Ambient Calculus and its Logic in the Calculus of Inductive Constructions

Ivan Scagnetto and Marino Miculan

Dipartimento di Matematica e Informatica,
Università di Udine, Italy
scagnett@dimi.uniud.it, miculan@dimi.uniud.it
What’s in this talk

A complete case study on

- encoding of Ambient Calculus and its modal logic
- in a type-based logical framework (Coq)
- using Higher Order Abstract Syntax
- and the Theory of Contexts
- and full formalization of most metatheoretic results over the calculus and the logic, as in [4]

Reference paper:
Why?

Along the line of previous case studies (\(\lambda\)-calculus, \(\pi\)-calculus, \ldots) BUT:

- Ambients have their own peculiarities (e.g., modal logic, names & variables, \ldots)
- Ambients logic is capable to reflect metalogical properties which interact with HOAS (e.g., freshness, equality of names)
- Ambients are fairly new—still in development. This may benefit from systematic analysis of the calculus and its logic.
Why?

Along the line of previous case studies (\(\lambda\)-calculus, \(\pi\)-calculus, \ldots) BUT:

- Ambients have their own peculiarities (e.g., modal logic, names & variables, \ldots)
- Ambients logic is capable to reflect metalogical properties which interact with HOAS (e.g., freshness, equality of names)
- Ambients are fairly new—still in development. This may benefit from systematic analysis of the calculus and its logic.

Expected benefits:

- For LF’s: it allows to test, refine and compare methodologies for dealing with HOAS (like the Theory of Contexts)
- For Ambients: systematic analysis of many peculiarities, re-design of unpolished notions
Why?

Along the line of previous case studies (λ-calculus, π-calculus, . . .)
BUT:

- Ambients have their own peculiarities (e.g., modal logic, names & variables, . . .)
- Ambients logic is capable to reflect metalogical properties which interact with HOAS (e.g., freshness, equality of names)
- Ambients are fairly new—still in development. This may benefit from systematic analysis of the calculus and its logic.

Expected benefits:

- For LF’s: it allows to test, refine and compare methodologies for dealing with HOAS (like the Theory of Contexts)
- For Ambients: systematic analysis of many peculiarities, re-design of unpolished notions
Outline of the talk

- Syntax of Ambient calculus and its logic
- Their representation: names vs. variables
- Semantics of Ambient calculus and its logic
- Their representation
- The Theory of Contexts for Ambients
- Development of (meta)theory
- The $\|\|$ quantifier
- Conclusions
Ambient Calculus: quick recap

- Ambient calculus = model of agents mobility in a dynamically changing hierarchy of domains [Cardelli, Gordon FOSSACS 98]
- Composed by
 - a *process algebra* with names (much like π-calculus)
 - with reduction operational semantics;
 - a *modal logic* for expressing temporal and spatial properties of agents
 - with satisfaction relation
Ambients processes

Syntactic categories:

- Names: $n \in \Lambda$
- Capabilities $\zeta: M ::= n \mid \text{in } M \mid \text{out } M \mid \text{open } M \mid \varepsilon \mid M.M'$
- Processes Π:

$$P, Q, R ::= \mathbf{0} \mid P|Q \mid !P \mid M[P] \mid M.P \mid (\forall n)P \mid (n).P \mid \langle M \rangle$$

Identified up to α-conversion of names.

$P\{n \leftarrow M\}$ denotes usual capture avoiding substitution.

Operational semantics

- A structural equivalence judgment $\equiv \subseteq \Pi \times \Pi$
- A reduction relation $\rightarrow \subseteq \Pi \times \Pi$
Ambients processes

Syntactic categories:

- **Names**: $n \in \Lambda$
- **Capabilities** ζ: $M ::= n \mid in \ M \mid out \ M \mid open \ M \mid \varepsilon \mid M . M'$
- **Processes** Π:

$$P, Q, R ::= \emptyset \mid P | Q \mid !P \mid M[P] \mid M . P \mid (\forall n) P \mid (n). P \mid \langle M \rangle$$

Identified up to α-conversion of names.

$P\{n \leftarrow M\}$ denotes usual capture avoiding substitution.

