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Abstract

In this paper, we introduce aGeneral Logical Framework, calledGLF, for defining Logical Frameworks, based on dependent
types, in the style of the well known Edinburgh Logical FrameworkLF. The frameworkGLF features a generalized form
of lambda abstraction whereβ-reductions fire provided the argument satisfies a logical predicate and may produce ann-ary
substitution. The type systemkeepstrack of when reductions have yet to fire. The frameworkGLF subsumes, by simple
instantiation,LF as well as a large class of generalized constrained-based lambda calculi, ranging from well known restricted
lambda calculi, such as Plotkin’s call-by-value lambda calculus, to lambda calculi with patterns. But it suggests also a wide
spectrum of new calculi which have intriguing potential as Logical Frameworks.
We investigate the metatheoretical properties of the calculus underpinningGLF and illustrate its expressive power. In partic-
ular, we focus on two interesting instantiations ofGLF. The first is the Pattern Logical Framework (PLF), where applications
fire viapattern-matchingin the style of Cirstea, Kirchner, and Liquori. The second is the Closed Logical Framework (CLF)
which features, besides standardβ-reduction, also a reduction which fires only if the argument is aclosedterm. For both
these instantiations ofGLF we discuss standard metaproperties, such as subject reduction, confluence and strong normaliza-
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rules require proof terms to have special syntactic constraints,e.g. logics withrules of proof, in addition torules of deriva-
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1 Introduction

Although LF, very rightly so, allows to encode rules as functions from proofs to proofs,
it is nevertheless a little restrictive as to the “side conditions” that it can enforce on the
application of rules. Rule application being encoded simply as lambda application, there
are only roundabout ways to encode provisos, even as simple as that appearing in arule
of proof. Recall that a rule of proof can be applied only to premises which do not depend
on any assumption, as opposed to arule of derivationwhich can be applied everywhere.
Also rules which appear in many natural deduction presentations of modal and program
logics are very problematic in standardLF. Many such systems feature rules which can be
applied only to premises which depend solely on assumptions of a particular shape [CH84],
or whose derivation has been carried out using only certain sequences of rules. Finally,
Linear or Relevance Logics appear to be encodable only using a very heavy machinery.

In the past, extensions ofLF have often been proposed. The price to pay, however, was
always very high as far as the language theory. Thedesideratumhas always been that of
having a metalogical framework,i.e. a telescopeof systems, each a conservative extension
of the previous ones, which can incrementally and naturally encode nastier and nastier
classes of side-conditions. This is precisely what we propose in this paper.

The key idea is extremely simple. It amounts to removing ablind spot, thus making
explicit two different notions, which are conflated to only one, in the originalLF, i.e. which
are taken to be definitionally equal. As already mentioned much of the rigidity ofLF arises
from the fact thatβ-reduction can be applied too generally. One would like to restrict it, but
the type system appears not to be rich enough to be able to express such restrictions. What
we propose is to use as type of an application, in the term application rule,(O·Appl) below,
not the type which is obtained by carrying out directly in the metalanguage the substitution
of the argument in the type, but a new form of type which simply records the information
that such a reduction needs to be carried out. An application of the Type Conversion Rule
can then recover the usual effect of the application rule. The old rule and the new rule
(O·Appl′) appear as follows.

Γ `M : Πx:σ.τ Γ ` N : σ

Γ `M N : τ [N/x]
(O·Appl)

Γ `M : Πx:σ.τ Γ ` N : σ

Γ `M N : (λx:σ.τ)N
(O·Appl′)

As it is often said: sometimes, less is more. And once this move has been made, we
have a means of annotating in a type the information that a reduction is waiting to be
carried out in the term. If we take seriously this move, such a type need not be necessarily
definitionally equalto the reduced one as in the case ofLF and we can generalize further
our approach. Without much hassle, in effect, we have a principled and natural way of
typing generalized calculi featuring generalized or restricted forms ofβ-reduction which
wait for some constraint to be satisfied before they can fire. Each such calculus can be
considered as a potential candidate for underpinning a new Logical Framework, where all
the extra complexity in terms can be naturally tamed utilizing the expressive power of the
new typing system. Once this program is carried out in a sufficiently modular form, we
have the telescopic metalogical framework we were looking for.

In order to proceed in full generality we introduce a new form ofλ and corresponding
Π abstractionΠP:∆.τ andλP:∆.M . The unary predicateP is completely general at this
stage, and the type context∆ 4

= [x1:σ1, . . . , xn:σn] denotes the variables bound byΠ andλ
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in ΠP:∆.τ andλP:∆.M . We will show in the paper that it can be instantiated in various
useful ways. For instance, it can enforce the fact that the argument is closed, or that all
its free variables have a type of a given form. This format can also recover many existing
calculi in the literature such asLF, the Rewriting Calculus [CKL01a, CKL01b], and the
Plotkin’s call-by-value lambda calculus [Plo75]. In all cases, an application of the “type
equality” rule can be used to recover,conservatively, the effect of successfulβ-reductions:

(λP:∆.M)N −→M P̂(N) providedP(N) holds andP̂(N) is a substitution.

The extra types deriving from failures allow for precisely the extra elbow-room that is
needed to prevent the applications of certain rules too loosely. It is now immediate to see
that rules of proof can be dealt with straightforwardly by restricting applications to closed
terms.

This idea of distinguishing between two notions which were previously flattened into
one is a small step for a type system but a momentous step for a Logical Framework. The
idea of capitalizing on the similarities between the “λ” and “Π” operators is not new, see
e.g. [dB80,KBN99], but what we do here is to capitalize on it, in the type system, as was
done in the work by Cirstea, Kirchner, and LiquoriThe Rho Cube[CKL01b]. By so doing,
we allow for a generalized form of pattern lambda calculi, and also go beyond.

The papers which are most influential for our proposal and which we are most indebted
with are [CKL01b] and [BCKL03]. The former is the paper which first puts to use the
decomposition of the rule(O·Appl′) in special cases. It presents a collection of type systems
for a typed variant of the Rewriting Calculus4 , which was later generalized in [BCKL03]
to Pure Type Systems with patterns.

Summing up, we propose a General Logical FrameworkGLF and the General Lambda
CalculusGL underpinning it.GLF, in that it accomodates various strong definitional equal-
ities, can be viewed as a logical framework in the spirit of the, so called,Poincaré principle,
or the more recentDeduction Moduloof [DHK03]. The idea behind these approaches can
be put briefly as follows. It is well-known thatLF behaves like first-order logic. One can al-
ways encode explicitly,i.e. axiomatically, whatever judgment is necessary. However, both
theoretically,e.g. in Martin-Löf systems, as well as pragmatically,e.g. in Coq, it is very
useful to have stronger notions of definitional equality than pureβ-equality. In the most
recent approaches to formal proofs, one has subtle interplays between deduction and com-
putation of definitional equality. In all these cases, however, each new definitional equality
has to be justified outside the framework.

In this paper, we provide general results concerning classes of calculi which provide
useful definitional equalities. In particular, we carry out an extensive investigation of the
language theory of two important instantiations ofGLF, calledPLF andCLF respectively.
The first features a general form of patternβ-reduction, while the second subsumesLF but
it provides also a form ofβ-reduction restricted only to closed arguments.

1.1 Historical Remarks

A short recollection, by the first author, from exactly twenty years ago.

4 This version of the Rewriting Calculus was a kind of typed lambda calculus with constants, algebraic patterns, and built-in
matching constructions.
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The EdinburghLF took a rather short time to blossom: essentially the spring of 1986.
A General Interactive Proof Development Environment was one of the first three projects
of, what was then, the recently established Laboratory for the Foundations of Computer
Science, LFCS, in Edinburgh. According to its first director, Robin Milner, the Laboratory
was supposed to develop theoretically principled applications, in the spirit that Computer
Science is also an experimental science. The goal of this project was a general interactive
proof assistant which could provide a large number of proof editing, proof checking, and
proof searching facilities for an arbitrary logical system as were available, at the time, in
tools such asLCF [Pau85] or NuPrl [Con86], only for specific formal systems. The chal-
lenge was that of not having to duplicate the implementation effort each time an interactive
environment for a new logic was needed. The idea was that of developing a general theory
of logical systems, which factored out uniformities across a wide class of logics and then
of implementing, once and for all, a general logic-independent proof development environ-
ment based on such a theory. This general environment could then be tailored to a specific
system, without having to re-implement everything from scratch each time.

In the early months of 1986 Gordon Plotkin started experimenting with typed lambda
calculi, supporting theproposition-as-types paradigm, as a general metalanguage and
framework for logical systems. A few researchers at LFCS joined in, and by midsum-
mer 1986 theFramework for Defining Logics[HHP93] as it was presented to the LICS
conference in 1987, was pretty much finalized.

It was immediately clear that the higher order nature of the Dependent Typed Lambda
Calculus, later to be known asLF, was particularly satisfactory as a general metalanguage
for expressing logical languages, binding operators, rules, and proof development. What
appeared in the traditional presentations of logical systems as intricate idiosyncrasies and
strange provisos in rules, either completely disappeared in theLF encoding of the system
or were greatly clarified. An encoding of a logic in the Framework always turned out to
be particularly insightful in understanding the system itself, to the point thatLF appeared
as normative. The conclusion was thatLF was the most suitable type system introduced
so far to play the role of a metalanguage for logics presented in natural deduction style. It
was the perfect medium to implement the newly formulatedjudgments-as-typesparadigm.
Furthermore,LF subsumed also a number of previous ideas in formal mathematics and
proof theory stemming from theAutomath tradition [dB80, NGe94], Constructive Type
Theory [Mar84,CH88] and it capitalized on the notion ofjudgmentas discussed by Martin-
Löf in a series of papers in the mid ’80’s, [ML85].

The Logical Framework game, triggered byLF, became rapidly quite popular in the
formal proof development community and many authors [Fef88,CH90] played it on their
systems. Since then, Logical Frameworks, logical metalanguages, and general proof assist-
ants grew up to a well defined, and very active sector of Logic and Computer Science. It
benefited considerably by the results stemming from the community working on Construct-
ive Type Theory as a framework for formalizing mathematics, [Alf06,Coq06]. Nowadays
there are a number of specific conferences that address these topics,e.g. Merλin, Theorem
Proving in Higher Order Logic, Logical Framework Metalanguages: theory and practice,
a vast literature, seee.g. [Luo90, PS99, BG01, Pfe01] and an almost twenty years old EU
Working Group community, called Types, actively working on Type Theory [TYP].

Since the birth ofLF, the challenge was that of assessing the expressive power of
the metalanguage, or equivalently that of coming up with logics which could break the
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Framework.LF proved to be particularly successful in dealing with metavariables, vari-
able scoping and binding, Higher Order Abstract Syntax and, with a little effort, also with
names [Des00,HMS01], program and modal logics [AHMP98,AHMP92].

Synopsis.
The paper is structured as follows. In Section2, we present the syntax ofGL and the

type system ofGLF. We discuss general properties ofGLF and present several instan-
tiations ofGLF to known as well as new calculi. In Section3, we discuss an important
instantiation ofGLF, the Pattern Logical Framework, calledPLF, where reductions fire via
pattern-matching. A thorough investigation of the metatheoretical properties ofPLF is car-
ried out. In Section4, we present another instantiation of theGLF framework,CLF which
features besides standardβ-reduction also aβ-reduction restricted to closed terms. In Sec-
tion 5, we illustrate the expressive power of these new typed calculi as metalanguages.
In particular we give a shorter, and possibly sharper, encoding of Plotkin’s call-by-value
lambda calculus inPLF capitalizing on algebraic patterns, and an encoding inCLF of rules
of proof in Modal Logics. Conclusions and directions for future work appear in Section6.
Proofs of main theorems appear in the Appendix.

2 The General Logical Framework

In this section, we present the General Lambda CalculusGL and we discuss the language
theory underpinning the General Logical FrameworkGLF.

General Notations.
LetM,N, . . . ∈ O denote terms (a.k.a. objects),σ, τ, . . . ∈ F denote types (a.k.a. fam-

ilies), a, b, c, . . . denote constant types,K ∈ K denote kinds,x, y, z, . . . denote variables,
f, g, . . . denote term constants,Γ,∆ ∈ C denote contexts,Σ ∈ S denote signatures, and
letP,Q, . . . range over a set of logical predicatesL. All symbols can appear indexed. The
symbol≡ denotes syntactic identity on terms. Terms will be taken up toα-conversion.

2.1 The General Typed Lambda Calculus

The General Typed Lambda Calculus, calledGL, is a generalization of the typed lambda
calculusà la Church with constants, but it allows unary logical predicates instead of simple
variables in lambda abstractions. The syntax ofGL terms is given below, type families will
be defined later.

