric complex over I.
(2) For each σ = σ1

∐
σ2 ∈ Σ of type J1

∐
J2, lk(σ) = lk(σ1)⊕ lk(σ2).

(3) Given positive integers n1, . . . , nk, let Γ(ni) be the 0-dimensional complex with ni

vertices, and set C(n1, . . . , ck) = Γ(n1) ⊕ · · · ⊕ Γ(nk). Set C(nk) = C(n1) ⊕ · · · ⊕ C(nk)
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where ni = n for all i. Let C̄ = (V̄ , Σ̄) be a geometric complex over I = {1, . . . , k}, write
V̄i for the set of vertices of C̄ of type i, and set ni = |V̄i|. Prove C̄ = C(n1, . . . , nk) iff for
each vi ∈ V̄i, 1 ≤ i ≤ k, we have {v1, . . . , vk} ∈ Σ̄.

(4) Let C̄ = C(n1, . . . , nk). Show for each ∅ 6= J ⊆ I and simplex σ of type J ,
lk(σ) ∼= C(ni : i ∈ J ′).

(5) Assume F ∈ FFF is a regular (m, k)-product structure on a set Ω, regard F as a
chamber system, and let F∗ be the dual of F defined in Exercise 10.1. Let CCC(F∗) be the
geometric complex constructed in Example 7.4. Prove CCC(F∗) ∼= C(mk).

(6) Prove C̄ = C(n1, . . . , nk) iff C̄ is residually connected, and for all J ⊆ I with
|J ′| = 2, and for all simplices σ of type J , lk(σ) ∼= C(nσ,mσ) for some nσ, mσ.

Section 11. The structure of primitive permutation groups.

In this section we investigate the structure of a finite primitive permutation group.
We will see that the structure of such a group is highly restricted. This is one reason why
one should usually seek to reduce questions about permutation groups to the primitive
case.

Throughout this section Ω is a finite set of order n, S = Sym(Ω), and G a primitive
group of permutations on Ω; that is G ≤ S and G is primitive on Ω.

In this section we state the Structure Theorem for Primitive Permutation Groups and
explore what it is saying. Then in the next section we prove the theorem.

In the literature the Structure Theorem is often called the O’Nan-Scott Theorem.
Actually (as I understand it) O’Nan neither stated nor proved the theorem. Rather he
and (independently) Len Scott were (I believe) the first to prove and state Theorem
13.1, which describes the subgroup structure of finite symmetric groups, and can be
derived from the Structure Theorem. In [S], Scott states a version of the Structure
Theorem, and gives a sketch of a proof; this seems to be the first appearance of the
Structure Theorem. However, probably because he didn’t write out all the details of a
proof, Scott’s statement is not quite correct. The first correct statement and proof of
the Structure Theorem appears in [AS].

Theorem 11.1. (Structure Theorem for Primitive Permutation Groups)
Let G be a primitive permutation group on a finite set Ω of order n, ω ∈ Ω, H = Gω,

and D = F ∗(G). Then G = HD and one of the following holds:
(A) D ∼= Epe for some prime p and integer e, and D is regular on Ω, so n = pe and

H is a complement to D in G, acting irreducible on D regarded as an FpH-module.
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(B) G has exactly two minimal normal subgroups DL and DK , and D = DL ×DK is
the direct product of the r conjugates of L×K where L and K are isomorphic nonabelian
simple groups with L ≤ DL and K ≤ DK . Further H = NG(H ∩D) and H ∩D is the
direct product of the H conjugates of the full diagonal subgroup H ∩ LK of L ×K. In
particular n = |L|r.

(C) D is the direct product of the set L of r components of G, H is transitive on L
via conjugation, each L ∈ L is a nonabelian simple subgroup, and one of the following
holds:

(1) D is regular on Ω, H is a complement to D in G, and Inn(L) ≤ AutH(L) so
r ≥ 6, and n = |L|r.

(2) There exists a maximal (in the partial order of Definition 7.2) H-invariant parti-
tion Σ(G) of L of order t < r such that H = NG(H ∩D) with H ∩D the direct product
of the full diagonal subgroups Fσ = H ∩ Dσ of Dσ = 〈σ〉, for σ ∈ Σ(G). In particular
n = |L|n−t.

(3) H = NG(H ∩D) with H ∩D the direct product of the H conjugates of H ∩L, and
AutH(L) is maximal in AutG(L). In particular n = |L : L ∩H|r.

The proof of Theorem 11.1 appears in the next section. Let us examine the theorem
to get a better idea of what it is telling us. Our point of view will be that each case
corresponds to a class of structures on Ω preserved by groups in the class. In case A
the group G preserves an affine space structure on Ω, while in the remaining cases either
G preserves a diagonal structure or a regular product structure, or G is almost simple.
From the discussion in previous sections, the structures are determined up to conjugacy
under S, and we have seen what the stabilizer of each structure looks like.

First consider Case A. Here as D ∼= Epe , we may view D as an e-dimensional vector
space over the field Fp of integers modulo p, and Aut(D) = GL(D) is the general linear
group on this vector space. It is convenient to write the group additively, so that the
addition on the vector space is the addition in D, and the scalar multiple of a vector
d ∈ D by a congruence class (p) +m in Fp is just the mth power md of d in D. From
8.4, D defines an affine space structure A = A(D) on Ω, D is the group of translation for
this affine space structure, and NS(D) = NS(A) is the stabilizer in S of A. In particular
G stabilizes A.

We call the groups in Case A the affine primitive groups.

Next consider Case B. We call the groups in this case doubled primitive groups as such
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groups have a pair DL, DK of isomorphic minimal normal subgroups, while in each of
the other cases, G has a unique minimal normal subgroup.

In Case B set D = (LK)G, and observe that D is an orbit of length r under the action
of G via conjugation, with D the direct product of the members of D. Further for each
X = L × K ∈ D, Xω = H ∩ LK is a full diagonal subgroup of X, so |X : Xω| = |L|.
Finally Dω = H ∩D is the direct product of the groups Xω, X ∈ D. Therefore if r > 1,
then by 10.7, NS(D) preserves a regular (|L|, r)-product structure F = F(D) on Ω. In
particular G ≤ NS(F).

On the other hand suppose r = 1. Then (cf. Definition 9.1) D ∈ Diag(L,Ω) and by
Remark 9.5, NS(D) preserves the diagonal structure on Ω determined byD. In particular
G preserves this diagonal structure.

This leaves Case C. Recall in Case C that L is the set of components of G, |L| = r,
and D is the direct product of the set L of components.

We first consider Case C1. We call the groups in this case complemented primitive
groups as H = Gω is a complement to the regular normal subgroup D of G. As D is
regular on Ω, 1 = Dω is the product of the subgroups Lω = 1, L ∈ L. Thus once again by
10.7, NS(D) preserves the regular (|L|, r)-product structure F = F(L), so in particular
G preserves this structure.

Next we consider Case C2. Recall t = |Σ| is the order of the G-invariant partition
Σ = Σ(G) of L, and for σ ∈ Σ, Dσ = 〈σ〉 is the direct product of the components in σ,
and H ∩ Dσ = Fσ is a full diagonal subgroup of Dσ. We call the groups in Case C2,
diagonal primitive groups as Dω is the direct product of the full diagonal subgroups Fσ

of the subgroups Dσ.

Suppose first that t > 1. In this case set D = {Dσ : σ ∈ Σ}. Then D is the
direct product of the groups Dσ, which are permuted by G as Σ is G-invariant. Further
|Dσ : Dσ,ω| = |Dσ : Fσ| = |L|(r−t)/t. Therefore by 10.7, NS(D) preserves the regular
(|L|(r−t)/t, t)-product structure F = F(D), so in particular G preserves this structures.

Now assume t = 1. We call the groups in this subcase strongly diagonal, since as we will
soon see, they preserve a diagonal structure on Ω. Indeed Σ = {L}, so F = H ∩D = Dω

is a full diagonal subgroup of D, and hence (again see 9.2) D ∈ Diag(L,Ω). Then by
Remark 9.6, NS(D) is the stabilizer of the diagonal structure determined by D, and in
particular G preserves this structure.
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Finally we consider Case C3. Observe G is almost simple iff r = 1. In that event we
of course call G an almost simple primitive group.

So assume that r > 1. Now in this case Dω is the direct product of the groups Lω,
L ∈ L, so as usual by 10.7, NS(D) preserves the regular (|L : Lω|, r)-product structure
F = F(L). In particular G preserves F . Observe that, as L is simple, L is faithful on
L/Lω, so Sym(L/Lω) is not solvable, and hence |L : Lω| ≥ 5.

We call the groups in Case C3 semisimple primitive groups, since, at least when r > 1,
such groups preserve the quite natural product structure F defined by D, much as a
semisimple linear group D defines a product structure in the category of vector spaces:
the direct sum decomposition of the space as irreducibles for D. It is convenient to regard
almost simple groups as semisimple as they are also in Case C3.

In summary we have shown that:

Definition 11.2. There are six types of primitive subgroups G of S:

(1) The affine primitive groups from Case A, which each preserve the affine structure
A(D) defined by D = F ∗(G).

(2) The doubled primitive groups from Case B, which preserve a regular (m, r)-product
structure with m ≥ 60 if r > 1, and a diagonal structure if r = 1.

(3) The complemented primitive groups from Case C1, which preserve a regular (m, r)-
product structure on Ω with m ≥ 60.