Operational semantics

- A structural equivalence judgment $\equiv \subseteq \Pi \times \Pi$
- A reduction relation $\rightarrow \subseteq \Pi \times \Pi$
Ambient logic

Syntax

- Variables \(x \in \zeta \)
- Formulas \(\Phi \):

\[
\mathcal{A}, \mathcal{B}, \mathcal{C} ::= T | \neg \mathcal{A} | \mathcal{A} \lor \mathcal{B} | \mathcal{0} | \mathcal{A}\mid \mathcal{B} | \mathcal{A} \triangleright \mathcal{B} \\
| \eta[\mathcal{A}] | \mathcal{A} \bowtie \eta | \eta \otimes \mathcal{A} | \mathcal{A} \otimes \eta | \diamond \mathcal{A} | \blacklozenge \mathcal{A} | \forall x. \mathcal{A}
\]

\(\eta \) may be either a name \(n \) or a variable \(x \)

Semantics

- satisfaction relation \(P \models \mathcal{A} \). Defined by clauses.
Ambient logic

Syntax

- Variables $x \in \zeta$
- Formulas Φ:

$$\mathcal{A}, \mathcal{B}, \mathcal{C} ::= \mathbf{T} \mid \neg \mathcal{A} \mid \mathcal{A} \lor \mathcal{B} \mid \mathbf{0} \mid \mathcal{A} | \mathcal{B} \mid \mathcal{A} \triangleright \mathcal{B} \mid \eta[\mathcal{A}] \mid \mathcal{A} @ \eta \mid \eta \odot \mathcal{A} \mid \mathcal{A} \otimes \eta \mid \Diamond \mathcal{A} \mid \lozenge \mathcal{A} \mid \forall x. \mathcal{A}$$

η may be either a name n or a variable x.

A first order modal logic. Variables may be replaced by variables or names (which may be replaced by capabilities).

Semantics

- satisfaction relation $P \models \mathcal{A}$. Defined by clauses.
Encoding of processes: weak HOAS

Variable name : Set.
Inductive proc: Set := nil : proc
 par : proc -> proc -> proc
 bang : proc -> proc
 ambient : cap -> proc -> proc
 cap_act : cap -> proc -> proc
 nu : (name -> proc) -> proc
 in_act : (name -> proc) -> proc
 out_act : cap -> proc.
Encoding of processes: weak HOAS

Variable name : Set.

Inductive proc: Set := nil : proc

| par : proc → proc → proc
| bang : proc → proc
| ambient : cap → proc → proc
| cap_act : cap → proc → proc
| nu : (name → proc) → proc
| in_act : (name → proc) → proc
| out_act : cap → proc.

Bullet Object level names = metalanguage variables of type name
Encoding of processes: weak HOAS

Variable name : Set.
Inductive proc: Set := nil : proc
| par : proc -> proc -> proc
| bang : proc -> proc
| ambient : cap -> proc -> proc
| cap_act : cap -> proc -> proc
| nu : (name -> proc) -> proc
| in_act : (name -> proc) -> proc
| out_act : cap -> proc.

⚠️ Object level names = metalanguage variables of type name
⚠️ Binding constructors are represented by 2nd-order term constructors ⇒ \(\alpha\)-conversion comes for free

\[(n).n[0] \mapsto (in_act [n: \text{name}](ambient n nil))\]
Encoding of processes: weak HOAS

Variable name : Set.
Inductive proc : Set := nil : proc
| par : proc -> proc -> proc
| bang : proc -> proc
| ambient : cap -> proc -> proc
| cap_act : cap -> proc -> proc
| nu : (name -> proc) -> proc
| in_act : (name -> proc) -> proc
| out_act : cap -> proc.

- Object level names = metalanguage variables of type name
- Binding constructors are represented by 2nd-order term constructors ⇒ \(\alpha \)-conversion comes for free
- name is not inductive ⇒ no exotic terms.
Required properties will be added later on, as needed.
Encoding of formulas: full HOAS

Inductive form: Set := T: form
| neg: form -> form
| Or: form -> form -> form
| zero: form

...

| rev: name -> form -> form
| rev_adj: form -> name -> form
| sometime: form -> form
| somewhere: form -> form
| forall: (name -> form) -> form.