Definition 2.1 (GL Terms a.k.a. Objects)

M,N ∈ GL M ::= f | x | λP:∆.M |M N Terms

Γ,∆ ∈ C Γ ::= ∅ | Γ, x:σ Contexts

σ, τ ∈ F σ ::= . . . Types

P,Q ∈ L P ::= . . . (unary) Predicates

where the variables inDom(∆) occurring inM are bound inλP:∆.M .
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The termλP:∆.M is called apredicate abstraction. The intuition behind a generalized
β-redex of the shape(λP:∆.M)N is that the argumentN of the function can be propag-
ated in the bodyM , and the redex progresses toMθ, for a suitable substitutionθ over
Dom(∆), provided the unary predicateP holds onN . Otherwise the termis stuck. The
languageGL is parametrized over a set of unary predicatesP, which we do not specify.

Definition 2.2 (Auxiliary Functions) (i) Let ¯ : [L → [C → GL]] be a function taking a
predicateP and a context∆, and producing a term whose free variables are exactly
those inDom(∆). We denoteP(∆) simply byP.

(ii) Let ̂ : [L → [C → [GL → Sub]⊥]] be a function taking aP and a∆, and producing
a partial function that takes a termM and produces a substitution overDom(∆),
providedM satisfiesP. Informally,P is a logical filter that constrains reductions.
We denotêP(∆) simply byP̂.

The next definition introduces the standard notions of top-level, one-step, many-stepsβ-
reduction, and its congruence closure.

Definition 2.3 (One-step/Many-Steps Reduction, Congruence) (i) For every predic-
ateP ∈ L, the top-level reduction is defined as

(βP) (λP:∆.M)N →βP M P̂(N) if P(N) holds

(ii) LetC[−] denote a context with a “single hole” inside, defined as follows

C[−]::=[−] | C[−]T | T C[−] | XP:∆.C[−] | XP:C[−].T | ∆, x:C[−]

Let C[M ] be the result of filling the hole with the termM . The one-step evaluation
7→βP is defined by the inference rule

M →βP N

C[M ] 7→βP C[N ]
(Ctx)

(iii) The many-step evaluation7→→βP and the congruence relation=βP are respectively
defined as the reflexive-transitive and reflexive-symmetric-transitive closure of7→βP .

We use7→β to denote
⋃
P∈L 7→βP , similarly 7→→β and=β will denote the unions of all7→→βP ’s

and all=βP ’s, respectively.

2.2 The General Logical Framework

The General Logical Framework, calledGLF, is a dependent type system for the General
Typed Lambda CalculusGL. In a nutshell, there are two main generalizations with respect
to a standard dependent type theoryà la LF:

(i) The LF product-typeΠx:σ.τ is replaced inGLF by the more general constrained
product-typeΠP:∆.τ that will be inhabited by a predicate-abstraction of the shape
λP:∆.M .

(ii) In the typing rule for application one usually has that the final type forM N is τ [N/x]
where the notation[N/x] means the meta-operation of substituting every occurrence
of x with the object termN . In GLF, this meta notation for the type of the applica-
tion is taken seriously and is represented by aGLF dependent-type not necessarily in
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Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, f :σ Signatures

Γ,∆ ∈ C Γ ::= ∅ | Γ, x:σ Contexts

K ∈ K K ::= Type | ΠP:∆.K | λP:∆.K | KM Kinds

σ, τ ∈ F σ ::= a | ΠP:∆.σ | λP:∆.σ | σM Types (Families)

M,N ∈ O M ::= f | x | λP:∆.M |M N Terms (Objects)

(βP−Terms) (λP:∆.M)N→βP M P̂(N)

(βP−Types) (λP:∆.τ)N→βP τ P̂(N)

(βP−Kinds) (λP:∆.K)N→βP K P̂(N)

Figure 1.GLF Syntax and Operational Semantics

normal form(λP:∆.τ)N . This term reduces to the dependent-typeτ P̂(N) if P(N)
holds (andP̂(N) is a substitution), otherwise it gets stuck. Of course, if the reduc-
tion fires, via a standard type conversion rule, the reduced type is inhabited by the
applicationM N .

2.2.1 Syntax.
The syntax ofGLF families is defined as follows.

Definition 2.4 (GLF Types a.k.a. Families)

σ, τ ∈ F σ ::= a | ΠP:∆.σ | λP:∆.σ | σM Types

In the syntax,a is a constant type, or more generally, a curried type valued function,
ΠP:∆.τ is a constrained product-type,λP:∆.τ is a constructor for type families, andσM
as usual, is the type family produced by applying a type family of higher kind to a term.

To complete the presentation ofGLF we need, as usual, suitable syntax forsignatures,
contexts, andkindsas follows.

Definition 2.5 (GLF Signatures, Contexts and Kinds)

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, f :σ Signatures

Γ,∆ ∈ C Γ ::= ∅ | Γ, x:σ Contexts

K ∈ K K ::= Type | ΠP:∆.K | λP:∆.K | KM Kinds

In GLF, we introduce a reduction on kinds not in normal form(λP:∆.K)M that, again,
reduces toKP̂(M) if and only if P(M) is satisfied. Figure1 summarizes the syntax and
the operational semantics ofGLF.

7



Honsell, Lenisa, Liquori

Signature rules

∅ sig
(S·Empty)

Σ sig `Σ K a 6∈ Dom(Σ)

Σ, a:K sig
(S·Kind)

Σ sig
`Σ σ : Type f 6∈ Dom(Σ)

Σ, f :σ sig
(S·Type)

Context rules

Σ sig

`Σ ∅
(C·Empty)

`Σ Γ
Γ `Σ σ : Type x 6∈ Dom(Γ)

`Σ Γ, x:σ
(C·Type)

Kind rules

`Σ Γ

Γ `Σ Type
(K·Type)

Γ,∆ `Σ P : σ Γ,∆ `Σ K

Γ `Σ ΠP:∆.K
(K·Pi)

Γ,∆ `Σ P : σ Γ,∆ `Σ K

Γ `Σ λP:∆.K
(K·Abs)

Γ `Σ ΠP:∆.K
Γ,∆ `Σ P : σ Γ `Σ N : σ

Γ `Σ (λP:∆.K)N
(K·Appl)

Family rules

`Σ Γ a:K ∈ Σ

Γ `Σ a : K
(F·Var)

Γ,∆ `Σ P : σ Γ,∆ `Σ τ : Type

Γ `Σ ΠP:∆.τ : Type
(F·Pi)

Γ,∆ `Σ P : σ Γ,∆ `Σ τ : K

Γ `Σ λP:∆.τ : ΠP:∆.K
(F·Abs)

Γ `Σ σ : ΠP:∆.K
Γ,∆ `Σ P : τ Γ `Σ M : τ

Γ `Σ σM : (λP:∆.K)M
(F·Appl)

Γ `Σ σ : K ′

Γ `Σ K Γ `Σ K=βK
′

Γ `Σ σ : K
(F·Conv)

Object rules

`Σ Γ f :σ ∈ Σ

Γ `Σ f : σ
(O·Const)

`Σ Γ x:σ ∈ Γ

Γ `Σ x : σ
(O·Var)

Γ,∆ `Σ P : σ Γ,∆ `Σ M : τ

Γ `Σ λP:∆.M : ΠP:∆.τ
(O·Abs)

Γ `Σ M : ΠP:∆.τ
Γ,∆ `Σ P : σ Γ `Σ N : σ

Γ `Σ M N : (λP:∆.τ)N
(O·Appl)

Γ `Σ M : σ
Γ `Σ τ : Type Γ `Σ σ=βτ

Γ `Σ M : τ
(O·Conv)

Figure 2. TheGLF Type System

2.2.2 Type System.
As usual, the type system forGLF proves judgments of the shape:

Σ sig `Σ Γ Γ `Σ K Γ ` σ : K Γ `Σ M : σ

The type system rules forGLF are presented in Figure2. Notice that rule schemas
(∗·Pi), (∗·Abs), and(∗·Appl) are parametrized over the predicateP. The inference rules

8



Honsell, Lenisa, Liquori

make use of a notion of definitional equality, consisting of the following three forms of
auxiliary judgments:

Γ `Σ K =β K ′ K andK ′ are definitionally equal kinds inΓ andΣ

Γ `Σ σ =β τ σ andτ are definitionally equal types inΓ andΣ

Γ `Σ M =β N M andN are definitionally equal terms inΓ andΣ

The first two of these relations are used directly; the third one is used to define the others.
We do not give the list of rules for these three judgments. These are standard but for the
fact that we have to consider multiple substitutions. By way of example we give only the
main rule(Type·Eq) for type equality:

∀yi ∈ Dom(P̂(M)). [ Γ,∆ `Σ P̂(M)(yi) : ∆(yi) ] Γ,∆ `Σ P : σ Γ `Σ M : σ

Γ `Σ (λP:∆.τ)M=βτ P̂(M)

2.3 InstantiatingGL/GLF

The behavior ofGL andGLF strongly depend on the precise nature of the predicates in-
volved in abstractions. In general we can instantiate them as follows.

Definition 2.6 (General Predicate SetS) A General Predicate Set is
S 4

= { ( Pi , ∆i , Pi , P̂i ) }i∈I , where¯ and ̂ are the functions of Definition2.2.

Definition 2.7 (General PredicateGLS/GLFS) For a givenS, a Predicate Lambda Cal-
culus (General Predicate Logical Framework), calledGLS (GLFS), can be obtained by
restricting (instantiating) the predicates to the ones declared inS.

A list of desired properties forGLFS follows. Letα be any judgment inGLFS.

Desiderata 1 (Desired Properties ofGLFS)

Subderivation Property• Any derivation ofΓ `Σ α has subderivations ofΣ sig and`Σ Γ;
• Any derivation ofΣ, a:K sig has subderivations ofΣ sig and`Σ K;
• Any derivation ofΣ, f :σ sig has subderivations ofΣ sig and`Σ σ : Type;
• Any derivation of̀ Σ Γ, x:σ has subderivations ofΣ sig andΓ `Σ σ : Type;
• Given a derivation ofΓ `Σ α and any subterm occurring in the subject of the judg-

ment, there exists a derivation of a smaller length of a judgment having that subterm
as a subject;

• If Γ `Σ σ : K, thenΓ `Σ K;
• If Γ `Σ M : σ, thenΓ `Σ σ : Type.

Derivability of Weakening and PermutationIf Γ and∆ are valid contexts, and every de-
claration occurring inΓ also occurs in∆, thenΓ `Σ α implies∆ `Σ α.

Unicity of Types and Kinds• If Γ `Σ M : σ andΓ `Σ M : τ , thenΓ ` σ=βτ ;
• If Γ `Σ σ : K andΓ `Σ σ : K ′, thenΓ `Σ K=βK

′.

Transitivity If Γ, x:σ,∆ `Σ α andΓ `Σ M : σ, thenΓ,∆[M/x] `Σ α[M/x].

Abstraction Typing• If Γ `Σ K and Γ′ is such thatDom(Γ) = Dom(Γ′), and for all
x ∈ Dom(Γ), Γ `Σ Γ(x)=βΓ′(x) andFv(Γ(x)) ⊆ Fv(Γ′(x)), thenΓ′ `Σ K;
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• If Γ `Σ σ : K and Γ′ is such thatDom(Γ) = Dom(Γ′), and for all x ∈ Dom(Γ),
Γ `Σ Γ(x)=βΓ′(x) andFv(Γ(x)) ⊆ Fv(Γ′(x)), thenΓ′ `Σ σ : K;

• If Γ `Σ M : A andΓ′ is such thatDom(Γ) = Dom(Γ′), and for all x ∈ Dom(Γ),
Γ `Σ Γ(x)=βΓ′(x) andFv(Γ(x)) ⊆ Fv(Γ′(x)), thenΓ′ `Σ M : A;

• If Γ `Σ λP:∆.τ : ΠP ′:∆′.K, thenDom(∆) = Dom(∆′), and for allx ∈ Dom(∆),
we haveΓ,∆ `Σ ∆(x)=β∆′(x), andΓ,∆ `Σ P=βP

′
;

• If Γ `Σ λP:∆.M : ΠP ′:∆′.τ , thenDom(∆) = Dom(∆′), and for allx ∈ Dom(∆),
we haveΓ,∆ `Σ ∆(x)=β∆′(x), andΓ,∆ `Σ P=βP ′;

• If Γ `Σ λP:∆.τ : ΠP:∆.K, thenΓ,∆ `Σ P : σ, andΓ,∆ `Σ τ : K;
• If Γ `Σ λP:∆.M : ΠP:∆.τ , thenΓ,∆ `Σ P : σ, andΓ,∆ `Σ M : τ .