(4) The diagonal primitive groups from Case C2, which preserve a regular (m, t)-
product structure with m ≥ 60 if t = |Σ(G)| > 1, and preserve a diagonal structure if
t = 1.

(5) The semisimple groups from Case C3 with r > 1 components, which preserve a
regular (m, r)-product structure with m ≥ 5.

(6) The almost simple groups in Case C3 with r = 1.

Remark 11.3. The Australian school of permutation group theory uses somewhat
different terminolgy. See for example Cheryl Praeger’s paper [P], where affine groups are
said to be of type HA, doubled groups of type HC, complemented groups are of type TW,
diagonal groups are of type CD, strongly diagonal groups are of type SD, and semisimple
but not almost simple groups are of type PA.
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(11.4) Let G be a primitive subgroup of S. Then one of the following holds.
(1) G preserves a regular (m, k)-product structure on Ω with m ≥ 5.
(2) G preserves an affine space structure on Ω.
(3) G preserves a diagonal structure on Ω.
(4) G is almost simple.

Proof. This is immediate from 11.2.

Remark 11.5. In many problems, primitive groups preserving a regular product struc-
ture or a diagonal structure are not too difficult to deal with. Thus already we begin
to see from Lemma 11.4 that the primitive groups which are of most interest are the
affine groups and the almost simple groups. Lemma 11.6 supplies another illustration
of this point. Thus it is important to describe as completely as possible the irreducible
subgroups of the general linear group, and the primitive permutation representations of
the almost simple groups. By Theorem 1.10 and 6.9.1, the latter problem is equivalent
to a description of the maximal subgroups of the almost simple groups.

(11.6) (Burnside) Assume G is doubly transitive on Ω. Then either
(1) n = pe is a power of some prime p, G is the semidirect product of a regular normal

subgroup D ∼= Epe by H = Gω ≤ GL(D), and H is transitive on D# by conjugation.
(2) G is almost simple.

Proof. From 6.11, 2-transitive groups are primitive. Thus we can apply 11.4. As G is
2-transitive, H = Gω is transitive on Ω − {ω}. But if G is affine, the map d 7→ xd is
an equivalence of the actions of H on D via conjugation, and H on Ω by 6.6.2, so H is
transitive on D# and (1) holds.

Suppose G preserves a product structure; say Ω = Y I with I = {1, . . . , r}, and each
g ∈ G is of the form

∏
i giσ(g) for some gi ∈ Sym(Y ) and σ(g) ∈ Sym(I). As G is

transitive on Ω we may take the function ω : I → Y to satisfy ω(i) = y0 for all i and
some fixed y0 ∈ Y . Then H consists of those g ∈ G with y0gi = y0 for all i. In particular
H permutes the set of elements α ∈ Ω such that α(j) = y0 for all but one j. But then
H is not transitive on Ω− {ω}.

Therefore by 11.4, we may assume G preserves a diagonal structure determine by some
D ∈ Diag(L,Ω), where D = L1 × · · · × Lr with r > 1, Li

∼= L for each i, and Dω = F is
a full diagonal subgroup of D. As G ≤ NS(D) is 2-transitive, so is NS(D), so we may
take G = NS(D). By Exercise 9.1, the permutation rank of G is greater than 2, whereas
G is 2-transitive, so its permutation rank is 2, a contradiction. This completes the proof.
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Exercises for Section 11

1. Let I = {1, . . . , 6}, K = Alt(I), Ω = K/K1,2, and embed K in S = Sym(Ω) via
the representation of K by right multiplication. Prove:

(1) K preserves a regular (5, 6)-partition P = {B1, . . . , B6} of Ω.
(2) Let D = κ(P ), and for i ∈ I set Li = κBi

. (cf. Definition 7.2) Then D =
L1 × · · · × L6 and Li

∼= A5, so L = {L1, . . . , L6} is the set of components of D. Further
K is a complement to D in G = KD ≤ S, K acts faithfully and transitively on L as
Alt(L), and D = F ∗(G).

(3) K is maximal in G.
(4) G is primitive of type (C1) on G/K.

Section 12. The proof of the structure theorem for primitive groups.

In this section we prove Theorem 11.1. Thus we assume G is a primitive permutation
group on a set Ω of finite order n, ω ∈ Ω, H = Gω, and D = F ∗(G).

(12.1) (1) H is maximal in G.
(2) If 1 6= X E G then X � H and G = HX.

Proof. As G is primitive on Ω, (1) follows from 6.9.1, and (2) follows from 6.10.2.

(12.2) If G has a nontrivial solvable normal subgroup then case A of Theorem 8.1 holds.

Proof. If G has a nontrivial solvable normal subgroup, then G has a solvable minimal
normal subgroup V , and by 9.4 in [FGT], V ∼= Epe for some prime p and integer e. By
12.1.2, G = HV . As V E G, H ∩ V E H and as V is abelian, H ∩ V E V . Thus
H ∩V E HV = G, so H ∩V = 1 by 12.1.2. Therefore V is regular on Ω, so CG(V ) = V

by Exercise 6.2. Therefore F ∗(G) = V and case A of Theorem 11.1 holds.

Because of 12.2, we may assume in the remainder of this section that G has no non-
trivial solvable normal subgroup. Therefore D = E(G), so G has a component L, and L
is a nonabelian simple group. Let DL = 〈LG〉. By 12.1.2, G = HDL.

(12.3) If D 6= DL then case B of Theorem 8.1 holds.

Proof. If D 6= DL then there is 1 6= X E G with X ≤ CG(DL). Set B = XDL ∩H and
XH = 〈(X ∩H)X〉. Now

XDL = XDL ∩G = XDL ∩HDL = BDL
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so as XH ≤ X ≤ CG(DL)

XH = XDL

H = 〈(X ∩H)XDL〉 = 〈(X ∩H)BDL〉 = 〈(X ∩H)B〉 ≤ H

Also XH is invariant under X and H, while by 12.1.2, G = HX, so XH E G. Therefore
XH = 1 by 12.1.2, so X ∩H = 1.

Interchanging the roles of X and DL in the argument of the previous paragraph, we
conclude XDL = XB and H ∩ DL = 1. As X ∩ DL ≤ Z(DL) = 1, XDL = X × DL.
As B ≤ H and H ∩ DL = 1, B is also a complement to DL in XDL = BDL, so
X ∼= B. Then by symmetry between X and DL, B ∼= DL, so X ∼= B ∼= DL. As this
is true for both X = CG(DL) and a minimal normal subgroup X of G contained in
CG(DL), we conclude X = CG(DL) is minimal normal in G. Therefore D = DL × X

and B = DLX ∩H = H ∩D.

Indeed we have shown that if πX : B → X and πD : B → DL are the projection maps
from B onto the factors of the direct sum decomposition D = DL × X, then πX and
πD are isomorphisms. That is (cf. Definition 4.8) we have shown B is a full diagonal
subgroup of X ×DL.

Let β = π−1
D πX : DL → X. As H acts on X, DL, and B = H ∩D, πX and πD are

H-equivariant isomorphisms, and hence so is β. Let K = Lβ. As DL = 〈LH〉,

X = DLβ = 〈LβH〉 = 〈KH〉,

so D = 〈(LK)H〉 and H ∩D = B is the direct product of the H-conjugates of the full
diagonal subgroup {l · lβ : l ∈ L} of L×K. Hence Case B of Theorem 11.1 holds.

Because of 12.3, we may assume in the remainder of this section that D = DL is the
direct product of the H-conjugates of L.

(12.4) If D = L then H ∩ L 6= 1 and H = NG(H ∩ L).

Proof. As L = D E G, H ∩ L 6= L by 12.1.2, while H ∩ L E H, so if H ∩ L 6= 1 then
H = NG(H ∩L) as H is maximal in G. Thus we may assume H ∩L = 1 and it remains
to derive a contradiction. To do so we need to know that the Schreier Property holds.
This follows from the classification of the finite simple groups.

Schreier Property. For each nonabelian finite simple group L, Out(L) is solvable.
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We return to the proof of Lemma 12.4. As H ∩ L = 1,

H ∼= H/(H ∩ L) ∼= HL/L ≤ Aut(L)/Inn(L) = Out(L)

so by the Schreier Property, H is solvable. As 1 is not a maximal subgroup of L, H 6= 1,
so X = Op(H) 6= 1 for some prime p. By maximality of H, H = NG(X), so

CL(X) ≤ NG(X) ∩ L = H ∩ L = 1

Therefore by Exercise 3.2, L is a p′-group, so by 18.7.2 in [FGT], for each prime divisor q of
|L|, there is a unique X-invariant Sylow q-subgroup Q of L. But now H ≤ NG(Q), so QH
is a proper subgroup of G and hence Q ≤ H by maximality of H. Then Q ≤ H ∩L = 1,
a contradiction.

By 12.4, ifD = L then Case C3 of Theorem 11.1 holds withG almost simple. Therefore
we may assume during the remainder of this section that:

(12.5) r = |LH | > 1.

Let X = NG(L) and X∗ = X/CX(L) = AutG(L). Observe D ≤ X, so as G = HD,
X = NH(L)D and then as D = L × CD(L), also X∗ = NH(L)∗D∗ = NH(L)∗L∗ with
NH(L)∗ = AutH(L). We record this as:

(12.6) X∗ = AutG(L), L∗ = Inn(L), NH(L)∗ = AutH(L), and X∗ = NH(L)∗L∗.

