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Abstract

The main aim of this work is to give a stochastic extension of the Brane Calculus,
along the lines of recent work by Cardelli and Mardare [12]. In this approach,
the semantics of a process is a measure of the stochastic distribution of possible
derivations. To this end, we first introduce a compositional, finitely branch-
ing labelled transition system for Brane Calculus; interestingly, the associated
strong bisimulation is a congruence. Then, we give a stochastic semantics to
brane systems by defining them as Markov processes over the measurable space
generated by terms up-to syntactic congruence, and where the measures are
indexed by the actions of this new LTS. Finally, we provide a SOS presenta-
tion of this stochastic semantics, which is compositional and syntax-driven, and
moreover the induced rate bisimilarity is a congruence.

Key words: Brane Calculus, Structural Operational Semantics, Stochastic
Semantics, Markov Processes, Rate Bisimilarity, Systems Biology

1. Introduction

A fundamental issue in System Biology is modeling the membrane interac-
tion machinery. A cell is constructed by thousands of nested biological mem-
brane, which can be thought as a mobile containers, both coordinating the
activity of the cell and transporting material within the cell. For instance,
most functions of the Golgi apparatus (like protein sorting) are implemented by
membrane interactions; but also viral infections, T-cells phagocytosis, . . .

Several models of membranes have been proposed in literature [22, 31, 2];
among them, the Brane Calculus (BC) [11] has been arisen as a good model
focusing on abstract membrane interactions, still being sound with respect to
biological constraints (e.g. bitonality). A process of this calculus represents a
system of nested membranes, carrying their active components on membranes,
not inside them; this reflects the biological evidence that functional molecules
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(proteins) are embedded in membranes, with consistent orientation. Mem-
branes interact according to three reaction rules, corresponding to phagocytosis,
endo/exocytosis, and pinocytosis.

In the original definition of the Brane Calculus [11], reaction rules do not
consider quantitative aspects like rates, volumes, etc. However, it is impor-
tant to address these aspects, e.g. for implementing stochastic simulations, for
connecting Brane Calculus with quantitative models at lower abstraction levels
(such as stochastic π-calculus and κ-calculus for protein interactions), and of
course for comparing with experimental observations.

In this paper, we introduce a stochastic semantics for the Brane Calculus.
Clearly, a “stochastic brane calculus” can be obtained just by adding rates
to reaction rules, similarly to what have been done for BioAmbients in [9, 7].
However, the resulting “pointwise” rated reduction semantics is not satisfactory
for several reasons. First, it is not compositional: reaction rates of a process
are not defined on the syntactic structure of the process, in terms of the rates
of its components. Secondly, stochastic reaction rules are not easy to deal with
in presence of large populations of agents (as it is often the case in biological
systems), because we have to count a large number of occurrences for calculating
the effective reaction rates. Third, this approach does not generalize easily to
other quantitative aspects (e.g. volumes).

To overcome these issues, in this paper we adopt a novel approach recently
introduced by Cardelli and Mardare [12] (similar ideas have been proposed for
probabilistic automata [21, 32], and Markov processes [20, 8, 25]). The main
point of this approach is that the semantics of a process is a measure of the
stochastic distribution of the possible outcomes. Thus, processes form a mea-
surable space, and each process is given an action-indexed family of measures on
this space. For an action a, the measure µa associated to a process P specifies
for each measurable set S of processes, the rate µa(S) ∈ R+ of a-transitions
from P to (elements of) S. The resulting structures, called Markov processes
(MPs), are not continuous-time Markov chains because each transition is from
a state to a possibly infinite class of states (closed to the congruence relation
over processes) and consequently cannot be described in a pointwise style. An
advantage of this approach is that we can apply results from measure theory
for solving otherwise difficult issues, like instance-counting problems; moreover,
process measures are defined compositionally, and can be characterized also
by means of operational semantics in GSOS form. Finally, other measurable
aspects of processes can be dealt with along the same lines.

In order to apply the approach of [12] to Brane Calculus, we have to solve
some problems; in particular, we need a finitely branching, compositional la-
belled transition system (LTS) for Brane Calculus. Defining such a LTS is easy
for simple calculi like CCS, but it is much more difficult for a calculus intended
to model agent mobility, like BC. The main difficulty is to describe precisely
how a system can interact with the surrounding environment. The first labelled
transition system for the Brane Calculus has been given in [3], but it is neither
structural nor finitely branching, and hence not adequate for our purposes.

This problem has been overcome in [1], where we have introduced the first
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finitely branching SOS for Brane Calculus. In that work, we identified labels and
transitions bearing in mind the so-called IPO construction [24], as done in [30, 6]
for Mobile Ambients. However, an effect of this methodology is that transitions
may yield higher-order terms, i.e., in a transition P a−→ Q the target Q may be a
system with “holes” (like π-calculus’ “abstractions”), waiting to be instantiated
with terms, of even other abstractions. This fact has had several consequences
on the definition of syntax, bisimulation, and the Markov kernel itself: all these
notions had to be accommodated in order to deal with higher-order terms.

In this paper we show that in the case of Brane Calculus, higher-order terms
are an unnecessary complication. We present here an operational semantics in
GSOS format, which refines the SOS given in [1], avoiding higher-order terms
(replaced by tuples of terms), and simplifying further the labels (which will not
contain processes or membranes anymore).

The theory of Stochastic Brane Calculus will benefit from this simplification
in many aspects. First, we can maintain the original syntax and semantics of
the calculus (which we recall in Section 2), without modifications. Secondly,
also the compositional labelled transition system for BC, which we present in
Section 3, is simpler, with transitions of the form P

α−→ 〈P1, . . . , Pn〉 with tuples
in place of abstractions. This kind of transitions are called sorted, because
the label determine the sorts in the resulting tuple. We prove that this SOS
is adequate with respect to the usual reduction semantics, but moreover, the
bisimilarity naturally induced by this labelled transition system turns out to be
a congruence; this is important because it allows for compositional reasoning.

This compositional LTS is the starting point for defining the stochastic se-
mantics for the Brane calculus. To this end, we need first to introduce sorted
Markov processes and bisimulation on them (Section 4); sorted Markov pro-
cesses can be seen as the stochastic counterparts of sorted transition systems.
Equipped with this theory, in Section 5 we will endow terms of Brane calculus
with a Markov kernel, which is consistent with the non-stochastic semantics
(that is, a process has a transition iff the rate of that transition is not null).

After that a correct Markov kernel for Brane Calculus has been defined, we
can look for a simpler presentation of the semantics of Markov processes. In Sec-
tion 6 we present a SOS system capturing the Markov kernel over processes: the
stochastic bisimilarity induced by this SOS corresponds to the Markov bisimi-
larity defined in Section 5. Therefore, this semantics can be fruitfully used for
simulations, or for verifying system equivalences.

Some concluding remarks and directions for further work are in Section 7.
The notions from measure theory we use in this work are recalled in Appendix A.

2. Brane Calculus

In this section we recall Cardelli’s Brane Calculus [11] focusing on its basic
version (without communication primitives, complexes and replication).

First, let us fix the notation we will use hereafter. Let S be a set of sorts (or
“types”), ranged over by s, t, and T a set of S-sorted terms; for t ∈ S, Tt ⊆ T
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denotes the set of terms of sort t. For A a set of symbols, A∗ denotes the set
of finite words (or lists) over A, and 〈a1, . . . , an〉 denotes a word in A∗. For a
word 〈t1, . . . , tn〉 in S∗, we define T〈t1,...,tn〉 , Tt1 × · · · × Ttn .

Syntax. The sorts and the set B of terms of Brane Calculus are the following:

Sorts :: S t ::= sys | mem

Membranes :: Bmem σ, τ ::= 0 | σ|τ | Jn.σ | JI
n(τ).σ |

Kn.σ | KI
n.σ | Gn(τ).σ

Systems :: Bsys P,Q ::= k | P mQ | σhPi

The subscripted names n are taken from a countable set Λ. By convention we
shall use M , N , . . . to denote generic Brane Calculus terms in B.

A membrane can be either the empty membrane 0, or the parallel composi-
tion of two membranes σ|τ , or the action-prefixed membrane ε.σ. Actions are:
phagocytosis J, exocytosis K, and pinocytosis G. Each action but pinocytosis
comes with a matching co-action, indicated by the superscript ⊥.

A system can be either the empty system k, or the parallel composition
P mQ, or the system nested within a membrane σhPi. Notice that, differently
from [11], pino actions are indexed by names in Λ. In [11], names are meant only
to pair up an action with its corresponding co-action, hence a pino action does
not need to be indexed by any name. Actually, names can be thought of as an
abstract representation of particular protein conformational shapes; hence, each
name can correspond to a different biological behaviour, possibly with different
kinetic performances. Therefore, if we want to observe also kinetic properties of
processes, it is important to keep track of names in pino actions. We will come
back on this in Sections 3 and 6 (Examples 3.8 and 6.17).

Terms can be rearranged according to a structural congruence relation; the
intended meaning is that two congruent terms actually denote the same sys-
tem. Structural congruence ≡ is the smallest equivalence relation over B which
satisfies the axioms and rules listed below.

P mQ ≡ Q m P P m (Q mR) ≡ (P mQ) mR P m k ≡ P

σ|τ ≡ τ |σ σ|(τ |ρ) ≡ (σ|τ)|ρ σ|0 ≡ σ

0hki ≡ k
P ≡ Q

P mR ≡ Q mR

σ ≡ τ
σ|ρ ≡ τ |ρ

P ≡ Q σ ≡ τ
σhPi ≡ τhQi

α ∈ {Jn,Kn,KI
n}n∈Λ σ ≡ τ

α.σ ≡ α.τ
β ∈ {JI

n,Gn}n∈Λ ρ ≡ ν σ ≡ τ
β(ρ).σ ≡ β(ν).τ

Differently from [11], we allow to rearrange also the sub-membranes contained
in co-phago and pino actions (by means of the last inference rule above).

Reduction Semantics. The dynamic behaviour of Brane Calculus is specified by
means of a reduction semantics, defined over a reduction relation (“reaction”)
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JI
n(ρ).τ |τ0hQi m Jn.σ|σ0hPi} τ |τ0hρhσ|σ0hPii mQi

(red-phago)

KI
n.τ |τ0hKn.σ|σ0hPi mQi} σ|σ0|τ |τ0hQi m P

(red-exo)

G(ρ).σ|σ0hPi} σ|σ0hρhki m Pi
(red-pino)

P }Q

σhPi} σhQi
(red-loc)

P }Q

P mR}Q mR
(red-comp)

P ≡ P ′ P ′}Q′ Q′ ≡ Q
P }Q

(red-equiv)

Table 1: Reduction semantics for the Brane Calculus.

} ⊆ Bsys × Bsys, whose rules are listed in Table 1. Notice that the presence of
(red-phago/exo/pino) and (red-equiv) makes this not a structural presentation,
since these rules are not primitive recursive in the syntax (i.e., structural recur-
sive) as required by the SOS format (see [28] for a gentle introduction and [29]
for further details about the origins and motivations of SOS).

3. A compositional GSOS for Brane Calculus

In this section we introduce a structural operational semantics for the Brane
calculus. The approach proposed here improves the semantics of [1] in several
aspects: (i) labels are not Brane Calculus terms; (ii) we avoid “λ-abstractions”,
using instead tuples of simple terms; (iii) the associated strong bisimulation is
simpler, as we do not need to close it by instantiation of the λ-abstractions.
Moreover, we prove that this bisimulation is compositional, which means that
it respects the algebraic structure of terms, i.e., it is a congruence.

The novelty of our approach derives from the format of the transitions.
Transitions are not of the form M

a−→M ′, as usual in process algebras, because
in our case the continuation can be composed by several processes, scattered
into different locations as a result of the rearrangement of the nesting structure.
For this reason we use transitions of the form M

a−→ 〈M1,M2, . . . ,Mn〉, where
each component Mi represents a process in a different location. The number n
of continuations, and their sorts, are uniquely determined by the action a.

As an example, let us consider the transition Jn.σhPi|Q
phn−−→ 〈σhPi, Q〉.