Subject Reduction• If Γ `Σ K andK →β K
′, thenΓ `Σ K ′;

• If Γ `Σ σ : K andσ →β τ , thenΓ `Σ τ : K;
• If Γ `Σ M : σ andM →β N , thenΓ `Σ N : σ.

Confluence• If K1 7→→β K2 andK1 7→→β K3, then there existsK4 such thatK2 7→→β K4,
andK3 7→→β K4;

• If σ1 7→→β σ2 andσ1 7→→β σ3, then there existsσ4 such thatσ2 7→→β σ4, andσ3 7→→β σ4;
• If M1 7→→β M2 and M1 7→→β M3, then there existsM4 such thatM2 7→→β M4, and
M3 7→→β M4.

Strong Normalization• If Γ `Σ K, thenK is strongly normalizing;
• If Γ `Σ σ : K, thenσ is strongly normalizing;
• If Γ `Σ M : σ, thenM is strongly normalizing.

Judgments decidabilityIt is decidable whetherΓ `Σ α is derivable.

The following is about the most that one could prove for a General Logical Framework at
this stage of generality.

Conjecture 2.8 (General Properties ofGLF) The following properties are valid inGLF:

• Subderivation;

• Derivability of Weakening and Permutation;

• Unicity of Types and Kinds;

• Abstraction Typing;

• Subject Reduction.

2.4 Simple Examples

We illustrate the General Lambda Calculus and the General Logical Framework through
some simple instantiations. More lambda calculi and logical frameworks can be captured
by GLF, using appropriate general predicate setsS’s.

2.4.1 The Typed Lambda Calculus à la Church.
The setSChurch is SChurch

4
= { ( Truex , [x:σ] , Truex , T̂ruex )x∈V }, whereTruex is

Truex(M) 4
= true (∀M), andTruex

4
= x, andT̂ruex(M) 4

= [M/x]. Notice that the fresh-
ness of the variablex is enforced in the typing rules by the well-formedness of contexts.

10
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2.4.2 Plotkin’s Call-by-Value Lambda Calculus.

The setSβv is { ( Valuex , [x:σ] , Valuex , V̂aluex )x∈V }, whereValuex is

Valuex(M) 4
=


true if M is a variable or an abstraction

false otherwise

andValuex
4
= x, andV̂aluex(M) 4= if M is a variable or an abstraction then[M/x], else⊥.

2.4.3 The Closed Typed Lambda Calculus.

The setS∅ is { ( Closedx , [x:σ] , Closedx , Ĉlosedx )x∈V }, whereClosedx is

Closedx(M) 4
=


true if Fv(M) = ∅

false otherwise

andClosedx
4
= x, andĈlosedx(M) 4

= if Fv(M) = ∅, then[M/x], else⊥.

2.4.4 The Rewriting Calculus à la Cirstea-Kirchner-Liquori.

The setSRho is: { ( MatchPi , ∆i , MatchPi , M̂atchPi )i∈I }, where the predicate
MatchPi is defined as follows.

MatchPi(M) 4
=


true if ∃θi. Alg(Pi;M) = θi andNf(Pi)

false otherwise

where

• the predicateNf(Pi) is true if and only ifPi has a→ρσδ-normal form,

• Alg is essentially the matching algorithm defined in [BCKL03] (where Fv(Pi) =
Dom(∆i)), which provides a substitution ifM matches with the patternP , and fails,
otherwise, and

• MatchPi

4
= Pi, andM̂atchPi(M) 4

= if ∃θi. Alg(Pi;M) = θi, thenθi, else⊥.

This calculus is equivalent to the class offunctionalPure Type Systems with Patterns of
[BCKL03]. A specific version ofGLF, which features rather general shapes of patterns, but
nevertheless has a considerably rich theory of expressions, will be introduced and studied
in Section3.

2.4.5 The Edinburgh’s Logical Framework à la Harper-Honsell-Plotkin.
The setSLF is SChurch. The functionJ K is essentially a function that replaces every
occurrence ofTruex by x.

2.4.6 The Closed Logical FrameworkCLF.
The setSCLF is:
{ ( Truex , [x:σ] , Truex , T̂ruex )x∈V , ( Closedx , [x:σ] , Closedx , Ĉlosedx )x∈V },

11
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whereTruex andClosedx are defined as before. The Closed Logical FrameworkCLF com-
bines two notions ofβ-reduction, the standardβ-reduction and theβ-reduction restricted
to closed arguments. This Logical Framework will be extensively studied in Section4.

3 The Pattern Logical Framework

Since the introduction of the Logical Framework in [HHP93], blending dependent typed
lambda calculi with rewriting systems has been a major challenge, see [Oka89, JO91,
Dou92, KvOvR93, Oos94, CKL01a, BCKL03, CPT03, Wac05]. When the lambda calcu-
lus underpinning a logical framework features also rewriting rules, there is potential for
enhancing the pragmatic usability of the system. More natural and transparent encodings
can be provided (see Section5), and decision procedures, such as checking and encoding
equality, can be more easily automated.

In this section, we introduce the Pattern Logical Framework, calledPLF. This is a
uniform framework based on a dependent typed lambda calculus enriched with pattern
matching in lambda abstractions.PLF can be viewed as an instance of the General Lo-
gical FrameworkGLF, by considering predicates corresponding toPLF patterns, similarly
to what was done in Section2 for the Rewriting Calculus. In contrast to the simple lambda
calculus, the pattern-matching algorithm can either fire a substitution, or keep the com-
putation stuck, unless further substitutions are provided. E.g., for an algebraic constantf

of type a → a, M ≡ (λ(f y):[y:a].y)x is stuck, but(λ(f x):[x:a].M) (f (f 3)) 7→→β 3.
As it is well known, since the seminal work of [Oos90], in untyped calculi, variables in
patterns can be bound only if they occurlinearly (i.e. at most once) andnot actively(i.e.
not in functional position), otherwise confluence is lost. For this reason, onlyalgebraic
patternsare often considered in the literature, [CKL01b, BCKL03, Wac05]. The Pattern
Logical Framework that we present in this section features a larger set of patterns, essen-
tially corresponding to suitable normal forms satisfying linearity and inactivity conditions
of variables. For this calculus, we show confluence, subject reduction, and strong normal-
ization. The proof of strong normalization is technically quite difficult, and it is based on a
generalized computability argument which accommodates the possibility for an argument
to match the pattern after reduction.

3.1 PLF Terms

Since patterns occur asbindersin abstractions, the types of the “matchable” variables in
the pattern are decorated in suitable contexts,i.e. a pattern lambda abstraction has the form
λP :∆.M . In the following definition, we introduce thePLF pseudo-syntax for kinds, fam-
ilies, objects and contexts.

12
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Definition 3.1 (PLF Pseudo-syntax)

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, f :A Signatures

Γ,∆ ∈ C Γ ::= ∅ | Γ, x:A Contexts

K ∈ K K ::= Type | ΠP :∆.K | λP :∆.K | KM Kinds

A,B,C ∈ F A ::= a | ΠP :∆.A | λP :∆.A | AM Families

M,N,Q ∈ O M ::= f | x | λP :∆.M |MM Objects

whereP ∈ OP ⊆ O andOP is a set ofpatternsto be defined (see Definition3.10below).

In aPLF pattern abstractionλP :∆.M ,P is thepatternto be matched,∆ is the type context
containing the type of all the free variables ofP , andM is the usual body of the abstraction.
In aPLF pattern type-productΠP :∆.A, object dependencies are spread much more than in
the standardLF. Namely,P is theobject patternto be matched,∆ is the type context con-
taining the type of all the free variables ofP , andA is the usual dependent type codomain,
containing possibly free occurrences of some free variables ofP , hence declared in∆.

As usual, application associates to the right. Let “T ” range over any term in the calculus
(kind, family, object), and let the symbol “X” range over the set of binders{λ,Π}. To ease
the notation, we writeXx:T1.T2 for Xx:[x:T1].T2 in case of a variable-pattern (correspond-
ing to plain typed lambda calculus). As in ordinary systems dealing with dependent-types,
we suppose that, in the contextΓ, x:T , the variablex does not occur inΓ andT . Dom(Γ)
andCoDom(Γ) are defined as usual. The definition of free variables needs to be rephrased
as follows.

Definition 3.2 (Free Variables) The setFv of free variables in terms, signatures and con-
texts is given by:

Fv(∅),Fv(Type),Fv(a),Fv(f) 4
= ∅

Fv(Σ, a:K) 4
= Fv(Σ) ∪ Fv(K)

Fv(Σ, f :A) 4
= Fv(Σ) ∪ Fv(A)

Fv(∆, x:A) 4
= Fv(∆) ∪ (Fv(A) \ Dom(∆))

Fv(x) 4
= {x}

Fv(XP :∆.T ) 4
= ((Fv(P ) ∪ Fv(T )) \ Dom(∆)) ∪ Fv(∆)

Fv(T1 T2)
4
= Fv(T1) ∪ Fv(T2)

Ex: Fv( λ(λx:[x:Πw:a.a].x y):[y:a].z ) = {z}.

We denote byBv(T ) the set ofbound variablesof a termT , i.e. the set of variables in the
term which are not free. Let denote byVar the set of all variables, and byVar(T ) the set
of both free and bound variables ofT . Since we work moduloα-conversion, we suppose
that all bound variables of a term have different names, and therefore the domains of all
contexts are distinct.

13
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Definition 3.3 (Substitutions) A substitutionθ is a finite map[M1/x1, . . . ,Mm/xm]. The
application of a substitutionθ to a termT extends the definition for the typed lambda
calculus (possibly by renaming bound variables) as(XP :∆.M)θ 4

= XPθ:∆θ.Mθ, where
∆θ denotes the point-wise extension of the substitution application to contexts. As usual
we letDom(θ) 4

= [x1, . . . , xm], andCoDom(θ) 4
=

⋃
i=1...m

Fv(Mi).

In what follows, we will consider onlysafe terms, i.e. terms where the free variables occur-
ring in patterns arepreciselythe variables declared in the corresponding context. Formally:

Definition 3.4 (PLF Safe Terms) A PLF termT is safe if EPC(T ) holds, where the pre-
dicateEPC(T ), Exact Pattern Condition, is defined by induction on the structure ofT as
follows.

EPC(x) 4
= true

EPC(XP :∆.T ) 4
= (Dom(∆) = Fv(P )) ∧ EPC(P ) ∧ EPC(T ) ∧ EPC(∆)

EPC(T1 T2)
4
= EPC(T1) ∧ EPC(T2)

whereEPC(∆) holds if and only ifEPC(A) holds for allA ∈ CoDom(∆).

The above restriction is motivated by the fact that, if we allow free variables in patterns
which are not declared in the context, we loose confluence of the untyped system (see
Section3.3 for more details). Vice versa, if we allow more variables in the context, then
we loose subject reduction. Notice that substitutions applied to safe terms do not act on
patterns.

We still have to specify the syntax of patterns. In order to do this, we first need to
introduce the notion of matching between objects.

3.2 Matching and Operational Semantics

PLF features pattern abstractions whose application requires solving matching problems.
The next two definitions introduce the notions of matching system and matching algorithm.
Both are an easy modification of the ones presented in [BCKL03]. The algorithm is first-
order, hence decidable.

Definition 3.5 (Matching System) (i) A matching system

T 4
=

∧
i=0...n

Mi≺≺V
Wi
Ni

is a conjunction of matching equations, where∧ is idempotent, associative and com-
mutative. The setV records the name of the free variables that are matchable, while
the setsWi record the names of bound variables appearing in abstractions which
cannot be matched.

(ii) A matching systemT is solved by the substitutionθ if for all i = 0 . . . n, we have that
Miθ ≡ Ni.
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(iii) A matching systemT is in normal form when it has the form

T 4
=

∧
i=0...m

xi≺≺V
Wi
Ni ∧

∧
j=0...n

fj ≺≺V
Wj
fj

(iv) A matching system in normal form is solvable and produces the substitution
[N1/x1 · · ·Nn/xn] if the following conditions are satisfied (otherwise the matching
fails)
(a) for all h, k = 0 . . . n, if xh ≡ xk thenNh ≡ Nk. The rationale is to rule out

matching-clashes, e.g.x≺≺V
W y ∧ x≺≺V

U z
(b) for all i = 0 . . . n, if xi ∈ Wi, thenNi ≡ xi. The rationale is to forbid to match

a bound variablex against a free oney, e.g.x≺≺V
x y

(c) for all i = 0 . . . n, if Fv(Ni) ∩Wi 6= ∅, thenNi ≡ xi. The rationale is to forbid
to match a free variablex with a bound oney, e.g.x≺≺V

y y

Let solve be a function that returns a substitution if a matching system in normal form
is solvable, and fails otherwise, i.e.

solve(T) =

{
θ if T is solvable with θ

fail otherwise

Definition 3.6 (Matching Algorithm Alg) (i) The reduction; is the compatible rela-
tion induced by the following two rules:

M1N1 ≺≺V
U M2N2 ; M1 ≺≺V

U M2 ∧N1 ≺≺V
U N2

(Appl)

W 4
= U ∪ Dom(∆)

XP :∆.T1 ≺≺V
U XP :∆.T2 ; T1 ≺≺V

W T2

(Lbd/Prod)

In rule (Lbd/Prod), the conditionW 4
= U ∪ Dom(∆) increases the set of bound

variables to be matched; moreover, since all free variables inP are declared in the
context∆, two abstraction/product terms match if and only if they have the same
pattern (up-toα-conversion).