(12.7) Suppose Y ∗ is a proper nontrivial NH(L)∗-invariant subgroup of L∗, let Y be the
preimage of Y ∗ in L, and set J = 〈Y H〉. Then Y = J ∩ L ≤ H and J =

∏
K∈L(J ∩ L).

Proof. As Y ∗ is NH(L)∗-invariant, Y is NH(L)-invariant. Let {hK : K ∈ L} be a set
of coset representatives for NH(L) in H with LgK = K. Then Y H = {Y gK : K ∈ L}
with Y gK ≤ K, so J = 〈Y H〉 is the direct product of the groups Y gK , K ∈ L. and J is
H-invariant. Further Y < L, so J is not normal in D, and hence HJ 6= G, so J ≤ H by
12.1.1, completing the proof of the lemma.

(12.8) If L∗ � NH(L)∗ then H ∩ L 6= 1, NH(L)∗ is maximal in X∗, and H ∩ L is the
preimage in L of NH(L)∗ ∩ L∗.

Proof. As L∗ � NH(L)∗, NH(L)∗ is contained in some maximal subgroup M of X∗

which does not contain L∗. Then applying 12.4 to M,X∗, L∗ in the roles of H,G,L,
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we conclude that M ∩ L∗ is a proper nontrivial NH(L)∗-invariant subgroup of L∗ and
M = NX∗(M ∩ L∗). Now by 12.7, the preimage Y of M ∩ L∗ in L is contained in H,
so in particular H ∩ L 6= 1. As H ∩ L ≤ NH(L) and NH(L)∗ ≤ M∗, H ∩ L ≤ Y , so
Y = H ∩ L. Further as X∗ = L∗NH(L)∗ and NH(L)∗ ≤ M , M = M ∩ L∗NH(L)∗ =
(M ∩ L∗)NH(L)∗ = Y ∗NH(L)∗ = NH(L)∗, completing the proof of the lemma.

(12.9) We may assume that H ∩D 6= 1.

Proof. Suppose H ∩D = 1. Then D is regular on Ω, so if Inn(L) ≤ AutH(L) then Case
C1 of Theorem 11.1 holds. Thus we may assume Inn(L) � AutH(L), so L∗ � NH(L)∗

by 12.6. But then H ∩ L 6= 1 by 12.8, contrary to our assumption that H ∩D = 1.

(12.10) If L∗ � NH(L)∗ then case C3 of Theorem 11.1 holds.

Proof. By 12.8, NH(L)∗ is a maximal subgroup of X∗, and Y = H ∩ L 6= 1 is the
preimage in L of NH(L)∗ ∩L∗. Set J = 〈Y H〉. By 12.7, J ≤ H ∩D is the direct product
of the subgroups J ∩K, for K ∈ L. Let Y0 be the projection of H ∩D on L. Then Y ∗0

is NH(L)∗-invariant, so by maximality of NH(L)∗ in X∗, Y ∗0 ≤ NH(L)∗ ∩ L∗ = Y ∗, so
Y0 = Y . Therefore H ∩ D = J . By 12.1, NG(J) = H, while AutH(L) = NH(L)∗ and
AutG(L) = X∗ by 12.6. Thus Case C3 if Theorem 11.1 holds.

By 12.10, we may assume L∗ ≤ NH(L)∗. For K ∈ L, let πK : H ∩ D → K be the
projection of H ∩D on K with respect to the direct sum decomposition D =

∏
I∈L I.

(12.11) πK : H ∩D → K is a surjection for each K ∈ L.

Proof. As H is transitive on L, it suffices to show πL is surjective. As H ∩ D 6= 1 by
12.9, the transitivity says (H ∩ D)πL 6= 1, so 1 6= ((H ∩ D)πL)∗ = (H ∩ D)∗ ∩ L∗.
But (H ∩ D)∗ E NH(L)∗, so as L∗ ≤ NH(L)∗ and L∗ is simple, we conclude L∗ =
((H ∩D)πL)∗ and hence L = (H ∩D)πL.

By 12.11 and 4.10, H ∩ D =
∏

σ∈Σ(H ∩ D)πσ for some partition Σ of L with Fσ =
(H∩D)πσ a full diagonal subgroup of Dπσ, where for σ ∈ Σ, Dσ = 〈σ〉 and πσ : D → Dσ

is the projection map with respect to the direct sum decomposition D =
∏

σ∈ΣDσ. As
H acts on H ∩D, Σ is an H-invariant partition of L of order t = r/d, where d = |σ| > 1.
As d > 1, t < r. Hence if Σ is a maximal H-invariant partition of L, then Case C2 of
Theorem 11.1 holds, so the proof of Theorem 11.1 is complete.
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Suppose Σ is not maximal. Then there exists a nontrivial H-invariant partition ∆ of
L with Σ < ∆. Pick α ∈ ∆ with α ⊂ σ, let π : D → Dα be the projection map with
respect to the direct sum decomposition D =

∏
δ∈∆Dδ, and set Fα = Fσπ. As Fσ is a

full diagonal subgroup of Dσ, for each K ∈ α, πK : Fσ → K is an isomorphism. Then as
πK = π · πK|Dα

, πK : Fα → K is a surjection, so Fα is a full diagonal subgroup of Dα.
Moreover H ∩ D < P =

∏
δ∈∆ Fδ. Finally as ∆ is H-invariant, also P is H-invariant,

so as P is not normal in D, maximality of H implies P ≤ H. Thus P ≤ H ∩D < P , a
contradiction. Hence the proof of Theorem 11.1 is finally complete.

Section 13. The Structure Theorem for the Symmetric Groups.

In this section Ω is a set of order n ≥ 5, S = Sym(Ω) ∼= Sn, and A = Alt(Ω) ∼= An.
Thus S is almost simple with F ∗(S) = A. We first prove the Structure Theorem for S
on Ω.

Structure Theorem for Sn. (O’Nan-Scott) If G ≤ S then either G is almost simple
and irreducible on Ω (ie. G is primitive on Ω) or G stabilizes one of the following
structures:

(1) (Substructure, coproduct structure) A proper nonempty subset of Ω.
(2) (Regular coproduct structure, admissible relation) A nontrivial regular partition of

Ω.
(3) A regular (m, k)-product structure on Ω with m ≥ 5.
(4) An affine space structure on Ω.
(5) A diagonal structure on Ω.

Proof. We may assume G is transitive, or else it acts on some proper nonempty subset of
Ω. Similarly we may assume G is primitive, or else it preserves some nontrivial partition.
Now 11.4 completes the proof.

(13.1) The stabilizers in S of our structures are as follows:
(1) If ∆ ⊆ Ω with |∆| = m then NS(∆) = S∆ × SΩ−∆

∼= Sm × Sn−m.
(2) If ∆ is a regular (m, k)-partition of Ω then n = mk and NS(∆) ∼= Sm wr Sk.
(3) If ∆ is a regular (m, k)-product structure then n = mk and NS(∆) ∼= Sm wr Sk.
(4) If ∆ is an affine space structure on Ω then n = pe is a prime power and NS(∆) ∼=

Epe ·GLe(Fp).
(5) If ∆ is a diagonal structure determined by D ∈ Diag(L,Ω) for some nonabelian

finite simple group L, then n = |L|r−1 for some r > 1, F ∗(NS(∆)) = D is the direct
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product of r copies of L, NS(∆) = NS(D) is transitive on the components of D, and
NS(∆)/D ∼= Out(L)× Sr.

Proof. Part (1) is easy, or see 2.6. Part (2) follows from 7.11, part (3) follow from 10.10.3,
part (4) is 8.4, and part (5) is 9.4.

(13.2) S is transitive on structures of each isomorphism type.

Proof. Of course the symmetric group is transitive on subsets ∆ of Ω of order m for
each integer m, and on regular (m, k)-partitions of ∆ for each divisor m of n. By 8.5.5,
S is transitive on affine structures. By 10.6.4, S is transitive on regular (m, k)-product
structures for any suitable m, and by 9.3, S is transitive on its diagonal structures
Diag(L,Ω) for each nonabelian simple group L.

Remark 13.3. The Structure Theorem tells us that each maximal subgroup of S or A
is either a stabilizer of a structure, or an almost simple primitive group. To determine
which of these subgroups is actually maximal, it remains to enumerate the inclusions
among them. This is done in Theorem 13.5.

Remark 13.4. Suppose G is an almost simple primitive subgroup of S or A, and let
L = F ∗(G). Then G ≤ NS(L) which is also almost simple and primitive, so if we are
interested in maximal subgroups of S we may as well take G = NS(L). Recall that the
conjugation map c : G → Aut(L) identifies G with a subgroup of Aut(L) containing
Inn(L), so modulo such identifications, we may take L = Inn(L) ≤ G ≤ Aut(L). As
G = NS(L) and CS(L) = 1, G = NS(L)/CS(L) = AutS(L).

Let ι : L → S be the inclusion map and regard ι as a permutation representation of
L. Then by 1.13.2,

G = AutS(L) = AutS(Lι) = Aut(L)[ι].

What is Aut(L)[ι]? By Theorem 1.10, the equivalence class [ι] of ι is determined by the
conjugacy class of Lω in L, for ω ∈ Ω. Hence by 1.11, the stabilizer in Aut(L) of [ι] is
the subgroup of Aut(L) permutating LL

ω , which is just LNAut(L)(Lω). From Theorem
1.10, the permutation representation of G on Ω is equivalent to its representation on
G/Gω = G/NG(Lω) = G/NAut(L)(Lω) by right multiplication.

