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Abstract
9

We use the concept of a distributive law of a monad over a copointed endofunctor to define and
develop a reformulation and mild generalisation of Turi and Plotkin’s notion of an abstract operational11
rule. We make our abstract definition and give a precise analysis of the relationship between it and
Turi and Plotkin’s definition. Following Turi and Plotkin, our definition, suitably restricted, agrees13
with the notion of a set of GSOS-rules, allowing one to construct both an operational model and a
canonical, internally fully abstract denotational model. Going beyond Turi and Plotkin, we construct15
what might be seen as large-step operational semantics from small-step operational semantics and
we show how our definition allows one to combine distributive laws, in particular accounting for the17
combination of operational semantics with congruences.
© 2004 Published by Elsevier B.V.19
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1. Introduction21

In order to describe a programming language completely, one requires both operational
semantics and denotational semantics [25]. Operational semantics describes the execution23
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of programs, while denotational semantics allows one to reason about the mathematical1
entities that the programs are supposed to address. So one wants a syntax, an operational
semantics, and a denotational semantics, together with a proof that the denotational seman-3
tics is adequate, i.e., that it is consistent with the operational semantics [23].

Operational semantics is typically described in terms of atomic, elementary transitions,5
describing local behaviour. Mathematically, the transitions are the elements of a relation,
the intended operational model of the language. The transition relation is usually described7
by induction on the structure of the program, starting from operational rules for the basic
constructs of the language [18].9

Denotational semantics is a mapping of programs into a suitable semantic domain en-
dowed with an operation for each basic construct of the language. For languages without11
variable binding but possibly multi-sorted, a denotational model is given by a �-algebra,
where � is a signature consisting of the language constructs. The programs of the language13
form the initial �-algebra, and the induced unique homomorphism from the set of programs
to the denotational model is called the initial algebra semantics of the language [9].15

The carrier of a denotational model is often given by the final solution of a domain
equation X ∼= B(X) for a behaviour functor B. The transition relation, and therefore the17
intended operational model of the language, forms a B-coalgebra. Finality induces a unique
coalgebra map from the intended operational model to the denotational model, and that map19
is called the final coalgebra semantics of the language [22]. Under some assumptions on
B, it is fully abstract with respect to behavioural equivalence. When the initial algebra and21
final coalgebra semantics agree, one has an adequate denotational semantics [22].

Adequacy is often difficult to prove, and so one seeks general criteria from which one23
can deduce it. For process algebras, as used for specifying non-deterministic and concur-
rent programs [2,17], one can give syntactic restrictions on the format of operational rules25
that force bisimulation [17] to be a congruence. Among such rules, GSOS rules [4] are
among the most popular and general. So Turi and Plotkin [25] presented a category the-27
oretic formulation of GSOS rules and proved a general adequacy result, allowing them to
deduce a general congruence result. The central observation from which the rest of their29
analysis flowed was that image-finite sets of GSOS rules may be described, up to the ob-
vious syntactic equivalence of rules, exactly as natural transformations between a pair of31
composite functors constructed from the signature � and the behaviour B. Their definition
generalised from the base category Set to an axiomatically defined category, and also from33
specific classes of signatures and behaviour functors, allowing, for instance, analysis of
probabilistic nondeterminism [3] and timed processes [14]. We recall Turi and Plotkin’s35
characterisation of GSOS rules and their general definition of an abstract operational rule
in Section 2.37

Pursuing the direction proposed by Turi and Plotkin, we show, in Section 3, that under mild
conditions on an axiomatically defined base category, their abstract operational rules amount39
exactly to distributive laws of the free monad T on the signature � over the cofree copointed
endofunctor H on the behaviour endofunctor B. We can thus replace their definition of an41
abstract operational rule by the notion of a distributive law of a monad over a copointed
endofunctor. Inherently, that replacement mildly generalises their setting, in that we need43
not restrict to freeness of T and cofreeness of H. The additional generality allows us to
incorporate more sophisticated formulations of structural operational semantics such as45
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those involving a combination of transitions with congruences [5]. But, more importantly,1
while being similarly computationally natural, our reformulation is mathematically more
elegant. In particular, it allows us more elegant proofs of some of their results and it yields3
a deeper understanding of the computational significance of constructs that naturally arise
in developing their idea: the heart of their idea involves generalisation from the ordinary5
notion of a transition system to that of a B-coalgebra for an arbitrary endofunctor B on
an a arbitrary category C, subject to axiomatically defined conditions; then to study the7
constructs associated with operational and denotational semantics at that much greater
level of generality.9

For an example of what we gain here, under conditions on the base category C and
under mild conditions on the behaviour functor B, the latter generates a cofree comonad D.11
Every abstract operational rule extends uniquely to a distributive law of the monad T over the
comonad D. Turi and Plotkin used the existence of that extension to prove a general adequacy13
result. But a particular construction of the cofree comonad D has computational significance
in its own right: implicit in it is the process of passing from small-step operational semantics15
to large-step operational semantics. A distributive law T H ⇒ HT , where H is a copointed
endofunctor, is, by the above, a generalisation of the notion of a transition function. Now17
consider the composite T HH ⇒ HT H ⇒ HHT . One must introduce an equaliser into
HH in order to force the target of one transition agree with the source of the following one,19
but subject to that, the composite exactly instantiates to the two-step transition function
induced by the transition function in all the leading examples. In the limit, extending from21
two to an arbitrary number, one has constructed the cofree comonad D on the copointed
endofunctor H, and one obtains the induced distributive law of the monad T over the comonad23
D. Sometimes, that limit does not exist although the induced distributive law does exist,
cf [1,26], but, subject to mild conditions on C, the approximants always do exist and act25
as approximants to the distributive law. So the induced distributive law may be seen as the
large-step operational semantics induced by the abstract operational rule. The details of this27
appear in Section 4.