(ii) The reduction;∗ is defined as the reflexive and transitive closure of; . Letnorm be
the function that reduces a matching system in normal form, or fails, i.e.

norm (T) 4
=

{
T′ if T ;∗ T′ and T′ is in normal form

fail otherwise

(iii) LetAlg(M ;N) be defined as follows.

Alg(M ;N) 4
=

{
fail if solve(norm(M ≺≺Fv(M)

∅ N)) = fail

solve(norm(M ≺≺Fv(M)
∅ N)) otherwise

The matching algorithm is clearly terminating (since all rules decrease the size of terms),
deterministic (no critical pairs), and works moduloα-conversion and Barendregt’s hygiene-
convention.
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The matching algorithmAlg is sound, in the sense that, if the initial matching system
is solvable, then the substitution computed byAlg solves this system.

Lemma 3.7 (Soundness ofAlg) If Alg(M ;N) = θ, thenMθ ≡ N .

The next definition introduces the standard notions of one-step, many-stepsβ-reduction,
and the corresponding congruence relation.

Definition 3.8 (One/Many-Steps Reduction, Congruence)Letθ = Alg(P ;N).

(i) The top-level rules are

(β−Obj) (λP :∆.M)N 7→β Mθ

(β−Fam) (λP :∆.A)N 7→β Aθ

(β−Kinds) (λP :∆.K)N 7→β Kθ

(ii) Let C[−] denote a pseudo-context with a “single hole” inside, defined on terms and
contexts as follows

C[−] ::= [−] | C[−]T | T C[−] | XP :∆.C[−] | XP :C[−].T | XC[−]:∆.T | ∆, x:C[−]

and letC[T ] be the result of filling the hole with the termT . The one-step evaluation
7→β is defined by the following inference rule

T1 7→β T2

C[T1] 7→β C[T2]
(Ctx)

(iii) The many-step evaluation7→→β and the congruence relation=β are defined respect-
ively as the reflexive-transitive and reflexive-symmetric-transitive closure of7→β. By
7→0

β we denote the reflexive closure of7→β.

3.3 PLF Patterns

In this subsection, we will characterize the set of patterns inOP , which we left unspecified
in Definition 3.10. Such patterns will be objects in suitable normal form, satisfying the
following conditions:

• each free variable appears at most once (linearity condition);

• variables are not in functional position (non-activity condition).

The notion of normal form which we consider requires special care. Namely: terms are
taken to be in normal form whenever all redexes aresubstitution-stuck, i.e. they are stuck,
no matter what substitution is applied to the argument, formally:

Definition 3.9 (PLF Normal Forms) PLF contexts and terms in normal form are mutually
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defined as follows.

NfC 3 Γ ::= ∅ | Γ, x:A

NfK 3 K ::= TypeK1 . . . Kn | ΠP :∆.K | (λP :∆.K)N K1 . . . Kn

NfF 3 A ::= aA1 . . . An | ΠP :∆.A | (λP :∆.A)N A1 . . . An

NfO 3 M,N ::= f M1 . . . Mn | xM1 . . . Mn | λP :∆.M | (λP :∆.M)N M1 . . . Mn

where, the redexes(λP :∆.K)N , and(λP :∆.A)N , and(λP :∆.M)N are "substitution-
stuck”, i.e., for any substitutionθ,Alg(P ;Nθ) = fail.

Finally, we are in the position of characterizing the set of patterns inOP :

Definition 3.10 (PLF Patterns) LetOP be the set of objects defined by

OP
4
= {P ∈ NfO | LPC(P ;Fv(P )) = true ∧ APC(P ;Fv(P )) = false}

where, for any termT and finite set of variablesV,

• the predicateLPC(T ; V), Linear Pattern Condition, is defined by induction onT as fol-
lows.

LPC(x/f/a; V) 4
= true

LPC(XP :∆.T ; V) 4
= LPC(P ;Dom(∆)) ∧ LPC(∆; V ∪ Dom(∆)) ∧ LPC(T ; V ∪ Dom(∆))

LPC(T1 T2; V) 4
= LPC(T1; V) ∧ LPC(T2; V) ∧ (Fv(T1) ∩ Fv(T2) ∩ V = ∅)

• the predicateAPC(T ; V), Active Pattern Condition, is defined by induction onT as fol-
lows.

APC(x/f/a; V) 4
= false

APC(XP :∆.T ; V) 4
= (P ≡ xP1 ∧ x ∈ Dom(∆)) ∨ APC(P ;Dom(∆))∨

APC(T ; V ∪ Dom(∆)) ∨ APC(∆; V ∪ Dom(∆))

APC(T1 T2; V) 4
= APC(T1; V) ∨ APC(T2; V)

At first sight, the above definitions of normal forms and patterns may seem a little awkward,
because of the requirement that only those redexes are considered, which are stuck no mat-
ter what substitution is applied to the argument. Somewhat surprisingly, such a restriction
is necessary to achieve confluence. Actually, any of the restrictions on patterns imposed in
Definition3.10above can be hardly relaxed, apart from considering only well-typed terms.
In the following, we discuss in detail each condition, and possible extensions.

(i) Variables in functional position. It is well known, since [Oos90], that allow-
ing variables in functional position breaks confluence. Here is a simple counter-
example:M 4

= (λ(x y):[x:a→a, y:a].x) (I z), whereI 4
= λx:a.x. Namely,M 7→β
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(λ(x y):[x:a→a, y:a].x) z, by reducing the argument, whileM 7→β I, by reducing the
outermost redex.

(ii) Linearity condition. Since [Oos90], it is also well-known that if we abandon the
linearity condition in patterns, we loose confluence of raw terms (i.e. all PLF terms,
including also terms not typable in the type system of Section3.4below). Namely, let
• Y 4

= (λy:?.λx:?.(x (y y x))) (λy:?.λx:?.(x (y y x))) be the (hopefully untypable)
fix-point combinator

• N 4
= λ(f z z):[z:a].g be a term with a non-linear pattern

• M 4
= Y (λy:?.λx:?.N (f x (y x)))

• Q 4
= Y M

Then, we haveQ 7→→β C g, andQ 7→→β g. Thus the system is not confluent. However,
one can check that the fix-point operatorY is not typable in thePLF type system of
Section3.4 below. Hence the above counterexample does not apply to the case of
well-typed terms. Actually, we do not know whether the linearity condition may be
relaxed, without loosing confluence of well-typed terms. In this paper, we stick with
this condition, and we prove confluence for all raw terms.

(iii) Substitution-stuck redexes.The reason for allowing in patterns only substitution-stuck
redexes, and not simply stuck redexes, is that, in this way, patterns can match only
arguments where the corresponding redexes will never fire. Otherwise, if we in-
clude patterns of the shape(λP1:∆.P2)P3 P ′, where onlyAlg(P1;P3) = fail, i.e.
only the present reduction is stuck, we loose confluence. The following term gives
a counterexampleM 4

= (λ((λI:∅.I)x):[x:a→a].x) ((λI:∅.I) I). Namely, by redu-
cing the outermost redex, we getM 7→β I; while, by reducing inside the argument,
M 7→β (λ((λI:∅.I)x):[x:a→a].x) I.

(iv) Exact Pattern Condition.In this paper, we consider only terms where the variables oc-
curring in patterns are precisely the variables declared in the corresponding contexts.
Namely, by relaxing this condition toFv(P ) ⊆ Dom(∆), we loose subject reduction.
E.g., fromx:A ` (λz:[z:A, y:B].y)x : (λz:∆.B)x, by reducing both the term and
the type, we havex:A ` y:B, which is not derivable. On the other hand, one could
think of havingDom(∆) ⊆ Fv(P ), i.e. patterns can contain free variables, which can
be bound outside, and hence they can be substituted during reductions, as the variable
y in the following term(λy:a.λ(f x y):[x:a].y) z 7→β λ(f x z):[x:a].z But this causes
problems when combined with untypable fix-points, since, as noticed in [Wac05], the
non-linear termN in item (ii ) above can be mimicked in this setting, even under the
linearity pattern condition. Namely, letM 4

= λx:a.λx:∅.g. ThenM behaves asN of
item (ii ), sinceM N1N2 7→β (λN1:∅.g)N2 7→β g if and only ifN1 ≡ N2. ThusM ,
combined with the untypable fix-point operatorY , breaks confluence of raw terms.

(v) Pattern reductions.The counterexample in item (iii ) above also shows that extend-
ing the class of patterns beyond normal forms, by allowing reductions in patterns is
potentially dangerous. In this perspective, in order to preserve confluence when re-
ductions in patterns are permitted, a possible solution is that of allowing reductions
to fire only when the pattern is a normal form in the sense of Definition3.10. This
corresponds to partially fixing a reduction strategy. However,K-reductionsin patterns
deserve special discussion.

(vi) K-reductions in patterns.A K-redexis a redex(λP :∆.M)N , whereλP :∆.M is a
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K-abstraction, i.e. Fv(M) ⊂ Fv(P ). When a K-redex is reduced, (parts of) the argu-
ment is erased. As a consequence, the Exact Pattern Condition is violated, and bound
variables may become free. Here is an example:
M 4

= (λ ((λx:a.y) z)︸ ︷︷ ︸
P

:[y:a→a, z:a].y z) ((λx:a.f) g)︸ ︷︷ ︸
N

Then, by reducing the pat-

tern P and the argumentN , and then reducing the outermost redex, we get
M 7→→β(λy:[y:a→a, z:a].y z) f 7→β f z, i.e. z comes out of its scope!
To avoid this problem, we could simply block K-reductions in patterns, but then we
also need to block pattern matching when the pattern contains a K-redex. Otherwise,
we loose confluence, the termM above being a counterexample. Namely, by redu-
cing the outermost redex,M 7→β f g, while, by reducing the argumentN , we get
M 7→β (λ((λx:a.y) z):[y:a→a, z:a].y z) f , which is not reducible anymore.

The above discussion shows that reaching confluence regardless typability is a rather brittle
property, and can be lost even for small extensions of the definition of patterns. On the basis
of all this, in Definition3.10above, we have carefully devised a notion of pattern, and cor-
responding reduction, which we will see satisfies the confluence property, but nevertheless
is considerably general. In our case, confluence holds already for raw terms. This turns out
to be particularly handy in proving strong normalization.

In particular, our definition of patterns guarantees the validity of the Matching Preserva-
tion Lemma and the Substitution Lemma below, which are crucial for proving confluence
and some fundamental properties of thePLF type system, such as subject reduction and
strong normalization.

The Matching Preservation Lemma (which can be proved by induction on patterns)
expresses the fact that matchings are preserved both under7→β-reductions, and substitutions
of the argument,i.e.:

Lemma 3.11 (Reduction/Substitution Preserve Matching) (i) If Alg(P ;N) = θ and
N 7→β N

′, then there existθ′ such thatAlg(P ;N ′) = θ′ andθ 7→→β θ
′;

(ii) If θ = Alg(P ;N), then, for allθ such thatVar(θ) ∩ CoDom(θ) = ∅, there exists
θ
′ = Alg(P ;Nθ); moreover, for allT , we haveTθθ ≡ Tθθ

′
.

Using Lemma3.11(ii ), we can prove:

Lemma 3.12 (Substitution) If T 7→→β T
′ andθ 7→→β θ

′, thenTθ 7→→β T
′θ′.

The proof of confluence is a suitable application of the usual argument based onparallel
reductionof [Tak89]. As pointed out above, confluence holds for raw terms, provided they
satisfy the suitable restrictions on patterns introduced so far.