Theorem 13.5. (Liebeck-Prager-Saxl) Modulo an explicit list of exceptions, the stabiliz-
ers of our structures and the groups NS(F ∗(G)), where G is almost simple and primitive
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on Ω, are maximal in S. In particular almost always if ι : G→ S is a primitive permu-
tation representation of an almost simple group G, then NS(L) ∼= Aut(L)[ι] is maximal
in S, where L = F ∗(G).

Proof. See [LPS2]. The idea of the proof is as follows. Theorem 7.10 says that the
stabilizer of proper nonempty subset Γ of Ω is maximal iff |Γ| 6= n/2. Thus it remains
to consider the case when X and Y are transitive on Ω and X < Y . Then as X is
transitive on Ω, Y = YωX for ω ∈ Ω, so we have a factorization of Y . The most difficult
case occurs when Y is almost simple, so it suffices to have good information about the
factorizations of almost simple groups. This appears in [LPS1]. The key observation in
analyzing such factorizations is that at least one of the subgroups C = X or Yω must be
large; ie. |C|2 ≥ |Y |.

Remark 13.6. When combined, the various results of this section give a classification
of the maximal subgoups of Sn and An, in a weak sense. To completely enumerate the
maximal subgroups, we would have to enumerate all primitive permutation representa-
tions of all almost simple groups. For example to enumerate the maximal subgroups of
Sn depends upon previously enumerating the primitive representations of Sm of degree
n for m < n, and hence enumerating the maximal subgroups of Sm.

However in addition to being impractical, such an enumeration is usually not even
necessary. For purposes of applications, what is usually desirable is an enumeration of
the “large” maximal subgroups. For example a subgroup G of S might be “large” if G
contains certain types of elements or subgroups of S, or if |G| is large relative to |S|; eg.
we have just seen that it would be desirable to know maximal subgroups G of S such
that |G|2 ≥ |S|.

Section 14. Some problems

In this section Ω is a finite set of order n ≥ 5, S = Sym(Ω), and A = Alt(Ω). Take G
to be S or A, so in particular G is almost simple with F ∗(G) = A.

In this section we call attention to various problems suggested by the discussion in
earlier sections. In some cases the problems are only stated for the almost simple group
G = A or S. In other cases the problems are stated for arbitrary almost simple groups.
Sometimes we supply answers or partial answers to the problems in the case G = A or
S, and sometimes we don’t.
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Notation 14.1. Give a finite group X and a proper subgroup Y of X, write M(Y ) =
MX(Y ) for the maximal members of the poset OX(Y )−{X}. Set M = MX = MX(1).
Thus M(Y ) is the set of maximal overgroups of Y in X, and M the set of maximal
subgroups of X.

From Remark 13.3, the Structure Theorem for Sn supplies us with a collection of
subgroups containing all maximal subgroups of G: the stabilizers in G of our structures,
and the almost simple subgroups of G acting primitively on Ω. In Theorems 7.10 and
7.11 we showed that the stabilizers in G of proper nonempty subsets of Ω and nontrivial
regular product structures on Ω are almost always maximal in G, and we determined
those few cases where such a stabilizer is not maximal. The proofs of those two theorems
(and indeed almost all the proofs in these notes) were reasonably elementary. However to
go much further, and in particular to decide when our remaining candidates for maximal
subgroups of G are actually maximal, it is often necessary to appeal to the classification of
the finite simple groups, together with other deep results about the finite simple groups.

Recall also that the Liebeck-Praeger-Saxl Theorem 13.5 tells us which members of
our collection are maximal. One way to view this result is that it (essentially) describes
OG(M) for M in our collection. Indeed Theorem 13.5 says that almost always, OG(M) =
{M,G}. While the Liebeck-Praeger-Saxl Theorem does not actual pin down OG(M) in
the remaining cases, the proof does give information about the set of overgroups of M ,
and in particular information about M(M).

This leads us to the following problem:

Problem 14.2. Give a description of OG(H) for each primitive subgroup H of G,
in terms of the generalized Fitting subgroups of primitive subgroups X of G, and the
structures preserved by X.

Remark 14.3. Observe that if H is primitive, then so is each member of OG(H).
In particular by 11.2, each X ∈ OG(H) is affine, doubled, complemented, diagonal, or
semisimple.

In [P], Cheryl Praeger gives one description of OG(H), but her description is in terms
of what she calls “blow-ups”, rather than in terms of structures on Ω. References [A3]
and [A4] begin to put in place a theory describing OG(H) in terms of generalized Fitting
subgroups and structures. This theory involves results which supply answers to questions
of the following sort:
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Problem 14.4. Let X be an almost simple finite group and M a maximal subgroup of
X. Describe OX(F ∗(M)), or perhaps OX(Y ) for suitable Y ∈ OM (F ∗(M)).

Remark 14.5. Observe that Lemma 7.8 supplies a partial answer to Problem 14.4 in
the case where M is the stabilizer in G of a regular partition P on Ω. For example 7.8.4
says that, for almost all P and any Y ∈ OM (F ∗(NG(P )) such that Y is transitive on Ω,
M(Y ) = {NG(P (γ)) : γ ∈ Γ(Y )}, where Γ(Y ) is the set of Y -invariant partitions of P ,
and P (γ) ∈ P(Y ) is described in 7.8.4.

Suppose ∆ is one of our structures and G = S. If NS(∆) ≤ A then NS(∆) is not
maximal in S as NS(∆) < A < S. Usually however in this case NS(∆) is maximal in A.
In any event this shows that it is of interest to determine just when NS(∆) is contained
in A.

(14.6) Let ∆ be one of the structures appearing on the list in the Structure Theorem for
Sn, and set M = NS(∆). Then

(1) If ∆ is a nontrivial proper subset of Ω, or a regular partition of Ω, then M � A.
(2) If ∆ is an affine structure on Ω then M ≤ A iff n is a power of 2.
(3) If ∆ is a regular (m, k)-product structure on Ω with m ≥ 5, then M ≤ A iff m is

even and either k > 2 or m ≡ 0 mod 4.
(4) Suppose ∆ = D ∈ Diag(L,Ω) for some finite simple group L, with D the direct

product of r copies of L. Let K = Aut(L). Then M ≤ A iff r > 2 or r = 2 and the
following hold:

(i) All 2-elements in K − Inn(L) are even permutations of L, and
(ii) |L| ≡ |J | mod 4, where J = {j ∈ L : j2 = 1}.

Proof. This is Exercise 14.1.

Recall from Definition 5.12 that a subgroup Y of a group X is of depth 2 in X if 2
is the maximal length of a chain in OX(Y ). From Section 5, subgroups of depth 2 in
almost simple groups are of interest for a variety of reasons. Observe:

(14.7) Let X be a group and Y a proper subgroup of X.
(1) The following are equivalent:
(i) Y is of depth 2 in X.
(ii) OX(Y ) ∼= Mm for some positive integer m.
(iii) Y is maximal in each member of M(Y ).
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(2) If Y is of depth 2 in X then for each pair of distinct M,N ∈M(Y ), M ∩N = Y .

Recall Question 5.13:

Question 5.13. What are the subgroups of depth 2 in the almost simple groups, and
what are the possible M-lattices that can occur as overgroup lattices in almost simple
groups? In particular describe the subgroups of G of depth 2 and their overgroup lattices.

Once again a special case occurs when X is almost simple with L = F ∗(X) proper in
X and Y maximal in L.

(14.8) Assume X is an almost simple finite group such that L = F ∗(X) is of prime
index in X, and Y is a maximal subgroup of L such that NX(Y ) � L. Then

(1) MX(Y ) = {L,NX(Y )}, and
(2) OX(Y ) = {Y, L,NX(Y ), X}, so that Y is of depth 2 in X and OX(Y ) ∼= M2.

Proof. As |X : L| is prime, L ∈ M, and then as Y ≤ L, we have L ∈ M(Y ). As L is
maximal in X and K = NX(Y ) � L, X = LK. Let J ∈ OX(Y )− {X,L}. Then as Y is
maximal in L, it follows that Y = J ∩ L E J , so J ≤ K. In particular Y = K ∩ L, so
|K : Y | is prime and hence J = Y or K. The lemma follows.

Remark 14.9. Observe that if H = NA(∆) is the stabilizer of one of our structures such
that H is a maximal subgroup of A and NS(∆) � A, then Lemma 14.8 says that NS(∆)
is maximal in S, and H is of depth 2 in S with OS(H) ∼= M2. Moreover inspecting
Lemma 14.6, we can decide for which ∆ we have NS(∆) � A. As an example, if either

(i) H = NA(∆) for some proper nonempty subset ∆ of Ω with |∆| 6= n/2, or
(ii) H = NA(∆) for some nontrivial regular (m, k)-partition ∆ of Ω with (m, k) 6=

(2, 4),
then H is maximal in A by Theorems 7.10 and 7.11, while by 14.6.1, NS(∆) � A.
Therefore by 14.8, H is of depth 2 in S with OS(H) ∼= M2.