For another example, in Section 5, we consider two mathematical constructs that combine29
distributive laws. One is given by taking distributive laws T H ⇒ HT and T ′H ⇒ HT ′
and inducing a distributive law of the form (T +T ′)H ⇒ H(T +T ′): computationally, this31
shows how, at the level of generality essentially proposed by Turi and Plotkin, one can add
operations. The other, more profoundly, is given by taking a coequaliser of T and inducing33
a distributive law of the coequalised monad T [E] over H: computationally, that amounts to
letting T be subject to equations E, and shows how one may combine operational semantics35
with a congruence at the level of generality espoused here, agreeing with [5].

An obvious question arising from the work of this paper is how to generalise it to more37
sophisticated notions of signature, such as those relating to computational effects (see for
instance [10]).Also, one might explore the distinction between terms and states, as behaviour39
is ultimately about state rather than terms. A start in this direction was considered in [7].
And of course, one would like to apply this analysis to further computational examples (see41
for instance [3]) and to extend it to incorporate binders as advocated in [6,20,24]. Further,
just as one has monads that are not freely generated by signatures, one can use the setting43
of this paper to consider comonads that are not cofreely generated by endofunctors, for
instance in analysing timing [14,15].45
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This paper incorporates the workshop paper [19] with part of the workshop paper [16].1
By the very nature of the paper, we owe particular thanks to Gordon Plotkin and Daniele
Turi for the computational foundation on which it is written.3

2. The motivating example: GSOS

This section recalls and mildly reorganises Turi and Plotkin’s proof that GSOS rules5
amount exactly to a class of natural transformations, and gives their definition of an abstract
operational rule. We need to recall their work in some detail here in order to make this paper7
complete and comprehensible.

Consider the language with signature � given by a constant symbol nil, a set of unary9
prefixing operators indexed by a finite set A of actions ranged over by a, and a binary parallel
composition operator ‖. This signature generates, for every set X of variables x, the set TX11
of terms t given by the abstract grammar

t ::= x | nil | a.t | t ‖ t.13

The set TX is the carrier of the free�-algebra on X. Now let the operational rules R inductively
defining the labelled transitions performable by the programs of the language be

a.x
a→ x

x
a→ x′

x ‖ y
a→ x′ ‖ y

y
a→ y′

x ‖ y
a→ x ‖ y′ .

The behaviour of the language is given by BX = (Pf iX)A, where Pf iX denotes the
set of finite subsets of X. Let x and y range over X, � range over (Pf iX)A, and write15
a �→ {x1, · · · , xn} for the function from A to Pf iX sending a to {x1, · · · , xn} and sending
everything else to the empty set. Then, for each operator � of �, the corresponding rules17
yield the function

M(�) : (X × (Pf iX)A)arity(�) −→ (Pf iT X)A19

defined by

M(nil) = a �→ ∅,21

M(a.)(x,�) = a�{x},
(x,�)M(‖)(y,�′) = a �→ {x′ ‖ y | x′ ∈ �(a)} ∪ {x ‖ y | y ∈ �′(a)}.23

These can be combined into a single function of the form

M(R)X : 1 �
(⊔

A

(X × BX)

)
� (X × BX)2 −→ BT X

25

and this function is natural in X because, for every renaming of variables, first renaming
then applying the rules is the same as first applying the rules then renaming. This example27
motivates a general definition of a GSOS rule as follows.



UNCORRECTED P
ROOF

TCS5266

ARTICLE IN PRESS
M. Lenisa et al. / Theoretical Computer Science ( ) – 5

Definition 1. Let Ai and Bi range over subsets of A. A GSOS-rule is a rule of the form1

{xi
a→ ya

ij }1� i� n,a∈Ai

1� j �ma
i

{xi

b�→}1� i� n
b∈Bi

�(x1, · · · , xn)
c→ t

such that the xi and ya
ij are all distinct, and those are the only variables that appear in the3

term t.

Two sets of GSOS-rules are called equivalent if they prove the same rules in the precise5
sense of Definition 2.5 of [8].

Now suppose we are given a set R of GSOS-rules that is image finite in the sense that7
there are finitely many rules for each operator � in � and action c in A. For every set X, one
can associate with R a function9

M(R)X : ∐
�∈�

(X × (Pf iX)A)arity(�) −→ (Pf iT X)A

as follows: for all t in TX, c in A, xi in X, and �i in (Pf iX)A, put11

t ∈ M(R)X(�((x1,�1), · · · , (xn,�n)))(c)

if and only if there exists a (possibly renamed) rule in R such that {ya
i1, · · · , ya

ima
i
} is a subset13

of �i (a) for a in Ai , and �i (b) is empty for b in Bi . Turi and Plotkin’s central motivating
theorem [25] is as follows.15

Theorem 2. The construction M(−) is a bijection from equivalence classes of image finite
sets of GSOS-rules for a signature � over a fixed denumerably infinite set of variables V to17
natural transformations of the form

∐
�∈�

(X × (Pf iX)A)arity(�) −→ (Pf iT X)A.
19

Observe the generality of natural transformations of the form of M(R). Every signature
� generates an endofunctor on Set, also denoted by �, defined as follows:21

�X = ∐
�∈�

Xarity(�).

The functor T is given by the free monad on the endofunctor �, i.e., it is determined23
by the left adjoint to the forgetful functor from �-Alg to Set. And one can generalise from
the endofunctor BX = (Pf iX)A to an arbitrary endofunctor. Those observations, together25
with a general theorem about combined operational and denotational semantics, led to Turi
and Plotkin’s abstract category theoretic formulation of the notion of a set of GSOS-rules,27
vastly generalising the usual syntactic description, as follows.