Theorem 3.13 (Confluence)The relation7→β is confluent. 2
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Signatures rules

∅ sig
(S·Empty)

Σ sig
`Σ K a 6∈ Dom(Σ)

Σ, a:K sig
(S·Kind)

Σ sig `Σ A : Type f 6∈ Dom(Σ)

Σ, f :A sig
(S·Type)

Contexts rules

Σ sig

`Σ ∅
(C·Empty)

`Σ Γ
Γ `Σ A : Type x 6∈ Dom(Γ)

`Σ Γ, x:A
(C·Type)

Kind rules

`Σ Γ

Γ `Σ Type
(K·Type)

Γ,∆ `Σ P : A Γ,∆ `Σ K

Γ `Σ ΠP :∆.K
(K·Pi)

Γ,∆ `Σ P : A Γ,∆ `Σ K

Γ `Σ λP :∆.K
(K·Abs)

Γ `Σ ΠP :∆.K
Γ,∆ `Σ P : A Γ `Σ N : A

Γ `Σ (λP :∆.K)N
(K·Appl)

Families rules

`Σ Γ a:K ∈ Γ

Γ `Σ a : K
(F·Var)

Γ,∆ `Σ P : B Γ,∆ `Σ A : Type

Γ `Σ ΠP :∆.A : Type
(F·Pi)

Γ,∆ `Σ P : B Γ,∆ `Σ A : K

Γ `Σ λP :∆.A : ΠP :∆.K
(F·Abs)

Γ `Σ A : ΠP :∆.K
Γ,∆ `Σ P : B Γ `Σ N : B

Γ `Σ AN : (λP :∆.K)N
(F·Appl)

Γ `Σ A : K ′

Γ `Σ K Γ `Σ K=βK
′

Γ `Σ A : K
(F·Conv)

Object rules

`Σ Γ x:A ∈ Γ

Γ `Σ x : A
(O·Var)

`Σ Γ f :A ∈ Σ

Γ `Σ f : A
(O·Const)

Γ,∆ `Σ P : B Γ,∆ `Σ M : A

Γ `Σ λP :∆.M : ΠP :∆.A
(O·Abs)

Γ `Σ M : ΠP :∆.A
Γ,∆ `Σ P : B Γ `Σ N : B

Γ `Σ M N : (λP :∆.A)N
(O·Appl)

Γ `Σ M : A
Γ `Σ B : Type Γ `Σ A=βB

Γ `Σ M : B
(O·Conv)

Figure 3. ThePLF Type System
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3.4 PLF Type System

PLF involves type judgments of the following shape:

Σ sig (Σ is a valid signature)

`Σ Γ (Γ is a valid context inΣ)

Γ `Σ K (K is a kind inΓ andΣ)

Γ `Σ A : Type (A is has kindK in Γ andΣ)

Γ `Σ M : A (M is has typeA in Γ andΣ)

The typing rules ofPLF are presented in Figure3. As remarked in the introduction, rules
(F·Appl), (O·Appl) do not utilize metasubstitution as in standardLF, but rather introduce
an explicit type redex. Rules(F·Conv), and(O·Conv) allow to recover the usual rules, if
the reduction fires.
Strictly speaking, one should mention also the auxiliary equality judgments, but in view
of the fact that confluence holds also over non well-typed terms, we do not need contexts
and signatures in the equality judgments, and therefore they can be safely “swept under the
rug”.

Let Γ `Σ α be any judgment in the system. Lemmas3.14, 3.15, 3.16, 3.17below are
the instantiations of Conjecture2.8to PLF.

Lemma 3.14 (Subderivation Property) • Any derivation ofΓ `Σ α has subderivations
of Σ sig and`Σ Γ;

• Any derivation ofΣ, a:K sig has subderivations ofΣ sig and`Σ K;

• Any derivation ofΣ, f :A sig has subderivations ofΣ sig and`Σ A : Type;

• Any derivation of̀ Σ Γ, x:A has subderivations ofΣ sig andΓ `Σ A : Type;

• Given a derivation ofΓ `Σ α and any subterm occurring in the subject of the judgment,
there exists a derivation of a smaller length of a judgment having that subterm as a
subject;

• If Γ `Σ A : K, thenΓ `Σ K;

• If Γ `Σ M : A, thenΓ `Σ A : Type.

Lemma 3.15 (Permutation) If Γ1, x:A,∆, y:B,Γ2 `Σ α, thenΓ1, y:B,∆, x:A,Γ2 `Σ

α, provided thatx 6∈ Fv(∆) ∪ Fv(B).

Lemma 3.16 (Weakening)If Γ `Σ α and` Γ,∆, thenΓ,∆ `Σ α.

Lemma 3.17 (Unicity of Types and Kinds) If Γ `Σ T : T1 and Γ `Σ T : T2, then
Γ `Σ T1=βT2.

Lemma 3.18 (Transitivity) If Γ, x:A,∆ `Σ α and Γ `Σ M : A, thenΓ,∆[M/x] `Σ

α[M/x].

Lemma 3.19 (Abstraction Typing) • If Γ `Σ T (or Γ `Σ T : T ′) and Γ′ is such that
Dom(Γ) = Dom(Γ′), and for all x ∈ Dom(Γ), Γ `Σ Γ(x)=βΓ′(x) andFv(Γ(x)) ⊆
Fv(Γ′(x)), thenΓ′ `Σ T ′ (or Γ′ `Σ T : T ′);
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• If Γ `Σ λP :∆.T : ΠP ′:∆′.T ′, thenDom(∆) = Dom(∆′), and for allx ∈ Dom(∆), we
haveΓ,∆ `Σ ∆(x)=β∆′(x), andΓ,∆ `Σ P=βP

′;

• If Γ `Σ λP :∆.T : ΠP :∆.T ′, thenΓ,∆ `Σ P : σ andΓ,∆ `Σ T : T ′.

We are now ready to prove that typing is preserved by reduction.

Theorem 3.20 (Subject Reduction) (i) If Γ `Σ K andK 7→β K
′, thenΓ `Σ K ′.

(ii) If Γ `Σ A : K andA 7→β B, thenΓ `Σ B : K;

(iii) If Γ `Σ M : A andM 7→β N , thenΓ `Σ N : A.

3.5 Strong Normalization

Let SN = SNO ∪ SNF ∪ SNK be the set of strongly normalizing terms. This section is
devoted to the proof of the following theorem:

Theorem 3.21 (Strong Normalization) (i) If Γ `Σ K, thenK ∈ SNK;

(ii) If Γ `Σ A : K, thenA ∈ SNF ;

(iii) If Γ `Σ M : A, thenM ∈ SNO.

The proof of the above theorem is based on a non-trivial extension of the standardCom-
putability Argumentto accommodate the presence of patterns in the syntax. For technical
reasons, in this section we find convenient to work in the equivalentPLF system with the
more informative lambda pattern abstractionXP :∆:B.T , whereB is meant to be the type
inferred forP . We will omitB when it is irrelevant in proofs.

Definition 3.22 (Comp Sets) • Let CompO be the set ofobject computability candidates
defined as follows.
N ∈ CompO if and only ifN satisfies:
(c1) N ⊆ SNO;
(c2) ∀N ∈ SNO. xN , andf N ∈ N ;
(c3) N is closed under the rule

Q 7→→β Q
′ Alg(P ;Q′) = θ (Mθ)N ∈ N CoDom(∆), Q ∈ SN

(λP :∆.M)QN ∈ N

(c4) N is closed under the rule

∀Q′. [Q 7→→β Q
′ ⇒ Alg(P ;Q′) = fail] CoDom(∆),M,Q,N ∈ SN

(λP :∆.M)QN ∈ N

• LetCompF be the set offamily computability candidatesdefined as follows.
N ∈ CompF if and only ifN satisfies:
(c1) N ⊆ SNF ;
(c2) ∀N ∈ SNF . aN ∈ N ;
(c3) N is closed under the rule

Q 7→→β Q
′ Alg(P ;Q′) = θ (Aθ)N ∈ N CoDom(∆), Q ∈ SN

(λP :∆.A)QN ∈ N
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(c4) N is closed under the rule

∀Q′. [Q 7→→β Q
′ ⇒ Alg(P ;Q′) = fail] CoDom(∆), A,Q,N ∈ SN

(λP :∆.A)QN ∈ N

The rule in(c3) above captures the case when there exists,eventuallya possible matching
between the pattern and the argument, while the rule in(c4) captures the case whennever
there will be a matching. In what follows, we denote byP v Q the fact that there exist
Q′, θ such thatQ 7→→β Q

′ andθ = Alg(P ;Q′), and byP 6v Q the fact that, for allQ′ such
thatQ 7→→β Q

′, we haveAlg(P ;Q′) = fail.
The following lemma holds.

Lemma 3.23 SNO ∈ CompO andSNF ∈ CompF .

The next definition, together with Lemma3.25below, give an interpretation of families in
CompO, and of kinds inCompF . Such interpretation is defined by induction on families
and kinds. The complexity measurem for families and kinds is given by the number of
family/kind metaoperators like,e.g. X and the hidden application metaoperator,i.e.:

m(a) = 0 m(Type) = 0 m(T M) = m(T ) + 1 m(XP :∆.T ) = m(T ) + 1

Notice that, in particular,A andAθ have the same complexity.

Definition 3.24 (Family and Kind Interpretation) • LetJ− KF be the family interpreta-
tion function defined by induction on families as follows.

J aN KF = SNO JXP :∆:B.A KF ={
M

∣∣∣∣∣Q ∈ JB KF =⇒M Q ∈

{
SNO if P 6v Q⋃
{JAθ KF | Q 7→→β Q

′ ∧ θ = Alg(P ;Q′)} otherwise

}}

J (λP :∆.A)M N KF =

{
SNO if P 6vM⋃
{J (Aθ)N KF |M 7→→β M

′ ∧ θ = Alg(P ;M ′)} otherwise

• Let J− KK be the family interpretation function defined by induction on kinds as follows.

J Type N KK = SNF JXP :∆:B.K KK ={
A

∣∣∣∣∣Q ∈ JB KK =⇒ AQ ∈

{
SNF if P 6v Q⋃
{JKθ KK | Q 7→→β Q

′ ∧ θ = Alg(P ;Q′)} otherwise

}}

J (λP :∆.K)M N KK =

{
SNF if P 6vM⋃
{J (Kθ) N KK |M 7→→β M

′ ∧ θ = Alg(P ;M ′)} otherwise

Then the following lemmas hold:

Lemma 3.25 (i) For every familyA, we haveJA KF ∈ CompO;

(ii) For every kindK, we haveJK KK ∈ CompF .

Lemma 3.26 (Soundness ofJ KF/J KK ) (i) If A 7→→β B, thenJA KF = JB KF ;

(ii) If K 7→→β K
′, thenJK KK = JK ′ KK.
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Lemma 3.27 (Key Lemma) Let Γ be a context, and letNi ∈ J Γ(xi) KF , for all xi ∈
Dom(Γ). Then:

(i) If Γ `Σ K, thenK[N/x] ∈ SNK;

(ii) If Γ `Σ A : K, thenA[N/x] ∈ JK[N/x] KK;

(iii) If Γ `Σ M : A, thenM [N/x] ∈ JA[N/x] KF .

By Lemma3.27, using the fact that variables belong to any set inCompO, we can prove
the Strong Normalization Theorem3.21.

Finally, we are in the position of proving thatPLF can be used as a framework for proof
checking.

Theorem 3.28 (Judgements decidability)It is decidable whether thePLF judgment
Γ `Σ α is derivable.

4 The Closed Logical Framework

In this section, we investigate the Closed Logical Framework,CLF, introduced in Sec-
tion 2.4as an instance ofGLF. We recall thatCLF is obtained fromGLF by considering the
setSCLF

4
= { ( Truex , [x:σ] , Truex , T̂ruex ) , ( Closedx , [x:σ] , Closedx , Ĉlosedx ) }.

This instantiation ofGLF amounts to a logical framework which features the standardβ-
rule as well as a restrictedβ-rule that fires only when the argument is closed. In Section5,
we will provide a very interesting application ofCLF as a Logical Framework.

The Closed Logical Framework is an example of an interesting class of Logical Frame-
works, which arise when we instantiateGLF to systems which feature standardβ-reduction
together with a restrictedβ-reductioni.e.

(βv) (λx.M)N →βv M [N/X] provided N ∈ V

whereV is a set ofvalues. Gordon Plotkin was the first to introduce this kind of restric-
tion in the call-by-value lambda calculus, [Plo75], in order to discuss the observational
equivalence of the SECD machine. Other restricted lambda calculi were introduced in
the literature, to analyze the behavior of special classes of terms,i.e. strongly normalizing
terms. However the simultaneous combination of both the standardβ andβv was rarely
discussed, let alone in a typed context. Once again we point out that the special nature of
the type system, which records potential reductions which have not yet fired, is the crucial
ingredient, which makes this enterprise worthwhile.

It is interesting to point out that, in what follows, everything goes through, provided
the setV of values is closed under standardβ-reduction and non-overlapping substitutions
which derive from the reductions involved,i.e. provided the appropriate form of Lemma4.3
below holds.

In discussingCLF, for the sake of brevity, we writeClosedx by x∅ andTruex by x. We
also letx ∈ {x, x∅}.