In looking for subgroups H of depth 2 in G, we can partition the problem into three
cases: (i) H intransitive; (ii) H transitive but imprimitive; (iii) H primitive. Case (i) is
the easiest case. Exercises 14.2 and 14.3 partition case (i) into two subcases. Exercise
14.2 gives a complete answer when H has at least three orbits on Ω. Exercise 14.3 gives
a partial answer when H has two orbits on Ω, reducing the problem to certain problems
involving doubly transitive groups. Using the classification of the almost simple doubly
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transitive groups, it it then possible to determine the examples which arise in the second
subcase. In particular:

Remark 14.10. The examples which arise in case (4) of Exercise 14.3 are:

(1) n = p+ 1 for some prime p ≥ 5, H is the stabilizer in Gα of an affine structure on
Γ, and Y = {Y }, where either G = S and Y ∼= PGL2(p), or G = A, p 6= 7, 11, 17, or 23,
and Y ∼= L2(p).

(2) n = 7, G = A, H ∼= S4 is the stabilizer in Gα of a regular (2, 3)-partition on Γ,
and Y = {Y1, Y2} with Yi

∼= L3(2).

(3) n = 2e for some e ≥ 3, G = A, H ∼= Le(2), and Y = {Y }, where Y is the stabilizer
in G of an affine structure on Ω.

(4) n = 2m−1(2m + ε) for some m ≥ 3 and ε = ±1, H ∼= Oε
2m(2), and Y = {Y } with

Y ∼= Sp2m(2).

(5) n = 11, 12, 22, 23, or 24, F ∗(Y ) is isomorphic to a Mathieu group Mn for each
Y ∈ Y, and OG(H) ∼= M2 or M3.

(6) n = 176, H is an extension of U3(5) by Z2, and Y = {Y }, where Y ∼= HS.

(7) n = 276, H ∼= Aut(Mc), and Y = {Y } with Y ∼= Co3.

Remark 14.11. In case (5) of Exercise 14.3, |Z| = 2 so OG(H) ∼= M3, and for Z ∈ Z,
one of the following holds:

(1) n = 6, H ∼= D8, and Z ∼= PGL2(5).

(2) n = 12, H ∼= PΓL2(9), and Z ∼= M12.

(3) n = 24, H ∼= Aut(M22), and Z ∼= M24.

Here is a partial result in case (ii); as far as I know there is no definitive result in case
(ii).

Theorem 14.12. (Aschbacher-Shareshian) Assume H ≤ G with OG(H) ∼= M2, and
H transitive but imprimitive on Ω. Let M(H) = {M1,M2}. Then one of the following
holds:

(1) P(H) = {P1, P2}, Mi = NG(Pi), and for some i ∈ {1, 2}, Pi ≤ P3−i. Further
n ≥ 8 and if n = 8 then G = S.

(2) G = A, n = 2a+1, and for some i ∈ {1, 2}, P(H) = {P}, Mi = NG(P ), M3−i is
affine with D = F ∗(M3−i) ≤ H, DP is a hyperplane of D, P consists of the two orbits
of DP on Ω, and H = NG(DP ).
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(3) G = A, n ≡ 0 mod 4, n > 8, and P(H) = {P1, P2} with Mi = NG(Pi), and for
some j ∈ {1, 2}, ρ = (Pj , P3−j) is a [n/2, 2]-product structure on Ω with H = NG(ρ) ∼=
Z2 × Sn/2.

For m a proper divisor of n, a [m,n/m]-product structure on Ω is a pair ρ = (P,Q)
such that P is a regular (m,n/m)-partition of Ω, Q is a regular (n/m,m)-partition, and
ρ is (cf Definition 7.4) a CIR-chamber system. Informally, ρ is an identification of Ω with
a set product Ω ∼= ∆× Γ, where ∆ and Γ are sets of order m and n/m, respectively.

Finally here is a result in case (iii):

Theorem 14.13. (Aschbacher) Assume n is not a prime and H is a primitive subgroup
of G of depth 2 in G. Then either |M(H)| = 1, so that OG(H) ∼= M1, or OG(H) ∼= M2

and, setting M(H) = {M1,M2}, one of the following holds:
(1) H is semisimple and there exist regular (mi, ki)-product structures Fi such that

Mi = NG(Fi), F1 < F2 so that m1 = ms
2 for some s > 1, and if m2 is even then G = A

and either s > 2 or m2 ≡ 0 mod 4.
(2) n = qk for some odd prime power q, H and M1 = NG(D) are affine, where

D = F ∗(H), H preserves a nontrivial direct sum decomposition D = D1 ⊕ · · · ⊕Dk with
|D| = q, and setting D = {D1, . . . , Dk}, M2 = NG(F(D)).

(3) n = 8, G = A, H ∼= L3(2), and M(H) consists of the stabilizers of the two affine
structures preserved by H.

(4) n = 8, G = S, H ∼= L3(2), and M(H) = {NS(H), A}.
(5) G = S, NG(H) is the stabilizer of an affine structure, regular product structure,

or diagonal structure ∆, H = NA(∆), and M(H) = {A,NS(H)}.

The partial order on FFF in (1) is defined by F = (Ωi : i ∈ I) ≤ F̃ = (Ω̃j : j ∈ Ĩ) iff F
is an (m, k)-structure, F̃ is an (m̃, k̃)-structure, and there exists a positive integer s such
that k̃ = ks and there exists a regular (s, k)-partition Σ = (σi : i ∈ I) of Ĩ such that for
each i ∈ I and j ∈ σi, Ωj ≤ Ωi.

In the case where n is prime, there exist examples of primitive subgroups H with
OG(H) ∼= Mm for m > 2 (cf. [Pe]), but there are still a finite number of examples, which
can be enumerated.

Exercises for Section 14

1. Prove Lemma 14.6.
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2. Let Ω be a finite set of order n ≥ 5 and H a subgroup of G = Sym(Ω) or Alt(Ω)
such that H is of depth 2 in G and H has at least three orbits on Ω. Then H has exactly
three orbits Ωi, i ∈ I = {1, 2, 3}, and setting ni = |Ωi| for i ∈ I, we have:

(1) For i ∈ I, ni 6= n/2.

(2) Either

(i) for distinct i, j ∈ I, ni 6= nj , or

(ii) up to a permutation of I, n2 = n3 = 1 and n1 = n− 2.

(3) M(H) = {NG(Ωi) : i ∈ I}, H = NG(Ω1) ∩NG(Ω2), and OG(H) ∼= M3.

3. Let Ω be a finite set of order n ≥ 5 and H a subgroup of G ∈ {S,A}, where
S = Sym(Ω) and A = Alt(Ω). Assume H is of depth 2 in G and H has two orbits θ
and Γ = Ω− θ on Ω. Prove that, interchanging θ and Γ if necessary, one of the following
holds:

(1) OG(H) ∼= M1.

(2) G = S, H = NA(θ), M(H) = {A,NS(θ)}, and OG(H) ∼= M2.

(3) There is a regular partition Q of Ω with θ ∈ Q, such that H = NG(θ) ∩ NG(Q),
M(H) = {NG(θ), NG(Q)}, and OG(H) ∼= M2.

(4) θ = {α} is of order 1, H 6= Aα is maximal in Gα, and M(H) = {Gα} ∪ Y, where
Y is the set of 2-transitive subgroups Y of G such that H = Yα.

(5) |θ| = 2, G = A, H is maximal in NG(θ), and M(H) = {NG(θ)} ∪ Z, where Z is
the set of 3-transitive subgroups Z of G such that H = NZ(θ).

Hint: Set X = NG(θ), assume H is a counter example, and prove the following lemmas:

(a) |θ| 6= n/2.

(b) H is maximal in X.

(c) There exists M ∈M(H)−{X}, and for each such M , H is maximal in M and M
is transitive on Ω.

(d) A � M .

(e) If |θ| > 2 then AΓ � H, and if |θ| = 2 then SΓ � H.

(f) Set J = kerH(X) and X∗ = X/J . Then X∗ is faithful and primitive on X∗/H∗.

(g) |θ| ≤ 2 and G = A if |θ| = 2.

(h) G = A and |θ| = 2.

(i) Use Exercise 6.3 to show that either M is 3-transitive on Ω or Q = {θg : g ∈M} ∈
P(M).

(j) At most one member of M(H)− {X} is not 3-transitive.
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(k) Use the argument in the last paragraph of the proof of 7.10 to show that if M is
not 3-transitive then M(H) = {X,M}.

Section 15. ∆ and D∆ pairs

Recall the definition of the lattice ∆(m) and the class of D∆-lattices from Definition
5.8.

Definition 15.1. Let m be a positive integer. A ∆(m)-pair is a pair (G,H) such that
G is a finite group, H is a subgroup of G, and OG(H) ∼= ∆(m). A ∆-pair is a ∆(m)-
pair for some positive integer m. A ∆-pair (G,H) is reduced if for each K ∈ OG(H),
K = NG(K).

In this section we study ∆-pairs and the class of D∆-lattices. Recall these lattices
appear in Conjecture 5.9, which, if verified, would show that the Palfy-Pudlak Question
from Section 5 has a negative answer.

We begin with some examples of ∆-pairs.

Example 15.2. Let L be a group of Lie type of Lie rank l and B a Borel subgroup of
L. Then (B,L) is a reduced ∆(l)-pair.

Example 15.3. Let G = DH be the split extension of D by H such that D is an
elementary abelian p-group for some prime p, and D = D1 ⊕ · · · ⊕ Dm with Di an
irreducible FpH-module for each i, and Di not FpH-isomorphic to Dj for i 6= j. Then
(G,H) is a ∆(m)-pair, and the pair is reduced iff Di is a nontrivial FpH-module for each
i.

