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Abstract

In this paper, we introduce@eneral Logical FrameworlcalledGLF, for defining Logical Frameworks, based on dependent
types, in the style of the well known Edinburgh Logical FramewoFk The frameworkGLF features a generalized form

of lambda abstraction whefgreductions fire provided the argument satisfies a logical predicate and may produeayan
substitution. The type systekeepstrack of when reductions have yet to fire. The framewGtlF subsumes, by simple
instantiationLF as well as a large class of generalized constrained-based lambda calculi, ranging from well known restricted
lambda calculi, such as Plotkin’s call-by-value lambda calculus, to lambda calculi with patterns. But it suggests also a wide
spectrum of new calculi which have intriguing potential as Logical Frameworks.

We investigate the metatheoretical properties of the calculus underpi@hifignd illustrate its expressive power. In partic-

ular, we focus on two interesting instantiationgafF. The first is the Pattern Logical Framewofk.(F), where applications

fire via pattern-matchingn the style of Cirstea, Kirchner, and Liquori. The second is the Closed Logical Frame@ilof (

which features, besides standatdeduction, also a reduction which fires only if the argument ifogedterm. For both

these instantiations @LF we discuss standard metaproperties, such as subject reduction, confluence and strong normaliza-
tion.

The GLF framework is particularly suitable, as a metalanguage, for encoding rewriting logics and logical systems, where
rules require proof terms to have special syntactic constramtsogics withrules of proof in addition torules of deriva-

tions such ase.g., modal logic, and call-by-value lambda calculus.
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HONSELL, LENISA, LIQUORI

1 Introduction

Although LF, very rightly so, allows to encode rules as functions from proofs to proofs,

it is nevertheless a little restrictive as to the “side conditions” that it can enforce on the
application of rules. Rule application being encoded simply as lambda application, there
are only roundabout ways to encode provisos, even as simple as that appearinggin a

of proof Recall that a rule of proof can be applied only to premises which do not depend
on any assumption, as opposed touke of derivationwhich can be applied everywhere.
Also rules which appear in many natural deduction presentations of modal and program
logics are very problematic in standdrB. Many such systems feature rules which can be
applied only to premises which depend solely on assumptions of a particular €4p4,[

or whose derivation has been carried out using only certain sequences of rules. Finally,
Linear or Relevance Logics appear to be encodable only using a very heavy machinery.

In the past, extensions &f have often been proposed. The price to pay, however, was
always very high as far as the language theory. désideraturrhas always been that of
having a metalogical frameworke. atelescopef systems, each a conservative extension
of the previous ones, which can incrementally and naturally encode nastier and nastier
classes of side-conditions. This is precisely what we propose in this paper.

The key idea is extremely simple. It amounts to removirgiad spot thus making
explicit two different notions, which are conflated to only one, in the oridifai.e. which
are taken to be definitionally equal. As already mentioned much of the rigidity afises
from the fact thap3-reduction can be applied too generally. One would like to restrict it, but
the type system appears not to be rich enough to be able to express such restrictions. What
we propose is to use as type of an application, in the term applicatior{@keppl) below,
not the type which is obtained by carrying out directly in the metalanguage the substitution
of the argument in the type, but a new form of type which simply records the information
that such a reduction needs to be carried out. An application of the Type Conversion Rule
can then recover the usual effect of the application rule. The old rule and the new rule
(O-Appl") appear as follows.

I'EM:llz:oor THEN:o I'EM :llz:o.r TEN:o
(O-Appl) (O-Appl’)
I'MN :7[N/z] 'MN: (Axio.T) N

As it is often said: sometimes, less is more. And once this move has been made, we
have a means of annotating in a type the information that a reduction is waiting to be
carried out in the term. If we take seriously this move, such a type need not be necessarily
definitionally equato the reduced one as in the casd.6fand we can generalize further
our approach. Without much hassle, in effect, we have a principled and natural way of
typing generalized calculi featuring generalized or restricted forms-r@&duction which
wait for some constraint to be satisfied before they can fire. Each such calculus can be
considered as a potential candidate for underpinning a new Logical Framework, where all
the extra complexity in terms can be naturally tamed utilizing the expressive power of the
new typing system. Once this program is carried out in a sufficiently modular form, we
have the telescopic metalogical framework we were looking for.