4.1 CLF Terms

In the next definition, we introduce the pseudo-syntax for kinds, families, objects and con-
texts.
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Definition 4.1 (CLF Pseudo-syntax)

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, f :A Signatures

Γ,∆ ∈ C Γ ::= ∅ | Γ, x:A Contexts

K ∈ K K ::= Type | Πx:A.K | λx:A.K | KM Kinds

A,B,C ∈ F A ::= a | Πx:A.B | λx:A.B | AM Families

M,N,Q ∈ O M ::= f | x | λx:A.N |M N Objects

4.2 Operational Semantics

Definition 4.2 (One/Many-Steps, Congruence)LetO∅ be the set of closed objects.

(i) The top-level rules are

(β−Obj) (λx:A.M)N →β M [N/x] (λx∅:A.M)N →β M [N/x] if N ∈ O∅

(β−Fam) (λx:A.B)N →β B[N/x] (λx∅:A.B)N →β B[N/x] if N ∈ O∅

(β−Kinds) (λx:A.K)N →β K[N/x] (λx∅:A.K)N →β K[N/x] if N ∈ O∅

(ii) one-step, many-steps reduction and congruence are defined as usual.

The two notions ofβ-reduction inCLF, namely standardβ-reduction and restrictedβ-
closed reduction, nicely combine, in the sense that a potentialβ-closed reduction is pre-
served under application of any substitution (coming from another, possibly standard re-
duction).

Lemma 4.3 (Closure under Reduction and Substitution)If N ∈ O∅, then, for any sub-
stitutionθ,Nθ ∈ O∅. Moreover, for anyN andT , and for anyθ such thatx 6∈ CoDom(θ),
we haveT [N/x]θ ≡ Tθ[Nθ/x].

Using the above lemma, one can prove the following substitution lemma.

Lemma 4.4 (Substitution) If T 7→→β T
′ andθ 7→→β θ

′, thenTθ 7→→β T
′θ′.

Using Lemma4.3and the Substitution Lemma above, and following the standard argu-
ment based on parallel reduction, one can prove:

Theorem 4.5 (Confluence)The relation7→β is confluent. 2

4.3 CLF Type System
CLF involves classical type judgments of the following shape:

Σ sig `Σ Γ Γ `Σ Γ Γ `Σ A : Type Γ `Σ M : A
The typing rules ofCLF are given in Figure4. As was the case forPLF, we have also here
the auxiliary equality judgmentsΓ `Σ M =β N . As for PLF, confluence holds for raw
terms, hence equality judgments are unproblematic. Due to the simplicity of predicates,
the metatheory ofCLF follows from that ofLF [HHP93], with minor modifications. The
following galleryof results holds:
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Signatures rules

∅ sig
(S·Empty)

Σ sig `Σ K a 6∈ Dom(Σ)

Σ, a:K sig
(S·Kind)

Σ sig
`Σ A : Type c 6∈ Dom(Σ)

Σ, f :A
(S·Type)

Contexts rules

Σ sig

`Σ ∅
(C·Empty)

`Σ Γ
Γ `Σ A : Type x 6∈ Dom(Γ)

`Σ Γ, x:A
(C·Type)

Kind rules

`Σ Γ

Γ `Σ Type
(K·Type)

Γ, x:A `Σ K

Γ `Σ Πx:A.K
(K·Pi)

Γ, x:A `Σ K

Γ `Σ λx:A.K
(K·Abs)

Γ `Σ Πx:A.K Γ `Σ N : A

Γ `Σ (λx:A.K)N
(K·Appl)

Families rules

`Σ Γ a:K ∈ Γ

Γ `Σ a : K
(F·Var)

Γ, x:B `Σ A : Type

Γ `Σ Πx:B.A : Type
(F·Pi)

Γ, x:B `Σ A : K

Γ `Σ λx:B.A : Πx:B.K
(F·Abs)

Γ `Σ A : Πx:B.K Γ `Σ N : B

Γ `Σ AN : (λx:B.K)N
(F·Appl)

Γ `Σ A : K ′

Γ `Σ K Γ `Σ K=βK
′

Γ `Σ A : K
(F·Conv)

Object rules

`Σ Γ x:A ∈ Γ

Γ `Σ x : A
(O·Var)

`Σ Γ f :A ∈ Σ

Γ `Σ f : A
(O·Const)

Γ, x:B `Σ M : A

Γ `Σ λx:B.M : Πx:B.A
(O·Abs)

Γ `Σ M : Πx:B.A Γ `Σ N : B

Γ `Σ M N : (λx:B.A)N
(O·Appl)

Γ `Σ M : A
Γ `Σ B : Type Γ `Σ A=βB

Γ `Σ M : B
(O·Conv)

Figure 4.CLF Type System

Proposition 4.6 (Gallery) (i) Subderivation Property;

(ii) Derivability of Permutation and Weakening;

(iii) Unicity of Types and Kinds;

(iv) Transitivity;

(v) Abstraction Typing;

(vi) Subject Reduction.
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Strong Normalization follows from strong normalization of standardLF, observing that
β-reduction restricted to closed arguments is a special case of the plainβ-reduction.

Theorem 4.7 (Strong Normalization forCLF) (i) If Γ `Σ K, thenK ∈ SNK;

(ii) If Γ `Σ A : K, thenA ∈ SNF ;

(iii) If Γ `Σ M : A, thenM ∈ SNO. 2

5 Putting GLF to use: Examples

In this section we illustrate by means of a few simple examples howPLF andCLF can
be conveniently used as Logical Frameworks. Clearly, more experiments are necessary in
order to assess in full generality the potential of such Frameworks. But we are confident that
already these very simple encodings of logical systems, which are problematic in standard
LF, make the point concerning the usability of the new Frameworks. Further possible
developments will be mentioned in Section6. We assume the reader familiar with the
pragmatics of Logical Frameworks. An elementary introduction appears in [AHMP92].
Most of the papers cited in the Introduction provide further interesting material.

5.1 Case Analysis inPLF

Case analysis can be handled very easily and neatly inPLF by taking advantage of the
pattern matching facilities. For instance, in order to encode inPLF the predecessor, for
the classical (untyped) term rewriting system over the constant integer typeint, (0 →
0, (succ x) → x), we can simply writeλ0:int.0 andλ(succ x):[x:int].x. Following van
Oostroom [Oos90], and [BCKL03], we can take advantage of having functions-as-patterns.
Namely, projections for pairs can be neatly defined as follows.

Pi1
4
= λ(λz:bool.z x y):[x:A, y:B].x Pi2

4
= λ(λz:bool.z x y):[x:A, y:B].y

wherebool is the constant boolean type.

5.2 Plotkin’s Call-by-value Lambda Calculus.

For lack of space, we will provide only one example encoding to illustrate how patterns can
increase the usability of Dependent Type Theory as a metalanguage for encoding logical
systems. Another encoding appears in [LHR05]. Plotkin’s call-by-value lambda calculus
(λv-calculus) [Plo75] differs from the traditional lambda calculus in the formulation of
theβv-reduction rule, namely(λx.M)N →βv M [N/x] provided thatN is a value, that is a
variable or an abstraction. Theη-reduction rule is the usual(λx.M x) →η M , providedx 6∈
Fv(M), since variables are intended to range over values. Although interesting encodings
of Plotkin’sλv-calculus do exist in standardLF, the price to pay is to introduce an auxiliary
machinery for representing syntactic subcategories, [AHMP92]. In PLF we can present
alternate encodings of Plotkin’sλv-calculus which safely do away with subcategories, as in
the signature appearing in Figure5. In the signatureΣv of Figure5 standard abbreviations
are in use,i.e. infix notation, operators precedence,Πx:A.B ≡ A→ B, if x 6∈ FV (B), as

well as the following ones:on for
n times︷ ︸︸ ︷

o→ . . .→ o andXC[x]:[x:o] for XC[xo].
All the constants are self-explicatory but for!. This constructor denotes values, and

coherently, the domain of theLam constructor takes as arguments only functions whose
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Syntactic Categories

o : Type

Constructors and Judgments

! : o2 Lam : Πf :[Π!xo.o]. o App : o3 = : o→ o→ Type

Axioms and Rules

Eqrefl : Πxo. x = x

Eqsymm : Πxo. Πyo. (x = y) → (y = x)

Eqtrans : Πxo. Πyo. Πzo. (x = y) → (y = z) → (x = z)

Eqctx : Πxo. Πyo. Πzo. Πwo. (x = y) → (z = w) → (App x z = App y w)

Betav : Πf :[Π!xo.o]. Πyo. App (!(Lam f)) (!y) = f (!y)

Xiv : Πf :[Π!xo.o]. Πg:[Π!xo.o].

(Πzo. f (!z) = g (!z) → (!(Lam f) = !(Lam g))

Etav : Πxo. !(Lam (λ(!yo).App (!x) (!y))) = !x

Figure 5. The signatureΣv for Plotkin’sλv-calculus inPLF

argument has to have the pattern of a value. Please notice the essential use of patterns. The
rationale of this signature is clarified by the following adequacy theorem:

Theorem 5.1 (Adequacy and Faithfulness)LetΞΓ(o) be the set ofPLF terms in normal
form of typeo in the contextΓ ≡ [x1:o, . . . , xn:o], and let
a J− KΓ : Λv[x1, . . . , xn] −→ ΞΓ(o) be the bijective function defined as follows.

JM KΓ =


!x if M ≡ x

AppJP KΓ JQ KΓ if M ≡ P Q

!(Lam (λ!xo.JP [x] KΓ,x:o)) if M ≡ λx.P [x]

and let `v M = N denote the standard equational theory for Plotkin’sλv-calculus
[Plo75]. The following holds:

(i) Γ `Σv JM KΓ : o is provable if and only ifM ∈ Λv[x1, . . . , xn] (i.e. the set of terms
in Λv with x1, . . . , xn free variables).

(ii) ∆ `Σv P : JM KΓ = JN KΓ is provable, for∆ 4
= y1:JM1 KΓ = JN1 KΓ, . . . ,

yn:JMn KΓ = JNn KΓ and someP , iff M1 = N1, . . . ,Mn = Nn `v M = N .
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Propositional Connectives and Judgment

o : Type ⊃: o3 ¬ : o2 2 : o2 True : o→ Type

Propositional Axioms

A1 : Πφo. Πψo. Trueφ ⊃ (ψ ⊃ φ)

A2 : Πφo. Πψo. Πθo. True(φ ⊃ (ψ ⊃ θ)) ⊃ (φ ⊃ ψ) ⊃ (φ ⊃ θ)

A3 : Πφo. Πψo. True(¬ψ ⊃ ¬φ) ⊃ ((¬ψ ⊃ φ) ⊃ ψ

Modal Axioms

K : Πφo. Πψo. True2(φ ⊃ ψ) ⊃ (¬φ ⊃ ¬ψ)

4 : Πφo. True2φ ⊃ 22φ

> : Πφo. True2φ ⊃ φ

Rules

MP : Πφo. Πψo. Trueφ ⊃ Trueφ ⊃ ψ → Trueψ

NEC : Πφo. Πx∅:Trueφ. True2φ

Figure 6. The signatureΣS4 for classicS4 modal logic in Hilbert style inCLF

5.3 Modal Logics

The expressive power of the Closed Logical Framework allows to encode smoothlyrules of
proof, i.e. rules which apply only to premises which do not depend on any assumption, such
as the rule ofnecessitationin Modal Logic, as well asrules of derivation, such asmodus
ponens. It uses a constrainedΠ-abstraction in rules of proof and a standardΠ-abstraction
in rules of derivation.

We shall not develop here the encodings of all the plethora of modal logics, in Hilbert
and Natural Deduction style, which appear in [AHMP98]. By way of example, we shall
only give the signature for classicalS4 in Hilbert style, which features necessitation as a
rule of proof, namely

∅ ` φ

∅ ` 2φ
(NEC)

The predicateClosedx
4
= “x is a term with no free variables” is precisely what is needed

to encode it correctly.
The signatureΣS4 encoding the modal logicS4 in CLF is presented in Figure6. Stand-

ard abbreviations are in use. Notice that, apart from the encoding of the rule of proofNEC,
all the remaining constants are standard. We can easily show that:

Theorem 5.2 (Logical Adequacy)φ1, . . . , φn `S4 ψ if and only if ∃M. Γ,Trueφ1,

. . . ,Trueφn `ΣS4
M : Trueψ, whereΓ ≡ X1:o, . . . ,Xk:o for Xi free propositional vari-

ables inφ1, . . . , φn, ψ.
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Adequacy of proof encodings inCLF is usually straightforward. On the other hand, when
explicit encodings of the closure judgment are given inLF, to achieve adequacy one needs
to prove that there exists at most one derivation of such a judgment.