Example 15.4. Let L = G(q) be a simply connected group of Lie type with q = qr
0,

where r =
∏

i∈I ri is a product of distinct primes ri, i ∈ I = {1, . . . ,m}. For J ⊆ I, set
rJ =

∏
j∈J rj . Let σ be a field automorphism of order r, and for J ⊆ I, set LJ = CL(σrJ ),

so that LJ
∼= G(qrJ

0 ). Set H = LI
∼= G(q0). Then (at least generically), (L,H) is a

reduced ∆(m)-pair and OL(H) = {LJ : J ⊆ I}.

Example 15.5. Let G = HD with H a complement in G to a subgroup D = A×B of
G, such that A and B are normal in G, and H ∩D a full diagonal subgroup of A × B.
Assume A = A1 × · · · × Am with Ai a minimal normal subgroup of G, and Ai is not
H-isomorphic to Aj for i 6= j if Ai is abelian. Then (G,H) is a ∆(m)-pair, and the pair
is reduced if [Ai,H] 6= 1 for each i with Ai abelian.
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Notation 15.6. Suppose (G,H) is a ∆-pair. Write ÕG(H) for the minimal members of
OG(H)−{H}, and OG(H)∗ for the maximal members of OG(H)−{G}. For α ⊆ ÕG(H),
set Lα = 〈A : A ∈ α〉, with L∅ = H. For K ≤ L ≤ G, write d(K,L) for the depth of K
in L (cf. Definition 5.12).

(15.7) Assume ρ = (G,H) is a ∆(m)-pair, set A = ÕG(H), and write Λ for the lattice
of subsets of A under inclusion. Then

(1) m = |ÕG(H)| = |OG(H)∗| = d(H,G).
(2) The map ϕ : Λ → OG(H) is an isomorphism of lattices, where ϕ : α 7→ Lα.
(3) For subsets α and β of A, 〈Lα, Lβ〉 = Lα∪β, and Lα ∩ Lβ = Lα∩β.
(4) For α ⊆ β ⊆ A, (Lα, Lβ) is a ∆(d)-pair, where d = |β| − |α|. If ρ is reduced, then

so is (Lα, Lβ).
(5) If α and β are subsets of A such that A = α ∪ β, then G = 〈Lα, Lβ〉.
(6) If α and β are subsets of A such that α ∩ β = ∅, then H = Lα ∩ Lβ.

Proof. Parts (1) and (2) follow as OG(H) ∼= ∆(m). Then (2) implies (3). Then (3)
implies the first statement in (4). Further if ρ is reduced, then for Lα ≤ K ≤ Lβ ,
NLβ

(K) = NG(K) ∩ Lβ = K ∩ Lβ = K, completing the proof of (4).
Assume the hypothesis of (5). Then by (2) and (3),

G = LA = Lα∪β = 〈Lα, Lβ〉,

establishing (5). The dual proof establishes (6).

(15.8) Assume ρ = (G,H) is a ∆(m)-pair, and X ≤ H with X E G. Set G∗ = G/X

and ρ∗ = (G∗,H∗). Then ρ∗ is a ∆(m)-pair, and ρ is reduced iff ρ∗ is reduced.

Proof. The map K 7→ K∗ is an isomorphism of OG(H) with OG∗(H∗) with NG∗(K∗) =
NG(K)∗.

(15.9) Let G be a finite group and Λ a sublattice of OG(1) containing 1 and G. Assume:
(i) Λ ∼= ∆(m) for some positive integer m, and
(ii) if m ≤ 2 then Λ = OG(1), and
(iii) for each X ∈ Λ− {G}, we have OX(1) ⊆ Λ.

Then
(1) There exists m distinct primes p1, . . . , pm such that G is cyclic of order p1 · · · pm.
(2) Λ = OG(1).
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Proof. LetA be the set of minmal members of Λ−{1} and I = {1, . . . ,m}. As Λ ∼= ∆(m),
A = {Ai : i ∈ I} is of order m. Observe that for each i ∈ I, OAi

(1) ⊆ Λ. This follows
from (iii) if Ai 6= G, while if Ai = G then m = 1, so the remark is a consequence of (ii).

As Ai is minimal in Λ − {1} and OAi(1) ⊆ Λ, it follows that |Ai| = pi is prime. In
particular if m = 1 then the lemma holds, so we may assume m > 1. Hence there exists
j ∈ I − {i}. Set A = 〈Ai, Aj〉. As Λ is a sublattice of OG(1), A ∈ Λ.

Observe that OA(1) ⊆ Λ. Again if A 6= G this follows from (iii), while if A = G then
m = 2, so the remark follows from (ii). As OA(1) ⊆ Λ ∼= ∆(m), we conclude that

(a) Ai and Aj are the only proper nontrivial subgroups of A.
Then we conclude from (a) and Cauchy’s Theorem that:
(b) |A| = pei

i p
ej

j for some positive integers ei and ej .
We next claim that:
(c) pi 6= pj .
For if pi = pj = p then A is a p-group by (b), so A has a subgroup Z of order p in

its center. Then Z ∈ {Ai, Aj} by (a), say Z = Ai. Then Z < ZAj ≤ A, so ZAj = A by
(a). Therefore A ∼= Ep2 , so A has p+1 > 2 nontrivial proper subgroups, contrary to (a).
This completes the proof of (c).

By (b) and (c), for each p ∈ {pi, pj}, a Sylow p-subgroup of A is a proper nontrivial
subgroup of A. We conclude from (a) that for k ∈ {i, j}, Ak is the unique Sylow pk-
subgroup of A. Hence:

(d) A is cyclic of order pipj .
By (c) and (d), for all distinct i, j ∈ I, pi 6= pj and [Ai, Aj ] = 1. It follows that

H = 〈Ai : i ∈ I〉 is cyclic of order p1 · · · pr. Therefore OH(1) ∼= ∆(m). Finally as
Λ ∼= ∆(m) is a sublattice of OG(1) containing G, we conclude that H = G. Then

OG(1) = OH(1) ∼= ∆(m) ∼= Λ ⊆ OG(1),

so Λ = OG(1), completing the proof of the lemma.

(15.10) Assume (G, 1) is a ∆(m)-pair. Then there exist distinct primes p1, . . . , pm such
that G is cyclic of order p1 · · · pm.

Proof. This is immediate from 15.9 applied to Λ = OG(1).

(15.11) Assume (G,H) is a ∆(m)-pair and H E G. Then there exist distinct primes
p1, . . . , pm such that G/H is cyclic of order p1 · · · pm.

Proof. Passing to G/H and appealing to 15.8, we may assume H = 1. Then the lemma
follows from 15.10.
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(15.12) Assume ρ = (G,H) is a ∆(m)-pair with H 6= NG(H), and set A = ÕG(H).
Then

(1) NG(H) = Lα for some α ⊆ A.

(2) Set |α| = r. Then there exist distinct primes p1, . . . , pr such that NG(H)/H is
cyclic of order p1 · · · pr.

(3) For each K ∈ OG(H), NG(H) ≤ NG(K).

(4) Set B = A− α and B = LB. Then each K ∈ OG(B) is normal in G.

(5) (B,H) is a reduced ∆(m−r)-pair, B E G, G = BNG(H), and G/B ∼= NG(H)/H
is cyclic.

Proof. Part (1) follows from 15.7.2. By 15.7.4, (NG(H),H) is a ∆(r)-pair. Hence (2)
follows by applying 15.11 to this pair.

Let U = NG(H), A ∈ A, and β = α ∪ {A}. If A ∈ α, then U acts on A by (2),
so suppose A /∈ α. As H E U , U permutes OG(H) and then also A. By 15.7.2,
β = A∩ Lβ . Then as U ≤ Lβ , U acts on the unique member A of β not contained in α,
so U ≤ NG(A). Hence (3) follows from 15.7.2.

Let K ∈ OG(B); then by 15.7.2, K = Lβ for some β ⊆ A containing B. Then by
15.7.5, G = 〈Lβ , Lα〉 = 〈K,U〉, so G ≤ NG(K) by (3), establishing (4).

Next by 15.7.6, U ∩ B = Lα ∩ LB = H, so NB(H) = B ∩ U = H. Then B is
reduced by the next lemma, whose proof does not depend upon (5). By (4), B E G,
and we saw in the previous paragraph that G = 〈B,U〉, so G = BU . As B ∩ U = H,
G/B = BU/B ∼= U/(B ∩ U) = U/H, and then (2) completes the proof of (5).

(15.13) Assume ρ = (G,H) is a ∆-pair. Then ρ is reduced iff NG(H) = H.

Proof. Trivially if ρ is reduced then H = NG(H). Conversely assume NG(H) = H and
let K ∈ OG(H) and J = NG(K). Suppose K 6= J . Then by 15.7 there exists A ∈ ÕG(H)
with A � K. By 15.7.6, A ∩K = H, so as A acts on A and K, A ≤ NG(H) and hence
H 6= NG(H). Thus if ρ is not reduced then H 6= NG(H), so if H = NG(H) then ρ is
reduced.