Definition 3. Given a category with finite products C and endofunctors � and B on C such29
that a free monad T on � exists, an abstract operational rule is a natural transformation of31
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the form1

� : �(Id × B) ⇒ BT .

We shall explore this definition in the next section, but observe the generality here. Even3
in the case of C = Set , the definition allows � and B to be arbitrary subject to the existence
of T. So, implicit in the definition is a generalisation of the notion of transition system to that5
of B-coalgebra for an arbitrary endofunctor B: to give an image-finite transition system is to
give a B-coalgebra for B = (Pf i−)A. But arbitrary endofunctors can look very different to7
(Pf i−)A, and so, a priori, the various intuitive ideas one has about transition systems might
not lift at all well to this generality. For instance, as we shall explore later, one might ask,9
given an arbitrary endofunctor B and a B-coalgebra, which we consider as a generalised
notion of a transition system, what could one mean by a two-step transition? Using the usual11
notions of transition system, it is obvious; but that does not, a priori, make it obvious here.
The notion of signature has been more developed in this generality (see for instance [13]),13
but one might still ask how to understand a transition function in this generality rather than
just in specific examples. We explore some of the possibilities in the following sections.15

3. Abstract operational rules as distributive laws

In this section, we see that Turi and Plotkin’s definition of an abstract operational rule is17
equivalent to giving a distributive law of a monad over a copointed endofunctor. The easiest
proof, albeit not the most direct one, involves use of the categories of coalgebras for an19
endofunctor B and coalgebras for a copointed endofunctor (H, �). So we shall develop and
use those notions here when convenient.21

Definition 4. A copointed endofunctor on a category C is an endofunctor H : C −→ C

together with a natural transformation � : H ⇒ Id. An (H, �)-coalgebra is an object X of
C together with a map x : X −→ HX such that

X
x � HX

�
�
�
�

id
�

X

�X

�

commutes.

The evident definition of a map of (H, �)-coalgebras yields the category (H, �)-Coalg of23
(H, �)-coalgebras.

Definition 5. Given a copointed endofunctor (H, �) on C, the right adjoint to the forgetful25
functor

U : (H, �) − Coalg −→ C27

if it exists, is the cofree comonad on (H, �).
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This definition is more subtle than it may appear. One could readily define the category1
Cmd(C) of comonads on C and the category P tdEnd(C) of endofunctors on C, the maps
being natural transformations that respect the structure. There is a forgetful functor from3
Cmd(C) to P tdEnd(C). In general, that functor does not have a right adjoint. But if
one has a particular pointed endofunctor (H, �), the cofree comonad on (H, �) satisfies the5
universal property required of a right adjoint for the particular object (H, �) of P tdEnd(C).
The converse does not hold in general, i.e., this universal property is not sufficient to prove7
one has a cofree comonad in the sense in which we have defined it above [12], i.e., it might
not satisfy the stronger property which we have used to define the notion of cofree comonad.9

One can similarly define a category End(C), and there is a forgetful functor from
P tdEnd(C) to End(C). If C has finite coproducts, this functor has a right adjoint sending11
an endofunctor B to (B × Id,�2). Moreover, the categories B-Coalg and (B × Id,�2)-
Coalg are canonically isomorphic: note that B-Coalg is the category of coalgebras for the13
endofunctor B while (B × Id,�2)-Coalg is the category of coalgebras for the copointed
endofunctor (B × Id,�2). So, in contrast to the situation for a cofree comonad, we may15
use right adjointness to define the notion of cofreeness of a copointed endofunctor, and in
the presence of finite products, we can construct it as above.17

The notion of the cofree comonad on an endofunctor is defined in the same spirit as that
of the cofree comonad on a copointed endofunctor. It follows that the cofree comonad on the19
endofunctor B agrees with the cofree comonad on the copointed endofunctor (B × Id,�2),
either existing if the other does: a small amount of care is required in regard to existence,21
as outlined above and as explained in [12], but mistakes in this setting are most unlikely.

We now move towards showing that the definition of an abstract operational rule is23
equivalent to giving a distributive law of the monad T over the cofree copointed endofunctor
(B × Id,�2) on B.25

Definition 6. A distributive law of a monad (T ,�, �) over a copointed endofunctor (H, �)
is a natural transformation 	 : T H ⇒ HT that makes the following diagrams commute:

T T H
T 	� T HT

	T � HT T

�
�
�
�

�H
� ��

�
�
�

H�

T H
	

� HT

H T H
	 � HT

��
�
�
�

�H

��
�
�
�

�T

T H
	

� HT

H�

�
T

T �

�
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It is often difficult to calculate directly with monads, but the following theorem will allow1
us to deduce existence of useful constructions on abstract operational rules, using monads,
without need for explicit calculation.3

Theorem 7. Given a monad T and a copointed endofunctor (H, �), to give a distributive
law of T over (H, �) is equivalent to giving a lifting (H̄ , �̄) of (H, �) to T-Alg.5

Proof. The constructions are routine, as is the proof of equivalence. For example, given
a distributive law 	 : T H ⇒ HT , the lifting of (H, �) is given on objects by sending a
T-algebra (X, h) to HX with action

T HX
	X� HT X

Hh� HX.