The first component, σhPi, is the part of the system that has been phagocy-
tized, hence ready to be moved into another (not yet known) compartment; the
second component, Q, is the part of the system that has not been moved, and
hence resides in a different location with respect to σhPi. We say that phn has

arity sys → 〈sys, sys〉, because it labels transitions of the form P
phn−−→ 〈P ′, P ′′〉

where the source P is a system and the continuation 〈P ′, P ′′〉 is a pair of systems.
In order to formalize this idea, we introduce the following generalization of

the usual notions of labelled transition relation and system.
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Definition 3.1 (Sorted labelled transition relation). Let S be a set of
sorts. An action arity is an element of S × S∗. An action arity 〈t, t1, . . . , tn〉
is denoted as t → 〈t1, . . . , tn〉. A set of action labels with arities is a set A of
labels with a function ar : A→ S × S∗.

Let T be a set of S-sorted terms. Given a ∈ A, a sorted a-labelled transition
relation is a relation a−→ ⊆ Tar(a).

Notice that if ar(a) = t → 〈t1, . . . , tn〉, then Tar(a) = Tt × Tt1 × · · · × Ttn .
Given M ∈ Tt and Mi ∈ Tti for 1 ≤ i ≤ n, the fact “(M,M1, . . . ,Mn) ∈ a−→”
will be denoted by M a−→ 〈M1, . . . ,Mn〉.

Definition 3.2 (Sorted labelled transition system). Let A be a set of
labels with arity function ar : A → S × S∗. An (sorted) A-transition system is
a pair S = (T, { a−→}a∈A), where T is a set of S-sorted terms and for all a ∈ A,
a−→ ⊆ Tar(a) is a sorted transition relation.

Clearly, traditional labelled transition relations and systems are particular
cases of these definitions, i.e. when S = {∗} and ar(a) = ∗ → 〈∗〉 for all a ∈ A.

The set of action labels for the Brane Calculus will be denoted by A and can
be partitioned with respect to the source sort, as follows:

Asys , {id : sys→ 〈sys〉} ∪ {phn : sys→ 〈sys, sys〉 | n ∈ Λ} ∪
{ph⊥n : sys→ 〈mem,mem, sys, sys〉 | n ∈ Λ} ∪
{exn : sys→ 〈mem, sys, sys〉 | n ∈ Λ}

Amem , {Jn,Kn,KI
n : mem→ 〈mem〉 | n ∈ Λ} ∪

{JI
n,Gn : mem→ 〈mem,mem〉 | n ∈ Λ}

The transition system specification (TSS) for the Brane Calculus is in Table 2,
and it is organized into two parts: rules for membranes and rules for systems.

The rules devoted to membrane terms are of two sorts: prefix and parallel
rules. All rules are quite standard, apart from (JI-pref) and (G-pref) which
decouple the argument of the actions from the membrane.

The rules for system terms are more interesting. The rule (J) describes
how a phago transition at the level of membrane terms is lifted at the level of
system terms; the same applies to rules (JI), (JI), (K), and (idG). Rules for
composition, that is, (LmJ), (LmJI), (LmK) and their symmetric right coun-
terparts, extend a transition to the composition of systems. The rules (L-idJ)
and (R-idJ) show how phago and co-phago transitions synchronize in order to
cause the actual phagocytosis reaction. The rule (idK) behaves similarly, but in
this case the synchronization is between a system transition and a membrane
transition. Finally, (id-loc), (Lmid), and (Rmid) are contextual rules, and allow
to focus on the reacting parts of the system.

As a remark, we notice that this structural operational semantics formalizes
what was implicitly stated by the reduction semantic in Section 2, that is,
reactions that happen at the level of systems are caused only by actions on
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Jn.σ
Jn−−→ 〈σ〉

(J-pref)

JI
n(ρ).σ

JI
n−−→ 〈σ, ρ〉

(J
I
-pref)

Gn(ρ).σ Gn−−→ 〈σ, ρ〉
(G-pref)

Kn.σ
Kn−−→ 〈σ〉

(K-pref)

KI
n.σ

KI
n−−→ 〈σ〉

(K
I
-pref)

σ
α−−→ 〈σ′〉

σ|τ α−−→ 〈σ′|τ〉
(L-par)

τ
α−−→ 〈τ ′〉

σ|τ α−−→ 〈σ|τ ′〉
(R-par) (α ∈ {Jn,Kn,K

I
n}n∈Λ)

σ
β−−→ 〈σ′, ρ〉

σ|τ β−−→ 〈σ′|τ, ρ〉
(L()-par)

τ
β−−→ 〈τ ′, ρ〉

σ|τ β−−→ 〈σ|τ ′, ρ〉
(R()-par) (β ∈ {JI

n,Gn}n∈Λ)

σ
Jn−−→ 〈σ′〉

σhPi
phn−−→ 〈σ′hPi,k〉

(J)
P

phn−−→ 〈P ′, P ′′〉

P mQ
phn−−→ 〈P ′, P ′′ mQ〉

(LmJ)

σ
J
I
n−−→ 〈σ′, ρ〉

σhPi
ph⊥n−−−→ 〈σ′, ρ, P,k〉

(J
I
)

P
ph⊥n−−−→ 〈σ, ρ, P ′, P ′′〉

P mQ
ph⊥n−−−→ 〈σ, ρ, P ′, P ′′ mQ〉

(LmJ
I
)

σ
Kn−−→ 〈σ′〉

σhPi
exn−−→ 〈σ′, P,k〉

(K)
P

exn−−→ 〈σ, P ′, P ′′〉
P mQ

exn−−→ 〈σ, P ′, P ′′ mQ〉
(LmK)

P
phn−−→ 〈P ′, P ′′〉 Q

ph⊥n−−−→ 〈τ, ρ,Q′, Q′′〉

P mQ
id−→ 〈P ′′ m τhρhP ′i mQ′i mQ′′〉

(L-idJ)

P
exn−−→ 〈σ, P ′, P ′′〉 τ

K
I
n−−→ 〈τ ′〉

τhPi
id−→ 〈σ|τ ′hP ′′i m P ′〉

(idK)
σ

Gn−−→ 〈σ′, ρ〉

σhPi
id−→ 〈σ′hρhki m Pi〉

(idG)

P
id−−→ 〈P ′〉

σhPi
id−−→ 〈σhP ′i〉

(id-loc)
P

id−−→ 〈P ′〉

P mQ
id−−→ 〈P ′ mQ〉

(Lmid)

Table 2: GSOS for Brane Calculus. Symmetric rules (RmJ), (RmJI), (RmK), (Rmid), and
(R-idJ) are omitted.

membranes. This dependency is not mutual, indeed systems transitions do not
occur as premises in any rule for membrane terms.

An example of derivation of labelled transition is shown in Figure 1: the
derivation leads to a simplified version of the (red-phago) reaction of Table 1.

The following proposition states that this SOS is adequate with respect to
the reduction semantics given in Section 2.

Proposition 3.3. For P,Q ∈ Bsys, the following hold:

1. If P id−−→ 〈Q〉 then P }Q.
2. If P }Q then P

id−−→ 〈Q′〉 for some Q′ ≡ Q.
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Jn.σ
Jn−−→ 〈σ〉

(J-pref)

Jn.σhPi
phn−−→ 〈σhPi,k〉

(J)
JI
n(ρ).τ

J
I
n−−→ 〈τ,J〉

(JI-pref)

JI
n(ρ).τhQi

ph⊥n−−−→ 〈τ, ρ,Q,k〉
(JI)

Jn.σhPi m JI
n(ρ).τhQi

id−−→ 〈k m τhρhσhPii mQi m k〉
(L-idJ)

Figure 1: Derivation for the simplified (red-phago) reaction.

The A-transition relations for the Brane Calculus are compatible with struc-
tural congruence in the following sense:

Lemma 3.4. Let M,N ∈ B. If M a−→ 〈M1, . . . ,Mn〉 and M ≡ N then there ex-
ist N1, . . . , Nn ∈ B such that Ni ≡Mi, for 1 ≤ i ≤ n, and N a−→ 〈N1, . . . , Nn〉.

The sorted A-transition system (B, { a−→}a∈A) is finitely branching, that is,
for every M ∈ B there are only finitely many a ∈ A and 〈M1, . . . ,Mn〉 such that
M

a−→ 〈M1, . . . ,Mn〉. This can be readily proven by induction on the structure
of M , observing that only finitely many rules can be applied.

Lemma 3.5. (B, { a−→}a∈A) is finitely branching.

Sorted bisimilarity. As usual, this labelled transition system induces a bisimi-
larity relation on terms. We show now that this bisimilarity is an equivalence
relation (which is not obvious, due to the nonstandard form of the transitions)
and, moreover, that it is consistent with respect to structural congruence. First,
let us define formally strong bisimilarity over sorted transition systems. (This
definition corresponds to the usual one in category theory, for a suitable be-
haviour endofunctor corresponding to sorted transition systems.)

Definition 3.6 (Strong bisimilarity). Let S = (T, { a−→}a∈A) be a sorted
A-transition system. A binary relation R ⊆ T ×T over terms is a bisimulation
iff whenever (M,N) ∈ R and a ∈ A:

– if M a−→ 〈M1, . . . ,Mn〉 then there is a transition N a−→ 〈N1, . . . , Nn〉 such
that for each 1 ≤ i ≤ n, (Mi, Ni) ∈ R;

– if N a−→ 〈N1, . . . , Nn〉 then there is a transition M a−→ 〈M1, . . . ,Mn〉 such
that for each 1 ≤ i ≤ n, (Mi, Ni) ∈ R.

Two terms M and N are strong bisimilar, written M ∼ N , iff there is a bisim-
ulation that relates them.

The next proposition states some properties about ∼ which hold for general
sorted labelled transition systems.

Proposition 3.7. The following statements about strong bisimilarity hold:

1. ∼ is an equivalence relation;

2. ∼ is the largest bisimulation relation;
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3. M ∼ N iff for each action a ∈ A

– if M a−→ 〈M1, . . . ,Mn〉 then there is a transition N
a−→ 〈N1, . . . , Nn〉

such that for each 1 ≤ i ≤ n, Mi ∼ Ni;
– if N a−→ 〈N1, . . . , Nn〉 then there is a transition M

a−→ 〈M1, . . . ,Mn〉
such that for each 1 ≤ i ≤ n, Mi ∼ Ni;

4. if M ∼ N then M and N are of the same sort.

Before beginning to explore the properties of strong bisimilarity in the spe-
cific setting of Brane Calculus, let us see some simple examples.

Example 3.8. Let n,m ∈ Λ. Consider the system terms P = Gn(ρ).σhRi and
Q = Gm(ρ).σhRi. We prove that P ∼ Q.

Let us consider the binary relation R = ∆B∪P where ∆B denotes the identity
relation over B and P is defined by

P = {(Gn′(ρ′).σ′hR′i,Gm′(ρ′).σ′hR′i) | σ′, ρ′, R′ ∈ B and n′,m′ ∈ Λ}

It is easy to see that (P,Q) ∈ R, hence to prove P ∼ Q it suffices to show that
R is a bisimulation. Suppose (P ′, Q′) ∈ P (the case (P ′, Q′) ∈ ∆B is trivial),
hence P ′ = Gn′(ρ′).σ′hR′i and Q′ = Gm′(ρ′).σ′hR′i for some σ′, ρ′, R′ ∈ B and
n′,m′ ∈ Λ. Assume P ′

a−→ 〈P ′1, . . . , P ′k〉. By a structural analysis on P ′, the
transition admits two possible forms depending on the last rule applied to derive
it. We consider the two cases separately:

Rule (id-loc): a = id, k = 1 and P ′1 = Gn′(ρ′).σ′hR′′i for some R′′ such that
R′

id−→ 〈R′′〉. Using the transition R′
id−→ 〈R′′〉 as premise in rule (id-loc)

we can infer that Q′ id−→ 〈Q′1〉, where Q′1 = Gm′(ρ′).σ′hR′′i. It is easy to
see that (P ′1, Q

′
1) ∈ R.

