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via delle Scienze 206, 33100 Udine, Italy.

{digianantonio,honsell,lenisa}@dimi.uniud.it

dedicated to Mariangiola, Mario and Simona,
on the occasion of their 60th birthdays

Abstract

We present a type assignment system that provides a finitary interpretation of
lambda terms in a game semantics model. Traditionally, type assignment systems
describe the semantic interpretation of terms in domain theoretic models. Quite
surprisingly, the type assignment system presented in this paper is very similar to
the traditional ones, the main difference being the omission of the subtyping rules.

Key words: Lambda Calculus, Game Semantics, Type Assignment System

1 Introduction

About twentyfive years ago, Mario Coppo, Mariangiola Dezani, Simona Ronchi,
and their group, started to provide logical descriptions of models of λ-calculus,
in terms of intersection type assignment systems, [8,10,7,15]. This logical ap-
proach was related explicitly to Scott Information Systems in [9], and put on
firm categorical grounds by Abramsky in [1]. In this paper, we present a logi-
cal analysis of game models in the style of intersection types. We feel that it
provides new insights both in the semantics of λ-calculus and in the fine struc-
ture of game semantics. Thus we show that the idea underpinning intersection
types is an outstanding contribution to Theoretical Computer Science, which
allows to reap fruitful results in any semantical framework.
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The intersection type approach can be outlined as follows. The semantics of a
programming language can be given in two forms: a term can be interpreted
either denotationally by a point in a particular domain, or logically by a set
of properties. Stone-duality, as presented in [1], establishes an equivalence be-
tween these two alternate descriptions for suitable categories of domains. In
this approach, properties of terms are normally called “types”. The logical
semantics consists of the set of rules, called “type assignment system”, which
allow to derive the properties satisfied by a term. Type assignment systems
can be seen to provide concrete, finitary approximations of the semantics of a
term.

Differently from the standard case, in type assignment systems for game se-
mantics, a type cannot describe simply the input-output behavior of a term,
but it needs to describe a more detailed interaction of the term with the envi-
ronment. In particular, a type t for a term M describes a set of moves that the
Proponent and the Opponent may exchange in some phases of the interaction
of the term M with the environment. Quite surprisingly, the syntax for stan-
dard intersection types is used to describe sets of moves. The game-theoretic
perspective is achieved by removing all structural and congruence rules from
standard assignment systems. In our framework, no form of weakening rule is
present and the types (t0 ∧ t1) ∧ t2, t0 ∧ (t1 ∧ t2), t0 ∧ (t2 ∧ t0) are all distinct.

In this paper, we consider the game semantics framework presented by Abram-
sky, Jagadeesan and Malacaria in [4], and known as AJM-games. The strate-
gies that game intersection types generate are naturally history-free, the ∧ op-
erator is used to model the exponential construction, the lack of associativity
and commutativity rules for ∧ is connected to the use of indexes to distin-
guish different instances of moves in a exponential type. As for AJM-games,
it is necessary to introduce a partial equivalence relation on interpretations to
recover subject reduction, due to the arbitrariness in the use of indexes.

In this paper, we focus on simply typed λ-calculus. We define a game λ-model
in the standard way in a category of games and history-free strategies, and we
introduce an intersection-like type system for describing such a game model.
Our approach to game intersection types is “typed”, i.e. intersection types
are built inductively over games. The usual untyped intersection semantics
can be recovered as a special case of the typed case. As already mentioned,
in our setting, types on a game A represent sets of Opponent and Proponent
moves on A. The intended meaning of a judgment in our typing system is
that a set of equal number of Opponent and Proponent moves appear in the
history-free strategy interpreting the term in the given environment. More-
over, the moves in this set may be exchanged during the interaction between
that term and that environment. The main point which allows to establish a
bridge between the intersection-like types that we introduce and game seman-
tics is that history-free strategies induce partial functions from Opponent to
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Proponent moves, in a Geometry of Interaction (GoI) fashion, [13,2,3]. Un-
der this perspective, the most informative judgments are those involving step
types, where exactly two moves appear, an Opponent move and the Proponent
reaction move in the graph of the partial function defining this strategy. The
main result of this paper amounts to the fact that the intersection type se-
mantics of a given term in context induces a partial function from Opponent
to Proponent moves, which defines the strategy interpreting the term in the
game model.

Our approach to game intersection types is quite general. In particular, type
assignment systems for GoI combinatory algebras in “particle-style” [3] can
be easily derived from game type assignment systems, simply by forgetting
the distinction between Opponent and Proponent moves.

Type assignment systems like the one presented in this paper are quite useful
in the context of game semantics, since they provide a more concrete and
intuitive account of the interpretation of terms w.r.t. categorical game models.
In fact, deriving a concrete definition from a categorical one can be a heavy
task.

The problem of giving a concrete and finitary description of game models has
been also investigated in [11], where a type assignment system describing the
game model of the untyped λ-calculus of [12] has been presented. However, the
approach of [11] is different and more directly connected to the representation
of strategies as sets of plays and to the categorical combinators involved in
the game semantics.

Synopsis. In Section 2, we recall basic notions on games and strategies, we
present a new alternative definition of the exponential game, and we discuss
the representation of history-free strategies as partial functions. In Section 3,
we present syntax and game semantics of the simply typed λ-calculus, which
we use as target language. In Section 4, we introduce and study a type as-
signment system giving a finitary description of the game model of Section 3.
In Section 5, we establish the connection between the type assignment system
and the game model for the simply typed λ-calculus of Section 3. Finally, in
Section 6, we discuss further developments.

2 Game Categories

In this section, first we recall basic notions and constructions on games and
strategies in the style of [4]. Then, in Section 2.1, we present an alternative
construction of the exponential game, which will be useful in order to study
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the connections between our typing semantics and the game semantics. To
the same purpose, in Section 2.2, we discuss the alternative representation
of history-free strategies as partial functions from Opponent to Proponent
moves.

The following are the usual definitions of game and strategy in the style of [4]:

Definition 2.1 (Games) A game has two participants: the Proponent and
the Opponent. A game A is a quadruple (MA, λA, PA,≈A) where

• MA is the set of moves of the game.
• λA : MA → {O,P} × {Q, A} is the labeling function: it tells us if a move

is taken by the Opponent or by the Proponent, and if it is a Question or
an Answer. We can decompose λA into λOP

A : MA → {O, P} and λQA
A :

MA → {Q, A} and put λA = 〈λOP
A , λQA

A 〉. We denote by − the function
which exchanges Proponent and Opponent, i.e. O = P and P = O. We
also denote with λOP

A the function defined by λOP
A (a) = λOP

A (a). Finally, we

denote with λA the function 〈λOP
A , λQA

A 〉.
• PA is a non-empty and prefix-closed subset of the set M~

A (written as PA ⊆nepref

M~
A ), where M~

A is the set of all sequences of moves which satisfy the fol-
lowing conditions:
· s = at ⇒ λA(a) = OQ

· (∀i : 1 ≤ i ≤ |s|)[λOP
A (si+1) = λOP

A (si)]
· (∀ t v s)[|t � MA

A | ≤ |t � MQ
A |]

where MA
A and MQ

A denote the subsets of game moves labeled respectively
as Answers and as Questions, s � M denotes the set of moves of M which
appear in s and v is the substring relation. PA denotes the set of positions
of the game A.

• ≈A is an equivalence relation on PA which satisfies the following properties:
· s ≈A s′ ⇒ |s| = |s′|
· sa ≈A s′a′ ⇒ s ≈A s′

· s ≈A s′ & sa ∈ PA ⇒ (∃a′)[sa ≈A s′a′]

In the above s, s′, t and t′ range over sequences of moves, while a, a′, b and
b′ range over moves. The empty sequence is written ε.

In a position, questions and answers match together like open and closed
parentheses in an algebraic expression.

Definition 2.2 (History-free Strategies) A strategy for the Proponent in
a game A is a non-empty set σ ⊆ P even

A of positions of even length such that
σ = σ∪dom(σ) is prefix-closed, where dom(σ) = {t ∈ P odd

A | (∃a)[ta ∈ σ]}, and
P odd

A and P even
A denote the sets of positions of odd and even length respectively.