- no need of a separate type for variables
- α-conversion and capture-avoiding substitution are inherited
- no exotic terms either (name is not inductive)
Names = Variables?

Object level names = metalevel variables of type name
Object level variables = metalevel variables of type name
Names = Variables?

Object level names = metalevel variables of type `name`
Object level variables = metalevel variables of type `name`

- Names can be replaced — and variables too . . .
- Names can be bound — and variables too . . .
- Processes are up-to α-conversion of names — and formulas are up-to α-conversion of variables . . .
Names = Variables?

Object level names = metalevel variables of type \texttt{name}
Object level variables = metalevel variables of type \texttt{name}

- Names can be replaced — and variables too…
- Names can be bound — and variables too…
- Processes are up-to α-conversion of names — and formulas are up-to α-conversion of variables…
- But different names are different, different variables may be not!
Names = Variables?

Object level names = metalevel variables of type name
Object level variables = metalevel variables of type name

- Names can be replaced — and variables too . . .
- Names can be bound — and variables too . . .
- Processes are up-to α-conversion of names — and formulas are up-to α-conversion of variables . . .
- But different names are different, different variables may be not!

Thus, what’s in a name?
Names = Variables?

Object level names = metalevel variables of type \texttt{name}
Object level variables = metalevel variables of type \texttt{name}

- Names can be replaced — and variables too . . .
- Names can be bound — and variables too . . .
- Processes are up-to α-conversion of names — and formulas are up-to α-conversion of variables . . .
- But different names are different, different variables may be not!

Thus, what’s in a name? Apartness!

A name is a variable whose possible values are restricted.
Representing Apartness

- Apartness can be represented by inequalities assumptions.

- Given \(n_1, \ldots, n_k \) names and \(x_1, \ldots, x_h \) variables, these are represented by the context

 \[
 n_1: \text{name}, \ldots, n_k: \text{name}, \ x_1: \text{name}, \ldots, x_h: \text{name}, \\
 d_{ij}: n_i \neq n_j
 \]

 where \((1 \leq i < j \leq k)\)
Apartness can be represented by inequalities assumptions.

Given n_1, \ldots, n_k names and x_1, \ldots, x_h variables, these are represented by the context

$$n_1: \text{name}, \ldots, n_k: \text{name}, \quad x_1: \text{name}, \ldots, x_h: \text{name},$$

$$d_{ij}: n_i \neq n_j$$

where $(1 \leq i < j \leq k)$

For the semantic-aware: inequalities represent the tensor product

$$\text{Name} \otimes \cdots \otimes \text{Name} \times \text{Name} \times \cdots \times \text{Name}$$

in the category Set^I.
Representing Apartness

- Apartness can be represented by inequalities assumptions.

- Given n_1, \ldots, n_k names and x_1, \ldots, x_h variables, these are represented by the context

$$n_1:\text{name}, \ldots, n_k:\text{name}, ~ x_1:\text{name}, \ldots, x_h:\text{name},$$
$$d_{ij}: n_i \neq n_j$$

where $(1 \leq i < j \leq k)$

- Inequalities can be used in proving non-occurrences judgments

 - $(\text{notin_cap} ~ x ~ M)$ holds iff x does not occur in M;
 - $(\text{notin_proc} ~ x ~ P)$ holds iff x does not occur in P;
 - $(\text{notin_form} ~ x ~ A)$ holds iff x does not occur in A.