Rule (idG): a = id, k = 1 and P ′1 = σ′hρ′hki mR′i. From axiom (G-pref) we
infer the transition Gm′(ρ′).σ

Gm′−−→ 〈σ′, ρ′〉 and using it as premise in rule
(idG) we can derive the transition Q′ id−→ 〈Q′1〉, where Q′1 = σ′hρ′hkimR′i.
Since P ′1 = Q′1, we have that (P ′1, Q

′
1) ∈ R.

The same argument holds assuming Q′ a−→ 〈Q′1, . . . , Q′k〉, hence we are done.

The above example explains the reason why the original formulation of Brane
Calculus [11] does not consider names for pino actions: in a non-stochastic
setting, all pino actions are observationally equivalent (they simply “happen”).
On the other hand, in a stochastic setting we can observe also the rate which
these reactions take place at; therefore, we have to distinguish among different
kinds of pino actions, hence the names.

Example 3.9. Consider the Brane Calculus systems P = Gn(σ)|Gn(σ)hRi and
Q = Gn(σ).Gn(σ)hRi. We prove that P ∼ Q.
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Let us consider the binary relation R = ∆B ∪ R′ where ∆B denotes the
identity relation over B and R′ is defined by

R′ = {(Gn′(σ′)|Gn′(σ′)hR′i,Gn′(σ′).Gn′(σ′)hR′i) | σ′, R′ ∈ B and n′ ∈ Λ}

One should readily notice that (P,Q) ∈ R, hence it suffices to prove that R is
a bisimulation. Suppose (P ′, Q′) ∈ R′ (the case (P ′, Q′) ∈ ∆B is trivial), hence
P ′ = Gn′(σ′)|Gn′(σ′)hR′i and Q′ = Gn′(σ′).Gn′(σ′)hR′i for some σ′, R′ ∈ B
and n′ ∈ Λ. Assume P ′

a−→ 〈P ′1, . . . , P ′k〉. By a structural analysis on P ′, the
transition can be inferred applying either the rule (id-loc) or the rule (idG). We
consider the two cases separately:

Rule (id-loc): a = id, k = 1 and P ′1 = Gn′(σ′)|Gn′(σ′)hR′′i for some R′′ such
that R′ id−→ 〈R′′〉. Using the transition R′

id−→ 〈R′′〉 as premise in rule
(id-loc) we can infer Q′ id−→ 〈Q′1〉, where Q′1 = Gn′(σ′).Gn′(σ′)hR′′i. It is
easy to see that (P ′1, Q

′
1) ∈ R.

Rule (idG): a = id, k = 1 and P ′1 = Gn′(σ′)hσ′hki m R′i. From the axiom
(G-pref) we can infer the transition Gn′(σ′).Gn′(σ′)

Gn′−−→ 〈Gn′(σ′), σ′〉,
which can be used as premise in rule (idG) to derive Q′ id−→ 〈Q′1〉, where
Q′1 = Gn′(σ′)hσ′hki mR′i. Since P ′1 = Q′1, we have (P ′1, Q

′
1) ∈ R.

A similar argument holds assuming Q′ a−→ 〈Q′1, . . . , Q′k〉. The only difference
is when the derivation ends with an application of rule (idG); in that case, in
order to construct the transition for P ′, we have to apply also the rule (L()-par).

Next we show that bisimilarity respects structural congruence, i.e. ≡ ⊆ ∼.

Lemma 3.10. If M ≡ N then M ∼ N .

Proof. It suffices to show that ≡ is a strong bisimulation. The proof is by
induction on the derivation of ≡.

Actually a stronger result holds: as shown by Examples 3.8 and 3.9, struc-
tural equivalence does not coincide with strong bisimulation, and in particular
∼ equates more terms than ≡, that is ≡ ( ∼.

We conclude this section with the important result that ∼ is a congruence,
i.e., it behaves well with respect to the algebraic structure of terms.

Theorem 3.11 (Congruence). Let σ, τ, ρ, ρ′ ∈ Bmem and P,Q,R ∈ Bsys.
Assume that σ ∼ τ , ρ ∼ ρ′, and P ∼ Q, then the following statements hold:

1. α.σ ∼ α.τ for each α ∈ {Jn,Kn,KI
n | n ∈ Λ},

2. β(ρ).σ ∼ β(ρ′).τ for each β ∈ {JI
n,Gn | n ∈ Λ}.

3. σ|ρ ∼ τ |ρ and ρ|σ ∼ ρ|τ ,

4. ρhPi ∼ ρhQi,

5. P mR ∼ Q mR and R m P ∼ R mQ.
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Remark 3.12. The category theory cognoscenti will notice that the rules in
Table 2 adhere the abstract GSOS specification of [33], for some suitable be-
haviour functor. Many results above (e.g. Theorem 3.11) could be obtained
more directly within that theoretical framework, but we leave this discussion to
future work.

4. Sorted Markov kernels, processes and rate bisimulation

In this section we develop a brief theory of sorted Markov kernels and pro-
cesses, generalizing similar constructions in [12], which in turn are based on an
equivalence between Markov process and Harsanyi type spaces [19]. This theory
will be needed in the next section for giving the stochastic semantics of Brane
Calculus. We assume the reader to be familiar with basic notions from measure
theory; for a brief summary, see Appendix A.

We start introducing the notation used hereafter. As usual R denotes set
of real numbers, R+ the set of positive real numbers with zero, and R+

∞ its
extension with ∞, assumed to be strictly greater than all r ∈ R+. Let {Ai}ni=1

be a finite family of nonempty sets, we call rectangle any subset R ⊆ A1×· · ·×An
of the form R = R1 × · · · ×Rn, where Ri ⊆ Ai for all 1 ≤ i ≤ n.

Given a measurable space (M,Σ), the elements of Σ are called measurable
sets and M the support-set. Let {(Mi,Σi)}ni=1 be a finite family of measurable
spaces, we call measurable rectangles any rectangle in {Σi}ni=1, and the collec-
tion of all such rectangles is denoted by

∐n
i=1 Σi. The product σ-algebra of

{Σi}ni=1, denoted by
⊗n

i=1 Σi, is the smallest σ-algebra generated by measur-
able rectangles, and (

∏n
i=1Mi,

⊗n
i=1 Σi) denotes the product measurable space

of {(Mi,Σi)}ni=1. Given two measurable spaces (M,Σ) and (N,Θ) a mapping
f : M → N is measurable if for any N ∈ Θ, f−1(N ) ∈ Σ.

Let ∆(M,Σ) be the class of measures µ : Σ→ R+
∞ on (M,Σ). ∆(M,Σ) can

be organized into a measurable space where its σ-algebra is the one generated
by the sets {µ ∈ ∆(M,Σ) | µ(S) ≥ r} for S ∈ Σ and r > 0. From ∆(M,Σ) we
distinguish the null measure ω for which ω(M) = 0 for all M∈ Σ.

Let us introduce sorted Markov processes and stochastic bisimulation on
them. These structures are the stochastic counterparts of sorted transition sys-
tems and strong bisimulation on them. We propose a definition of Markov kernel
that extends that of [12] to measurable spaces over sorted sets. In particular,
notice that if (T,Σ) is a measurable space over a sorted set T , (Tt,Σt) is a well
defined measurable space, for some sort t and Σt = {Mt | M ∈ Σ}.

Definition 4.1 (Sorted Markov processes). Let S be a set of sorts, (T,Σ)
be a measurable space over a set of S-sorted terms T , and A a set of action
labels with arity function ar : A → S × S∗. A (sorted) A-Markov kernel is a
tuple M = (T,Σ, {θa}a∈A), where for all a ∈ A, given ar(a) = t→ 〈t1, . . . tn〉,

θa : Tt → ∆(T〈t1,...tn〉,
⊗n

i=1 Σti)

is a measurable function, said Markov a-transition function. An A-Markov pro-
cess ofM with M ∈ T as initial state, written (M,M), is the tuple (T,Σ, θ,M).
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The adjective “Markovian” is usually employed in the probabilistic setting;
here it indicates that the transitions depend entirely on the present state and
not on the past history of the system. Interactions among processes are repre-
sented as in process algebras: the labels in A represent all possible interactions
of processes with the environment. If a ∈ A is a label, ar(a) = t→ 〈t1, . . . , tn〉,
M ∈ Tt is the current state of the system, andM∈

⊗n
i=1 Σti is a measurable set

of (T〈t1,...,tn〉,
⊗n

i=1 Σti), the function θa(M) is a measure and θa(M)(M) ∈ R+

represents the rate of an exponentially distributed random variable character-
izing the duration of an a-transition from M to arbitrary elements in M.

We can now introduce a notion of rate bisimulation between Markov pro-
cesses. Given a binary relation R ⊆ T × T and two subsets X,Y ⊆ T , the pair
(X,Y ) is said R-closed if and only if

R∩ (X × T ) = R∩ (T × Y ) .

Lemma 4.2. Let R,R′ ⊆ T ×T such that R′ ⊆ R. If (X,Y ) is R-closed, then
(X,Y ) is also R′-closed.

Lemma 4.3. For R ∈ T × T an equivalence relation, if (X,Y ) are R-closed
then X = Y , moreover X is a reunion of R-equivalence classes.

For a measurable space (T,Σ) and a binary relation R ⊆ T × T , we define
the set Σ(R) , {(X,Y ) | (X,Y ) R-closed and X,Y ∈ Σ} as the collection of
measurable R-closed pairs of measurable sets in Σ.

Definition 4.4 (Stochastic bisimulation). Let T be a set of S-sorted terms
and M = (T,Σ, {θa}a∈A) be an A-Markov kernel. A binary relation R ⊆ T ×T
is a rate bisimulation iff whenever (M,N) ∈ R, a ∈ A, ar(a) = t→ 〈t1, . . . , tn〉,
and (Mi,Ni) ∈ Σti(R) for 1 ≤ i ≤ n:

θa(M)(M1 × · · · ×Mn) = θa(N)(N1 × · · · × Nn) .

Two Markov processes (M,M) and (M, N) are stochastic bisimilar, written
M ∼M N , if they are related by a rate bisimulation.

Restricted to the case of simple A-Markov kernel (M,Σ, {θa}a∈A) (i.e. when
S = {∗} and ar(a) = ∗ → 〈∗〉 for all a ∈ A) and equivalence relations R ⊆ T×T ,
Definition 4.4 coincides with the definition of rate bisimulation by Cardelli and
Mardare in [12]; moreover it generalizes the definition of probabilistic bisimula-
tion by Larsen and Skou [23] into the stochastic setting.

Remark 4.5. Definition 4.4 could be generalized further, in order to relate arbi-
trary A-Markov kernels (M,Σ, {αa}a∈A) and (N,Θ, {βa}a∈A), following [4, 16].
In fact, bisimulations as in Definition 4.4 do not correspond to the coalgebraic
bisimulations arising from a stochastic behaviour functor in a suitable category
of measurable spaces; still, these two approaches yield the same bisimilarity [16].

A natural but not trivial question is whether stochastic bisimilarity is an
equivalence relation. This is proved in the next proposition.
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Proposition 4.6. Let M = (T,Σ, {θa}a∈A) be a sorted A-Markov kernel, then
∼M is an equivalence relation.

Proof. Symmetry is trivial: it is easy to check that if R is a rate bisimulation,
then so is R−1 = {(N,M) | (M,N) ∈ R}.

For reflexivity, we have to prove that the identity relation ∆T is a rate
bisimulation, i.e., we need to prove that for all (M,N) ∈ ∆T , a ∈ A with
ar(a) = t→ 〈t1, . . . , tn〉, and (Mi,Ni) ∈ Σti(∆T ) for 1 ≤ i ≤ n:

θa(M)(M1 × · · · ×Mn) = θa(M)(N1 × · · · × Nn) . (1)

But for all (Mi,Ni) ∈ Σti(∆T ), it is Mi = Ni, because ∆T is an equivalence
and by Lemma 4.3; hence equation (1) trivially holds.