A strategy σ for a game A is history-free if it satisfies the following properties:
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(1) sab, tac ∈ σ ⇒ b = c
(2) sab, t ∈ σ, ta ∈ PA ⇒ tab ∈ σ

A strategy can be seen as a set of rules which tells the Proponent which
move to take after the last move by the Opponent. History-free strategies are
strategies which depend only on the last move by the Opponent.

The equivalence relation on positions ≈A can be extended to strategies in the
following way.

Definition 2.3 Let σ, τ be strategies, σ ≈ τ if and only if

(1) sab ∈ σ, s′a′b′ ∈ τ, sa ≈A s′a′ ⇒ sab ≈A s′a′b′

(2) s ∈ σ, s′ ∈ τ, sa ≈A s′a′ ⇒ (∃b)[sab ∈ σ] iff (∃b′)[s′a′b′ ∈ τ ]

Such an extension is not in general an equivalence relation since it might lack
reflexivity. If σ is a strategy for a game A such that σ ≈ σ, we write σ : A.

Game Constructions.

Definition 2.4 (Tensor product) Given games A and B, the tensor prod-
uct A⊗B is the game defined as follows:

• MA⊗B = MA + MB

• λA⊗B = [λA, λB]
• PA⊗B ⊆ M~

A⊗B is the set of positions, s, which satisfy the following condi-
tions:

(1) the projections on each component (written as s � A or s � B) are positions
for the games A and B respectively;

(2) every answer in s must be in the same component game as the matching
question.

• s ≈A⊗B s′ ⇐⇒ s � A ≈A s′ � A, s � B ≈B s′ � B, (∀i)[si ∈ MA ⇔ s′i ∈ MA]

Here + denotes disjoint union of sets, that is A+B = {(l, a) | a ∈ A}∪{(r, b) |
b ∈ B}, and [−,−] is the usual (unique) decomposition of a function defined
on disjoint unions.

Definition 2.5 (Linear implication) Given games A and B, the compound
game A ( B is defined as follows:

• MA(B = MA + MB

• λA(B = [λA, λB]
• PA(B ⊆ M~

A(B is the set of positions, s, which satisfy the following condi-
tions:
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(1) the projections on each component (written as s � A or s � B) are positions
for the games A and B respectively;

(2) every answer in s must be in the same component game as the matching
question.

• s ≈A(B s′ ⇐⇒ s � A ≈A s′ � A, s � B ≈B s′ � B, (∀i)[si ∈ MA ⇔ s′i ∈ MA]

Definition 2.6 (Exponential) Given a game A, the game !A is defined by:

• M!A = ω ×MA =
∑

i∈ω MA

• λ!A(〈i, a〉) = λA(a)
• P!A ⊆ M~

!A is the set of positions, s, which satisfy the following conditions:
(1) (∀i ∈ ω)[s � Ai ∈ PAi

];
(2) every answer in s is in the same index as the matching question.
• s ≈!A s′ ⇐⇒ ∃ a permutation of indexes α ∈ S(ω) such that:
· π∗1(s) = α∗(π∗1(s

′))
· (∀i ∈ ω)[π∗2(s � α(i)) ≈ π∗2(s

′ � i)]
where π1 and π2 are the projections of ω×MA and s � i is an abbreviation

of s � Ai.

The Game Category G. We define a monoidal closed category G.

Objects: games.

Morphisms: a morphism between games A and B is an equivalence class
w.r.t. the relation ≈A(B of history-free strategies σ : A ( B. We denote the
equivalence class of σ by [σ].

Composition: the composition is given by the extension on equivalence classes
of the following composition of strategies. Given strategies σ : A ( B and
τ : B ( C, τ ◦ σ : A ( C is defined by

σ||τ = {s ∈ (MA + MB + MC)∗ | s � (A, B) ∈ σ & s � (B, C) ∈ τ}
τ ◦ σ = {s � (A, C) | s ∈ σ||τ}even

Identity: the identity idA : A ( A is defined by

idA = {s ∈ P even
A | s � 1 = s � 2} .

The game constructions of tensor product and linear implication can be made
functorial, in such a way that:

Proposition 2.1 ([4]) The category G is monoidal closed.
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However, as it is well-known, G is not cartesian closed.

The Game Category K!(G). The exponential game construction of Defi-
nition 2.6 can be made functorial, by defining, for any strategy σ : A ( B,
the strategy !σ :!A (!B by
!σ = {s ∈ P!A(!B | ∀i ∃s′ ∈ σ. (∀s1, s

′
1 prefixes of s, s′ of the same even length.

(s1 � (A)i = s′1 � A & s1 � (B)i = s′1 � B))}.
Moreover, the exponential can be endowed with a comonad structure (!, der , δ)
[4], where for each game A the morphisms derA : !A ( A and δA : !A ( !!A
are defined as follows:

• derA = [{s ∈ P even
!A(A | ∀s′ even length prefix of s. (s′ � (!A)0 = s′ �

A & ∀i 6= 0. s′ � (!A)i = ε)}]
• δA = [{s ∈ P even

!A( !!A | ∀s′ even length prefix of s. (∀i, j. s′ � (!A)c(i,j) = s′ �
(!(!A)i)j & ∀k 6∈ codom(c). s′ � (!A)k = ε)}], where c is a pairing function,
i.e. an injective map c : ω × ω → ω.

Let K!(G) be the co-Kleisli category over the comonad (!, der , δ), i.e.:

Objects of K!(G): games.

Morphisms of K!(G): a morphism between games A and B is an equiva-
lence class of history-free strategies for the game !A ( B.

Composition on K!(G): given strategies σ : A → B and τ : B → C, the
strategy τ ◦ σ : A → C is given by the composition in the category G of the
strategies σ† :!A (!B and τ :!B ( C, where σ† is defined by (!σ) ◦ δA.

The following strategies give a commutative comonoid structure on !A, [4]:

• the empty strategy weakA :!A ( I (weakening), where I = (∅, ∅, {ε}, {(ε, ε)})
is the empty game;

• the contraction strategy conA :!A (!A⊗!A,
conA = [{s ∈ P even

!A( !A⊗!A | ∀s′ even length prefix of s. ∀i (s′ � (!A)d(l,i) = s′ �
((!A)l)i & s′ � (!A)d(r,i) = s′ � ((!A)r)i) & ∀j 6∈ codom(d). (s′ � (A)j = ε)}],
where d is a tagging function, i.e. an injective map d : ω + ω → ω.
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Identity on K!(G): the identity idA :!A ( A is derA.

Using the above structure, one can define a cartesian product on K!(G), see
[4] for more details:

Proposition 2.2 ([4]) The category K!(G) is cartesian closed.

Finally, we point out that Propositions 2.1 and 2.2 hold also if, in the defini-
tion of games, we abandon the machinery of “questions and answers”, i.e. the
bracketing condition. Thus, since for our purposes the bracketing condition
is not relevant, in the sequel we will simply focus on games with no ques-
tions/answers. This corresponds to consider games where all moves are labeled
as questions. In this section we have chosen to present the questions/answers
machinery, because this is standard, and also in view of possible extensions of
the present work.

2.1 An Alternative Construction of the Exponential Game

In this section, we present an exponential game construction alternative to the
standard one of Definition 2.6 above. The new exponential will turn out to be
naturally isomorphic to the old one. This alternative definition is motivated by
the fact that it makes the connection between moves on games and intersection
types more direct.

The new exponential game is built using, in place of ω, a set of indexes I
defined by:

Definition 2.7 Let I be the set of all indexes represented by (possibly empty)
lists of symbols in {0, 1}.

In the sequel, it will be useful to view indexes in I as paths of a binary tree.
We will denote by !IA the new exponential game. The main difference between
the standard exponential game and the new one lies in the fact that the set
of legal positions over the game !IA is a proper subset of the positions over
!A. Namely, we consider as legal only those positions which use a subset of
compatible indexes, in the following sense:

Definition 2.8 (Compatible Subsets of Indexes) Two indexes i, j ∈ I
are compatible if neither i is a prefix of j nor j is a prefix of i. A set of
indexes J ⊆ I is compatible if, for each i, j ∈ J , i and j are compatible.

Notice that the set of indexes with the compatible relation is a web and the
compatible subsets of an index set I form the corresponding coherent space in
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the sense of Girard.

For any pair of indexes i, j ∈ I, we can define the composition operation
cI : I × I → I simply as list concatenation. Viewing indexes as paths, the
composition operation yields the index corresponding to the path obtained by
appending the second path to the first one.