Inductively defined.
Operational semantics: reduction

\[\begin{align*}
&n[in\ m.P|Q]|m[R] \rightarrow m[n[P|Q]|R] \\
&P \rightarrow Q \\
&(\forall n)P \rightarrow (\forall n)Q
\end{align*}\]

(Red In)

\[\begin{align*}
&m[n[\text{out} \ m.P|Q]|R] \rightarrow n[P|Q]|m[R] \\
&P \rightarrow Q \\
&P|R \rightarrow Q|R \\
&P' \equiv P, \ P \rightarrow Q, \ Q \equiv Q' \\
&P' \rightarrow Q'
\end{align*}\]

(Red Res)

(Red Out)

(Red Par)

(Red Comm)

\[\begin{align*}
&n[P] \rightarrow n[Q] \\
&(n).P|\langle M \rangle \rightarrow P\{n \leftarrow M\}
\end{align*}\]

(Red Amb)

(Red Open)
Encoding of reduction

Inductive red: proc -> proc -> Prop :=

\[\begin{align*}
& \ldots \ldots \\
& \text{red_comm} : (P:\text{name->proc})(M:\text{cap})(P'':\text{proc}) \\
& \quad (\text{subst_proc} M P P') -> \\
& \quad (\text{red} (\text{par} (\text{in_act} P) (\text{out_act} M)) P') \\
& \text{red_res} : (P,Q:\text{name->proc})(l:N\text{list}) \\
& \quad ((n:\text{name})(N\text{list_notin n l}) -> \\
& \quad \quad (\text{notin_proc} n (\text{nu} P)) -> \\
& \quad \quad (\text{notin_proc} n (\text{nu} Q)) -> \\
& \quad \quad (\text{red} (P n) (Q n)) \\
& \quad) -> (\text{red} (\text{nu} P) (\text{nu} Q)) \\
\end{align*}\]

\[\ldots\]

“Fresh” names come with extra assumptions yielding apartness.

Explicit substitution relations are needed (cf. rule red_comm).
Substitution

Substitution of capabilities for names in capabilities and processes cannot be delegated to the metalanguage (type mismatch \(\text{proc} \neq \text{name} \neq \text{cap}\))

Substitution must be represented explicitly by two judgments

\[
\text{subst} _	ext{cap} : \text{cap} \rightarrow (\text{name} \rightarrow \text{cap}) \rightarrow \text{cap}
\]

\[
\text{subst} _	ext{proc} : \text{cap} \rightarrow (\text{name} \rightarrow \text{proc}) \rightarrow \text{proc}
\]

\((\text{subst} _	ext{proc} \ M \ P \ P')\) means

\(P'\) is the result of “filling the hole” in \(P\) with \(M\).

Syntax-driven derivations, though.
Satisfaction clauses (sample)

\[P \models T \]

\[P \models 0 \iff P \equiv 0 \]

\[P \models \neg \mathcal{A} \iff \text{not } P \models \mathcal{A} \]

\[P \models \mathcal{A} \cap n \iff (\forall n)P \models \mathcal{A} \]

\[P \models \mathcal{A}@n \iff n[P] \models \mathcal{A} \]

\[P \models \mathcal{A} \triangleright \mathcal{B} \iff \text{for all } P' \in \Pi, P' \models \mathcal{A} \text{ implies } P|P' \models \mathcal{B} \]

\[P \models n[\mathcal{A}] \iff \text{there exists } P' \in \Pi \text{ such that } P \equiv n[P'] \text{ and } P' \models \mathcal{A} \]

\[P \models \Diamond \mathcal{A} \iff \text{there exists } P' \in \Pi \text{ such that } P \rightarrow^* P' \text{ and } P' \models \mathcal{A} \]

\[P \models \forall x \mathcal{A} \iff \text{for all } m \in \Lambda, P \models \mathcal{A}\{x \leftarrow m\} \]
Satisfaction clauses (sample)

\[P \models T \]
\[P \models 0 \iff P \equiv 0 \]
\[P \models \neg \mathcal{A} \iff \text{not } P \models \mathcal{A} \]
\[P \models \mathcal{A} \otimes n \iff (\forall n) P \models \mathcal{A} \]
\[P \models \mathcal{A} @ n \iff n[P] \models \mathcal{A} \]
\[P \models \mathcal{A} \triangleright \mathcal{B} \iff \text{for all } P' \in \Pi, P' \models \mathcal{A} \text{ implies } P | P' \models \mathcal{B} \]
\[P \models n[\mathcal{A}] \iff \text{there exists } P' \in \Pi \text{ such that } P \equiv n[P'] \text{ and } P' \models \mathcal{A} \]
\[P \models \diamond \mathcal{A} \iff \text{there exists } P' \in \Pi \text{ such that } P \rightarrow^* P' \text{ and } P' \models \mathcal{A} \]
\[P \models \forall x \mathcal{A} \iff \text{for all } m \in \Lambda, P \models \mathcal{A}\{x \leftarrow m\} \]