There remains to prove transitivity. To this end, it suffices to show that,
given R1 and R2 rate bisimulations, there exists a rate bisimulation R that
contains the composition relation of R1 and R2, i.e.,

R1;R2 , {(M,O) | (M,N) ∈ R1 and (N,O) ∈ R2 for some N ∈ T} ,

Let R be the (unique) smallest equivalence relation containing R1 ∪ R2; this
can be defined as R = ∆T ∪

⋃
m∈N Sm, where

S0 , R1 ∪R2 ∪R−1
1 ∪R

−1
2 Sm+1 , Sm;Sm .

It is easy to see that R1;R2 ⊆ R; we are left to show that R is indeed a rate
bisimulation. By Lemma 4.3, it suffices to prove that for all a ∈ A, where
ar(a) = t→ 〈t1, . . . , tn〉, and (Ci, Ci) ∈ Σti(R) for 1 ≤ i ≤ n:

for all (M,N) ∈ R : θa(M)(C1 × · · · × Cn) = θa(N)(C1 × · · · × Cn) . (∗)

Now, if (M,N) ∈ R, then (M,N) ∈ ∆T or (M,N) ∈ Sm for some m ≥ 0. If
(M,N) ∈ ∆T then M = N hence equation (∗) trivially holds. We show now,
by induction on m ≥ 0, that for all (M,N) ∈ Sm, equation (∗) holds.
Base case (m = 0): for all (M,N) ∈ Rj (j = 1, 2), equation (∗) holds since,
by Lemma 4.2 and Rj ⊆ R, (Ci, Ci) ∈ Σti(Rj), for all 1 ≤ i ≤ n, and by the
hypothesis that Rj is a rate bisimulation. For all (M,N) ∈ R−1

j (j = 1, 2) we
have that (N,M) ∈ Rj , hence (∗) holds too.
Inductive case (m+ 1): for m ≥ 0, the inductive hypothesis is that

for all (M ′, N ′) ∈ Sm : θa(M ′)(C1 × · · · × Cn) = θa(N ′)(C1 × · · · × Cn) . (2)

Then, it is easy to see that equation (∗) holds for all (M,N) ∈ Sm+1: by
definition, there exists some O ∈ T such that (M,O) ∈ Sm and (O,N) ∈ Sm,
and hence the following are two applications of equation (2):

θa(M)(C1 × · · · × Cn) = θa(O)(C1 × · · · × Cn) = θa(N)(C1 × · · · × Cn) .
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Remark 4.7. We would like to stress that transitivity of ∼M is not obvious.
In [25, 18] bisimilarity is expressed as a span of zigzag morphims between (prob-
abilistic) labelled Markov processes, and in order to obtain transitivity they re-
strict to analytic spaces (it is not known yet whether bisimilarity is transitive for
generic measurable spaces). Subsequently, a dual notion called event bisimula-
tion or probabilistic co-congruence, ensuring transitivity for general measurable
spaces, was proposed independently by Danos et al. [15] and by Bartels et al. [5],
and recently redeveloped in [13, 14]. One may think to recast those definitions
into the stochastic setting, and define a kind of event stochastic bisimilarity.
However, this is out of the scope of this paper, and will be left as future work.

Proposition 4.8. Let M = (T,Σ, {θa}a∈A) be a sorted A-Markov kernel, then
∼M is the largest bisimulation relation.

Proof. We aim at showing that ∼M is the largest rate bisimulation over T . By
definition we have:

∼M=
⋃
{R ⊆ T × T | R is a rate bisimulation} . (3)

This yields immediately that each bisimulation is included in ∼M. Let us denote
by R∪ the right-hand side of equation (3). We are left to show that R∪ is a
rate bisimulation, i.e., we need to prove that for all (M,N) ∈ R∪, a ∈ A with
ar(a) = t→ 〈t1, . . . , tn〉, and (Mi,Ni) ∈ Σti(R∪) for 1 ≤ i ≤ n:

θa(M)(M1 × · · · ×Mn) = θa(N)(N1 × · · · × Nn) .

Let (M ′, N ′) ∈ R∪. By definition there exists a rate bisimulation R such
that (M ′, N ′) ∈ R. By Lemma 4.2, for all pairs (Mi,Ni) ∈ Σti(R∪) we have
(Mi,Ni) ∈ Σti(R), and since R is a rate bisimulation we are done.

Note that the proof above states also that a relation R∪ that consists of
reunions of rate bisimulations relations (i.e. R∪ =

⋃
i∈I{Ri} such that for i ∈ I,

Ri is a rate bisimulation) is itself a rate bisimulation relation.
It turns out that stochastic bisimilarity can be characterized as follows:

Proposition 4.9. Let M = (T,Σ, {θa}a∈A) be a sorted A-Markov kernel, and
M,N ∈ Tt, then M ∼M N iff for all a ∈ A with ar(a) = t → 〈t1, . . . , tn〉, and
(Ci, Ci) ∈ Σti(∼M) for 1 ≤ i ≤ n, θa(M)(C1 × · · · × Cn) = θa(N)(C1 × · · · × Cn).

Proof. The implication from left to right is an immediate consequence of the
fact that ∼M is an equivalence relation (by Proposition 4.6) and that ∼M is
a rate bisimulation (by Proposition 4.8). We are left to prove the implication
from right to left. To this end, assume M,N ∈ Tt having the following property:

for all a ∈ A, ar(a) = t→ 〈t1, . . . , tn〉, and (Ci, Ci) ∈ Σti(∼M), for 1 ≤ i ≤ n,
θa(M)(C1 × · · · × Cn) = θa(N)(C1 × · · · × Cn) .
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Let us call it (∗). We shall prove that M ∼M N showing a rate bisimulation R
such that (M,N) ∈ R. Let R be the smallest equivalence relation that contains
(M,N) and ∼M; this can be defined as R = ∆T ∪

⋃
m∈N Sm, where

S0 , {(M,N), (N,M)} ∪ ∼M Sm+1 , Sm;Sm .

(“;” denotes relation composition). By Lemma 4.3, it suffices to prove that for
all a ∈ A, with ar(a) = t→ 〈t1, . . . , tn〉, and (C′i, C′i) ∈ Σti(R) for 1 ≤ i ≤ n:

for all (M ′, N ′) ∈ R : θa(M ′)(C′1 × · · · × C′n) = θa(N ′)(C′1 × · · · × C′n) . (4)

If (M ′, N ′) ∈ R, then (M ′, N ′) ∈ ∆T or (M ′, N ′) ∈ Sm for some m ≥ 0. If
(M ′, N ′) ∈ ∆T then M ′ = N ′ hence equation (4) trivially holds. We show now,
by induction on m ≥ 0, that for all (M ′, N ′) ∈ Sm, equation (4) holds.

Base case (m = 0): for all (M ′, N ′) ∈ ∼M, equation (4) holds since by
Lemma 4.2 and ∼M ⊆ R, (C′i, C′i) ∈ Σ(∼M), for all 1 ≤ i ≤ n, and by Propo-
sition 4.8, ∼M is a rate bisimulation relation. If M ′ = M (resp. M ′ = N) and
N ′ = N (resp. N ′ = M), then property (∗) holds. Again, by Lemma 4.2 and
∼M ⊆ R, we have (C′i, C′i) ∈ Σ(∼M), hence equation (4) holds trivially.

Inductive case (m+ 1): for m ≥ 0, the inductive hypothesis is that

for all (M ′′, N ′′) ∈ Sm : θa(M ′′)(C′1× · · ·× C′n) = θa(N ′′)(C′1× · · ·× C′n) . (5)

Then, it is easy to see that equation (4) holds for all (M ′, N ′) ∈ Sm+1: by
definition, there exists some O ∈ T such that (M ′, O) ∈ Sm and (O,N ′) ∈ Sm,
and hence the following are two applications of equation (5):

θa(M ′)(C′1 × · · · × C′n) = θa(O)(C′1 × · · · × C′n) = θa(N ′)(C′1 × · · · × C′n) .

5. A Stochastic Semantics for Brane Calculus

In this section we present a stochastic semantics for the Brane calculus,
showing how it can be organized as a sorted A-Markov kernel.

To ease the reading in the following we will use the notation ∆a(T,Σ) to
denote the set ∆(T〈t1,...tn〉,

⊗n
i=1 Σti), for ar(a) = t → 〈t1, . . . , tn〉. Let B/≡

be the set of ≡-equivalence classes on B. For M ∈ B, we denote by [M ]≡ the
≡-equivalence class of M .

Definition 5.1 (Measurable space of terms). The measurable space of
terms (B,Π) is given by the measurable space over B where Π is the σ-algebra
generated by B/≡.

Notice that B/≡ is a denumerable partition of B, hence it is a base (a gen-
erator such that all its elements are disjoint) for Π. Any element of Π can
be obtained by a countable union of elements of the base, i.e., for all M ∈ Π
there exist {Mi}i∈I , for some countable I, such that M =

⋃
i∈I [Mi]≡. As a
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consequence, in order to generate the whole Π we can simply compute all these
unions, without the need of any closure by complement.

A similar argument holds for the product space (B〈t1,...,tn〉,
⊗n

i=1 Πti), where
ti ∈ {mem, sys} (1 ≤ i ≤ n); indeed

⊗n
i=1 Πti can be generated from the base

B〈t1,...,tn〉/≡〈t1,...,tn〉 , where ≡〈t1,...,tn〉⊆ B〈t1,...,tn〉 × B〈t1,...,tn〉 is defined by

〈M1, . . . ,Mn〉 ≡〈t1,...,tn〉 〈N1, . . . , Nn〉 iff Mi ≡ Ni, for all 1 ≤ i ≤ n ,

which can be easily checked to be an equivalence relation. ≡〈t1,...,tn〉-equivalence
classes are rectangles, i.e. [〈M1, . . . ,Mn〉]≡〈t1,...,tn〉 = [M1]≡×· · ·× [Mn]≡, there-
fore the product measure

⊗n
i=1 Πti is well defined. For sake of simplicity in the

following we write [〈M1, . . . ,Mn〉]≡ in place of [〈M1, . . . ,Mn〉]≡〈t1,...,tn〉 , and
B〈t1,...,tn〉/≡ in place of B〈t1,...,tn〉/≡〈t1,...,tn〉 .

The definition of the Markov kernel for the Brane Calculus will be guided
by the rules given in Table 2, and in particular we will use the same set of
action labels A (with the same arity function). Except for the silent action id,
each label is subscripted by a name n ∈ Λ that distinguishes actions of the
same kind. With each name (actually, with each action) we associate a basic
execution rate determining the average duration of the atomic reaction. In a
biological context this corresponds to the average rate of a particular reaction,
which can be determined experimentally. Formally, we define a weight function
ι : Λ→ R>0 associating a strictly positive rate with each name.

Now, we aim to define a Markov a-transition θa, for each action a ∈ A; this
will conclude the construction of the A-Markov kernel for (B,Π). To this end, it
is useful to give some operations on measurable sets. For arbitrary P,Q ∈ Πsys,
and S, T ∈ Πmem, we define

S|T ,
⋃
{[σ|τ ]≡ | σ ∈ S, τ ∈ T } S|τ ,

⋃
{[σ]≡ | σ|τ ∈ S}

P mQ ,
⋃
{[P mQ]≡ | P ∈ P, Q ∈ Q} PmQ ,

⋃
{[P ]≡ | P mQ ∈ P}

ShPi ,
⋃
{[σhPi]≡ | σ ∈ S, P ∈ P} Pσhi ,

⋃
{[P ]≡ | σhPi ∈ P}

For a ∈ A, such that ar(a) = t → 〈t1, . . . , tn〉, and M ∈ Bt, we define
the measure θa(M) by induction on the structure of M . It suffices to define
it only on elements of the base B〈t1,...,tn〉/≡: the definition extends to generic
measurable sets in

⊗n
i=1 Πti in the canonic way.