6 Conclusions and Directions for Future Work

In this paper, we have introduced a general Logical Framework which subsumes the Logical
FrameworkLFof [HHP93], and generates new Logical Frameworks. These can feature a
very broad spectrum of generalizedβ-reductions, together with an expressive type system
which records when such reductions do not fire. The key ingredient in the typing system is
a decomposition of the standard term-application rule.

We have instantiated our Framework to two important case-studies. The Pattern
Lambda CalculusPLF, which arises from the tradition of [Oos90, CKL01a, CKL01b,
BCKL03], and the Closed Logical FrameworkCLF. For both calculi we have have stud-
ied in depth the language theory, proving major metatheoretical results, such as subject
reduction, confluence, strong normalization. In both cases we achieve decidability, which
legitimates them as metalanguages for proof checking and interactive proof editing. Fi-
nally, we have illustrated the usability and expressivity of such Frameworks giving some
examples of encodings which where hitherto problematic in standardLF. We believe that
our metalogical Framework has some considerable potential, but more experiments need
to be done to show this. A thorough comparison with existing work is also mandatory.
Among various results, we prove also strong normalization via reducibility candidates, for
a pattern lambda calculusPLF. This problem was left open in [BCKL03], already for a
weaker subsystem. A strong normalization proof for a weaker system thanPLF appears
in [Wac05]. Here is a rather rhapsodic list of comments and directions for future work.

• Formalize the notion of predicateP, still preserving generality.

• We conjecture that confluence and strong normalization properties can be established
for a generic predicate calculus, provided that the various notions of reductions nicely
combine, in the sense that7→Pi-reductions are preserved both under7→Pj -reductions
of the argument and application to the argument of any substitution coming from other
reductions.

• Case analysis inPLF should be compared with that of inductive types inCoq.

• InstantiateGLF so as to provide a more natural encoding of the Natural Deduction2-
introduction ruleof Prawitz:

2Γ ` φ

2Γ ` 2φ
(2-Intro)

E.g. if we introduce a new predicateOccursx
4
= “x is a term whose free variables occur

only in subterms of typeTrue2ψ for someψ”, then2-Intro becomes:

2-I : Πφ:o. ΠOccursx:[x:Trueφ]. True2φ.

• Section3.3shows that there is no strong notion of pattern reduction. Still, can we allow
reductions in patterns under specific strategies,e.g. only where the pattern is in normal
form according to Definition3.9and does not contain K-redexes?

30



Honsell, Lenisa, Liquori

• Can the linearity restriction in patterns be relaxed, still preserving confluence and strong
normalization over well typed patterns?

• Our results should scale up to all the systems in [BCKL03], i.e. to systems corresponding
to the full Calculus of Constructions [CH88].

• Is there an interesting Curry-Howard isomorphism forPLF and more generally for sys-
tems blending rewriting facilities and higher order calculi?

• InstantiateGLF in order to give sharp encodings of relevance and linear logics?

• Extend existing proof assistants based on dependent type systems,e.g. Coq, with pattern
matching facilities as inPLF, and more generally withGLF.

• Among the various calculi with patterns, versionsà la Curry ofPLF should be explored
and compared e.g. with the pattern calculus recently introduced in [JK06].
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A Appendix

A.1 Proof of Lemma3.11

(i) By induction onP .
• P ≡ f or P ≡ x, then the thesis is immediate.
• P ≡ f P1 . . . Pn. Then,N ≡ f N1 . . . Nn, with θi = Alg(Pi;Ni), θ =

⋃
i θi, and

Ni 7→0
β N

′
i , for all i (and, for exactly onei,Ni 7→β N

′
i ). By induction hypothesis, for

all i, there existsθ′i, such thatθ′i = Alg(Pi;N ′
i), andθi 7→→β θ

′
i. Now, by the linearity

hypothesis onP , theθ′i’s are all coherent, thus we can defineθ′ 4=
⋃

i θ
′
i, such that

θ′ = Alg(f P1 . . . Pn, f N
′
1 . . . N

′
n).

• P ≡ λP1:∆.P2. Then,N ≡ λP1:∆.N2, with θ = Alg(P ;N) = Alg(P2;N2),
θ(x) = x, for all x ∈ Fv(P1), andλP1:∆.N2 7→β λP1:∆.N ′

2 ≡ N ′. By in-
duction hypothesis, there existsθ′, such thatθ′ = Alg(P2;N ′

2) andθ 7→→β θ
′, hence

θ′ = Alg(P ;N ′).
• P ≡ (λP1:∆.P2)P3 P , with Alg(P1;P3θ) = fail, for all θ. Then, N ≡
(λP1:∆.N2) N3 N , andAlg(P1;N3) = fail, andθ = θ1 ∪ θ2 ∪ θ, whereθ1 =
Alg(P2;N2), andθ2 = Alg(P3;N3), andθ = Alg(P ;N) (θ1, θ2,θ are the identity
on the free variables ofP1), and(λP1:∆.N2)N3 N 7→β (λP1:∆.N ′

2)N
′
3 N ′ ≡ N ′.

By induction hypothesis, there existθ′1 = Alg(P2, N
′
2), andθ′2 = Alg(P3, N

′
3), and

θ′ = Alg(P ,N ′) such thatθ1 7→→β θ
′
1, andθ2 7→→β θ

′
2, andθ 7→→β θ′. By the linearity

hypothesis onP , theθ′i’s are all coherent, thus we haveθ′ 4=
⋃

i θ
′
i = Alg(P ;N ′).

(ii) We proceed by induction onP .
• P ≡ f . Then, the thesis is immediate.
• P ≡ x, andθ ≡ [N/x], andθ

′ ≡ [Nθ/x]. Then, the thesis follows by proving, by
induction onT , that, ifθ does not overlap with[N/x], thenT [N/x]θ ≡ Tθ[Nθ/x].
• P ≡ f P1 . . . Pn. Then,N ≡ f N1 . . . Nn, andθ =

⋃
i θi, andθi = Alg(Pi;Ni),

for all i. By induction hypothesis, for alli, there existsθ′i = Alg(P ′
i ;N

′
i), such that,

for all T , we haveTθiθ = Tθθ
′
i. Then, the thesis follows by the fact that theθi’s

(θ
′
i’s) are all coherent, since patterns satisfy the linearity condition on variables.

• P ≡ λP1:∆.P2, andθ = Alg(P ;N). Then, θ(x) = x, for all x ∈ Fv(P1),
N ≡ λP1:∆.N2, andθ = Alg(P2;N2). By induction hypothesis, for anyθ non-
overlapping withθ (in particularθ does not overlap with the bound variables ofP ),
there existsθ

′
, such thatθ

′ = Alg(P2, N2θ), and, for allT , we haveTθθ ≡ Tθθ
′
.

Hence, we also haveθ
′ = Alg(λP1:∆.P2, λP1:∆θ.N2θ).

• P ≡ (λP1:∆.P2)P3 P , andθ = Alg(P ;N). Then,N ≡ (λP1:∆.N2)N3 N ,
with θ = θ1 ∪ θ2 ∪ θ, whereθ1 = Alg(P2;N2), andθ2 = Alg(P3;N3), andθ =
Alg(P ;N) (andθ1, θ2,θ are the identity on the free variables ofP1). By induction
hypothesis, for any non-overlappingθ, there existθ

′
1 = Alg(P2, N2θ), andθ

′
2 =

Alg(P3, N3θ), θ′ = Alg(P ,N ′), such that, for allT , we haveTθθ ≡ Tθθ
′
. By

the linearity hypothesis onP , theθ′i’s are all coherent, thus we haveθ′ 4=
⋃

i θ
′
i =

Alg(P ;N ′). 2

A.2 Proof of Confluence Theorem3.13.

Definition A.1 (Parallel Reduction) The parallel reduction⇒β is defined in FigureA.1.
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T ⇒β T
(Par1)

T ⇒β T
′ N ⇒β N

′

T N ⇒β T
′N ′

(Par2)

T ⇒β T
′ ∆ ⇒β ∆′

XP :∆.T ⇒β XP :∆′.T ′
(Par3)

∆ ⇒β ∆′ T ⇒β T
′ N ⇒β N

′ Alg(P ;N ′) = θ

(λP :∆.T )N ⇒β T
′θ

(Par4)

Figure A.1. Parallel Reduction

It is easy to prove that:

Lemma A.2 (Relations) 7→β ⊆⇒β ⊆ 7→→β .

By LemmaA.2 above, in order to prove the confluence of the7→β relation, it is enough
to prove the diamond property of the parallel reduction⇒β. To this aim, we need the
following mapping�, and a number of instrumental lemmas.

Definition A.3 (Diamond) We define� by induction (point-wise extended to contexts):

x� 4
= x

(XP :∆.T )� 4
= XP :∆�.T �

(T N)� 4
= T �N� if T is not an abstraction

((λP :∆.T )N)� 4
=

{
T �θ if Alg(P ;N�) = θ

(λP :∆.T )�N� otherwise

Lemma A.4 For anyT , we haveT ⇒β T
�.

The following lemma is the counterpart of Lemma3.11(i) for ⇒β , and it expresses the fact
that matchings are preserved under⇒β-reductions.

Lemma A.5 (Parallel Reduction Preserves Matching)If θ = Alg(P ;N) and N ⇒β

N ′, then there existsθ′, such thatθ′ = Alg(P ;N ′) andθ ⇒β θ
′.

Lemma A.6 (Parallel Substitution) If T ⇒β T
′ andθ ⇒β θ

′, thenTθ ⇒β T
′θ′.

Proof By induction on the derivation ofT ⇒β T
′ . If T ⇒β T is obtained by an application

of rule(Par1), then the thesis follows by proving that, ifθ ⇒β θ
′, then for allT , Tθ ⇒β Tθ

′

(which can be shown by straightforward induction onT ). The remaining cases are dealt
with straightforwardly using the induction hypothesis, except for the case where the last
rule applied in the derivation is(Par4), i.e.:

∆ ⇒β ∆′ T1 ⇒β T
′
1 N ⇒β N

′ Alg(P ;N ′) = θ

T ≡ (λP :∆.T1)N ⇒β T
′
1θ ≡ T ′

(Par4)

By induction hypothesis,∆θ ⇒β ∆′θ′, andT1θ ⇒β T ′1θ
′, andNθ ⇒β N ′θ′. Moreover,

by Lemma3.11(ii ), there existsθ
′ = Alg(P ;N ′θ′). Thus, by rule(Par4), we have

(λP :∆θ.T1θ)Nθ ⇒β T
′
1θ
′θ
′ ≡ T ′1θθ

′, by Lemma3.11(ii ). This concludes the proof. 2

Lemma A.7 (Diamond Property) If T1 ⇒β T2, thenT2 ⇒β T
�
1 .

Proof By induction on the derivation ofT1 ⇒β T2. If the only rule applied in the derivation
is (Par1), then the thesis follows by LemmaA.4. If the last rule in the derivation is(Par2)
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or (Par3), then the thesis follows by induction hypothesis. Finally, let us consider the case
when the last rule in the derivation is(Par4), i.e.:

∆ ⇒β ∆′ T ⇒β T
′ N ⇒β N

′ Alg(P ;N ′) = θ

T1 ≡ (λP :∆.T )N ⇒β T
′θ ≡ T2

(Par4)

By induction hypothesis,∆′ ⇒β ∆�, and T ′ ⇒β T �, and N ′ ⇒β N�. Hence, by
LemmaA.5, there existsθ′ = Alg(P ;N�), and θ ⇒β θ′. Thus, by definition of( )�,
we haveT �1 ≡ T �θ′, and, by the Substitution Lemma,T ′θ ⇒β T

�θ′. 2

Finally, Theorem3.13follows by LemmasA.2 andA.7.

A.3 Proof of Subject Reduction Theorem3.20

Proof of Lemma Abstraction Typing 3.19By induction on derivations. 2

The proof of Subject Reduction Theorem3.20 follows by induction on the structure of
derivations, using Abstraction Typing and Transitivity. 2

A.4 Proof of Strong Normalization Theorem3.21.