One routinely checks that this action satisfies the axioms for a T-algebra. The inverse is
obtained by applying a lifting to the free T-algebra on X, i.e., to (T X,�X).7

Let (H, �) be a copointed endofunctor on a category C. A natural transformation � :
�H ⇒ HT respects the structure of the copointed endofunctor (H, �) if the following
diagram commutes:

�H
� � HT

�

�ε

�



� T

εT

�

where 
 : � ⇒ T is the canonical natural transformation exhibiting T as the free monad on
the endofunctor �. �9

Proposition 8. To give an abstract operational rule � : �(B × Id) ⇒ BT is equivalent
to giving a natural transformation � : �(B × Id) ⇒ (B × Id)T that respects the structure11
of the copointed endofunctor (B × Id,�2).

Proof. For each natural transformation � : �(B × Id) ⇒ (B × Id)T that respects the13
structure of (B × Id,�2), the second component must be

�(B × Id)
��2 � �


 � T . (1)15

So, to give a natural transformation � : �(B × Id) ⇒ (B × Id)T that respects the structure
of (B × Id,�2) is equivalent to giving its first component �(B × Id) ⇒ BT , i.e., an17
abstract operational rule. �

Proposition 9. For any copointed endofunctor (H, �), to give a natural transformation19
� : �H ⇒ HT respecting the structure of (H, �) is equivalent to giving a distributive law
of the free monad T on � over (H, �).21
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Proof. Given �, we first show that the endofunctor H lifts to an endofunctor H̄ on the1
category �-Alg, and the natural transformation � : H ⇒ Id lifts to �̄ : H̄ ⇒ Id.

Define the action of H̄ : �-Alg → �-Alg as follows: a �-algebra k : �X → X is sent3
to Hk� ◦ �X, where k� : T X → X is the corresponding Eilenberg–Moore algebra for the
monad (T ,�, �) under the isomorphism �-Alg ∼= T -Alg. An arrow f of �-algebras from5
k : �X → X to l : �Y → Y , i.e., an arrow f : X → Y in C satisfying f ◦ k = l ◦ �f , is
sent to Hf : HX → HY . The functor H̄ : �-Alg → �-Alg is a lifting of H.7

Next, for each �-algebra k : �X → X, observe that the X component εX : HX → X

of ε is a morphism of �-algebras from H̄ k to k, i.e., εX ◦ H̄ k = k ◦ �εX: since the natural
transformation � respects the structure of (H, �), both squares in the following diagram
commute:

�HX
�X� HT X

Hk�
� HX

�X

�εX

�


X

� T X

εT X

�

k�
� X

εX

�

Since the bottom arrow of the diagram is k� ◦ 
X = k and the top arrow is H̄ k, the arrow
εX : HX → X is a morphism of �-algebras from H̄ k to k. So we may define ε̄ : H̄ ⇒ Id9
by defining its k : �X → X component to be εX. Its naturality follows from naturality of
ε. It is evidently a lifting of ε to �-Alg.11

Because �-Alg is isomorphic to T-Alg, both the functor H̄ and the natural transformation
�̄ : H̄ ⇒ Id are liftings of H and � to T-Alg. By Theorem 7, to give such a lifting is equivalent13
to giving a distributive law of the monad (T ,�, �) over the copointed endofunctor (H, �).

For the converse construction, compose such a distributive law with the canonical natural15
transformation from � to T that exhibits T as the free monad on �. The two constructions
are routinely verified to be inverse. �17

The construction of Proposition 9 gives us the unique canonical extension of an abstract
operational rule to all terms. From Propositions 8 and 9, we conclude the following.19

Theorem 10. To give an abstract operational rule � : �(B × Id) ⇒ BT is equivalent to
giving a distributive law 	 : T (B × Id) ⇒ (B × Id)T of the monad (T ,�, �) over the21
copointed endofunctor (B × Id,�2).

This result is not only elegant in its own right, but it also suggests possible greater23
generality in a direction that is computationally significant: one could consider a distributive
law of an arbitrary monad T over an arbitrary copointed endofunctor H, without insisting25
that T be free on an endofunctor or that H be cofree on one. The former possibility is
implicit in the work of [5], where a combination of operational semantics with congruences27
is considered. The work of [13] gives a syntactic way to construct arbitrary finitary monads
T from a signature together with equations between derived terms, and one can readily29
extend that to construct distributive laws. We start to develop the significance of that idea
in Section 5.31
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The theorem is also computationally natural: one can pass similarly easily between GSOS1
rules and distributive laws as between GSOS rules and abstract operational rules. Abstract
operational rules describe the behaviour of terms of the form f (x1, · · · , xn) for symbols3
f of �, while distributive laws describe behaviour of arbitrary terms t: the description for
arbitrary t trivially restricts to that for each f (x1, · · · , xn), while the other direction is given5
by induction on the complexity of t.

4. The cofree comonad7

Given an abstract operational rule, equivalently a distributive law of a monad T over the
copointed endofunctor B ×Id by Theorem 10, one can readily derive a distributive law of T9
over the cofree comonad D on B, whenever the latter exists. There have been many theorems
giving conditions on C and B that force the cofree comonad to exist, see for instance [1,11].11
Suffice it to say here that all our leading examples are covered. So we shall simply assume
henceforth that a cofree comonad D on B does exist. One easy, albeit indirect argument, that13
yields the unique extension of a distributive law of T over the cofree copointed endofunctor
H on B to a distributive law of T over the cofree comonad D on B is as follows.15

Proposition 11. Given a monad T and a copointed endofunctor (H, �), every distributive
law of T over (H, �) induces a lifting T̄ of T to (H, �)-Coalg.17

The construction is routine, given by the dual of that for Theorem 7. We do not assert a
converse. But we do have the following (see for instance [21]).19

Theorem 12. Given a monad T and a comonad D, to give a distributive law of T over D is
equivalent to giving a lifting T̄ of T to D-Coalg.21

The constructions and proofs extend the dual of those for Theorem 7. Combining
Proposition 11 with Theorem 12 under the assumption that D is the cofree comonad on23
the copointed endofunctor (H, �), i.e., assuming D is the right adjoint to the forgetful func-
tor from (H, �)-Coalg to C, we immediately have the result we seek, as follows.25

Corollary 13. Given a monad T and a copointed endofunctor H, and assuming that a cofree
comonad D on H exists, every distributive law of T over H extends uniquely to a distributive27
law of T over D.