Actions J,K,KI: For arbitrary n,m ∈ Λ, ε, α ∈ {J,K,KI}, β ∈ {JI,G}, and
X ∈ Bmem/≡, we define θεn : Bmem → ∆εn(B,Π) by

θεn(0)(X) = 0

θεn(αm.σ)(X) =

{
ι(n) if αm = εn and σ ∈ X
0 otherwise

θεn(βm(τ).σ)(X) = 0
θεn(σ|τ)(X) = θεn(σ)(X|τ ) + θεn(τ)(X|σ)
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Actions JI,G: For arbitrary n,m ∈ Λ, α ∈ {J,K,KI}, ε, β ∈ {JI,G}, and
X,Y ∈ Bmem/≡, we define θεn : Bmem → ∆εn(B,Π) by

θεn(0)(X × Y ) = 0
θεn(αm.σ)(X × Y ) = 0

θεn(βm(τ).σ)(X × Y ) =

{
ι(n) if βm = εn, σ ∈ X, and τ ∈ Y
0 otherwise

θεn(σ|τ)(M)(X × Y ) = θεn(σ)(X|τ × Y ) + θεn(τ)(X|σ × Y )

Action phn: For arbitrary n ∈ Λ, X,Y ∈ Bsys/≡, we define the function
θphn : Bsys → ∆phn(B,Π) by

θphn(k)(X × Y ) = 0

θphn(σhPi)(X × Y ) =

{
θJn(σ)([σ′]≡) if σ′hPi ∈ X, and k ∈ Y
0 otherwise

θphn(P mQ)(X × Y ) = θphn(P )(X × YmQ) + θphn(Q)(X × YmP )

Action ph⊥n : For arbitrary n ∈ Λ, X,Y ∈ Bmem/≡ and Z,W ∈ Bsys/≡, we
define θph⊥n

: Bsys → ∆ph⊥n
(B,Π) by

θph⊥n
(k)(X × Y × Z ×W ) = 0

θph⊥n
(σhPi)(X × Y × Z ×W ) =

{
θJI

n
(σ)(X × Y ) if P ∈ Z and k ∈W

0 otherwise

θph⊥n
(P mQ)(X × Y × Z ×W ) = θph⊥n

(P )(X × Y × Z ×WmQ) +

θph⊥n
(Q)(X × Y × Z ×WmP )

Action exn: For arbitrary n ∈ Λ, X ∈ Bmem/≡, Y,Z ∈ Bsys/≡, we define the
function θexn : Bsys → ∆exn(B,Π) by

θexn(k)(X × Y × Z) = 0

θexn(σhPi)(X × Y × Z) =

{
θKn(σ)(X) if P ∈ Y and k ∈ Z
0 otherwise

θexn(P mQ)(X × Y × Z) = θexn(P )(X × Y × ZmQ) + θexn(Q)(X × Y × ZmP )
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Action id: For X ∈ Bsys/≡, the function θid : Bsys → ∆id(B,Π) is defined by

θid(k)(X) = 0

θid(σhPi)(X) = θid(P )(Xσhi) +
n∈Λ∑

X′hX′′h[k]≡im[P ]≡i=X

θGn(σ)(X ′ ×X ′′) +

n∈Λ∑
X′|X′′hY ′′imY ′=X

θexn(P )(X ′ × Y ′ × Y ′′) · θKI
n
(σ)(X ′′)

ι(n)

θid(P mQ)(X) = θid(P )(XmQ) + θid(Q)(XmP ) +
n∈Λ∑

X1hX2hY1imZ1imY2mZ2=X

θphn(P )(Y1 × Y2) · θph⊥n
(Q)(X1 ×X2 × Z1 × Z2)
ι(n)

+

n∈Λ∑
X1hX2hZ1imY1imZ2mY2=X

θph⊥n
(P )(X1 ×X2 × Y1 × Y2) · θphn(Q)(Z1 × Z2)

ι(n)

Intuitively, each summand agrees with a rule in Table 2. For example, the
last summand in θid(P mQ) corresponds to the (R-idJ) rule. Similarly, if for a
term M there are no a-transitions, θa(M) is the null measure.

Example 5.2. Let P = Jn.σhki and Q = JI
n(ρ).τhki, and assume ι(n) = r,

for n ∈ Λ. For X,Y ∈ Bsys/≡ and Z,W ∈ Bmem/≡, and m ∈ Λ we have

θphm(P mQ)(X × Y ) =

{
r if m = n, σhki ∈ X, and Q ∈ Y
0 otherwise

θph⊥m
(P mQ)(Z ×W ×X × Y ) =

r if m = n, k ∈ X, P ∈ Y ,
τ ∈ Z, and ρ ∈W

0 otherwise

θid(P mQ)(X) =

{
r if τhρhσhkiii ∈ X
0 otherwise

θexm(P mQ)(Z ×X × Y ) = 0 .

Notice that, for each non-null measurable set there is a compatible (up-to ≡)

transition, namely, P m Q
phn−−→ 〈σhki,k m Q〉, P m Q

ph⊥n−−−→ 〈τ, ρ,k, P m k〉 and
P mQ

id−→ 〈k m τhρhσhkii m ki〉.

There is a formal correspondence between the LTS and the A-Markov kernel.

Proposition 5.3. Let a ∈ A be such that ar(a) = t→ 〈t1, . . . , tn〉 and M ∈ Bt:

1. if θa(M)(M1 × · · · × Mn) > 0, then, for all 1 ≤ i ≤ n, there exist
Mi ∈Mi, such that M a−→ 〈M1, . . . ,Mn〉,
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2. if M a−→ 〈M1, . . . ,Mn〉, then, for all 1 ≤ i ≤ n, there exist measurable
sets Mi ∈ Πti such that Mi ∈Mi and θa(M)(M1 × · · · ×Mn) > 0.

In the proposition above, (1) can be proven by induction on the structure
of the term M , while the proof for (2) is by induction on the height of the
derivation of M a−→ 〈M1, . . . ,Mn〉.

A direct consequence of Proposition 5.3 is the following.

Corollary 5.4. M a−→ 〈M1, . . . ,Mn〉 iff θa(M)([〈M1, . . . ,Mn〉]≡) > 0.

The A-transition functions {θa}a∈A of the Markov kernel for Brane Calculus
are compatible with structural congruence in the following sense:

Proposition 5.5. For a ∈ A and M,N ∈ B, if M ≡ N , then θa(M) = θa(N).

This Proposition is crucial in the proof of the next theorem, which states
that (B,Π, {θa}a∈A) is a A-Markov kernel.

Theorem 5.6 (Markov kernel). B , (B,Π, {θa}a∈A) is a A-Markov kernel.

Proof. First, it is easy to check that for each a ∈ A and M ∈ B, θa(M) is
a measure in ∆a(B,Π), by construction. Then, we prove that θa is also a
measurable function. Let ar(a) = t→ 〈t1, . . . , tn〉; for S ∈

⊗n
i=1 Πti and r > 0,

we denote by UaS,r , {µ ∈ ∆a(B,Π) | µ(S) ≥ r} an element of the generator
of measures space. We have to prove that θ−1

a (UaS,r) is a measurable set, that
is, an element of Π. To this end, it suffices to prove that θ−1

a (UaS,r) is given by
(countable) unions of ≡-equivalence classes. This is equivalent to prove that for
any M,M ′ ∈ B such that M ≡M ′, if M ∈ θ−1

a (UaS,r) then M ′ ∈ θ−1
a (UaS,r), and

indeed this holds by Proposition 5.5.

A consequence of Theorem 5.6 is that for each M ∈ B, (B,M) is a Markov
process, hence we can define a stochastic bisimulation for Brane Calculus simply
as the stochastic bisimulation ∼B over Markov processes.

We conclude this section observing that for M ∈ Bt and a ∈ A, such that
ar(a) = t → 〈t1, . . . , tn〉, the measure space (B〈t1,...,tn〉,

⊗n
i=1 Πti , θa(M)) is

finite, hence each stochastic transition has a finite rate associated with.

Proposition 5.7. For a ∈ A such that ar(a) = t → 〈t1, . . . , tn〉 and M ∈ Bt,
the measure space (B〈t1,...,tn〉,

⊗n
i=1 Πti , θa(M)) is finite.

Proof. For each a ∈ A, such that ar(a) = t → 〈t1, . . . , tn〉, and M ∈ Bt it has
to be shown that θa(M)(B〈t1,...,tn〉) ≤ r, for some r ∈ R+. This can be done
by induction on the structure M . The only non trivial case is when a = id,
where one must notice that the infinite summations involved in the definition
have only a finite number of nonzero summands. This is can be easily proved
by contradiction using Corollary 5.4 and Lemma 3.5.
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6. Stochastic Structural Operational Semantics and Bisimulation

In this section we introduce the stochastic structural operational seman-
tics for the Brane Calculus, in order to define a behavioral equivalence on
system terms that coincides with their bisimulation as Markov processes on
(B,Π, {θa}a∈A). Following the pattern of [12], this semantics is directly induced
from the definition of the set {θa}a∈A of Markov A-transition functions. In order
to maintain “the spirit” of process algebras, Cardelli and Mardare replace the
classic “pointwise” rules of the form P

a,r−−→ P ′ with rules of the form P → µ,
where µ is an indexed class of measures on the measurable space of processes.
Let us see how this construction can be applied in the case of Brane Calculus.

For simplifying the presentation of semantics rules, we introduce some con-
stants and operations over indexed families of measures. For a set (of labels)
A, let us denote by ∆A(B,Π) the set

∏
a∈A ∆a(B,Π) of A-indexed families of

measures over (B,Π). Given a family of measures µ ∈ ∆A(B,Π) and a ∈ A, the
a-component of µ will be denoted as µa ∈ ∆a(B,Π).

Null: Let ωmem ∈ ∆Amem(B,Π) be the constantly zero measure, i.e., for all
a∈Amem such that ar(a) = t→ 〈t1, . . . , tn〉 andM∈

⊗n
i=1 Πti : (ωmem)a(M)=0.

Prefix: For arbitrary n ∈ Λ, α ∈ {J,K,KI}, and β ∈ {JI,KI}, let the con-
stants [αn]σ, [βn]τσ ∈ ∆Amem(B,Π) be defined, for arbitrary X,Y ∈ Bmem/≡, by

([αn]σ)αm(X) =

{
ι(n) if n = m and σ ∈ X
0 otherwise

([αn]σ)βm(X × Y ) = 0

([βn]τσ)βm(X × Y ) =

{
ι(n) if n = m and σ ∈ X, τ ∈ Y
0 otherwise

([βn]σ)αm(X) = 0

Parallel: For µ, µ′ ∈ ∆Amem(B,Π), let µ σ�τ µ
′ ∈ ∆Amem(B,Π) be defined, for

n ∈ Λ, α ∈ {J,K,KI}, β ∈ {JI,KI}, and X,Y ∈ Bmem/≡, by

(µ σ�τ µ
′)αn(X) = µαn(X|τ ) + µ′αn(X|σ)

(µ σ�τ µ
′)βn(X × Y ) = (µ)βn(X|τ × Y ) + (µ′)βn(X|σ × Y )

Void: Let ωsys ∈ ∆Asys(B,Π) be defined by (ωsys)a(M) = 0 for any a ∈ Asys,
such that ar(a) = t→ 〈t1, . . . , tn〉, and M∈

⊗n
i=1 Πti .