Coherent subsets of indexes have the following relevant property w.r.t. com-
position:

Lemma 2.1 For any compatible set J of indexes, and any family of compat-
ible sets {Kj}j∈J , the set {cI(j, k) | j ∈ J & k ∈ Kj} is compatible.

The above lemma, together with the definition of the legal positions on the
game !IA, will allow us to use the composition operation cI as pairing function
for defining the comonad structure on !I . Namely, even if cI is not injective in
general, it is injective on compatible sets of indexes. Formally:

Definition 2.9 (Alternative Exponential) Given a game A, the game !IA
is defined by:

• M!IA = I ×MA =
∑

i∈I MA

• λ!IA(〈i, a〉) = λA(a)
• P!IA ⊆ M~

!IA is the set of positions, s, which satisfy the following conditions:
(1) (∀i ∈ I)[s � Ai ∈ PAi

];
(2) (every answer in s is in the same index as the matching question;)
(3) the set of indexes appearing in the moves of s is compatible.
• s ≈!IA s′ ⇐⇒ ∃ a permutation of indexes α ∈ S(I) such that:
· π∗1(s) = α∗(π∗1(s

′))
· (∀i ∈ I)[π∗2(s � α(i)) ≈ π∗2(s

′ � i)]

The exponential game construction !I can be naturally lifted to a functor such
that:

Proposition 2.3 The exponential functor !I is naturally isomorphic to the
standard exponential functor !.

Proof. Let ι : I → ω be any injective function, e.g.

ι(i) =


0 if i = ε

2 ∗ ι(i′) + 1 if i = 0i′

2 ∗ ι(i′) + 2 if i = 1i′

Let ι′ : ω → I be any injective function whose codomain is a compatible set
of indexes, e.g. ι′(i) = 1 . . . 1︸ ︷︷ ︸

i

0.
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Then ι, ι′ induce families of strategies
– σι = {σι

A :!IA (!A}A, where σι
A = {s ∈ P!IA( !A | ∀s′ even length prefix of s.

s′ � (!IA)ι(i) = s′ � (!A)i};
– σι′ = {σι′

A :!A (!IA}A, where σι′
A = {s ∈ P!A( !IA | ∀s′ even length prefix of s.

s′ � (!A)ι′(i) = s′ � (!IA)i}.
One can show that [σι] and [σι′ ] are well-defined natural isomorphisms; more-
over, one is the inverse of the other. 2

As a consequence of the above proposition, the exponential functor !I can
be endowed with a comonad structure (!I , der I , δI), and, for any game A, the
game !IA can be endowed with a commutative comonoid structure (!IA, conI

A,weak I
A).

For our purposes, it is useful to give explicit definitions of the morphisms
der I

A, δI
A, conI

A, as equivalence classes of special strategies:

• der I
A = [{s ∈ P even

!IA(A | ∀s′ even length prefix of s. (s′ � (!IA)ε = s′ �
A & ∀i 6= ε. s′ � (!IA)i = ε)}]

• δI
A = [{s ∈ P even

!IA( !I !IA | ∀s′ even length prefix of s. (∀i, j. s′ � (!IA)cI(i,j) =
s′ � (!I(!IA)j)i & ∀k 6∈ codom(cI). s′ � (!IA)k = ε)}], where cI : I × I → I
is the composition function defined above;

• conI
A = [{s ∈ P even

!IA( !IA⊗!IA | ∀s′ even length prefix of s. ∀i. (s′ � (!IA)0i =
s′ � ((!IA)l)i & s′ � (!A)1i = s′ � ((!IA)r)i & s′ � (!IA)ε = ε)}].

Notice that δI
A is well defined by Lemma 2.1, and the tagging function dI :

I + I → I is implicitly defined by dI(l, i) = 0i and dI(r, i) = 1i.

From now on, we will use the symbol ! to refer to the standard or to the new
exponential, indifferently. We will state it explicitly, when the new exponential
comes into play.

2.2 History-free Strategies as Partial Functions

Following Definition 2.2 of Section 2, strategies are usually represented as
trees, where each path corresponds to a position of the strategy. As shown
in [4], history-free strategies admit also an alternative presentation as partial
functions from Opponent to Proponent moves, which will be quite useful in the
sequel. In this section, we study in detail such presentation. The representation
of history-free strategies as partial functions will be exploited in the sequel of
this paper, where a type assignment system is introduced and its connections
with the game semantics are studied.

Following [4]:

Definition 2.10 Let σ be a history-free strategy. We define a partial function
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fσ : MA
O ⇀ MA

P by

fσ(a) = b iff ∃s ∈ PA. sab ∈ σ .

Vice versa, let fσ : MA
O ⇀ MA

P , we define inductively the set traces(f) as
follows:
ε ∈ traces(f)
s ∈ traces(f) & sa ∈ PA & f(a) = b =⇒ sab ∈ traces(f).

We say that f induces the strategy σf = traces(f), if traces(f) ⊆ PA.

Proposition 2.4 If f : MA
O ⇀ MA

P is a partial function inducing a strategy
σf on A, then σf is history-free.

Notice that, for any partial function f , we have fσf
⊆ f , while for any strategy

τ , we have σfτ = τ . Thus there is always a least partial function on moves
canonically inducing a history-free strategy.

Using the representation of strategies as partial functions, the morphisms from
A to B on the category G are represented by partial functions f : MP

A +MO
B ⇀

MO
A + MP

B . Such functions can be written as matrixes:

f =

 f11 f12

f21 f22


where

f11 : MP
A ⇀ MO

A f12 : MO
B ⇀ MO

A f21 : MP
A ⇀ MP

B f22 : MO
B ⇀ MP

B

Functions such as f above are amenable of a useful geometrical description in
terms of “boxes and wires”, [2,3], as in Fig. 1(i).

The composition on the category G can be equivalently expressed in terms of
the representation of strategies as partial functions as follows. Let f : MP

A +
MO

B ⇀ MO
A +MP

B , g : MP
B +MO

C ⇀ MO
B +MP

C representing strategies, then f, g
are composed in such a way that Proponent moves in B under σ get turned
into Opponent moves in B for τ , and vice versa. Geometrically, we have the
picture in Fig. 1(ii).

Algebraically, the composition of f and g is obtained via a Girard’s Execution
Formula, see [4] for more details.

The application morphism appA,B : (A ( B) ⊗ A ( B determined by the
monoidal closed structure on G is induced by the isomorphism

((MO
A + MP

B ) + MP
A ) + MO

B ' ((MP
A + MO

B ) + MO
A ) + MP

B .
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f21
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B
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B
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A
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A

? ?

(ii)
? ?

? ?

? ?

� -

�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A

MO
B

MP
B

MP
B

MO
B

MP
A

MO
A

MO
C

MP
C

Fig. 1. Geometrical description of strategies and strategy composition.

? ?
MO

BMP
A

fσ

? ?

MP
BMO

A

MP
A

fτ

Fig. 2. Geometrical description of application on G.

Geometrically, the application of two strategies σ : A ( B and τ : A, i.e.
appA,B ◦ (σ ⊗ τ) is represented as in Fig. 2.

In view of studying the connections between our type semantics and the game
semantics, it is useful to give an explicit description of the application of two
strategies, σ :!C ( (!A ( B) and τ :!C ( A, in the category K!(G). The
application of σ, τ in K!(G), i.e. ev◦〈σ, τ〉, coincides (up-to≈) with the strategy
obtained by the following composition on the category G: appA,B◦(σ⊗τ †)◦conC

(see [4] for more details).

In Fig. 3 appears the geometrical description of the strategy resulting from
the application of strategies σ, τ , represented by partial functions fσ : MP

!C +
(MP

!A + MO
B ) → MO

!C + (MO
!A + MP

B ) and fτ : MP
!C + MO

!A → MO
!C + MP

!A.

The final box (dash box in figure) represents a two-input/two-output function
f : MP

!C +MO
B → MO

!C +MP
B . If the input enters through the wire MO

B , then it
is directly sent to fσ, otherwise, if the input enters through the wire MP

!C , then
the contraction conC acts where the • appears, by sending the token either
to fσ or to fτ† , depending on the index of the move. Once the token is sent
to fσ or fτ† , it can possibly cycle along the wires MO

!A and MP
!A, and finally it

exists either from the box fσ (through the wire MO
!C or MP

B ) or from the box
fτ (through the wire MO

!C). The contraction merges the outputs coming from
the wires MO

!C of fσ and fτ† where indicated.
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Fig. 3. Geometrical description of application on K!(G).