Notice: in some clauses, satisfaction occurs in **negative** position.
Encoding of satisfaction (1)

- Inductive definition is not possible (negative occurrences)
- Actually, clauses specify a translation of satisfaction judgments in the metalogic \(\models: \Pi \rightarrow \Phi \rightarrow Prop \) is encoded as a function recursively defined on the syntax of formulas:

```plaintext
Fixpoint satF [P:proc;A:form]: Prop:=
<Prop>Cases A of T => True
| (neg B) => (satF P B) -> False
| (Or A1 A2) => (satF P A1) / (satF P A2)
| (comp_adj A1 A2) => (P':proc)(satF P' A1) ->
(satF (par P P') A2)
| (forall B) => ((m:name)(satF P (B m)))
... end.
```

A goal \((satF P A) \) can be automatically Simplified to the corresponding metalogic proposition
A true Natural Deduction proof system with two mutually defined judgments

\[\models_i, \not\models_i : \Pi \rightarrow \Phi \rightarrow \text{Prop} \]

dual of each other

Negative occurrences of \(\models \) are replaced by (positive) \(\not\models \)

\[
\begin{align*}
P & \not\models_i \mathcal{A} \\
\frac{}{P \models_i \neg \mathcal{A}} & \text{for all } P'.P' \not\models_i \mathcal{A} \text{ or } P|P'| \models B \\
\frac{}{P \models_i \mathcal{A} \triangleright B}
\end{align*}
\]

\[
\begin{align*}
P & \models_i \mathcal{A} \\
\frac{}{P \not\models_i \neg \mathcal{A}} & \text{for some } P'.P \models_i \mathcal{A} \text{ and } P|P' \not\models B \\
\frac{}{P \not\models_i \mathcal{A} \triangleright B}
\end{align*}
\]

Easily encoded in CIC (Mutual Inductive)

Useful for proof-theoretical investigations
Many properties in [4] deal with names and contexts. E.g.

For all closed formulas \mathcal{A}, processes P, and names m, m', if $m' \notin fn(P) \cup fn(\mathcal{A})$ then $P \models \mathcal{A}$ iff

$P\{m \leftarrow m'\} \models \mathcal{A}\{m \leftarrow m'\}$.

The theory is too weak; we need properties about names and contexts (nothing is known about names).

Inductive reasoning on processes and formulas is problematic (usual induction principle is too weak).

Add the Theory of Contexts [HMS01]: A set of axiom schemata, which reflect at the theory level some fundamental properties of the intuitive notion of "context" and "occurrence" of variables.

Applicable to any HOAS encoding.
Many properties in [4] deal with names and contexts. E.g.

For all closed formulas \mathcal{A}, processes P, and names m, m',
if $m' \not\in fn(P) \cup fn(\mathcal{A})$ then $P \models \mathcal{A}$ iff
$P\{m \leftarrow m'\} \models \mathcal{A}\{m \leftarrow m'\}$.

The theory is too weak

we need properties about names and contexts (nothing is known about name).

inductive reasoning on processes and formulas is problematic
(usual induction principle is too weak).
Many properties in [4] deal with names and contexts. E.g.
For all closed formulas \mathcal{A}, processes P, and names m, m',
if $m' \not\in fn(P) \cup fn(\mathcal{A})$ then $P \models \mathcal{A}$ iff
$P\{m \leftarrow m'\} \models \mathcal{A}\{m \leftarrow m'\}$.