Nesting: For ν ∈ ∆Amem(B,Π) and µ ∈ ∆Asys(B,Π), let µ @σ
P ν ∈ ∆Asys(B,Π)
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be defined, for X,Y ∈ Bmem/≡ and Z,W ∈ Bsys/≡, by

(µ @σ
P ν)phn(Z ×W ) =

{
νJn([σ′]≡) if σ′hPi ∈ Z and k ∈W
0 otherwise

(µ @σ
P ν)ph⊥n

(X × Y × Z ×W ) =

{
νJI

n
(X × Y ) if P ∈ Z and k ∈W

0 otherwise

(µ @σ
P ν)exn(X,Z,W ) =

{
νKn(X) if P ∈ Z and k ∈W
0 otherwise

(µ @σ
P ν)id(X) = µid(Xσhi) +

n∈Λ∑
X′hX′′h[k]≡im[P ]≡i=X

νGn(X ′ ×X ′′) +

n∈Λ∑
X′|X′′hY ′′imY ′=X

µexn(X ′ × Y ′ × Y ′′) · νKI
n
(X ′′)

ι(n)

Composition: For µ, µ′ ∈ ∆Asys(B,Π), let µ P⊗Q µ′ ∈ ∆Asys(B,Π) be defined,
for X,Y ∈ Bmem/≡ and Z,W ∈ Bsys/≡, by

(µ P⊗Q µ′)phn(Z ×W ) = µphn(Z ×WmQ) + µ′phn
(Z ×WmP )

(µ P⊗Q µ′)ph⊥n
(X × Y × Z ×W ) = µph⊥n

(X × Y × Z ×WmQ) +

µ′ph⊥n
(X × Y × Z ×WmP )

(µ P⊗Q µ′)ph⊥n
(X × Z ×W ) = µexn(X × Z ×WmQ) +

µ′exn(X × Z ×WmP )

(µ P⊗Q µ′)id(X) = µid(XmQ) + µ′id(XmP ) +
n∈Λ∑

X1hX2hY1imZ1imY2mZ2=X

µphn(Y1 × Y2) · µ′
ph⊥n

(X1 ×X2 × Z1 × Z2)

ι(n)
+

n∈Λ∑
X1hX2hZ1imY1imZ2mY2=X

µph⊥n
(X1 ×X2 × Y1 × Y2) · µ′phn

(Z1 × Z2)

ι(n)

The next two lemmata prove that the definitions of σ�τ , P⊗Q, and @σ
P , for

arbitrary σ, τ ∈ Bmem and P,Q ∈ Bsys are correct; they also state some basic
properties of these operators.

Lemma 6.1. The following statements hold.

1. For arbitrary σ, τ, ρ ∈ Bmem and µ′, µ′′, µ′′′ ∈ ∆Amem(B,Π):

(a) µ′ σ�τ µ
′′ = µ′′ τ�σ µ

′,
(b) (µ′ σ�τ µ

′′) σ|τ�ρ µ
′′′ = µ′ σ�τ |ρ (µ′′ τ�ρ µ

′′′),
(c) µ′ σ� 0 ωmem = µ′.
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0→ ωmem
(zero)

α ∈ {Jn,Kn,KI
n | n ∈ Λ}

α.σ → [α]σ
(pref)

β ∈ {JI
n,Gn | n ∈ Λ}

β(τ).σ → [β]τσ
(pref-arg)

σ → µ′ τ → µ′′

σ|τ → µ′ σ�τ µ′′
(par)

k→ ωsys
(void)

σ → ν P → µ

σhPi→ µ @σ
P ν

(loc)
P → µ′ Q→ µ′′

P mQ→ µ′ P⊗Q µ′′
(comp)

Table 3: Stochastic structural operational semantics for Brane Calculus

2. For arbitrary P,Q,R ∈ Bsys and µ′, µ′′, µ′′′ ∈ ∆Asys(B,Π):

(a) µ′ P⊗Q µ′′ = µ′′ Q⊗P µ′,
(b) (µ′ P⊗Q µ′′) P |Q⊗R µ′′′ = µ′ P⊗Q|R (µ′′ Q⊗R µ′′′),
(c) µ′ P⊗k ωsys = µ′.

3. ωsys @0
k ωmem = ωsys.

Lemma 6.2. The following statements hold.

1. For arbitrary σ, σ′, τ, τ ′ ∈ Bmem and µ′, µ′′ ∈ ∆Amem(B,Π):

(a) for α ∈ {Jn,Kn,KI
n | n ∈ Λ}, σ ≡ σ′ implies [α]σ = [α]σ′ ,

(b) for β ∈ {JI
n,Gn | n ∈ Λ}, σ ≡ σ′ and τ ≡ τ ′ imply [β]τσ = [β]τ

′

σ′ ,
(c) σ ≡ σ′ and τ ≡ τ ′ imply µ′ σ�τ µ

′′ = µ′ σ′�τ ′ µ
′′.

2. For arbitrary P, P ′, Q,Q′ ∈ Bsys, σ, τ ∈ Bmem, µ, µ′, µ′′ ∈ ∆Asys(B,Π), and
ν ∈ ∆Amem(B,Π):

(a) P ≡ Q and σ ≡ τ imply µ @σ
P ν = µ @τ

Q ν,
(b) P ≡ P ′ and Q ≡ Q′ imply µ′ P⊗Q µ′′ = µ′ P ′⊗Q′ µ′′.

The rules of the operational semantics are listed in Table 3. The operational
semantics associates with each membrane a family of measures in ∆Amem(B,Π),
and with each system a family of measures in ∆Asys(B,Π).

The next lemma states that the stochastic transition relation → (and hence
the operational semantics) is well-defined and consistent, that is, for each process
we have exactly one family of measures of its continuations.

Lemma 6.3 (Uniqueness). For a ∈ A such that ar(a) = t→ 〈t1, . . . , tn〉, and
M ∈ Bt, there exists a unique µ ∈ ∆At(B,Π) such that M → µ.

Proof. It suffices to show that M → µ has a unique derivation, and this can
be proved by induction on the structure of M observing that for each algebraic
constructor only one rule can be applied.

A consequence of Lemmata 6.1 and 6.2 is that operational semantics does
not distinguish structurally equivalent terms:
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Lemma 6.4. If M ≡ N and M → µ, then N → µ.

The converse does not hold in general, that is, M → µ, N → µ does not
imply that M ≡ N . Next we show two counterexamples.

Counterexample 6.5. Let P = 0hJnhkii and Q = k, for some n ∈ Λ, then

P →
(
µ1 = (ωsys @Jn

k [Jn]0) @0
Jnhki

ωmem

)
,

Q→
(
µ2 = ωsys

)
.

We show that µ1 = µ2. Let µ′1 = ωsys @Jn
k [Jn]0. For all a ∈ Asys \ {id} is easy

to see that (µ1)a = (µ2)a, since µ1 = µ′1 @0
Jnhki

ωmem and its value depends only
on ωmem. It remains to prove that (µ1)id = (µ2)id. By definition we have:

(µ1)id(X) = (ωsys @Jn
k [Jn]0)id(X0hi) +
m∈Λ∑

X′hX′′h[k]≡im[Jnhki]≡i=X

(ωmem)Gm(X ′ ×X ′′) +

m∈Λ∑
X′|X′′hY ′′imY ′=X

(µ′1)exm(X ′ × Y ′ × Y ′′) · (ωmem)KI
m

(X ′′)
ι(m)

.

The last two summands are always equal to zero, because they depend only on
ωmem. Therefore it suffices to verify that (ωsys @Jn

k [Jn]0)id(X0hi) = 0. By
definition it is easy it verify that (ωsys @Jn

k [Jn]0)id depends only on (ωsys)id,
([Jn]0)Gm , and (ωsys)exm , for m ∈ Λ, which are by construction always null,
hence µ1 = µ2.

Counterexample 6.6. Let P = KI
nhki and Q = k, for some n ∈ Λ, then

P →
(
µ1 = ωsys @K

I
n

k [KI
n]0
)
,

Q→
(
µ2 = ωsys

)
.

We show that µ1 = µ2. Since ([KI
n]0)a = (ωmem)a, for all a ∈ Amem \ {KI

n}, it
is easy to see that (µ1)a = (µ2)a, for all a ∈ Asys \ {id}. The only case left to
prove is (µ1)id = (µ2)id. By definition

(µ1)id(X) = (ωsys)id(XKI
nhi

) +
m∈Λ∑

X′hX′′h[k]≡im[k]≡i=X

([KI
n]0)Gm(X ′ ×X ′′) +

m∈Λ∑
X′|X′′hY ′′imY ′=X

(ωsys)exm(X ′ × Y ′ × Y ′′) · ([KI
n]0)KI

m
(X ′′)

ι(n)
.

The first and the last summand are always zero since they depend only on ωsys.
The second summand equals zero since ([KI

n]0)Gm = (ωmem)Gm , for all m ∈ Λ.
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This operational semantics can be used to define various “more traditional”
pointwise semantics, as e.g.:

M
a,r−−→ 〈M1, . . . ,Mn〉 iff M → µ and µa([〈M1, . . . ,Mn〉]≡) = r

Let us see some simple examples, and how the property of σ-additivity of
measures is exploited to correctly sum up rates.

Example 6.7. Let P = Jn.σhRi and ι(n) = r, we show that

P
phn,r−−−−→ 〈σhRi,k〉 .

Assume P → µ. By definition we have to prove that µphn([〈σhRi,k〉]≡) = r.
By a structural analysis on P , for R → µ′, we have µ = µ′ @R

Jn.σ [Jn]σ. By a
straightforward application of the operator definitions we have:

µphn([〈σhRi,k〉]≡) = [Jn]σ([σ]≡) = ι(n) = r .

Example 6.8. Let P = Jn.σhRi and ι(n) = r, we show that

P m P
phn,2r−−−−−→ 〈σhRi, P 〉 .

Assume P m P → ν. We have to prove that νphn([〈σhRi, P 〉]≡) = 2r. By
Example 6.7, we have P → µ, where R→ µ′ and µ = µ′ @R

Jn.σ [Jn]σ, therefore
ν = µ P⊗P µ. Again, by Example 6.7, we obtain:

νphn([〈σhRi, P 〉]≡) = 2 · µphn([〈σhRi,k〉]≡) = 2r .

We now see how the stochastic structural operational semantics induces the
A-Markov kernel (B,Π, {θ}a∈A) for the Brane Calculus. This motivates a new
characterization of rate bisimulation that is defined upon the transitions M → µ
that can be derived using the rules of the stochastic SOS of Table 3.

Theorem 6.9. Let B = (B,Π, {θ}a∈A) be the A-Markov kernel for the Brane
Calculus. Then, for all M ∈ Bt, µ ∈ ∆At(B,Π):

M → µ if and only if for all a ∈ At : θa(M) = µa.

Proof. The the two directions can be proven by induction on the structure
of M . Note that the correspondence result holds by construction, indeed the
operators over families of measures that are used in the rules of Table 3 are
defined following the definition of θa on each algebraic construct.

Call a family of measures µ ∈ ∆A(T,Σ) finitely supported if for all a ∈ A,
the set {µa ∈ ∆a(T,Σ) | µa 6= ω} is finite.

Proposition 6.10 (Finiteness). For a ∈ A such that ar(a) = t→ 〈t1, . . . , tn〉,
and M ∈ Bt, if M → µ, then µ is finitely supported and the measure space
(B〈t1,...,tn〉,

⊗n
i=1 Πti , µa) is finite.
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Proof. In order to prove that µ is finitely supported it is convenient to proceed
by contradiction applying Theorem 6.9, Corollary 5.4 and Lemma 3.5: if µ is
not finitely supported, then M

a−→ M ′ for infinite M ′, and hence M (and the
SOS in Table 2) would be not finitely branching. Finally, in order to prove
that the measure space (B〈t1,...,tn〉,

⊗n
i=1 Πti , µa) is finite, it suffices to apply

Theorem 6.9 and Proposition 5.7.

A direct consequence of Theorem 6.9 is that if our SOS assigns to different
Brane Calculus terms the same family of measures, then they are stochastic
bisimilar with respect to the bisimulation over Markov processes:

Corollary 6.11. If M → µ and N → µ, then M ∼B N .

Moreover, Theorem 6.9 guarantees that we can safely specialize the definition
of rate bisimulation on B as we do in Definition 6.12.

Definition 6.12 (Stochastic bisimulation for Brane Calculus). A rate
bisimulation over Brane Calculus terms is a relation R ⊆ B × B such that
whenever (M,N) ∈ R, a ∈ A, ar(a) = t → 〈t1, . . . , tn〉, M → µ, N → µ′ and
(Mi,Ni) ∈ Πti(R) for 1 ≤ i ≤ n:

µa(M1 × · · · ×Mn) = µ′a(N1 × · · · × Nn)

Two terms M,N ∈ B are stochastic bisimilar, written M ≈ N , if they are
related by a rate bisimulation.