3 The Simply Typed λ-calculus

In this section we recall the syntax of the simply typed λ-calculus with two
ground constants, ⊥,>, and we introduce a game model for such calculus. In
Section 4, we will introduce a finitary description of this game model, based
on a typed assignment system.

Definition 3.1 The class SimType of simple types over a ground type o is
defined by:

(SimType 3) A ::= o | A → A .

Raw Terms are defined as follows:

Λ 3 M ::= ⊥ | > | x | λxA.M | MM ,

where ⊥,> ∈ Const are ground constants, x ∈ Var. We denote by Λ0 the set
of closed λ-terms.

Well-typed terms. We introduce a proof system for deriving typing judge-
ments of the form Γ ` M : A, where Γ is a type environment, i.e. a finite list
x1 : A1, . . . , xk : Ak. The rules of the proof system are the following:

Γ ` C : o Γ, x : A, Γ′ ` x : A

13



Γ, x : A ` M : B

Γ ` λxA.M : A → B

Γ ` M : A → B Γ ` N : A

Γ ` MN : B

where C ∈ {⊥,>}.

β-conversion. β-conversion between well-typed terms is the least relation gen-
erated by the following rule and the rules for congruence closure (which we
omit):
Γ ` (λxA.M)N = M [N/x] : B, where Γ, x : A ` M : B, and Γ ` N : A.

3.1 A Game Model

We define a game model for the λ-calculus of Definition 3.1 in the cartesian
closed category K!(G). Simple types are interpreted by the hierarchy of games
over the following Sierpinski Game (without questions/answers):

Definition 3.2 (Sierpinski Game) The game O is defined as follows:

• MO = {∗, a}
• λO(∗) = O λO(a) = P
• PO = {ε, ∗, ∗a}
• ≈O= idPO

The only two strategies on the Sierpinski Game are the empty strategy, which
we denote by⊥O, and the strategy>O induced by the partial function f>O(∗) =
a. More in general, we denote by ⊥!A1⊗...⊗!Ak(O the empty strategy on !A1 ⊗
. . .⊗!Ak ( O, and by>!A1⊗...⊗!Ak(O the strategy induced by f>!A1⊗...⊗!Ak(O(〈r, ∗〉) =
〈r, a〉.

Types are interpreted by games over the hierarchy on the Sierpinski game.
Terms in contexts are interpreted as strategies in the usual way, i.e. x1 :
A1, . . . , xk : Ak ` M : A is interpreted as a strategy on the game ![[A1]]

G ⊗
. . .⊗![[Ak]]

G ( [[A]]G using standard categorical combinators as follows:

Definition 3.3 (Term Interpretation)

• [[x1 : A1, . . . , xk : Ak ` ⊥ : o]]G = ⊥
![[A1]]

G⊗...⊗![[Ak]]
G([[A]]G

• [[x1 : A1, . . . , xk : Ak ` > : o]]G = >
![[A1]]

G⊗...⊗![[Ak]]
G([[A]]G

• [[x1 : A1, . . . , xk : Ak ` xi : Ai]]
G = πi :![[A1]]

G ⊗ . . .⊗![[Ak]]
G ( [[A]]G

14



• [[Γ ` λxA.M : A → B]]G = Λ([[Γ, x : A ` M : B]]G)
• [[Γ ` MN : B]]G = ev ◦ 〈[[Γ ` M : A → B]]G, [[Γ ` N : A]]G〉

where πi denotes the i-th projection.

Notice that, by abuse of notation, we have used the same symbols A, B, . . . to
denote simple types and the games interpreting them.

4 The Type Assignment System

In this section, we introduce and study a type assignment system, which gives
a finitary description of the game model of Section 3.1. The types involved are
essentially the standard intersection types, where the intuitionistic arrow is
substituted by the linear arrow type constructor, and the structural rules are
missing. Our approach to intersection types is “typed”, i.e. intersection types
are built inductively over games. The usual untyped intersection semantics
can be recovered as a special case of the typed case (see Section 6 below for
more details). In our setting, types on a game A represent sets of Opponent
and Proponent moves on A. The judgments derivable in our typing system
are of the shape x1 : t!A1 , . . . , xk : t!Ak ` M : t!A, whose intended meaning
is to represent a set of equal number of Opponent and Proponent moves.
We will show that, for each Opponent move in such a set, there will be a
corresponding Proponent answer such that the pair of moves belongs to the
graph of the strategy interpreting the term.

4.1 Types and Environments

For each game A, we define the set of corresponding intersection types. At
this stage, a type on A simply represents a set of moves on the game A. The
intersection type constructor is used to represent sets of moves on exponential
games, i.e. the moves appearing in each ∧-component correspond to moves in
different components of the exponential game. This is why the ∧ constructor
is not commutative neither associative nor idempotent. In Section 5, the exact
correspondence between types and games is established.

Definition 4.1 (Types) We define a family of intesection type sets IntTypeA,
by induction on the structure of the game A via the following abstract syntax:

• Types on Sierpinski game:

tO ::= cO∅ | cO{∗} | cO{a} | cO{∗,a}
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• Types on linear arrow games:

tA(B ::= tA ( tB

• Types on exponential games:

t!A ::= tA | t!A ∧ t!A

In what follows, we use the symbols tA, uA, vA to denote elements in IntTypeA,
and we simply write t in place of tA, when the game is irrelevant.
We use the symbols cA(B

∅ and c∅
!A to denote, respectively, the types cA

∅ ( cB
∅

and cA
∅ (which, in particular, is a type on !A). Moreover, we endow the set of

types with the equivalence relation induced by cA
∅ = cA

∅ ∧ cA
∅ .

When related to game semantics, types represent sets of moves, in the sense
presented by the following definitions. First, we define a subclass of types
representing a single move. Informally, a single-move type is a type whose
term structure contains a single instance of one of the two constant cO{a}, c

O
{∗},

while all the other instances of basic constants are in the form cA
∅ . We mark

single-move types as Proponent or Opponent types, mimicking the usual game
semantic definitions.

Definition 4.2 (Single-move Types) We distinguish between types where
the only move is a Proponent move (pA) and types where the only move is
an Opponent move (oA). The definition of the family of sets SingleTypeA,
single-move types on A, is by induction on the game A:

pO ::= cO{a}

oO ::= cO{∗}

pA(B ::= cA
∅ ( pB | oA ( cB

∅

oA(B ::= cA
∅ ( oB | pA ( cB

∅

p!A ::= pA | p!A ∧ cA
∅ | cA

∅ ∧ p!A

o!A ::= oA | o!A ∧ cA
∅ | cA

∅ ∧ o!A

In what follows, we will use the symbol mA to denote a single-move type pA

or oA, indifferently.

Any intersection type can be seen as the union of single-move types by the
following definition:
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Definition 4.3 The family of functions SA : IntTypeA → ℘(SingleTypeA)
are defined, with some abuse of notation, by induction as follows:

SA(cA
∅ ) = ∅

SA(tA) = {tA} if tA ∈ SingleTypeA

SO(cO{∗,a}) = {cO{∗}, cO{a}}

SA(B(tA ( uB) = (cA
∅ ( SB(uB)) ∪ (SA(tA) ( cB

∅ )

S!A(tA) = SA(tA)

S!A(t!A ∧ u!A) = (cA
∅ ∧ S!A(u!A)) ∪ (S(t!A) ∧ cA

∅ )

where the symbols ( and ∧ on the righthand side of the equations denote the
pointwise application of the corresponding constructors to a set.

As a curiosity, notice that, for any game A, the set {S(tA)|tA ∈ IntTypeA} is
the set of finite elements of a coherent space built on a web having SingleTypeA

as set of elements. The coherence relation on single-move types is related
and similar to the compatible relation on indexes presented in Definition 2.8.
Loosely speaking, two single-move types are coherent if the corresponding
expression trees are not included one into the other.

Given the above correspondence between types and sets of moves, it is natural,
and for our purpose useful, to introduce on types some of the basic notions on
sets.