Turi and Plotkin use this result to give a general account of adequacy [25], but we shall29
take a closer look at a particular construction of the cofree comonad. This construction does
not always exist, but it is of direct computational significance when it does, specifically in31
regard to dynamics.

Dynamics are fundamental to programming, as one considers safety and liveness issues33
for example. Moreover, our leading class of examples arise from concurrency constructs,
with our analysis of nondeterminism and a parallel operator. So it is a natural, relevant35
question how to generate dynamic structures from an abstract operational rule, equivalently
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a distributive law. It is, of course, routine to consider dynamic constructs on a case-by-1
case basis, but if one is to take the definition of abstract operational rule seriously, one
wants constructs at that level of generality. And, in particular examples, those constructs3
should agree with extant ones, suggest interesting alternatives to extant ones, or suggest
possibilities in cases that have never previously been considered.5

In order to address dynamic issues, one needs to consider a generalised notion of a
stream of transitions. Formally, that generalised notion will be far more general than the7
usual notion of a stream of transitions: the reason being that the generalised notion of
transition system we have implicitly adopted, i.e., a coalgebra for an arbitrary endofunctor,9
is far more general than the usual notion of transition system. In particular, it means that our
generalised notion includes not only the usual notion of stream of transitions but also, when11
one invokes the finite powerset functor, the notion of a tree of choices of them. Our level of
generality also means that it is not possible to reduce our notion to something resembling a13
standard notion, just as it is not possible to reduce the notion of an arbitrary endofunctor to
one of the standard examples. It may be possible to find general theorems that characterise15
streams relative to the endofunctor given as a parameter, but for the present, the best we
have is as follows.17

In order to give a notion of a stream of transitions, one first needs to be able to describe
two-step transitions t0 → t1 → t2 generated by a transition function, i.e., generated by
an abstract operational rule, equivalently a distributive law of a monad T over a copointed
endofunctor (H, �), with leading examples having (H, �) cofree on an endofunctor B. A
behaviour functor B a priori allows one to speak of one step of a transition system. A
transition system is defined to be a coalgebra x : X −→ BX, where an element of BX
is a potential result of one step of the transition system, corresponding to all possible first
steps in the usual operational sense: note that nondeterminism is normally present in the
leading examples. An element of BBX gives the result of two steps of the transition system
represented by the coalgebra (X, x), by considering the composite

X
x � BX

Bx� BBX.

But, in the leading class of examples, that does not agree with the composite of transitions
in the usual sense as it does not record the intermediate state.19

Example 14. Let BX = XA. Then BBX = XA×A. Given a coalgebra (X, x), consider
the composite

X
x � XA xA

� XA×A.

An element of X is sent to an element of X with label (a, a′), but the composite does not
record which intermediate state was visited, i.e., which state was visited after the a-transition21
and before the a′-transition. So the information given by BBX does not agree with the usual
notion of two steps of the transition system.23

In order to avoid examples such as this, we need something more sophisticated than BB.
The next obvious idea is to consider HH, where H is the cofree copointed endofunctor on B.25



UNCORRECTED P
ROOF

12 M. Lenisa et al. / Theoretical Computer Science ( ) –

TCS5266

ARTICLE IN PRESS

As we shall see later, that also has a mathematical advantage of giving an obvious possible1
composite for a distributive law, i.e.,

T HH ⇒ HT H ⇒ HHT3

which is encouraging, and it does record intermediate states. But it too is not quite right but
for the opposite reason, creating difficulty for the other leading example of a behaviour.5

Example 15. Let B = Pf i , the finite powerset functor. We thus have the cofree copointed
endofunctor given by HX = Pf iX × X. So the composite is HHX = Pf i(Pf iX ×
X) × Pf iX × X. But this gives too much freedom: for a two-step transition, one needs an
element of the second component of the product to agree with an element of the second
subcomponent of the first component of the product in order to make the target of the first
transition agree with the source of the second one. So although the composite

X
(x, id)� Pf iX × X

(Pf i(x), id)� Pf i(Pf iX × X) × Pf iX × X

is right, its codomain is not, posing difficulty in iterating to a third step.

In order to avoid this example, one needs to introduce an equaliser. That equaliser is a7
remarkably simple one: we put H2X equal to the equaliser of the maps

H �X, �HX : HHX −→ HX.9

And we define �2 : H2 ⇒ Id by composition.

Proposition 16. For any (H, �)-coalgebra (X, x), the composite

X
x � HX

Hx� HHX

is an (H2, �2)-coalgebra.11

Proof. One needs check that the composite composed with H �X and �HX is the same,
but that follows directly from the naturality of the copoint and from the definition of an13
(H, �)-coalgebra. Satisfaction of the coherence condition, i.e., that composition with the
counit yields the identity, is immediate. �15

Example 17. We continue our consideration of the finite powerset functor B = Pf i . Recall
that the cofree copointed endofunctor H on B is given by HX = Pf iX × X, with �X :
HX −→ X being the second coprojection. The set H2X is defined to be an equaliser of
two maps with domain HHX = Pf i(Pf iX × X) × Pf iX × X. With a small amount of
calculation, one can verify, by the equalising condition and by considering finite unions,
that an element of H2X may be characterised as an element t0 of X, a finite subset T1 of
X, and the assignment to each element t1 of T1, of a further finite subset T2 of X: one can
prove directly that the collection of these acts as an equaliser. Given a B-coalgebra (X, x),
one can readily prove that the composite

X
(x, id)� Pf iX × X

(Pf i(x), id)� Pf i(Pf iX × X) × Pf iX × X
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makes H �X and �HX equal. This composite sends an element t of X to the triple for which1
an element can be characterised by the element t0 = t of T, the set T1 given by taking one
step in the transition system x from t0, together with, for each t1 in T1, the set of further3
transitions one can take from t1. Thus we have precisely the two-step transitions.