Stochastic bisimilarity between Brane Calculus terms, ≈ ⊆ B × B, satisfies
the general properties of bisimilarity between Markov processes:

Proposition 6.13. The following statements about ≈ hold:

1. ≈ is an equivalence relation,

2. ≈ is the largest rate bisimulation over Brane Calculus terms,

3. Let M,N ∈ Bt, M → µ and N → ν, then M ≈ N iff for all a ∈ A, such
that ar(a) = t→ 〈t1, . . . , tn〉, and (Ci, Ci) ∈ Πti(≈):

µa(C1 × · · · × Cn) = νa(C1 × · · · × Cn)

4. if M ≈ N , then M and N are of the same sort.

Proof. They can be proven applying Theorem 6.9, and Propositions 4.6, 4.8,
and 4.9, respectively (note that, although not mentioned before, Lemma 6.3 is
essential in order to prove reflexivity). Statement (4) is a direct consequence of
Definition 6.12 and it holds in general for all rate bisimulation relations.

Stochastic bisimilarity behaves well with respect to structural equivalence:

Proposition 6.14. If M ≡ N , then M ≈ N .
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This is a direct consequence of Lemma 6.4. Note that the converse does not
hold, that is, M ≈ N does not imply M ≡ N (see Counterexamples 6.5 and
6.6, the same we used for Lemma 6.4, since Theorem 6.9 holds). This is a good
property for ≈, because it states that stochastic bisimulation is strictly larger
than structural equivalence, hence it equates more terms than ≡.

An interesting fact about stochastic bisimilarity is that is it also a non-
stochastic strong bisimulation.

Proposition 6.15. ≈ is a (non-stochastic) strong bisimulation.

Proof. Since by Proposition 6.14(1) ≈ is symmetric, it is sufficient to prove that
if M ≈ N and M a−→ 〈M1, . . . ,Mn〉, then there is a transition N a−→ 〈N1, . . . , Nn〉
such that Mi ≈ Ni for all 1 ≤ i ≤ n.

Assume M ≈ N and M a−→ 〈M1, . . . ,Mn〉, for some ar(a) = t→ 〈t1, . . . , tn〉,
and let M → µ and N → ν. By Corollary 5.4 M ′

a−→ 〈M1, . . . ,Mn〉 we have
θa(M ′)([M1]≡ × · · · × [Mn]≡) > 0, hence µa([M1]≡ × · · · × [Mn]≡) > 0, by
Theorem 6.9. By Proposition 6.14, it holds that [Mi]≡ ⊆ [Mi]≈, and moreover
that ([Mi]≈, [Mi]≈) ∈ Πti(≈), for all 1 ≤ i ≤ n. By Proposition 6.13(3) we have

µa([M1]≈ × · · · × [Mn]≈) = νa([M1]≈ × · · · × [Mn]≈) . (6)

From µa([M1]≡×· · ·×[Mn]≡) > 0 and σ-additivity, µa([M1]≈×· · ·×[Mn]≈) > 0,
hence, by equation 6, νa([M1]≈× · · ·× [M1]≈) > 0. By σ-addidivity, there exist
Ni ∈ B, for all 1 ≤ i ≤ n, such that Ni ≈Mi and νa([N1]≡ × · · · × [Nn]≡) > 0.
By Theorem 6.9 and Corollary 5.4, from νa([N1]≡× · · · × [Nn]≡) > 0 we obtain
that N a−→ 〈N1, . . . , Nn〉, hence we are done.

A direct consequence of Proposition 6.15 is that stochastic bisimilarity im-
plies non-stochastic strong bisimilarity:

Corollary 6.16. If M ≈ N , then M ∼ N .

Note that the converse does not hold, that is, M ∼ N does not imply
M ≈ N . A counterexample is shown in Example 6.17.

Example 6.17. Let n,m ∈ Λ be such that ι(n) 6= ι(m). Consider the systems
P = Gn(ρ)hRi and Q = Gm(ρ)hRi. We prove that P 6≈ Q.

We proceed by contradiction, assuming P ≈ Q. Let C = [0hρhkimRi]≈ then,
by Proposition 6.14, it is easy to see that (C, C) ∈ Π(≈). By Proposition 6.13(3)
we have that µid(C) − νid(C) = 0, assumed P → µ and Q → ν (note that by
Proposition 6.10 the above subtraction is well defined). Exploiting the definition
we obtain,

µid(C)− νid(C) = ([Gn]ρ0)Gn([0]≡ × [ρ]≡)− ([Gm]ρ0)Gm([0]≡ × [ρ]≡)
= ι(n)− ι(m)

By hypothesis ι(n) 6= ι(m), hence we have a contradiction, therefore P 6≈ Q.
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This example concludes the discussion started in Section 2 about the impor-
tance of having names in pino actions, in the stochastic setting.

We have established many properties of ≈; in particular we showed it to be
an equivalence relation in Proposition 6.13. But we have not yet shown that it
has an essential property of equality, namely that we can “substitute equals for
equals”. In other words, we have not shown it to be a congruence relation. It is
important to prove that stochastic bisimilarity over the Brane Calculus terms
is a congruence, because it means that the Markov processes associated with
membranes or systems can be inspected compositionally.

Theorem 6.18 (Congruence). Let σ, τ, ρ, ρ′ ∈ Bmem and P,Q,R ∈ Bsys. As-
sume that σ ≈ τ , ρ ≈ ρ′ and P ≈ Q, then the following statements hold:

1. α.σ ≈ α.τ for each α ∈ {Jn,Kn,KI
n | n ∈ Λ},

2. β(ρ).σ ≈ β(ρ′).τ for each β ∈ {JI
n,Gn | n ∈ Λ}.

3. σ|ρ ≈ τ |ρ and ρ|σ ≈ ρ|τ ,

4. ρhPi ≈ ρhQi,

5. P mR ≈ Q mR and R m P ≈ R mQ.

Proof. Let α ∈ {Jn,Kn,KI
n | n ∈ Λ}, and β ∈ {JI

n,Gn | n ∈ Λ}. Assume
σ, τ, ρ, ρ′ ∈ Bmem and P,Q,R ∈ Bsys, such that σ≈ τ , ρ≈ ρ′, and P ≈Q. We pro-
vide a rate bisimulation R ⊆ B×B such that (α.σ, α.τ) ∈ R, (β(ρ).σ, β(ρ′).τ) ∈
R, (σ|ρ, τ |ρ) ∈ R, (ρ|σ, ρ|τ) ∈ R, (ρhσi, ρhτi) ∈ R, (P m R,Q m R) ∈ R, and
(R mQ,R mQ) ∈ R. Let R ,

⋃
m∈NRm be defined, for j ∈ {1, 2}, σj , τj ∈ Bmem

and, Pj , Qj ∈ Bsys, by:

R0 = ≈
Rm+1 = Rm ∪ {(α.σ1, α.τ1) | (σ1, τ1) ∈ Rm} ∪

{(β(σ1).σ2, β(τ1).τ2) | (σj , τj) ∈ Rm, for j ∈ {1, 2}}
{(σ1|σ2, τ1|τ2) | (σj , τj) ∈ Rm, for j ∈ {1, 2}} ∪
{(σ1hP1i, σ2hP2i) | (σ1, σ2) ∈ Rm, and (P1, P2) ∈ Rm} ∪
{(P1 m P2, Q1 mQ2) | (Pj , Qj) ∈ Rm, for j ∈ {1, 2}} .

Clearly, (α.σ, α.τ) ∈ R, (β(ρ).σ, β(ρ).τ) ∈ R, (σ|ρ, τ |ρ) ∈ R, (ρ|σ, ρ|τ) ∈ R,
(ρhσi, ρhτi) ∈ R, (P mR,Q mR) ∈ R, and (R mQ,R mQ) ∈ R. Moreover it can
be proven, by induction on m ≥ 0, that Rm is an equivalence.

We prove now that, for all m ≥ 0, Rm is a rate bisimulation, and hence also
R is so. We proceed by induction on m ≥ 0.

Base case (m = 0): it trivially holds by Proposition 6.13(2).

Inductive case (m + 1): the inductive hypothesis is that Rm is a rate bisim-
ulation. Since Rm+1 is an equivalence, by Lemma 4.3, it suffices to show
that, for any (M,N) ∈ Rm+1 with M → µ and N → ν, a ∈ A such that
ar(a) = t→ 〈t1, . . . , tn〉, and (Ci, Ci) ∈ Πti(Rm+1), for 1 ≤ i ≤ n,

µa(C1 × · · · × Cn) = νa(C1 × · · · × Cn) . (7)
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Notice first that each syntactic operator can be “lifted” to Rm-closed pairs,
that is, the corresponding operations over Rm-closed sets preserve Rm-closure.
Formally, the following properties hold, for k ≥ 0:

(a) if (σ′, τ ′) ∈ Rk and (S,S) ∈ Πmem(Rk), then (S|σ′ ,S|τ ′) ∈ Πmem(Rk);

(b) if (P ′, Q′) ∈ Rk and (P,P) ∈ Πsys(Rk), then (PmP ′ ,PmQ′) ∈ Πsys(Rk);

(c) if (σ′, τ ′) ∈ Rk and (P,P) ∈ Πsys(Rk), then (Pσ′hi,Pτ ′hi) ∈ Πsys(Rk);

(d) if (S|T ,S|T ) ∈ Πmem(Rk), then, for all h ≤ k,

(S,S) ∈ Πmem(Rh) and (T , T ) ∈ Πmem(Rh) ;

(e) if (P mQ,P mQ) ∈ Πmem(Rk), then, for all h ≤ k,

(P,P) ∈ Πmem(Rh) and (Q,Q) ∈ Πmem(Rh) ;

(f) if (ShPi,ShPi) ∈ Πsys(Rk), then, for all h ≤ k,

(S,S) ∈ Πmem(Rk) and (P,P) ∈ Πsys(Rk) .

Now we are ready to prove equation (7). We proceed case by case.

Case (M,N) ∈ Rm: it holds by inductive hypothesis and by Lemma 4.2, since
by construction Rm ⊆ Rm+1.

Case M = α.σ1, N = α.τ1: hence (σ1, τ1) ∈ Rm, and µ = [α]σ1 and ν = [α]τ1 .
By definition, if a 6= α, then ([α]σ1)a(C1) = 0 = ([α]τ1)a(C1). Therefore, we are
left to prove ([α]σ1)α(C1) = ([α]τ1)α(C1). Assume n ∈ Λ be the subscripted name
in α. By definition, ([α]σ1)α(C1) = ι(n) iff σ1 ∈ C1 and ([α]τ1)α(C1) = ι(n) iff
τ1 ∈ C1. But (σ1, τ1) ∈ Rm, hence, by (C1, C1) ∈ Πmem(Rm+1) andRm ⊆ Rm+1,
σ1 ∈ C1 iff τ1 ∈ C1. Therefore ([α]σ1)α(C1) = ([α]τ1)α(C1).

Case M = β(σ1).σ1, N = β(τ1).τ2: can be treated similarly.

Case M = σ1|σ2, N = τ1|τ2: hence (σj , τj) ∈ Rm, for j ∈ {1, 2}. Assume now
σj → µj and τj → νj , for j ∈ {1, 2}, thus µ = µ1 σ1�σ2 µ2 and ν = ν1 τ1�τ2 ν2.
Let a ∈ {Jn,Gn | n ∈ Λ} (the other cases are treated similarly):

(µ1 σ1�σ2 µ2)a(C1 × C2) = (µ1)a((C1)|σ2 × C2) + (µ2)a((C1)|σ1 × C2)
(by definition)

= (ν1)a((C1)|τ2 × C2) + (ν2)a((C1)|τ1 × C2)
(by inductive hypothesis and (a))

= (ν1 τ1�τ2 ν2)a(C1 × C2) . (by definition)
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Case M = σ1hP1i, N = σ2hP2i: hence (σ1, σ2) ∈ Rm, (P1, P2) ∈ Rm. Assume
σj → νj and Pj → µj , for j ∈ {1, 2}, thus µ = µ1 @σ1

P1
ν1 and ν = µ2 @σ2

P2
ν2.