Definition 4.4

• We say that a type tA contains the single-move type uA if uA ∈ SA(tA).
• We define the cardinality of a type tA as the cardinality of the set SA(tA).
• We say that two types tA and uA are disjoint, if the sets SA(tA) and SA(uA)

are disjoint.
• We define a family of partial union operations on types, {]A}A, ]A : IntTypeA →

IntTypeA, as follows:

tA1 ] tA2 =

uA if SA(tA1 ) ∪ SA(tA2 ) = SA(uA)

undefined if there is no such a uA

If t ] u is defined, we say that t and u are compatible.
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Notice that the union operations ]A are well-defined, since it is easy to check
that, if the union of two single-move types correspond to an intersection type
uA, then uA is unique. Alternatively, the partial union operations can be more
explicitly characterized as follows:

Lemma 4.1 The operations ]A : IntTypeA → IntTypeA are the least partially
defined functions satisfying:

cOX ]O cOY = cOX∪Y

(tA1 ( tB2 ) ]A(B (uA
1 ( uB

2 ) = tA1 ]A uA
1 ( tB2 ]B uB

2

(t!A1 ∧ t!A2 ) ]!A (u!A
1 ∧ u!A

2 ) = (t!A1 ]!A u!A
1 ) ∧ (t!A2 ]!A u!A

2 )

Notice that, for any A, cA
∅ ] tA = tA.

To recover the history-free strategy corresponding to a term, it is useful to
introduce a subclass of types consisting of exactly two moves, an Opponent
move and a Proponent one. Namely, such types will represent pairs in the
graph of a partial function describing a history-free strategy.

Definition 4.5 The Step types on the game A (StepTypeA) are the types that
can be obtained as union of a Proponent and an Opponent single-move type:

sA ::= pA ] oA .

Lemma 4.2 Step types can be characterized by induction on games as follows:

sO ::= cO{∗,a}

sA(B ::= pA ( pB | oA ( oB | cA
∅ ( sB | sA ( cB

∅

s!A ::= sA | s!A ∧ cA
∅ | cA

∅ ∧ s!A | p!A ∧ o!A | o!A ∧ p!A

Definition 4.6 (Environments) • Let xA1 , xA2 , . . . be a list of variables with
domains A1, A2, . . ., ranging over simple types.
Environments are lists defined by:

Γ, ∆ ::= ε | xA : t!A, Γ1

where xA does not appear in Γ1 and, by abuse of notation, xA : t!A is used
in place of xA : t![[A]]G .
We will simply write x in place of xA, when the game is irrelevant.

• Let dom(Γ) denote the list of variables in the domain of Γ, i.e., if Γ = [xA1 :
t!A1 , . . . , xAk : t!Ak ], then dom(Γ) = [xA1 , . . . , xAk ].
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• Let Γ∅ denote a generic environment, where all types are c∅.
• Let Γ, Γ′ be contexts such that dom(Γ) = dom(Γ′). We define the disjoint

union context Γ ] Γ′ (the intersection context Γ ∧ Γ′) as the pointwise ap-
plication of the ] (∧) operation to the types in the contexts.

4.2 The Typing System

We introduce a typing system for deriving judgments of the shape x1 : t!A1 , . . . ,
xk : t!Ak ` M : t!A, whose intended meaning is to represent a set of equal
number of Opponent and Proponent moves. If the main connective of t!A is
not ∧, then, for each Opponent move in such a set, there is a corresponding
Proponent answer such that the pair of moves belongs to the graph of the
strategy interpreting the term. The most informative judgments are those
involving step types, where exactly two moves appear, an Opponent move
and the Proponent answer. When the type contains more than two moves, we
lose the exact matching between Opponent and Proponent moves. In principle,
step types would be sufficient to recover the strategy interpreting the term in
the game model, however, it is useful to consider general types in the type
assignment system, because this simplifies the presentation of the rule for
application.

Definition 4.7 (Typing System) The typing rules for deriving judgments
xA1 : t!A1 , . . . , xAk : t!Ak ` M : t!A are almost the standard ones, i.e.:

Γ∅ ` C : cO∅
(∅)

Γ∅ ` > : cO{∗,a}
(>)

Γ∅, x
A : tA, ∆∅ ` xA : tA

(var)

Γ ` M : tA1 ∆ ` M : tA2
Γ ∧∆ ` M : tA1 ∧ tA2

(intersection)

Γ, xA : u!A, ∆ ` M : tB tB not a ∧-type

Γ, ∆ ` λxA.M : u!A ( tB
(abs)

Γ ` M : uA ( tB ∆ ` N : uA

Γ ∧∆ ` MN : tB
(app)

where C ∈ {⊥,>} and a ∧-type is a type whose main constructor is ∧.

19



In what follows, we will simply drop game tags from variables and types in the
judgments, when the game is not relevant.

In the rest of this section, we study basic properties of the typing system.

The following definition will be useful:

Definition 4.8

• The type associated to a judgement xA1 : t!A1 , . . . , xAk : t!Ak ` M : t is the
type of its curryfication i.e. the type t!A1 ( (. . . ( (t!Ak ( t) . . .)

• The cardinality of a judgment is the cardinality of the associated type.
• A step judgment is a judgment whose associated type is a step type.
• A ∧-judgment is a judgment Γ ` M : tA where A is a ∧-type, i.e. the main

constructor of tA is ∧.
• A non-∧ judgment is a judgment that is not a ∧-judgment.
• Two judgments Γ ` M : t and Γ′ ` M : u are compatible (disjoint) if their

associated types are compatible (disjoint).
• We say that a judgment contains a single-move type tA if the associated

type contains tA.

The single move types contained in the conclusion of a typing rule are inherited
from the single-move types contained in the premises. However, when moving
from a premise to the conclusion, a single-move type partly changes its term
structure. For example, when applying the (app) rule to premises x : cC

∅ `
N : uA and x : tC ` M : uA ( tB, where the latter contains the single-move
type mC ( cA(B

∅ , we obtain a conclusion containing the single-move type
mC ∧ cC

∅ ( cB
∅ . In the sequel of this paper, to avoid irrelevant details, we

will be a little sloppy in the notation, and we denote with the same symbols
single-move types appearing in premises and the corresponding single-move
types in the conclusions.

Lemma 4.3 All judgments derivable in the typing system have even cardinal-
ity. All derivable judgments contain equal number of Proponent and Opponent
single-move types.

Proof. Straightforward, by induction on derivations. 2

The following lemma collects a number of technical properties of the typing
system. In particular, items (ii) and (iii) will be useful to prove Proposition 4.1
below, which expresses the fact that all derivable judgments can be “decom-
posed” in step judgments. The most technical part of Lemma 4.4 below is item
(v), which amounts to the counterpart in the typing system of the application
between strategies as described in Section 2.2, Fig. 3.
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Lemma 4.4

(i) If xA1 : t!A1
1 , . . . , xAk : t!Ak

1 ` M : t1 and xA1 : t!A1
2 , . . . , xAk : t!Ak

2 ` M : t2
are derivable non-∧ step judgments, containing the single-move types m1, m′

1

and m2, m′
2, respectively, then

• m1 = m2 iff m′
1 = m′

2.
• m1 is compatible with m2 if and only if m′

1 is compatible with m′
2.

(ii) For any set {Γi ` M : ti|i ∈ I} of pairwise compatible non-∧ step judg-
ments, the judgment

⊎
i∈I Γi ` M :

⊎
i∈I ti is derivable.

(iii) For any derivable non-∧ judgment Γ ` M : t, there exist decompositions
of t and Γ in types t1, . . . tn and environments Γ1, . . . , Γn such that t =

⊎
i ti,

Γ =
⊎

i Γi, and Γi ` M : ti are derivable step judgments, for all i = 1, . . . , n.

(iv) Items (i)–(iii) hold also for ∧-judgments.

(v) Given any pair of judgments Γ ` M : u ( t and ∆ ` N : u, and any
single-move type m contained in the judgment Γ ∧∆ ` MN : t, there exist a
single-move type m′ contained in Γ ∧∆ ` MN : t and a chain of single-move
types 〈uj〉j∈J contained in u such that

• J is an interval of integers.
• If the chain is empty, then there exists a judgement either in the form Γ `

M : c∅ ( t, or ∆ ` N : c∅, containing the single-move types m and m′.
• If the chain is non-empty, then
· either there exists a step judgment Γ1 ` M : u1 ( t1 containing m, and

the first element in J is 1 or there exists a step judgement ∆0 ` N : u0

containing m, and the first element in J is 0.
· Γ∅ ` M : (u2k ( c∅) ] (u2k+1 ( c∅), for all 2k, 2k + 1 ∈ J , k ≥ 0.
· ∆∅ ` N : u2k+1 ] u2k+2, for all 2k + 1, 2k + 2 ∈ J , k ≥ 0.
· Either there exists a step judgment Γ2k ` M : u2k ( t′2k containing m′

and the last element in J is 2k or there exists a step judgement ∆2k+1 `
N : u2k+1 containing m′ and the last element in J is 2k + 1.