Remark 15.14. Let ρ = (G,H) be a ∆-pair. Observe that by 15.12.5 and 15.13, if
ρ is not reduced then there exists a normal subgroup B of G containing H such that
ρ′ = (B,H) is a reduced ∆-pair, G = BNG(H), and G/B is cyclic. Thus, replacing
(G,H) by (B,H), we can often reduce to the case where our ∆-pair is reduced, so there
is little loss of generality in assuming a ∆-pair is reduced.



74 MICHAEL ASCHBACHER

(15.15) Assume G is a finite group and H is a subgroup of G such that OG(H) is
disconnected and C is a connected component of OG(H)′ isomorphic to ∆(m)′ for some
m ≥ 3. Then for each K ∈ C,

(1) H is not normal in G and NK(H) = H, and
(2) NG(K) = K.

Proof. First suppose that H E G, and set G∗ = G/H. As in the proof of 15.8,
the map K 7→ K∗ is an isomorphism of OG(H) with OG∗(1). Now applying 15.9 to
the sublattice Λ = C∗ ∪ {1, G∗} of OG∗(1), we conclude that OG∗(1) = Λ. But then
OG(H) = C ∪ {G,H}, contrary to the assumption that OG(H) is disconnected.

Therefore H is not normal in G. Next suppose K ∈ C with K 6= NG(K). Observe
(G,K) is a ∆-pair, so by 15.12.4, there exists a proper subgroup B of G in OG(K) normal
in G. As OG(H) is disconnected there is a maximal subgroup M /∈ C. Then G = BM ,
so B ∩M E X. But as X /∈ C, B ∩M = H, so H E M . Next let A be minimal in C
with A ≤ NG(K) but A � K. Then A acts on A ∩K = H, so G = 〈A,M〉 ≤ NG(H),
contrary to an earlier reduction. This completes the proof of (2).

Now assume NK(H) 6= H. Without loss of generality, K is maximal in C. Then
(K,H) is a ∆(m− 1)-pair, so it follows from 15.12.4 that there is a maximal member of
J of OK(H)−{K} normal in K. Further as m ≥ 3, J ∈ C, so (2) supplies a contradiction
which establishes (1).

(15.16) (Shareshian) Assume G is a finite group and H is a subgroup of G such that
OG(H) is a D∆-lattice. Then

(1) for each K ∈ OG(H), K = NG(K), and
(2) for each H ≤ K ≤ L ≤ G such that (K,L) 6= (H,G), (L,K) is a reduced ∆-pair.

Proof. As OG(H) is a D∆-lattice, for each K ∈ OG(H)−{G,H}, the connected compo-
nent C(K) of OG(H)′ containing K is isomorphic to ∆(mK) for some mK ≥ 3. Therefore
K = NG(K) by 15.15.2. Of course G = NG(G). Finally set J = NG(H). By 15.15.1,
J 6= G, so if H 6= J then C(J) ∼= ∆(mJ) and 15.15.1 supplies a contradiction. This
establishes (1).

Assume (K,L) 6= (H,G) is as in (2). Then X = L or K is in OG(H)′, so C(X) ∼=
∆(mX)′, and (X,H) or (G,X) is a ∆-pair, respectively. Then applying 15.7.4 to this
pair, (L,K) is also a ∆-pair, and the pair is reduced by (1).

Remark 15.17. Let ρ = (G,H) be a ∆(m)-pair. In Exercise 15.1, we see how to asso-
ciate to ρ a residually connected geometric simplicial complex C(ρ) over I = {1, . . . ,m}
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on which G acts as a flag transitive group of automorphisms, (cf. Exercise 7.4 for the defi-
nitions) and a nondegenerate chamber system X(ρ) over I, on which G acts as a chamber
transitive group of automorphisms. Indeed the class of complexes C = (V,Σ) and flag
transitive groups G of automorphisms of C, obtained from ∆-pairs via this construction,
is characterized by the property that for each chamber ω of C, and for each proper subset
σ of ω, the maximal overgroups of Gω in Gσ are the stabilizers Gσ,v, v ∈ ω − σ.

The complex C(ρ) supplies a geometric tool which is potentially useful for studying
∆-pairs, and which makes ∆-pairs more interesting.

Exercises for Chapter 15

1. Let ρ = (G,H) be a ∆(m)-pair, I = {1, . . . ,m}, and F = O∗G(H) = {Gi : i ∈ I}.
For J ⊆ I and i ∈ I, set

GJ =
⋂
j∈J

Gj , Pi = Gi′ , and PJ = 〈Pj : j ∈ J〉.

Set C = C(ρ) = C(G,F). (cf Exercise 10.2) Prove:

(1) For each J ⊆ I, GJ = PJ′ .

(2) C is a residually connected geometric complex over I, and G acts as a flag transitive
group of automorphism on C.

(3) P = {Pi : i ∈ I} = ÕG(H) and X = X(H,H,P) (cf. Exercise 7.3) is a non-
degenerate chamber system on I on which G acts as a chamber transitive group of
automorphisms.

(4) X ∼= X(C) and C ∼= CCC(X).

(5) G is residually primitive on C; that is for each J ⊂ I and each simplex σ of C of
type J , Gσ acts primitively on the vertices of lk(σ) of type i for each i ∈ J ′.

Section 16. The structure of groups in a ∆-pair

In this section we begin to generate constraints on the structure of a finite group G

and the embedding of H in G, when (G,H) is a ∆-pair.

Definition 16.1. Given a finite groupG, a subgroupD ofG, andH ≤ NG(D), let ID(H)
be the set of H-invariant subgroups of D, and VD(H) = {I ∈ ID(H) : H ∩D ≤ I}.
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(16.2) Assume ρ = (G,H) is a ∆(m)-pair and 1 6= D E G. Set G∗ = G/D and
A = ÕG(H). Then

(1) µ = (HD,H) is a ∆(m′)-pair, where m′ = |ÕHD(H)|, and if ρ is reduced then so
is µ.

(2) η = (G,HD) is a ∆(m−m′)-pair, and if ρ is reduced then so is η.

(3) ρ∗ = (G∗,H∗) is a ∆(m−m′)-pair, and if ρ is reduced then so is ρ∗.

(4) If ρ is reduced then D = [H,D](H ∩D).

(5) Let B = A − ÕHD(H) and B = 〈B〉. Then ρ′ = (B,H) is a ∆(m − m′)-pair,
G = BD, and H ∩D = B ∩D E B. If ρ is reduced then so is ρ′.

(6) The map ψ : VD(H) → OHD(H) defined by V 7→ HV is an isomorphism of lattices
with inverse K 7→ K ∩D.

(7) B acts on each member of VD(H).

(8) Φ(D) ≤ H.

Proof. Adopt Notation 15.6. As D E L, HD ∈ OG(H). Then by 15.7.2, HD = Lα for
some α ⊆ A, and by 15.7.4, µ is a ∆(m′)-pair, where m′ = d(H,HD) = |α|. Moreover
if ρ is reduced, so is µ. That is (1) holds. Similarly (2) follows from 15.7.4. As ρ∗ =
((HD)∗,H∗), (3) follows from (2) and 15.8 applied to D,HD in the role of X,H.

Assume for the moment that ρ is reduced. Now K = H[H,D] E HD, and as ρ
is reduced, we have NG(K) = K, so K = HD. Hence D = D ∩ K = [H,D](H ∩ D),
establishing (4).

Adopt the notation of (5). Then B = LB and B = A − α. Thus by 15.7.4, ρ′ is a
∆(m −m′)-pair, and ρ′ is reduced if ρ is reduced. Further by 15.7.6, B ∩HD = H, so
B ∩D = B ∩HD ∩D = B ∩H ∩D = H ∩D. As B ∩D E B, we have H ∩D E B.
Similarly by 15.7.5, G = 〈HD,B〉 = DB, completing the proof of (5).

Visibly the map ψ in (6) is a function from VD(H) into OHD(H) and the map ϕ :
K 7→ K ∩ D is a function from OHD(H) to VD(H). Check that ϕ = ψ−1 to complete
the proof of (6).

Let V ∈ VD(H) and U = 〈V B〉. By (6), V H = Lγ for some γ ⊆ α, so by 15.7.3,

UB = 〈HV,B〉 = 〈Lγ , Lβ〉 = Lγ∪β .

Further U ∈ VD(H), so UH = Lδ for some γ ⊆ δ ⊆ α. Then δ ⊆ α∩ (γ∪β) = α∩γ = γ,
so δ = γ and hence U = V by (6). This establishes (7).

Let C be the set of maximal proper subsets of α, and for γ ∈ C, set Dγ = Lγ ∩D, let
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Mγ be the set of maximal subgroups of D containing Dγ , and set

Vγ =
⋂

M∈Mγ

M.

Then H permutes Mγ , so Dγ ≤ Vγ ∈ VD(K). Thus by (6), Vγ = Lδ ∩D for some δ ⊆ α,
so γ = δ by maximality of γ, and hence Vγ = Dγ . Therefore writing M for the set of
maximal subgroups of D, and observing that⋂

γ∈C
γ = ∅,

it follows fromm 15.7.3 that

Φ(D) =
⋂

M∈M
M ≤

⋂
γ∈C,M∈Mγ

M =
⋂
γ∈C

Vγ = D ∩
⋂
γ∈C

Lγ = D ∩ L∅ = D ∩H,

establishing (8).