With some thought, the process of constructing H2 from H can be iterated: one can5
define Hn axiomatically such that, in the leading example, given a B-coalgebra, the induced
n-fold composite function from X to HnX sends an element t of X to the set of n-step7
transitions one can make from t. We shall spell out the details shortly, but first we remark
that although, in this particular example, the process converges at �, that is not true in9
general: the construction we define need not converge at � owing to lack of uniformity
[1,26]; we shall consider an example later. The construction we need here is the dual of a11
construction hidden deep inside Kelly’s paper [12]. We describe the dual, i.e, the form we
want, here.13

Definition 18. Given a copointed endofunctor (H, �:H ⇒ Id) on a base category C with
all limits, and given an object X, put

X0 = X X1 = HX x0 = idHX : X1 → HX0.

Now define X�+2 and x�+1 : X�+2 −→ HX�+1 by the equaliser of

HX�+1
Hx�� H 2X�

�HX�� HX�,

with

HX�+1
Hx�� H 2X�

H �X�� HX�.

For arbitrary �, we define X
�+1
� :X�+1 −→ X� to be �X� · x�. Then, for a limit ordinal


, we define X
 = lim�<
X� with the X

� being the generators of the limit cone for the

co-chain, and we define X
+1 and x
 : X
+1 −→ HX
 by the equaliser of

HX

�X
� X
 = lim�<
X�+1

lim�<
x�� lim�<
HX�

with

HX
 � lim�<
HX�,

where the unlabelled map is canonically induced by the limiting property. We say that the
sequence converges at 
 if X
+1


 is an isomorphism.15

Observe that the first three steps of this construction, i.e., the definitions of X0, X1, and
X2 agree with our constructions regarding zero (implicitly), one, and two-step transitions.17
The higher ordinals generalise this to arbitrary steps. Transfiniteness arises owing to lack
of uniformity: as we shall see, it does not involve consideration of streams of transfinite19
length.

Example 19. We continue with our leading example of B = Pf i , the finite powerset21
functor. By induction, we may assume that the n-step transition system generated by a
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transition system, i.e., generated by a B-coalgebra (X, x), is given by the n-fold composite1
from X to HnX. Now consider Hn+1X. It is defined to be an equaliser of a pair of maps with
domain HHnX, thus an equaliser of a pair of functions with domain Pf iHnX×HnX.Again3
using unions, as we did for the case of n = 1, and by induction on n, we can characterise
an element of the equaliser as an element of HnX together with an assignment to the last5
term of a further finite subset of X. By induction, that is exactly what we seek. Moreover,
also by induction, the composite induced by x satisfies the equalising property and sends7
an element t of X to the set of (n + 1)-step transitions from t.

Example 20. Consider the replacement of finite powersets by countable powersets in our9
leading example. We want to allow this possibility as our central assertion is that one can give
an axiomatic treatment of transition systems and then of operational semantics in terms of11
an endofunctor B, subject to axiomatic conditions. A variant of this example arises naturally
anyway when one extends the finite powerset functor to allow a countable set of labels on13
a transition system. The sequence of Definition 18 does not converge at �. Transfiniteness
of the sequence still yields only the usual notion of stream owing to the well-orderedness15
of all ordinals, with the transfiniteness only arising because of the breadth rather than depth
of possibilities.17

If the sequence does converge, the dual of Theorem 17.3 of [12] yields a characterisation
of it.19

Theorem 21. If the sequence X� converges at 
, the cofree comonad D on H, applied to
X, is given by DX = X
 with co-action x
 : X
 = X
+1 −→ HX
.21

There are reasonable conditions under which the sequence does converge, some such
conditions being implicit in [1,26] for example.23

We now extend from the axiomatic study of transition systems to the axiomatic study of
operational semantics. We have characterised approximants to the cofree comonad D on25
B axiomatically in terms of the passage from a one-step transition system to the induced
multi-step transition system. We now check that coheres with the presence of a monad T27
and a distributive law of T over D. The move from one step to two steps works as follows.

Proposition 22. Given a distributive law of a monad T over a copointed endofunctor (H, �),29
the composite

T HH ⇒ HT H ⇒ HHT31

induces a distributive law of T over the copointed endofunctor (H2, �2).

Proof. The equalising property for the (composite) map into HHTX follows from the33
preservation of � in the definition of a distributive law. For each X, that yields the re-
quired map T H2X −→ H2T X. Its naturality and its respect for the structure of T follow35
from the unicity part of the notion of equaliser together with the axioms for a distributive
law.37
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We have already checked that our axiomatic definition of (H2, �2) agrees with the exam-1
ples, in particular with our leading example of finite powersets. The distributive law

T H2 ⇒ H2T3

of the monad T over the copointed endofunctor H2 induced by the composite

T HH ⇒ HT H ⇒ HHT5

also agrees with the examples, yielding the normal two-step transition function as follows.
�7

Example 23. Let BX = (Pf iX)A, take � to be generated by an arbitrary signature, let T
be the free monad on �, and suppose we are given a set of GSOS-rules9

{xi
a→ ya

ij }1� i� n,a∈Ai

1� j �ma
i

{xi

b�→}1� i� n
b∈Bi

�(x1, · · · , xn)
c→ t

.