Proof. First we define the complexity of a term M as the number of con-
structors appearing in it. The proof of items (i)–(v) is by induction on the
complexity of the terms M and N .
Basic cases: M and N have complexity 1.

• The term M is a constant: items (i)–(iii) and (v) are trivial, since the only
rules usable in the derivations are the rules (∅) and (>).
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For item (iv), we present a uniform proof not depending on the structure
of the two terms M, N . This proof can therefore be used also for the other
base case and for the induction step.
Item (iv): (i). Assume Γ1 ` M : t1, Γ2 ` M : t2 are derivable step judg-
ments containing single-move types m1, m

′
1 and m2, m

′
2, respectively. Then,

by the shape of the rules in the typing system, the two step judgments are
derivable from a non-∧ step judgment and a set of non-∧ empty judgments,
combined by a series of applications of the (intersection) rule. In order to
prove item (i) for general judgments, we proceed by induction on the num-
ber of applications of the (intersection) rule. In the base case, the final
judgments are both non-∧ and the thesis follows from item (i). Induction
step: if m1 = m2 (or m1 is compatible with m2), both judgments must be ∧-
judgments obtained from a step judgment and an empty judgment through
an (intersection) rule, and the premise step judgments must contain a com-
mon (or compatible) single-move type. Thus, by induction hypothesis, we
get the thesis.
Item (iv): (ii). We proceed as for item (iv): (i), by induction on the number of
(intersection) rules used in the last parts of the derivations of the judgments
{Γi ` M : ti}i∈I . The base case follows immediately from item (ii). Induc-
tion step: Since the judgments are all pairwise compatible, all derivations
must end with an (intersection) rule whose premises are an empty judg-
ment and a step judgment. Moreover, all left-hand (right-hand) premises
must be compatible. By induction hypothesis, the unions of all left-hand
(right-hand) premises are derivable. Thus, by an application of the (inter-
section) rule, also the judgment

⊎
i∈I Γi ` M :

⊎
i∈I ti is derivable.

Item (iv): (iii). The proof is similar to the ones for items (iv): (i) and (iv):
(ii).

• The term M is a variable: items (i), (ii), (iii) follows from the fact that the
only rule deriving a judgement in the form Γ ` x : t is the (var) rule.

For item (v), we present a uniform proof not depending on the structure
of the two terms M , N , that can therefore be used also for the induction
step.

By items (iii) and (iv), both judgments Γ ` M : u ( t and ∆ ` N : u
can be decomposed in a set of step judgments. The chain 〈uj〉j∈J is built as
follows: select the step judgment in the decomposition containing the single-
move type m, let us suppose it is a judgment of the form Γ1 ` M : u1 ( t1,
we need to distinguish two cases. If u1 = c∅, the judgment will contain a
second single-move type m′, that, together with the empty chain, satisfies
item (v). If u1 is not the empty type, then it is a single-move type and
it will be contained in a step judgment belonging to the decomposition of
∆ ` M : u ( t and having form ∆2 ` M : u′2 ( t′2. Here again we
distinguish two cases, if u′2 = u1, then the judgment will contain a second
single-move type m′, that, together with the chain 〈u1〉, satisfies item (v).
If u′2 = u1 ] u2, then the single-move type u2 ( c∅ will be contained in a
step judgment belonging to the decomposition of Γ ` M : u ( t and in
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the form Γ3 ` M : u′3 ( t′3. Repeating the argument used for the judgment
Γ1 ` M : u1 ( t1, here again we can either stop our construction, or make
another step in the construction of the chain. By item (i), the chain must
contain single-move types that are all different, and since any type contains
a finite number of single-move types, we eventually produce the element m′.

Induction case: M has complexity n + 1 and N has complexity less than or
equal to i + 1.

• If M is a lambda abstraction, λx.M ′, items (i), (ii) and (iii) follows im-
mediately from the induction hypothesis and from the fact that any non-∧
judgment relative to M can be derived only by an application of the (abs)
rule .

• Let M be an application, M ′N ′.
· Item (i). Let xA1 : t!A1

1 , . . . , xAk : t!Ak
1 ` M ′N ′ : t1 and xA1 : t!A1

2 , . . . , xAk :
t!Ak
2 ` M ′N ′ : t2 be two non-∧ step judgments containing single-move

types m1, m′
1 and m2, m′

2 respectively. The two judgements can be derived
only by application of the (app) rule from judgments of the form Γ ` M ′ :
u ( t and ∆ ` N ′ : u. Let us fix a single-move type in each original
judgment, say m1 and m2. By induction hypothesis, item (v), there are
two chains of moves, 〈ui1〉i1∈I1 and 〈ui2〉i2∈I2 , satisfying the conditions
listed in item (v).

If m1 = m2, then, by applying the induction hypothesis, items (i) and
(iv), we get that the two chains must coincide, and hence m′

1 = m′
2.

If m1 is not compatible with m2, then both moves should be inherited
from premises of the same kind, i.e. either both are inherited from premises
of the shape Γ ` M ′ : u ( t or from premises of the shape ∆ ` N ′ : u.
Then one can check that the chains 〈ui1〉i1∈I1 and 〈ui2〉i2∈I2 must have
the same length and contain pairs of non compatible elements, thus in
particular m′

1 is not compatible with m′
2.

· Item (ii). The derivations of all the step judgments Γi ` M ′N ′ : ti must
end with an (app) rule, with premises having form Γ′i ` M ′ : ui ( ti and
∆i ` N ′ : ui.

It is easy to check that all Γ′i, all ∆i and all ti are pairwise compatible.
However, it is not guaranteed that the types ui are pairwise compatible.
Let mi and m′

i be the single-move types contained in the step judgment
Γi ` M ′N ′ : ti. Fix mi as starting move, then, by induction hypothesis,
there exist chains 〈uj,i〉j∈Ji

satisfying the conditions listed in item (v).
Moreover, by induction hypothesis, the judgments Γ′i ` M ′ :

⊎
j∈Ji

uj,i (
ti and ∆i ` N ′ :

⊎
j∈Ji

uj,i are derivable. We need to prove that the families
of types

⊎
j∈Ji

uj,i, with i ∈ I, are compatible. Suppose by contradiction
that there exist two non compatible moves ui′,j′ , ui′′,j′′ . Immediately we
have that j′ 6= j′′, moreover, by induction hypothesis, and repeating the
argument used for item (i) above, it is possible to prove that also the ele-
ments consecutive to ui′,j′ , ui′′,j′′ in the respective chains must be pairwise
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not compatible, and moreover that elements m′
i′ and m′

i′′ are not compat-
ible. This contradicts the fact that all Γ′i, all ∆i, and all ti are pairwise
compatible.
By induction hypothesis, items (ii) and (iv),

⊎
i∈I Γ′i ` M ′ :

⊎
i∈I,j∈Ji

uj,i (⊎
i∈I ti. and

⊎
i∈I ∆i ` N ′ :

⊎
i∈I,j∈Ji

uj,i. A final application of the (app)
rule concludes the proof of this item.

· Item (iii). Let Γ ` M ′N ′ : t be a derivable non-∧ judgment. The last rule
in the derivation of the judgment must be the (app)-rule:

Γ′ ` M ′ : u ( t ∆ ` N ′ : u

Γ′ ∧∆ ` M ′N ′ : t

By induction hypothesis, item (v), it is possible to partition all the single-
move types contained in the judgment Γ ` M ′N ′ : t in a set of pairs
{(mi, m

′
i)|i ∈ I}, and to define a set of chains of single-move types {〈uj,i〉j∈Ji

|
i ∈ I} such that, for each i, the chain 〈uj,i〉j∈Ji

satisfies the conditions
listed in item (v). Thus, by induction hypothesis, there is a family of step
judgments Γ′i ∧ ∆i ` M ′N ′ : ti, containing the single-move types mi, m

′
i,

that are derivable, using the (app) rule, from judgments of the shape
Γ′ ` M ′ :

⊎
j∈Ji

uj,i ( ti and ∆i ` N ′ :
⊎

j∈Ji
uj,i. The families {Γ′i∧∆i}i∈I

and {ti}i∈I define a decomposition of the environment Γ and of the type
t.