(16.3) Assume ρ = (G,H) is a ∆(m)-pair, 1 6= D E G is an abelian p-group for some
prime p, and kerH∩D(G) = 1. Set A = ÕG(H), B = ÕHD(H), and B = LB. Then

(1) H ∩D = 1.
(2) B is a complement to D in G.
(3) Φ(D) = 1.
(4) D = D1 ⊕ · · · ⊕Dr, where Di is an irreducible FpH-module, and for i 6= j, Di is

not FpH-isomorphic to Dj.
(5) {D1, . . . , Dr} is the set of irreducible FpH-submodules of D.
(6) (HD,H) is a ∆(r)-pair.

Proof. By 16.2.5, G = BD and H ∩D = B ∩D E B. As D is abelian, H ∩D E D.
Therefore H ∩D E G by 16.2.5, so (1) holds as kerH∩D(G) = 1. Then as G = BD and
B ∩D = H ∩D, (2) holds. Similarly by 16.2.8, Φ(D) ≤ H, so (3) holds.

Adopt Notation 15.6. By 15.7.1, HD = Lα, where α = ÕHD(H). Let r = |α|, so that
µ = (HD,H) is a ∆(r)-pair by 16.2.1. Let α = {X1, . . . , Xr} and Di = Xi ∩ Di. By
16.2.6, D = {D1, . . . , Dr} is the set of minimal H-invariant subgroups of D. Thus D is
the set of irreducible FpH-submodules of D. By 15.7.2, D = 〈D〉, so D is a semisimple
FpH-module. Further for 1 ≤ j ≤ r, Y = 〈Dj : j 6= i〉 = Lβ ∩D, where β = α − {Xi}.
Then by 15.7.6,

Y ∩Di = Lβ ∩Xi ∩D = H ∩D = 1,

so D = D1 ⊕ · · · ⊕Dr. Finally as D = {D1, . . . , Dr}, for i 6= j, {Di, Dj} are the set of
irreducibles in Di⊕Dj , so Di is not FpH-isomorphic to Dj , completing the proof of the
lemma.
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(16.4) Assume (G,H) is a ∆-pair such that kerH(G) = 1. Then

(1) H ∩ F (G) = 1.

(2) Φ(Op(G)) = 1 for each prime p.

(3) All components of G are simple.

(4) There is a complement B to F (G) in G containing HE(G).

Proof. Part (2) follows from 16.2.8. Then (1) follows from 16.3.1. Indeed Φ(E(G)) =
Z(E(G)), so also Z(E(G)) = 1 by (1) and 16.2.8. Hence (3) holds.

To prove (4), we show that if N is an abelian normal subgroup of G with kerN∩H(G) =
1 then here is a complement to N in G containing HE(G). Assume otherwise and pick
a counter example with N minimal. If N = 1 the claim is trivial, so we may assume
p is a prime with D = Op(N) 6= 1. By hypothesis, D is abelian and kerH∩D(G) =
kerH∩N (G) ∩ D = 1, so the hypotheses of 16.3 are satisfied. Hence by 16.3.2, there is
a complement G0 to D in G containing Op(N)E(G)H such that (G0,H) is a ∆-pair.
Then by minimality of G, there is a complement B to Op(N) in G0 containing HE(G),
completing the proof.

(16.5) Assume (G,H) is a ∆(m)-pair and D = D1 × D2 is a subgroup of G with
1 6= Di E G. Let Vi be the projection of H ∩D on Di, Hi = H ∩Di, and V = V1V2.
Then

(1) Hi E V .

(2) Set (V H)∗ = V H/H1H2. Then (H ∩D)∗ is a full diagonal subgroup of V ∗1 × V ∗2 .

(3) V ∗1 = X∗
1 × · · · ×X∗

r , where {X∗
1 , . . . , X

∗
r } are the minimal normal subgroups of

(V H)∗ contained in V ∗1 .

(4) (HV, V ) is a ∆(r)-pair.

(5) ÕDH(H) = ÕD1H(H) ∪ ÕD2H(H).

(6) V acts on each member of VD1(H).

(7) Let Ẽ1 be the set of minimal members of VD1(H)− {H1} which are not contained
in V1, and E1 = 〈Ẽ1〉. Then E1 E G.

(8) If D1 is a minimal normal subgroup of G then either

(a) V1 = H1, or

(b) H1 = 1 and D1 = V1.

Proof. Let J = H ∩ D and X = HV . Then V = V2J , and V2 and J act on H1, so
H1 E V , establishing (1). By construction, J∗ ∩ V ∗1 = (J ∩ V1)∗ = H∗

1 = 1, so (2)
follows.
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Let Y be the minimal members of VV1(H)−{H1}. As V = V2J , and V2 and J act on
each Y ∈ Y, Y E V1. Then Y∗ is the set of minimal normal subgroups of X∗ contained
in V ∗1 . Then arguing as usual, (3) and (4) hold.

Part (5) follows from 15.7.3. As V = V2J , and V2 and J acts on each member U of
VD1(H), V acts on U , proving (6).

By 16.2.5 we have a factorization G = BD1 and by 16.2.7, B acts on each member of
Ẽ1. Thus B acts on E1. By (6), V acts on E1, and by 16.2.6, D1 = E1V1. Thus D1 acts
on E1, so L = BD1 acts on E1, establishing (7).

Assume D1 is a minimal normal subgroup of L. Then by (7), either D1 = E1 or
E1 = 1. In the first case V1 ≤ E1, while by 16.2.6, for A a minimal member of VD1(H)
not contained in Ẽ1, A � E1. Therefore V1 = H1, so (8a) holds in this case.

So assume E1 = 1. Then D1 = V1 by 16.2.6. Recall we have a factorization G = BD1,
and by 15.17.7, H1 E B. By (1), H1 E V1 = D1, so H1 E G. Then by minimality of
D1, H1 = 1 or D1, completing the proof of (8).

(16.6) Assume (G,H) is a reduced ∆(m)-pair and let X E G. Then

(1) G = 〈HG〉.
(2) If H ≤ X then X = G.

(3) If G/X is nilpotent then G = XH.

(4) Suppose X ≤ Y E G with G/Y nilpotent and Y/X cyclic. Set YH = X(Y ∩H).
Then G = HY , and Y/YH is cyclic of order r1 · · · rs with the ri distinct primes and
m = d(H,HX) + s.

Proof. Let Y = 〈HG〉. Then Y ∈ OG(H) and G = NG(Y ). But as (G,H) is reduced,
Y = NG(Y ), so (1) holds. Trivially (1) implies (2).

It remains to prove (3) and (4). By 16.2.2, (G,HX) is a reduced ∆-pair, and by
15.8, (G/X,HX/X) is a reduced ∆-pair. By 15.7.4, m = d(H,HX) + d(HX,G). Thus
replacing (G,H) by (G/X,HX/X), we may assume X = 1 and either G is nilpotent or
G/Y is nilpotent and Y is cyclic.

If G is nilpotent, it remains to show that G = H. But by (1), G = 〈HG〉, so as G is
nilpotent, G = H, completing the proof of (3).

So assume Y E G with Y cyclic and G/Y nilpotent. By (3), G = HY . Observe
that YH = Y ∩H, so as Y is cyclic, YH E G. By 16.2.8, Φ(Y ) ≤ YH . Therefore Y/YH

is cyclic of order r1 · · · rs for distinct primes r1, . . . , rs. In particular d(H,Y ) = s. This
completes the proof.
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Exercises for Section 16

1. Assume G is a finite solvable group and H is a subgroup of G such that H has
a normal complement X in G, and (G,H) is a ∆(m)-pair. Let Π be the set of prime
divisors of |X|. Prove:

(1) The map K 7→ K ∩X is an isomorphism of lattices from OG(H) to IX(H), with
inverse Y 7→ Y H.

(2) Each minimal normal subgroup of G contained in X is in the set ĨX(H) of minimal
nonidentity members of IX(H).

(3) For each Y ∈ IX(H), there is a unique H-invariant complement to Y in X.

(4) For each π ⊆ Π, there is a unique H-invariant Hall π-subgroup Xπ of X, and each
H-invariant π-subgroup of X is contained in Xπ.

(5) All Sylow groups of X are elementary abelian.

(6) F (X) is abelian.

(7) Let 1 = F0(X) < · · · < Fl(X) = X be the Fitting series for X, and l = l(X)
the Fitting length of X. (cf. Exercise 3.4) Prove that for 1 ≤ i ≤ l, there exists
Ai ∈ ĨFi(X)(H) with Ai � Fi−1(X), such that Ai is a pi-group for distinct primes
p1, . . . , pl, and Y = A1 · · ·Al ∈ IX(H) with Fi(Y ) = A1 · · ·Ai for each 1 ≤ i ≤ l. Hence
l(X) ≤ |Π|.

(8) Is it true that if (G,H) is reduced, then X/F (X) is abelian?

2. Let G be a finite group, I = {1, . . . ,m} a finite set, and F = (Gi : i ∈ I) a family
of subgroups of G. Define the geometric complex C = C(G,F) as in Exercise 10.2, and
adopt the notation of that exercise. For i ∈ I, set ni = |G : Gi|. Prove:

(1) If m = 2 then C ∼= C(n1, n2) (cf. Exercise 10.3) iff G = G1G2.

(2) C ∼= C(ni : i ∈ I) iff C is residually connected and for all i, j, Pi,j = PiPj .

(3) Let H = GI and assume (G,H) is a ∆(m)-pair such that G is solvable and H has
a nontrivial normal complement X in G. Prove C ∼= C(ni : i ∈ I).
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