Passing from H to H2 is given by the systematic replacement of all single steps in each rule11
by a composite pair of steps. So each xi is assigned both its transitions and the transitions of
its transitions, and �(x1, · · · , xn) is also assigned both its transitions and the transitions of13
its transitions. The distributive law for H determined by the GSOS-rules in turn determines
a distributive law for H2 by the formula we have given. It works as follows. The two-step15
behaviour of �(x1, · · · , xn) is determined by taking a first step based upon the first-step
transitions from the xi’s, then taking a second step based upon the second-step transitions17
of the xi’s.

This process iterates. Given a distributive law of T over (H, �), by induction on n and by19
consideration of the composite

T HHn ⇒ HT Hn ⇒ HHnT21

one obtains a distributive law, for every n, of T over Hn. One can extend this to arbitrary
ordinals by simple use of the properties of category-theoretic limits and limit ordinals. The23
examples iterate likewise, yielding the multi-step transition function determined by a single
step one.25

Theorem 24. If the sequence X� converges at 
, applying the construction of Proposition
22 iterated on ordinals of size less than 
 to a distributive law of a monad T over a copointed27
endofunctor (H, �) yields a distributive law of the monad T over the cofree comonad D on
(H, �). Moreover, that distributive law agrees with the canonical one.29

Proof. The main statement here follows from a tedious inductive proof. The second state-
ment can be seen in several ways, perhaps most easily by the characterisation of distributive31
laws in terms of liftings to T-Alg. �

As this characterises the distributive law, if the sequence converges, we regard this result33
as implying that, in the particular sense we have described above, the distributive law of the
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monad T over the cofree comonad D can reasonably be regarded, at the level of generality1
we have proposed, as the large-step operational semantics induced by small-step semantics.
There are, of course, alternative descriptions and constructions of the cofree comonad and3
the induced distributive law, but our point here is that, from the particular perspective we
have outlined, the construction we have described suggests a computational interpretation5
of the induced distributive law as being a general construction of large-step operational
semantics from small-step operational semantics.7

5. Combining distributive laws

In this section, we consider two constructions that allow us to combine distributive laws.9
Computationally, the first shows how one can add operations axiomatically at the level
of generality espoused in this paper, while the other amounts to adding equations. This11
work axiomatises activity that is already taking place in examples in the literature: it is
just a matter of exploiting the fact that abstract operational rules can be characterised as13
distributive laws, and that the various constructions can be made axiomatically at the level of
generality of distributive laws. The axiomatic development often sheds light on previously15
existing activity. For an example that we do not investigate in this section, primarily because
it remains ongoing, see the work on timed processes, its combination with ordinary (non-17
timed) operational semantics, and how an axiomatic approach in terms of distributive laws
informs that [14,15].19

The central technical result we need to support the results of this section is as follows.
Suppose the category C has products. Given an object X of C, consider the functor XC(−,X) :21
C −→ C. It sends an object Y to the product of C(Y, X) copies of X. Given an arbitrary
endofunctor � : C −→ C, and given a map x : �X −→ X, one obtains a natural23
transformation

� : � ⇒ XC(−,X)25

whose Y-component is given, using of the definition of product, by considering the function

C(Y, X)
�� C(�Y,�X)

C(�Y, x)� C(�Y, X).

It follows from the Yoneda lemma that this correspondence is an equivalence, i.e., every
natural transformation of the form27

� : � ⇒ XC(−,X)

arises uniquely via this construction from a map x : �X −→ X. Summarising:29

Proposition 25. Given an endofunctor � on a category C with products, and given an
object X of C, to give a natural transformation31

� : � ⇒ XC(−,X)

is equivalent to giving a map x : �X −→ X, i.e., a �-algebra structure (X, x) on the33
object X.
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One can further prove that the functor XC(−,X) possesses a natural monad structure:1
the unit is easy to understand, its Y-component being given by the evident map from Y to
XC(Y,X). The multiplication of the monad is somewhat more complex, given by unfolding3
a product as above and using two applications of evaluation [13]. The proposition and its
proof extend to the following:5

Proposition 26. For a monad T on a category C with products, given an object X of C,
to give a map of monads7

� : T ⇒ XC(−,X)

is equivalent to giving a T-algebra structure (X, x) on the object X.9

We now use this infrastructure to study the situation of two monads T and T ′, and
distributive laws of each of T and T ′ over a copointed endofunctor H, and we seek to11
combine them into a distributive law of T + T ′, if it exists, over H.

Example 27. Let T be the free monad on a signature �, and let T ′ be the free monad on a13
signature �′. Then, the sum T + T ′ of monads is the free monad on the disjoint union of �
and �′, assuming existence: that follows from an argument we shall outline shortly. So, in15
Turi and Plotkin’s terms, given an abstract operational rule of each of � and �′ over B, we
shall give an abstract operational rule of the disjoint union of � and �′ over B. Syntactically,17
that combined abstract operational rule is given by the disjoint union of the set of rules for
� with the set of rules for �′.19

We shall work in somewhat greater generality than the example suggests, as we shall not
demand that T and T ′ be freely generated by signatures. This greater generality accords21
with the use of an equational theory combined with operational semantics, as studied in
[5] and as we shall investigate later in this section, and it agrees with our central definition23
and development of the paper, i.e. a distributive law that need not require that the monad
be freely generated (see Theorem 7).25

From Proposition 26, one can immediately prove the following.