In order to proceed in full generality we introduce a new form\ad corresponding
IT abstractiodIP:A.7 andAP:A.M. The unary predicat® is completely general at this
stage, and the type conteXt2 [z1:01,...,zy:0,] denotes the variables bound Byand A
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in IIP:A.7 and \P:A.M. We will show in the paper that it can be instantiated in various
useful ways. For instance, it can enforce the fact that the argument is closed, or that all
its free variables have a type of a given form. This format can also recover many existing
calculi in the literature such dsF, the Rewriting Calculus@KLO1a CKLO1b], and the
Plotkin’s call-by-value lambda calculu®lo79. In all cases, an application of the “type
equality” rule can be used to recovegnservativelythe effect of successful-reductions:

(AP:A.M)N — MP(N) providedP(N) holds andP (V) is a substitution.

The extra types deriving from failures allow for precisely the extra elbow-room that is
needed to prevent the applications of certain rules too loosely. It is now immediate to see
that rules of proof can be dealt with straightforwardly by restricting applications to closed
terms.

This idea of distinguishing between two notions which were previously flattened into
one is a small step for a type system but a momentous step for a Logical Framework. The
idea of capitalizing on the similarities between the ‘and “II” operators is not new, see
e.g. [dB80 KBN99], but what we do here is to capitalize on it, in the type system, as was
done in the work by Cirstea, Kirchner, and Liqudtie Rho CubgCKLO1b]. By so doing,
we allow for a generalized form of pattern lambda calculi, and also go beyond.

The papers which are most influential for our proposal and which we are most indebted
with are [CKLO1b] and BCKLO3]. The former is the paper which first puts to use the
decomposition of the rulgd-Appl’) in special cases. It presents a collection of type systems
for a typed variant of the Rewriting Calcultiswhich was later generalized iBCKLO03]
to Pure Type Systems with patterns.

Summing up, we propose a General Logical Framev&irk and the General Lambda
CalculusGL underpinning it.GLF, in that it accomodates various strong definitional equal-
ities, can be viewed as a logical framework in the spirit of the, so cdeidcaré principle
or the more recerDeduction Modulaf [DHKO03]. The idea behind these approaches can
be put briefly as follows. It is well-known th&F behaves like first-order logic. One can al-
ways encode explicitlyi.e. axiomatically, whatever judgment is necessary. However, both
theoretically,e.g. in Martin-Lof systems, as well as pragmaticalyg. in Coq, it is very
useful to have stronger notions of definitional equality than gixeguality. In the most
recent approaches to formal proofs, one has subtle interplays between deduction and com-
putation of definitional equality. In all these cases, however, each new definitional equality
has to be justified outside the framework.

In this paper, we provide general results concerning classes of calculi which provide
useful definitional equalities. In particular, we carry out an extensive investigation of the
language theory of two important instantiationsG@fF, calledPLF andCLF respectively.

The first features a general form of pattgHmeduction, while the second subsunhésbut
it provides also a form ofi-reduction restricted only to closed arguments.

1.1 Historical Remarks

A short recollection, by the first author, from exactly twenty years ago.

4 This version of the Rewriting Calculus was a kind of typed lambda calculus with constants, algebraic patterns, and built-in
matching constructions.
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The Edinburgh_F took a rather short time to blossom: essentially the spring of 1986.

A General Interactive Proof Development Environment was one of the first three projects
of, what was then, the recently established Laboratory for the Foundations of Computer
Science, LFCS, in Edinburgh. According to its first director, Robin Milner, the Laboratory
was supposed to develop theoretically principled applications, in the spirit that Computer
Science is also an experimental science. The goal of this project was a general interactive
proof assistant which could provide a large number of proof editing, proof checking, and
proof searching facilities for an arbitrary logical system as were available, at the time, in
tools such a& CF [Pau8% or NuPrl [Con84, only for specific formal systems. The chal-
lenge was that of not having to duplicate the implementation effort each time an interactive
environment for a new logic was needed. The idea was that of developing a general theory
of logical systems, which factored out uniformities across a wide class of logics and then
of implementing, once and for all, a general logic-independent proof development environ-
ment based on such a theory. This general environment could then be tailored to a specific
system, without having to re-implement everything from scratch each time.