The theory is too weak
- we need properties about names and contexts (nothing is known about name).
- inductive reasoning on processes and formulas is problematic
 (usual induction principle is too weak)

Add the **Theory of Contexts** [HMS01]:
A set of axiom schemata, which reflect at the theory level
some fundamental properties of the intuitive notion of
“context” and “occurrence” of variables.

applicable to any HOAS encoding
The Theory of Contexts

Decidability of occurrence: every variable either occurs or does not occur free in a term (generalizes decidability of equality on Var). Unnecessary if we are in a classical setting;
The Theory of Contexts

- Decidability of occurrence: every variable either occurs or does not occur free in a term (generalizes decidability of equality on Var). Unnecessary if we are in a classical setting;

- Unsaturability of variables: there exists always a variable which does not occur free in a given term;
The Theory of Contexts

- Decidability of occurrence: every variable either occurs or does not occur free in a term (generalizes decidability of equality on Var). Unnecessary if we are in a classical setting;
- Unsaturability of variables: there exists always a variable which does not occur free in a given term;
- Extensionality of contexts: two contexts are equal if they are equal on a fresh variable; that is, if $M(x) = N(x)$ and $x \not\in M(\cdot), N(\cdot)$, then $M = N$.

\[\beta \] - expansion: given a term M and a variable x, there is a context $C_M(x)$, obtained by abstracting M over x (i.e., such that $C_M(x) = M$).
Decidability of occurrence: every variable either occurs or does not occur free in a term (generalizes decidability of equality on Var). Unnecessary if we are in a classical setting;

Unsaturability of variables: there exists always a variable which does not occur free in a given term;

Extensionality of contexts: two contexts are equal if they are equal on a fresh variable; that is, if $M(x) = N(x)$ and $x \notin M(\cdot), N(\cdot)$, then $M = N$.

β-expansion: given a term M and a variable x, there is a context $C_M(\cdot)$, obtained by abstracting M over x (i.e., such that $C_M(x) = M$)
The Theory of Contexts for Ambients

Axiom dec_name: \((x,y:\text{name})x=y \lor \neg x=y\).

Axiom unsat: \((P:\text{proc})(\exists [n:\text{name}](\text{notin_proc} n P))\).

Axiom proc_ext: \((P,Q:\text{name} \to \text{proc})(x:\text{name})
\quad (\text{notin_proc} x (\nu P)) \to
\quad (\text{notin_proc} x (\nu Q)) \to
\quad (P x)=(Q x) \to P=Q\).

Axiom proc_exp: \((P:\text{proc})(n:\text{name})
\quad (\exists [P':\text{name} \to \text{proc}](\text{notin_proc} n (\nu P'))
\quad \lor P=(P' n))\).
(Higher order) induction principles

Induction principles over HOAS datatypes can be derived.

More generally, higher order induction principles over types
namen->proc (for all n) are derivable.

Stronger than usual ones:

Lemma PROC_IND:

(P:proc -> Prop)
(P nil) ->
...
((Q:name->proc)((y:Var)(P (Q y))) -> (P (nu Q))) ->
(Q:proc)(P Q).

complete induction over size of terms, using β-expansion and
extensionality for lifting structural informations from proc to
name->proc.
Many properties in [4] are “renaming properties”

All instances of the same pattern:

\[
\begin{align*}
\text{for some } x & \notin \bigcup_{i=1}^{n} fn(C_i[\cdot]) : R(C_1[x], \ldots, C_n[x]) \\
\text{for all } y & \notin \bigcup_{i=1}^{n} fn(C_i[\cdot]) : R(C_1[y], \ldots, C_n[y])
\end{align*}
\]

where \(R \) is a given \(n \)-ary relation (e.g., structural congruence, capture-avoiding substitution, reduction relation etc.)

Usually proved by induction either on the derivation of the premise \(R(C_1[x], \ldots, C_n[x]) \) or on one of the arguments \(C_i[x] \)

A general proof strategy has been streamlined for proving this kind of properties

\(\beta \)-expansion and extensionality are used for lifting structural information at the higher types
The “new” quantifier

In [4], Ambient Logics is extended with \forall quantifier, defined as a syntactic shorthand

$$\forall x. \mathcal{A} \triangleq \exists x. x#(fnv(\mathcal{A}) \setminus \{x\}) \land x\mathbb{T} \land \mathcal{A},$$

Not directly representable: function fnv is not definable (recursion over HOAS datatypes)