Proof of Lemma 3.23. We only prove thatSNO ∈ CompO. The proof ofSNF ∈ CompF

being similar. The setSNO clearly satisfies(c1) and(c2). We prove thatSNO satisfies
property(c3). Let assume thatQ 7→→β Q

′, andAlg(P ;Q′) = θ, and(Mθ)N ∈ SNO,
and CoDom(∆), and Q ∈ SN. We have to prove that(λP :∆.M)QN ∈ SNO.
We proceed by induction on the lengths of the minimal derivations to normal forms of
(M,Q,N ,CoDom(∆)), lexicographically ordered. IfM,Q,N ,CoDom(∆) are all nor-
mal forms, then the thesis is immediate. Otherwise, let us consider all possible7→β-
reductions starting from(λP :∆.M)QN . We have to prove that the reduced terms are
strongly normalizing. There are various cases:

• (λP :∆.M)QN 7→β (λP :∆.M ′)QN . SinceMθ ∈ SNO, by hypothesis, and
Mθ 7→→β M

′θ, by Lemma3.12, thenM ′θ ∈ SNO. Thus, by induction hypothesis,
(λP :∆.M ′)QN ∈ SNO;

• (λP :∆.M)QN 7→β (λP :∆.M)Q′′ N . Then, sinceAlg(P ;Q′) = θ, by Conflu-
ence Theorem and Lemma3.11(i), there existsQ̃, such thatQ′′ 7→→β Q̃, and there ex-
ists θ′, such thatθ′ = Alg(P ; Q̃), and θ 7→β θ′. Thus, since by Lemma3.12,
Mθ 7→→β Mθ′, andMθ ∈ SNO, then alsoMθ′ ∈ SNO. Hence, by induction hypothesis,
(λP :∆.M)Q′′ N ∈ SNO;

• (λP :∆.M)QN 7→β (λP :∆.M)QN ′, or (λP :∆.M)QN 7→β (λP :∆′.M)QN .
Then, the thesis follows by induction hypothesis.

Using a similar (simpler) argument, one can prove thatSNO satisfies also(c4). 2

Proof of Lemma 3.25. We prove a stronger statement for item(1), (we omit the proof
of item (2), since it is similar): for any familyA, and for any substitutionθ, we have
JAθ KF ∈ CompO. We proceed by induction onA.
• A ≡ aN . Then, the thesis follows by definition ofJ KF , using Lemma3.23.
• A ≡ XP :∆:B.A′. Then,JAθ KF =
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{
M

∣∣∣∣∣Q ∈ JB KF ⇒ M Q ∈

{
SNO if P 6v Q⋃
{JA′θθ KF | Q 7→→β Q

′ ∧ θ = Alg(P ;Q′)} otherwise

}}
We have to check thatJAθ KF satisfies conditions(c1−c4) in Definition3.22.
• (c1,c2) follow from the fact that, by induction hypothesis,JA′θθ KF ∈ CompO, for all
θ, θ.
• (c3) We have to prove that(λP ′:∆′.M ′)Q′ N ′ ∈ JAθ KF , whenever there exists
Q′′, such thatQ′ 7→→β Q

′′, and θ = Alg(P ′;Q′′), and (M ′θ) N ′ ∈ JAθ KF , and
CoDom(∆′), Q′ ∈ SNO. By definition ofJAθ KF , we have(λP ′:∆′.M ′)Q′N ′ ∈ JAθ KF

if, for anyQ ∈ JB KF ,

(λP ′:∆′.M ′)Q′ N ′Q ∈

{
SNO if P 6v Q⋃
{JA′θθ KF | Q 7→→β Q

′′ ∧ θ = Alg(P ′;Q′′)} otherwise

Thus, letQ be such thatQ ∈ JB KF , two cases can arise

(i) P 6v Q. Since (M ′θ) N ′ ∈ JAθ KF , by definition of JAθ KF , we have that
(M ′θ) N ′Q ∈ SNO, and sinceSNO ∈ CompO, SNO satisfies condition(c4), and
hence(λP ′:∆′.M ′)Q′N ′Q ∈ SNO.

(ii) There existsQ′′, such thatQ 7→→β Q
′′, andθ = Alg(P ′;Q′′). Then, since(M ′θ) N ′ ∈

JAθ KF , by definition ofJAθ KF , we have(M ′θ) N ′Q ∈
⋃
{JA′θθ KF | Q 7→→β Q

′′∧
θ = Alg(P ′;Q′′)}. Since, by induction hypothesis,JAθθ KF satisfies(c3), we have
(λP ′:∆′.M ′)Q′ N ′Q ∈

⋃
{JA′θθ KF | Q 7→→β Q

′′ ∧ θ = Alg(P ′;Q′′)}.

• (c4) Let CoDom(∆′),M ′, Q′,N ′ ∈ SN, and P ′ 6v Q′. We have to prove that
(λP ′:∆′.M ′)Q′ N ′ ∈ JAθ KF . To prove this, by definition ofJAθ KF , it is sufficient
to show the following two facts: letQ ∈ JB KF , then

(i) if P 6v Q, then(λP ′:∆′.M ′)Q′ N ′Q ∈ SNO;

(ii) otherwise,(λP ′:∆′.M ′)Q′ N ′Q ∈
⋃
{JA′θθ KF | Q 7→→β Q

′′ ∧ θ = Alg(P ′;Q′′)}.

Fact(1) above follows by the fact thatSNO ∈ Comp satisfies(c4). Fact(2) follows
since, by induction hypothesis, eachJAθθ KF also satisfies(c4).

Finally, letA ≡ (λP :∆.A′)M N . Then,

JAθ KF =

{
SNO if P 6vMθ⋃
{JA′θθ KF |Mθ 7→→β M

′′ ∧ θ = Alg(P ′;M ′′)} otherwise

Now, one can easily check thatJAθ KF satisfies(c1−c4), by applying the induction
hypothesis toJA′θθ KF . 2

Proof of Lemma 3.26. We prove a stronger statement for item(1) (we omit the proof of
item(2), which is similar): ifA 7→→β B, andθ 7→→β θ

′, thenJAθ KF = JBθ′ KF . We proceed
by induction on the number of reduction steps ofA 7→→β B.
Base case.
• A ≡ B. Then, we prove by induction on the structure ofA that, if θ 7→→β θ

′, then
JAθ KF = JAθ′ KF .
• A ≡ aN . Then, the thesis is immediate.
• A ≡ XP :∆:B.A′. Then,J (XP :∆:B.A′)θ KF =
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{
M

∣∣∣∣∣Q ∈ JB KF ⇒ M Q ∈

{
SNO if P 6v Q⋃
{JA′θθ KF | Q 7→→β Q

′ ∧ θ = Alg(P ;Q′)} otherwise

}}
andJ (XP :∆:B.A′)θ′ KF ={
M

∣∣∣∣∣Q ∈ JB KF ⇒ M Q ∈

{
SNO if P 6v Q⋃
{JA′θ′θ KF | Q 7→→β Q

′ ∧ θ = Alg(P ;Q′)} otherwise

}}
Now, fromθ 7→→β θ

′, using Lemma3.12, we haveθθ 7→→β θ
′θ. Thus, by induction hypo-

thesis,

JA′θθ KF = JA′θ′θ KF

and hence the thesis follows immediately.
• A ≡ (λP :∆.A′)MN , then

J (λP :∆θ.A′θ)(Mθ)(Nθ) KF ={
SNO if P 6vMθ⋃
{J (A′θθ)(Nθ) KF |Mθ 7→→β M

′′ ∧ θ = Alg(P ;M ′′)} otherwise

and

J (λP :∆θ.A′θ′)(Mθ′)(Nθ′) KF ={
SNO if P 6vMθ′⋃
{J (A′θ′θ′)(Nθ′) KF |Mθ′ 7→→β M

′′ ∧ θ′ = Alg(P ;M ′′)} otherwise

Now, in order to show thatJAθ KF = JAθ′ KF , it is sufficient to prove the following fact:
Fact (*): wheneverMθ 7→→β M

′′ andθ = Alg(P ;M ′′), then there existM ′′′ andθ
′

such

thatMθ′ 7→→β M
′′′, θ

′ = Alg(P ;M ′′′), andθ 7→→β θ
′
.

Namely, if Fact (*) holds, then, by the Substitution Lemma3.12, we haveθθ 7→→β θ
′θ
′
,

and, by induction hypothesis,JA′θθ KF = JA′θ′θ′ KF . But Fact (*) above follows from
the Confluence Theorem3.13and Lemma3.11.(i), using the fact that, by the Substitution
Lemma3.12,Mθ 7→→β Mθ′.
Induction Step.
• A 7→β B 7→→β B

′. Then, by induction hypothesis,JBθ′ KF = JB′θ′ KF . Thus, we are
left to show that, ifA 7→β B, andθ 7→→β θ

′, thenJAθ KF = JBθ′ KF . This is shown by
induction on the structure ofA.
• A ≡ aN . Then, the thesis is immediate from the definition ofJ KF .
• A ≡ XP :∆.A′ 7→β XP :∆′.B′. Then, the thesis follows by induction hypothesis, using
an argument similar to that used for dealing withA of the same shape in the Base Case.
• A ≡ (λP :∆.A′)MN . Then, there are two subcases:

(i) A ≡ (λP :∆.A′)M N 7→β (λP :∆.B′)M ′ N ′ ≡ B;

(ii) A ≡ (λP :∆.A′)M N 7→β A
′θ̂N ≡ (A′ N)θ̂ ≡ B, whereθ̂ = Alg(P ;M).

In case (i), one can reason as in the Base Case. Let us prove the thesis in case (ii ). We have:

JAθ KF =
⋃
{J (A′N)θθ KF |Mθ 7→→β M

′′ ∧ θ = Alg(P ;M ′′)} (*)

and

JBθ′ KF = J (A′ N)θ̂θ′ KF .

Using the Confluence Theorem3.13, Lemma3.11(i), and the induction hypothesis, one
can show that all the elements in equation (*) above coincide. Moreover, by the Base
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Case, we haveJBθ′ KF = JBθ KF = J (A′ N)θ̂θ KF . But then, sincêθ = Alg(P ;M),
by Lemma3.11(ii ), we have that there existsθ = Alg(P ;Mθ), such that(A′ N)θ̂θ ≡
(A′N)θθ. Thus,JBθ′ KF = J (A′ N)θ̂θ KF = J (A′ N)θθ KF = JAθ KF . 2

Proof of Lemma 3.27. We prove items(1), (2), (3) by mutual induction on the derivations
of the judgments. We only deal with object rules, since the other rules can be dealt with
similarly.

(O·Var) Immediate, since ifΓ1, x:A,Γ2 `Σ x : A, thenx 6∈ Fv(A).
(O·Const) Immediate.

(O·Conv) The thesis follows by induction hypothesis and by Lemma3.26.

(O·Abs)
Γ,∆ `Σ P : B Γ,∆ `Σ M : A

Γ `Σ λP :∆:B.A.M : ΠP :∆.A
(O·Abs)

We have to prove that(λP :∆[N/x].M [N/x]) ∈ JΠP :∆[N/x].A[N/x] KF (1)
LetQ ∈ JB K. Then statement (1) is true if the following two predicate are true:
(i) ∃Q′.[Q 7→→β Q

′∧Alg(P ;Q′)=θ]=⇒(λP :∆[N/x].M [N/x])Q ∈ JA[N/x]θ KF ;
(ii) P 6v Q =⇒ (λP :∆[N/x].M [N/x])Q ∈ SNO.
• Proof of (i). By Lemma3.25, JA[N/x]θ KF ∈ CompO, henceJA[N/x]θ KF satis-
fies condition(c3) of Definition 3.22. Thus, for proving(λP :∆[N/x].M [N/x])Q ∈
JA[N/x]θ KF , it is sufficient to prove thatCoDom(∆[N/x]), andQ ∈ SN, and
M [N/x]θ ∈ JA[N/x]θ KF . Now, sinceQ ∈ JB KF , then, by Lemma3.25, we
get Q ∈ SNO. Moreover,CoDom(∆[N/x]) ∈ SNF , since by the Subderivation
Property3.14, for each familyA′ ∈ CoDom(∆), there exists a smaller derivation of
Γ′ `Σ A′ : K; hence, we can apply the induction hypothesis to this latter deriv-
ation. Finally,M [N/x]θ ∈ JA[N/x]θ KF , by induction hypothesis, noticing that
Dom(θ) = Dom(∆).
• Proof of (ii ). By induction hypothesis,M [N/x] ∈ JA[N/x] KF . Moreover, by
Lemma3.25, we getJA[N/x] KF ⊆ SNO, hence in particularM [N/x] ∈ SNO.
Thus, sinceSNO is closed under(c4), using the Subderivation Property3.14, we get
(λP :∆[N/x].M [N/x])Q ∈ SNO.

(O·Appl)

Γ `Σ M1 : ΠP :∆.A Γ,∆ `Σ P : B Γ `Σ M2 : B

Γ `Σ M1M2 : (λP :∆.A)M2

(O·Appl)

We have to prove that(M1M2)[N/x] ∈ J (λP :∆[N/x].A[N/x])M2[N/x] KF (2)
By induction hypothesis, we haveM1[N/x] ∈ JΠP :∆[N/x].A[N/x] KF , with P ∈
JB[N/x] KF , andM2[N/x] ∈ JB[N/x] KF . Now statement (2) follows by definition
of JΠP :∆[N/x].A[N/x] KF . 2
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