2

The following proposition summarizes the main results in Lemma 4.4 and
clarifies the intended meaning of judgments.

Proposition 4.1 A judgment Γ ` M : t is derivable if and only if there
exist unique decompositions of t and Γ in types t1, . . . tn and environments
Γ1, . . . , Γn such that t =

⊎
i ti, Γ =

⊎
i Γi, and Γi ` M : ti are derivable step

judgments, for all i = 1, . . . , n.

Remark. By Proposition 4.1 above, it is sufficient to focus on step judgments.
The question naturally arises why we do not have considered a typing system
for deriving only step judgments. The answer is that, in such case, the rule
(app) would have an unbounded number of step judgments in the premises,
forming a chaining as described in Lemma 4.4(v) above.

5 From Types to Strategies

In this section, we study the relationship between the type assignment system
introduced in Section 4 and the game model of Section 3.1. To this aim, it
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is convenient to consider the alternative exponential defined in Section 2.1,
in order to have a more direct correspondence with the ∧-type constructor in
the typing system. Moreover, it is useful to consider the global type associated
to a given judgment in its uncurried form. Thus, we extend the grammar of
(single-move, step) types with the type constructor ⊗ for denoting types in
the tensor product game:

Types on A⊗B : tA⊗B ::= tA ⊗ tB

Single-move types on A⊗B : pA⊗B ::= pA ⊗ c∅ | c∅ ⊗ pB

oA⊗B ::= oA ⊗ c∅ | c∅ ⊗ oB

Step types on A⊗B : sA⊗B ::= pA ⊗ oB | oA ⊗ pB | sA ⊗ c∅ | c∅ ⊗ sB

In order to recover, from the type assignment system, the strategy corre-
sponding to a given term in context Γ ` M : A, it is sufficient to con-
sider judgments of the shape x1 : t!A1 , . . . , xk : t!Ak ` M : tA, where the
global type t!A1 ⊗ . . . ⊗ t!Ak ( tA is a step type. Namely, a step type on
!A1 ⊗ . . .⊗!Ak ( A can be read as a pair in the graph of a history-free
strategy on !A1 ⊗ . . .⊗!Ak ( A.

Formally, we define a mapping from single move types to moves in the cor-
responding game and a mapping from step types to pairs in the graph of a
strategy on the corresponding game:

Definition 5.1 Let MA : SingleMoveTypeA → MA be a map from single
move types on A to moves on the game A defined by induction on A:

MO(c{m}) = m

MA⊗B(mA ⊗ c∅) = 〈l,MA(mA)〉 MA⊗B(c∅ ⊗mB) = 〈r,MB(mB)〉
MA(B(c∅ ( mB) = 〈r,MB(mB)〉 MA(B(mA ( c∅) = 〈l,MA(mA)〉

M!A(mA) = 〈ε,MA(mA)〉
M!A(m!A ∧ c∅) = 〈0π1(M!A(m!A)), π2(M!A(m!A))〉
M!A(c∅ ∧m!A) = 〈1π1(M!A(m!A)), π2(M!A(m!A))〉

Let T : StepTypeA → MO
A ×MP

A be the map from step types to pairs of moves
defined by:

T A(pA ] oA) = (MA(oA),MA(pA)) .

For example:
– M((cO∅ ∧ (cO{∗} ∧ cO∅ )) ( cO∅ ) = 〈l, 〈10, ∗〉〉;
– M(cO∅ ( (((cO∅ ∧ cO{a}) ∧ cO∅ ) ( cO∅ )) = 〈r, 〈l, 〈01, a〉〉〉.

Definition 5.2 (Type Semantics) Let [[ ]]T be the interpretation function
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defined by
[[x1 : A1, . . . , xk : Ak ` M : A]]T = {T !A1⊗...⊗!Ak(A(t!A1 ⊗ . . .⊗ t!Ak ( tA) |

x1 : t!A1 , . . . , xk : t!Ak ` M : tA is a derivable step judgment }

Notice that, by Lemma 4.4(i), the type semantics is an injective function from
Opponent to Proponent moves on the game !A1 ⊗ . . .⊗!Ak ( A.

The following theorem establishes the connection between the type semantics
and the game semantics. The type semantics yields a partial function repre-
senting a member in the equivalence class of the strategy interpreting the term
in the game model:

Theorem 5.1 [[Γ ` M : A]]T ∈ [[Γ ` M : A]]G .

Proof. We prove by induction on M that the function [[Γ ` M : A]]T represents
the strategy [[Γ ` M : A]]G.
• If M is the constant ⊥ or >, then [[Γ ` M : A]]T induces the strategy ⊥ or
>, respectively.
• If M is a variable, then [[Γ ` M : A]]T represents the projection strategy.
• If M is an abstraction λx.M ′, then all derivations of the shape Γ ` λx.M ′ :
tA(B end with an (abs)-rule. Thus, by induction hypothesis, and by definition
of Λ in the game interpretation, we get the thesis.

• If M is an application M ′N , then Γ ` M : B → A Γ ` N : B
Γ ` M ′N : A

, and the

step types in [[Γ ` M : A]]T are obtained from derivations whose last rule is the

(app)-rule, i.e.: Γ′ ` M ′ : u ( t ∆ ` N : u
Γ′ ∧∆ ` M ′N : t

. Now, let fσ :!C ( (B ( A),

fσ = [[Γ ` M ′ : B → A]]T , and fτ :!C ( B, fτ = [[Γ ` N : B]]T , where, by
abuse of notation, we use the same symbols for types and their game interpre-
tations, and !C is, up-to isomorphism, the game interpreting the types of the
variables in the environment Γ. In order to prove the thesis, we show that:
a) each step judgment for M ′N induces a pair in the graph of the partial func-
tion f obtained by composing fσ and fτ , according to Figure 3 of Section 2.2;
b) for each pair in the graph of f , there exists a derivable step judgment which
induces such pair of moves.
Proof of a). By Proposition 4.1, a step judgment Γ′∧∆ ` M ′N : t is derivable if
and only if there are sets of step judgments for M ′, {Γ′i ` M ′ : u!B

i ( tAi }i∈I ,
and for N , {∆j ` N : v!B

j }j∈J , satisfying
⊎

i∈I ui =
⊎

j∈J vj,
⊎

i∈I Γ′i = Γ′,⊎
j∈J ∆j = ∆,

⊎
i∈I ti = t. By induction hypothesis, the step judgments for

N whose global type is on the game !C ( B correspond to the graph of fτ .
Moreover, one can prove that any step judgment ∆j ` N : v!B

j with global
type on the game !C (!B is equal to c∅[∆

′
j] ` N : c∅[v

B
j ], where ∆′

j] ` N : vB
j

is a step judgment on the game !C ( B, and c∅[ ] is an empty ∧-type context,
i.e. a context built over basic contexts [ ], c∅ only using the ∧-type construc-
tor. Using the definition of pairing function cI as given in Section 2.1, one
can check that the step judgments ∆j ` N : v!B

j determine the function fτ† ,
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which induces the strategy τ †. Now the fact that the pair of moves induced
by Γ′ ∧ ∆ ` M ′N : t is in the graph of of f follows by Lemma 4.4(v) (case
|I| = 1), and by the definition of f (see Figure 3 of Section 2.2), using the
induction hypothesis.
Proof of b). Let f(m) = m′. There are various cases, according to the domains
of the moves m,m′. We only deal with one case, the others being dealt with
similarly. Assume m ∈ MP

!C , m′ ∈ MP
B , and m = 〈0i0, m0〉 Then, by definition

of con !C (see Section 2), 〈i0, m0〉 is sent as input to fσ, and we have, for k ≥ 0:

fσ(〈i0, m0〉) = 〈i1, m1〉 ∈ MO
!A fτ†(〈i1, m1〉) = 〈i1, m2〉 ∈ MP

!A

fσ(〈i1, m2〉) = 〈i2, m3〉 ∈ MO
!A fτ†(〈i2, m3〉) = 〈i2, m4〉 ∈ MP

!A

. . . . . .