Represented as a term constructor $\text{new} : (\text{name} \to \text{form}) \to \text{form}$

Semantics is easily extended:

Fixpoint $\text{satF} \ [P : \text{proc}; A : \text{form}] : \text{Prop} :=$

<Prop>Cases A of

...
| (new B) => (Ex [m:name] (notin_proc m P)
 \land (notin_form m (forall B))
 \land (\text{satF} P (B m)))

end.
Properties of “new”

Most properties of \(\forall \) have been formalized and proved. For instance:

\[
\begin{align*}
P \models \forall x. \mathcal{A} & \iff \exists m \in \Lambda. m \notin fn(P, \mathcal{A}) \text{ and } P \models \mathcal{A}\{x \leftarrow m\} \\
& \iff \forall x \in \Lambda. m \notin fn(P, \mathcal{A}) \text{ implies } P \models \mathcal{A}\{x \leftarrow m\}
\end{align*}
\]

\[
P \models \neg \forall x. \mathcal{A} \iff P \models \forall x. \neg \mathcal{A}
\]

\[
P \models \forall x. (\mathcal{A} \parallel \mathcal{B}) \iff P \models (\forall x. \mathcal{A}) \parallel (\forall x. \mathcal{B})
\]

last one is said in [4] “of particular interest (and difficulty)”; in this encoding proof is quite simple (a few lines of tactics)
Conclusions

- First implementation of Ambient Calculus and its Logic in a LF
- Most of the theory and the metatheory in [4] (including \(L \)) has been formally proved using the Theory of Contexts.

Benefits for

- the calculus: new proof system, clarification of the rôle of names and variables, . . .
- the framework: derivation of properties originally taken as axioms (e.g., induction principles over HOAS datatype), development of a general strategy for renaming properties. . .
Conclusions (really)

Pros and cons of the Theory of Contexts

- **low overhead**: smooth handling of schemata in HOAS, no exotic terms to rule out explicitly. Proofs look *almost* like on the paper.

- **expressive**: induction and recursion principles also over higher-order datatypes. \(n \) is rendered faithfully

- but **incompatible** with the Axiom of Unique Choice \(\Rightarrow \) expressive power of functions is strictly less than that of relations. Some functions must be then represented by relations.
Pros and cons of the Theory of Contexts

- **low overhead**: smooth handling of schemata in HOAS, no exotic terms to rule out explicitly. Proofs look *almost* like on the paper.

- **expressive**: induction and recursion principles also over higher-order datatypes. \forall is rendered faithfully

- but **incompatible** with the Axiom of Unique Choice \Rightarrow expressive power of functions is strictly less than that of relations. Some functions must be then represented by relations.

Theory of Contexts = steroids for weak HOAS
The Axiom of Unique Choice

Proposition [Hof99] The Axiom of Unique Choice

\[\Gamma \vdash R : \sigma \to \tau \to o \quad \Gamma, a : \sigma ; \Delta \vdash \exists ! b : \tau . (R a b) \]

\[\Gamma ; \Delta \vdash \exists f : \sigma \to \tau . \forall a : \sigma . (R a (f a)) \]

is inconsistent with the Theory of Contexts.

Consequences:

- in toposes, AC! always holds ⇒ topos logic is not enough ⇒ soundness of the Theory of Contexts is not so trivial

- relations are more expressive than functions: there are functional relations whose characteristic functions cannot be defined ⇒ often, one has to use functional relations in place of functions
Soundness

Theorem
HOL extended with the Theory of Contexts is sound.

Idea: build a model (close to Schanuel topos) using a tripos over functor categories.

\[
\begin{array}{c}
\mathcal{F} & \xleftarrow{\text{in}} & I \\
\end{array}
\]

\[
\begin{array}{c}
\text{Set}^\mathcal{F} & \xleftarrow{\text{in}_*} & \text{Set}^I & \xrightarrow{\text{a}} & \text{Sh}_{-/-}(I) \\
\end{array}
\]

The index categories are the category of substitutions (\(\mathcal{F}\)) and injective substitutions (\(I\)) over finite sets of atoms. See [BHHMS01] for details.