Let a = phn, for some n ∈ Λ. If k /∈ C2, the proof is simple, since by definition
we have that, (µ1 @σ1

P1
ν1)phn(C1×C2) = 0 = (µ2 @σ2

P2
ν2)phn(C1×C2), otherwise:

(µ1 @σ1
P1
ν1)phn(C1 × C2) =

∑
[σ′hP1i]≡⊆C1

(ν1)Jn([σ′]≡) (by definition)

=
∑

[σ′hP2i]≡⊆C1

(ν2)Jn([σ′]≡)

(by inductive hypothesis and (f))

= (µ2 @σ2
P2
ν2)phn(C1 × C2) . (by definition)

Let a = ph⊥n , for some n ∈ Λ. Note that, by Rm+1-closeness and Rm ⊆ Rm+1,
P1 ∈ C3 iff P2 ∈ C3. If P1 /∈ C3 (hence P2 /∈ C3) or k /∈ C4, by definition
(µ1 @σ1

P1
ν1)ph⊥n

(C1 × · · · × C4) = 0 = (µ2 @σ2
P2
ν2)ph⊥n

(C1 × · · · × C4); otherwise,

(µ1 @σ1
P1
ν1)ph⊥n

(C1 × · · · × C4) = (ν1)JI
n
(C1 × C2) (by definition)

= (ν2)JI
n
(C1 × C2) (by inductive hypothesis)

= (µ2 @σ2
P2
ν2)ph⊥n

(C1 × · · · × C4) .
(by definition)

The case for a = exn, for some n ∈ Λ, is analogous.

Let a = id. We prove (µ1 @σ1
P1
ν1)id(C1) = (µ2 @σ2

P2
ν2)id(C1) noticing that

µid(Cσ1hi) = µid(Cσ2hi)

holds by inductive hypothesis and (c);

n∈Λ∑
X′hX′′h[k]≡im[P ]≡i⊆C1

(ν1)Gn(X ′ ×X ′′) =
n∈Λ∑

X′hX′′h[k]≡im[Q]≡i⊆C1

(ν2)Gn(X ′ ×X ′′)

holds by inductive hypothesis, (f) and (e); and

n∈Λ∑
X′|X′′hY ′′imY ′⊆C1

(µ1)exn(X ′ × Y ′ × Y ′′) · (ν1)KI
n
(X ′′)

ι(n)
=

n∈Λ∑
X′|X′′hY ′′imY ′⊆C1

(µ2)exn(X ′ × Y ′ × Y ′′) · (ν2)KI
n
(X ′′)

ι(n)

holds by inductive hypothesis, (d), (f), and (e).

Case M = P1 m P2, N = Q1 mQ2: can be treated similarly.
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We would like to remark that the proof technique we have used in Theo-
rem 6.18 is quite general, since it can be applied also to other calculi, whenever
stochastic bisimilarity is an equivalence and each syntactic constructor is “lifted”
to R-closed pairs (i.e., properties like (a)–(f) hold).

In addition to the examples proposed so far, we show another stochastic
bisimilarity, which points out the benefits of the compositionality of ≈.

Example 6.19 (Garbage collection). Let σ, τ ∈ Bmem be such that σ ≈ τ .
We prove that, for n,m ∈ Λ,

K
I
mh0hJnhKI

mhkiiii ≈ k .

By Proposition 6.13(3), Counterexamples 6.5 and 6.6, we have 0hJnhkii ≈ k

and KI
mhki ≈ k, respectively. The prove follows trivially by multiple applica-

tions of Theorem 6.18. This equivalence asserts that the righthand side term is
actually inert, hence can be safely “garbage collected” from the system.

The apparent simplicity of this example points out the advantages given
by a bisimulation which is a congruence: we can prove that two processes are
equivalent by comparing their corresponding parts. In fact, one can check that
proving this bisimilarity by means of direct calculation of measures would be
much more cumbersome.

Remark 6.20. It is worthwhile to notice that the SOS in Table 3 is not prop-
erly in the abstract GSOS format as per [33]. Since we are working in the
category of measurable spaces, the set of syntactic terms B has been endowed
with the σ-algebra Π generated by structural congruence (Definition 5.1). This
brings in an equational theory, and hence the object (B,Π) is not given by a
freely generated monad. However, it is possible to show that whenever the LTS
respects the equational theory of the congruence, the universal semantics for
the freely generated terms factorizes through (B,Π), and hence we have again
a fully abstract semantics.

7. Conclusions

In this paper we have presented a stochastic version of the Brane Calculus.
Brane systems are interpreted as Markov processes over the measurable space
generated by terms up-to syntactic congruence, and where the measures are in-
dexed by the actions of the calculus. We have first introduced a compositional,
finitely branching LTS for Brane Calculus. This new system is inspired by the
one presented in [1], but simpler: we do not deal with higher-order processes, but
by “tuples” of terms. To this end, we have introduced “sorted labelled transition
systems” and corresponding bisimulations. Taking advantage of this composi-
tional presentation, we have given a stochastic semantics to brane systems by
defining a suitable Markov kernel. Finally, we have provided a SOS presentation
of this stochastic semantics, which is compositional and syntax-driven. We have
proved that both the strong (i.e. non-stochastic) bisimulation and the stochastic
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bisimulation for Brane Calculus are congruences; this allows for compositional
reasoning, both in the qualitative and in the quantitative setting.

Stochastic semantics for calculi of biological compartments (but not Brane
Calculus) have been given in literature; see [9, 7] for stochastic versions of
BioAmbients and [34] for a stochastic π-calculus with polyadic synchronisa-
tion. However, these semantics are not structural but “pointwise”, tailored
for stochastic simulations using Gillespie algorithm. As shown in Section 6, a
“pointwise” semantics can be readily obtained from the stochastic SOS given
in this paper. An interesting future work is to investigate how these simulation
algorithms and techniques can be adapted to our setting. For instance, in the
stochastic abstract machines of [27, 26] a transition is performed in two steps:
first, the stochastic rates are calculated over some data structures representing
the “normal forms” of the current process, in a pointwise manner and taking
care of not double counting instances; then, a particular transition is picked
out and the state (i.e., the process) is changed. Using our approach we could
simplify this mechanism by keeping track of the measures for the actual pro-
cesses: the rate can be computed by composing these measures by σ-additivity,
obtaining at the same time also the next state. Even more, the compositionality
of our semantics allows to single out the differences between the actual state
and the next chosen one.

There are several other directions for further work. First, we think that the
notion of sorted labelled transition system can be successfully applied to other
calculi which are only apparently higher-order, especially those regarding agent
mobility like e.g. the Mobile Ambients.

Then, we can consider further constructs of the Brane Calculus, like “bind &
release” and replication [11]. For the latter, we should add rules like P

α−→P ′

!P
α−→P ′|!P

to the LTS of Table 2; on the stochastic side, these rules would lead to a new
case in the definition of θa in Section 5.

An interesting possibility is to extend the theory of stochastic measures with
a notion of “approximate behaviour”, in order to quantify how much two systems
are bisimilar. This is quite important in biological contexts, where usually we
can compare only with approximate data (e.g. coming from experiments).

Finally, we would like to apply the present approach to other measurable
aspects; in particular, geometric (e.g. volumes), physic (e.g. pressure, tempera-
ture) and chemical aspects are of great interest in the biological domain.

Acknoledgements. We thank Radu Mardare for providing us an updated pre-
liminary copy of [12] and for the valuable discussions about the definition of
Markov Processes, and the anonymous referees for their useful remarks.
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A. Some measure theory

Given a set M , a family Σ of subsets of M is called a σ-algebra if it contains
M and is closed under complements and (infinite) countable unions:

1. M ∈ Σ;

2. A ∈ Σ implies Ac ∈ Σ, where Ac = M \A;

3. {Ai}i∈N ⊂ Σ implies
⋃
i∈N Ai ∈ Σ.

Since M ∈ Σ and M c = ∅, ∅ ∈ Σ, hence Σ is nonempty by definition. A σ-
algebra is closed under countable set-theoretic operations: is closed under finite
unions (A,B ∈ Σ implies A∪B = A∪B∪∅∪∅∪· · · ∈ Σ), countable intersections
(by DeMorgan’s law A ∩ B = (Ac ∪ Bc)c in its finite and inifite version), and
countable subtractions (A,B ∈ Σ implies A \B = A ∩Bc ∈ Σ).

Definition A.1 (Measurable Space). Given a set M and a σ-algebra on M ,
the tuple (M,Σ) is called a measurable space, the elements of Σ measurable
sets, and M the support-set.

A set Ω ⊆ 2M is a generator for the σ-algebra Σ on M if Σ is the closure of
Ω under complement and countable union; we write σ(Ω) = Σ and say that Σ is
generated by Ω. Note that the σ-algebra generated by a Ω is also the smallest
σ-algebra containing Ω, that is, the intersection of all σ-algebras that contain
Ω. In particular it holds that a completely arbitrary intersection of σ-algebras
is a σ-algebra. A σ-algebra generated by Ω, denoted by σ(Ω), is minimal in
the sense that if Ω ⊂ Σ and Σ is a σ-algebra, then σ(Ω) ⊂ Σ. If Ω is a σ-
algebra then obviously σ(Ω) = Ω; if Ω is empty or Ω = {∅}, or Ω = {M}, then
σ(Ω) = {∅,M}; if Ω ⊂ Σ and Σ is a σ-algebra, then σ(Ω) ⊂ Σ. A generator Ω
for Σ is a base for Σ if it has disjoin elements. Note that if Ω is a base for Σ, all
measurable sets in Σ can be decomposed into countable unions of elements in Ω.

A measure on a measurable space (M,Σ) is a function µ : Σ → R+
∞, where

R+
∞ denotes the extended positive real line, such that

1. µ(∅) = 0;

2. for any disjoint sequence {Ni}i∈I ⊆ Σ with I ⊆ N, it holds

µ(
⋃
i∈I Ni) =

∑
i∈I µ(Ni) .

The triple (M,Σ, µ) is called a measure space. A measure space (M,Σ, µ)
is called finite if µ(M) is a finite real number; it is called σ-finite if M can be
decomposed into a countable union of measurable sets of finite measure, that
is, M =

⋃
i∈I Ni, for some I ⊆ N and µ(Ni) ∈ R+ for each i ∈ I. A set in

a measure space has σ-finite measure if it is a countable union of sets with
finite measure. Specifying a measure includes specifying its domain. If µ is a
measure on a measurable space (M,Σ) and Σ′ is a σ-algebra contained in Σ,
then the restriction µ′ of µ to Σ′ is also a measure, and in particular a measure
on (M ′,Σ′), for some M ′ ⊆M such that Σ′ is a σ-algebra on M ′.
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Given two measurable spaces and measures on them, one can obtain the
product measurable space and the product measure on that space. Let (M1,Σ1)
and (M2,Σ2) be measurable spaces, and µ1 and µ2 be measures on these spaces.
Denote by Σ1⊗Σ2 the σ-algebra on the cartesian product M1×M2 generated by
subsets of the form B1 ×B2, said rectangles, where B1 ∈ Σ1 and B2 ∈ Σ2. The
product measure µ1⊗µ2 is defined to be the unique measure on the measurable
space (M1 ×M2,Σ1 ⊗ Σ2) such that, for all B1 ∈ Σ1 and B2 ∈ Σ2

(µ1 ⊗ µ2)(B1 ×B2) = µ1(B1) · µ2(B2)

The existence of this measure is guaranteed by the Hahn-Kolmogorov theorem.
The uniqueness of the product measure is guaranteed only in the case that both
(M1,Σ1, µ1) and (M2,Σ2, µ2) are σ-finite.

Let ∆(M,Σ) be the family of measures on (M,Σ). It can be organized as
a measurable space by considering the σ-algebra generated by the sets {µ ∈
∆(M,Σ) : µ(S) ≥ r}, for arbitrary S ∈ Σ and r > 0.

Given two measurable spaces (M,Σ) and (N,Θ) a mapping f : M → N is
measurable if for any T ∈ Θ, f−1(T ) ∈ Σ. Measurable functions are closed
under composition: given f : M → N and g : N → O measurable functions then
g ◦ f : M → O is also measurable.
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