Proposition 28. For monads T and T ′ on a category C with products, if the sum of monads
T + T ′ exists, the category of algebras (T + T ′)-Alg is canonically isomorphic to the
pullback

P � T − Alg

T ′ − Alg

�

U ′ � C

U

�

27

This result justifies our assertion in Example 27 that if T and T ′ are the free monads on
signatures � and �′ respectively, the sum T + T ′ is the free monad on the disjoint union29
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of � and �′: for an algebra for the disjoint union is given by an object of C together with a1
�-structure and a �′-structure on it.

Theorem 29. Given monads T and T ′ and a copointed endofunctor (H, �), and given3
distributive laws 	 : T H ⇒ HT and 	′ : T ′H ⇒ HT ′, the characterisation of the
category of algebras for T + T ′ as a pullback generates a canonical distributive law of5
T + T ′ over (H, �) whenever the sum of monads T + T ′ exists.

Proof. This follows from the combination of Theorem 7 with Proposition 28. By the7
former, the two distributive laws give liftings of (H, �) to T-Alg and T ′-Alg, respectively.
By the latter, these liftings yield a copointed endofunctor on (T +T ′)-Alg, as it is the pullback9
category P, and that copointed endofunctor necessarily lifts (H, �). So by an application of
the converse part of Theorem 7, we have the distributive law of T + T ′ over (H, �) that we11
seek.

By construction, this combination of distributive laws is associative with an evident unit.13
To calculate the combined distributive law tends to be complicated because construction of
the monad T + T ′ is usually complex, involving the intertwining of operations generating15
T with those generating T ′. But there is an easy description of the sum if one of the monads
is free on an endofunctor [10]: it is T (�T )∗ for monad T and endofunctor �, where S∗17
denotes the free monad on an endofunctor S. In our leading class of examples, as described
in Example 27, T and T ′ are generated by signatures � and �′, the sum of monads T + T ′19
is given by the free monad on the disjoint union of � and �′, and the combined distributive
law is generated by the disjoint union of each set of rules.21

The imposition of equations upon a signature is modelled by taking a coequaliser in the
category of monads on C, just as adding operations was modelled by considering coproducts23
in the category of monads on C. The central result that supports this perspective is another
immediate consequence of Proposition 26, as follows. �25

Proposition 30. Given monads T and T ′ and monad maps �1, �2 : T ⇒ T ′, if the co-
equaliser T ′[�1, �2] exists, the category of algebras T ′[�1, �2]-Alg is canonically isomorphic27
to the equaliser of the pair of functors �1-Alg and �2-Alg from T ′-Alg to T-Alg.

To add equations to an equational theory qua monad T is equivalent to giving an endo-29
functor E : C −→ C and a pair of natural transformations �1, �2 : E ⇒ T as explained
in [13] and as we shall illustrate below. The equational theory generated by T subject to31
these additional equations is given by the monad obtained by the coequaliser T [�̄1, �̄2], in
the category of monads, of the monad maps �̄1, �̄2 : E∗ ⇒ T where E∗ is the free monad33
on E and �̄1 and �̄2 are the induced maps. It is routine to see that the proposition supports
this by consideration of the algebras of the theory.35

We now extend this view of equations to cohere with the axiomatic formulation of oper-
ational semantics that we have been developing. The following theorem provides support37
for a natural extension.

Theorem 31. Given monads T and T ′, monad maps �1, �2 : T ⇒ T ′, and a copointed39
endofunctor (H, �), and given distributive laws 	 : T H ⇒ HT and 	′ : T ′H ⇒ HT ′
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that respect �1 and �2, the characterisation of the category of algebras for T ′[�1, �2] as1
an equaliser generates a canonical distributive law of T ′[�1, �2] over (H, �) whenever the
coequaliser T ′[�1, �2] exists.3

The proof of the theorem is essentially the same as that of Theorem 29, and the theo-
rem duly specialises to the situation where the domain monad is freely generated by an5
endofunctor of the form E as above.

The axioms on the data for the theorem can be complex to check in examples, but they7
do hold of the leading examples and the theorem does provide a natural and reasonable
condition. In fact, the result holds under a milder condition given by taking more seriously9
the fact of T ′[�1, �2] being a coequaliser: we could generalise from the distributive law 	′ :
T ′H ⇒ HT ′ to a natural transformation with codomain HT ′[�1, �2], subject to evident11
natural axioms. In practice, e.g., in [5] and in the example below, the interaction between
equations and operational semantics is often implicit.13

Example 32. Consider the motivating example of Section 2. We had an abstract grammar

t ::= x | nil | a.t | t ‖ t15

with operational rules given as follows:

a.x
a→ x

x
a→ x′

x ‖ y
a→ x′ ‖ y

y
a→ y′

x ‖ y
a→ x ‖ y′ .

But we could have re-organised the rules, and they sometimes are reorganised in practice.
For instance, we could have kept these rules while, redundantly, imposing symmetry and17

associativity axioms on the operator ‖ for parallel composition. Had we done so, starting
with the first two rules, we could see the third rule as yielding an immediate proof that the19
distributive law respects the symmetry axiom. With some effort, but essentially repeating
work that is already well known in this example, we could further prove that these rules also21
respect the associativity axiom. But one would not normally present such a combination of
rules, as it is well known that to do so involves redundancy.23

Alternatively, and more sensibly, we could consider the first two rules, dispense with the
third rule, and add the assertion that the parallel operator is to satisfy axioms for symmetry25
and associativity. The operational semantics would then respect symmetry and associativity
because it is defined to do so. That is how the information is presented in [5], and our27
analysis here gives axiomatic support to that.

One can of course extend this example, as in [5], for instance by adding a nondeterministic29
operator, satisfying axioms such as idempotence, symmetry, and associativity.
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