fσ(〈i k−2
2

, mk−2〉) = 〈i k
2
, mk−1〉 ∈ MO

!A fτ†(〈i k
2
, mk−1〉) = 〈i k

2
, mk〉 ∈ MP

!A

fσ(〈i k
2
, mk〉) = m ∈ MP

B

By induction hypothesis, there exist step judgments {Γq ` M ′ : uq ( tq}
k
2
q=0

and {∆r ` N : vr}
k
2
r=1 such that Γq ` M ′ : uq ( tq induces the pair of moves

(〈iq, m2q〉, 〈iq+1, m2q+1〉), and Γr ` N : vr induces the pair (〈ir, m2r−1〉, 〈ir, m2r〉).
Moreover,

⊎
q uq =

⊎
r vr. Thus, using Proposition 4.1,

⊎
q Γq ∧

⊎
r ∆r ` M ′N :⊎

q tq is derivable, and it induces the pair (m, m′). 2

6 Further developments

Essentially, in this work we have shown as a type assignment system can be
used to determine the interpretation of λ-terms in a game model. However,
there are several other aspects in game semantics that arguably can be ex-
pressed in terms of intersection types. Game semantics is a quite sophisticated
theory and so far we have formulated in the intesection types approach, just
one part of it. It is therefore natural to investigate what will be a suitable
translation of the other game semantics concepts.

The main aspects that need to be investigated are briefly discussed below.

The Equivalence Relation on Strategies. In AJM-games, the semanti-
cal objects are equivalence classes of strategies. The equivalence its defined in
terms of an equivalence relation between positions and it uses the definition
of strategies as sets of positions. In our approach, we look at strategies as
partial functions on moves. As far as we know, there is no direct and simple
definition of equivalence relation on strategies given in terms of partial func-
tions. In other words, to determine if two partial funcitions on moves define
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equivalent strategies, one is essentialy forced to go through representation of
strategies as sets of positions and to use the equivalence defined on them. It
will be interesting to find a simple direct definition stating when two sets of
types, obtained by the interpretation of two different terms, induce equiva-
lent strategies. We conjecture that this can be obtained by introducing the
associativity and commutativity rules for the intersection operator ∧.

It is worth noticing that, without the equivalence relation, the subject reduc-
tion property is lost. For example, in our semantics, the interpretation of the
term λyo→o.(λxo→o.xy⊥)y is only equivalent but not equal to the interpreta-
tion of the term λyo→o.yy⊥. Namely, the semantic interpretation of the first
term contains the type (c∅ ∧ c{∗}) ( c{∗}, while the second does not contain
such type, but instead the type (c{∗} ∧ c∅) ( c{∗}.

Characterization of Semantical Objects. In game semantics, terms are
interpreted by (equivalence classes of) history free strategies, that is a subset
of position satisfying some extra properties. Similarly to what happens for the
equivalence relation, the notion of strategy refers to positions and there is no
direct and simple definition in terms of function on moves.

In our approach, we are interested in determining which property characterizes
the sets of types that are interpretations of λ-terms, that is, to define a suitable
class of sets of types to be considered as semantical objects.

So far, Proposition 4.1 gives a first characterization of the sets of types obtain-
able as interpretations of terms. This characterization justifies Definition 5.2,
that limits the interpretation of terms to step types. A finer analysis and a
more precise characterization will be the object of future investigation.

In game semantics, where a full definability result holds, we have a precise
characterization of the strategies obtainable as interpretations of λ-terms (pro-
grams). In general, in order to achieve this exact characterization, several no-
tions are introduced on games: the answer-question labeling, the bracketing
condition, the partial equivalence relation on strategies. A goal for a possible
research is to find the corresponding, analogous, notions on types.

The Untyped λ-calculus and Solutions of Recursive Domain Equa-
tions. Intersection types are traditionally used in the semantics of the un-
typed λ-calculus. The set of intersection types interpreting untyped λ-terms
are obtained through a limit process, that can be repeated also for in the
present setting. This limit process gives a semantics for λ terms equivalent to
the game semantics for the untyped λ-calculus presented in [12,11]. In more
detail the limit construction is the following. One starts with a basic game A0,
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and the corresponding set of types T0, then one builds a hierarchy of set of
types by the construction

Tk+1 ::= Tk → Tk = !Tk ( Tk

moreover one need to define a suitable injection function ι from T0 to T1. The
set of types interpreting the untyped λ-terms is defined as the union of the
hierarchy, i.e. T =

⋃
k∈ω Ti, quotient by the congruence relation generated by

the set of equations {t0 = ι(t0) | t0 ∈ T0}. In this construction one require that
the injective function ι maps single move types to single move types, preserves
the Proponent/Opponent labeling, and preserves the union operation. It is an
open question to check what happens if one considers more liberal conditions
on the injective function. A simple instance of this construction is obtained
by taking A0 = O and ι as the function mapping c{∗} in c∅ ( c{∗} and c{a} in
c∅ ( c{a}.

Type Assignment Systems for GoI Combinatory Algebras. Type
assignment systems describing the interpretation of λ-terms on GoI Linear
Combinatory Algebras (LCAs) in “wave-style” [14] are essentially standard
type assignment systems. On the contrary, type assignment systems for GoI
LCAs in “particle-style” [3,5] can be easily derived from game type assign-
ment systems, simply by forgetting the distinction between Proponent and
Opponent moves. More precisely, for a given LCA ([M ⇀ M ], •), types will
represent sets of moves in M , and a step type naturally describes two pairs
of moves, (a, b) and (b, a). Thus, the type semantics of a term will define a
partial involution on [M ⇀ M ]. For the typed λ-calculus, such partial invo-
lution should represent the interpretation of the term in a model of Partial
Equivalence Relations (PERs) over the LCA, [5].

In this paper, we have worked in the setting of games, rather than working
directly in the GoI setting, because games are more widely used and, being
more “structured”, the pure GoI case can be seen as a simplification.

Finally, we point out that the interpretation of λ-terms, when seen as par-
tial functions on moves, is essentially the same in the two models, the main
difference being the equivalence relation defined on partial functions.

Towards a Stone Duality for Game Types. In the simple set-theoretic
interpretation of intersection types [6], types can be viewed as sets of points
over an applicative structure. Building on this interpretation, a suitable Stone
duality between types and terms can be set up, [1]. Furthermore, type con-
structors can be interpreted as operators over this space. Can this programme
be carried out also for the notion of type in the present paper?
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In the game setting, the set of strategies over the Sierpinski hierarchy of games,
with application between strategies defined as in Section 2.2, Fig. 3, form a
(partial) applicative structure. Over this structure, we could give an interpre-
tation of the set EvenType of even types, i.e. the types with equal number of
Opponent and Proponent moves, which are those involved in the judgments
derivable in the typing system. Namely, for a given type tA =

⊎
i∈I pA

i ]
⊎

j∈j oA
j

such that |⊎i∈I pA
i | = |⊎j∈j oA

j |, one can consider all the strategies on the game
A, which, viewed as partial functions, extend tA, i.e.:

[[
⊎

i∈I pA
i ]

⊎
i∈I oA

i ]]
S

= {f : MO
A ⇀ MP

A | f represents a strategy &
∃f ′ ⊆ f. dom(f ′) = {MA(oA

i ) | i ∈ I} & codom(f ′) = {MA(pA
i ) | i ∈

I} }.

Using Theorem 5.1, one can prove the following soundness and completeness
result for the interpretation of types w.r.t. the game model in question:

[[x1 : A1, . . . , xk : Ak ` M : A]]T =

min
⋂{[[t!A1 ⊗ . . .⊗ t!Ak ( tA]]

S | x1 : t!A1 , . . . , xk : t!Ak ` M : tA is derivable }.

The interpretation of ( is not logical, i.e. it is not the case that f ∈ [[uA ( tB]]
S

if and only if ∀g ∈ [[uA]]
S
, f • g ∈ [[tB]]

S
(*). Namely, there are constant strate-

gies satisfying condition (*), which are not in [[uA ( tB]]
S
. There is a mismatch

between the intensional interpretation of types as sets of graphs, and the ex-
tensional applicative behaviour of strategies. According to the interpretation
[[ ]]S , all the moves in the left-hand part of a ( type must be used. Neverthe-
less, the interpretation is prelogical, namely the “only if” part holds. Building
out of this type interpretation a satisfactory duality à la Stone deserves further
study.
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