In the early months of 1986 Gordon Plotkin started experimenting with typed lambda
calculi, supporting theroposition-as-types paradigmas a general metalanguage and
framework for logical systems. A few researchers at LFCS joined in, and by midsum-
mer 1986 the=ramework for Defining LogicfHHP93 as it was presented to the LICS
conference in 1987, was pretty much finalized.

It was immediately clear that the higher order nature of the Dependent Typed Lambda
Calculus, later to be known &$, was particularly satisfactory as a general metalanguage
for expressing logical languages, binding operators, rules, and proof development. What
appeared in the traditional presentations of logical systems as intricate idiosyncrasies and
strange provisos in rules, either completely disappeared ihRrencoding of the system
or were greatly clarified. An encoding of a logic in the Framework always turned out to
be particularly insightful in understanding the system itself, to the pointlthappeared
as normative. The conclusion was th#t was the most suitable type system introduced
so far to play the role of a metalanguage for logics presented in natural deduction style. It
was the perfect medium to implement the newly formulgteigiments-as-typgsaradigm.
Furthermore LF subsumed also a humber of previous ideas in formal mathematics and
proof theory stemming from thAutomath tradition [dB80, NGe94, Constructive Type
Theory Mar84,CH88 and it capitalized on the notion a@idgmenias discussed by Martin-

Lof in a series of papers in the mid '80’3vIL85].

The Logical Framework game, triggered bly, became rapidly quite popular in the
formal proof development community and many authéwsf88 CHI( played it on their
systems. Since then, Logical Frameworks, logical metalanguages, and general proof assist-
ants grew up to a well defined, and very active sector of Logic and Computer Science. It
benefited considerably by the results stemming from the community working on Construct-
ive Type Theory as a framework for formalizing mathematiégid6, Coq0q. Nowadays
there are a number of specific conferences that address these ¢gpiberiin, Theorem
Proving in Higher Order Logic, Logical Framework Metalanguages: theory and practice
a vast literature, seeg. [Luo90, PS99BGO01, Pfe0] and an almost twenty years old EU
Working Group community, called Types, actively working on Type ThediyH].

Since the birth ofLF, the challenge was that of assessing the expressive power of
the metalanguage, or equivalently that of coming up with logics which could break the
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Framework. LF proved to be particularly successful in dealing with metavariables, vari-
able scoping and binding, Higher Order Abstract Syntax and, with a little effort, also with
names PesOQHMSO01]], program and modal logicAHMP98, AHMP92].

Synopsis.

The paper is structured as follows. In Sect®yrwe present the syntax GL and the
type system ofGLF. We discuss general properties ®EF and present several instan-
tiations of GLF to known as well as new calculi. In Secti@ we discuss an important
instantiation ofGLF, the Pattern Logical Framework, calledF, where reductions fire via
pattern-matching. A thorough investigation of the metatheoretical propertidsok car-
ried out. In Sectior, we present another instantiation of t&eF framework,CLF which
features besides standa¥dreduction also @-reduction restricted to closed terms. In Sec-
tion 5, we illustrate the expressive power of these new typed calculi as metalanguages.
In particular we give a shorter, and possibly sharper, encoding of Plotkin’s call-by-value
lambda calculus ifLF capitalizing on algebraic patterns, and an encodir@lih of rules
of proof in Modal Logics Conclusions and directions for future work appear in Sediion
Proofs of main theorems appear in the Appendix.

2 The General Logical Framework

In this section, we present the General Lambda Calc@luand we discuss the language
theory underpinning the General Logical FramewGtk .

General Notations.

Let M, N, ... € Odenote terms (a.k.a. objects),r, ... € F denote types (a.k.a. fam-
ilies), a, b, ¢, ... denote constant type&, € K denote kindsg, v, z, . . . denote variables,
f,g,... denote term constantE, A € C denote contexts;. € S denote signatures, and
letP, Q,...range over a set of logical predicatésAll symbols can appear indexed. The
symbol= denotes syntactic identity on terms. Terms will be taken up-tmnversion.

2.1 The General Typed Lambda Calculus

The General Typed Lambda Calculus, called is a generalization of the typed lambda
calculusa la Church with constants, but it allows unary logical predicates instead of simple
variables in lambda abstractions. The syntagbfterms is given below, type families will

be defined later.

Definition 2.1 (GL Terms a.k.a. Objects)

M,N e GL M:=flx|XP:AM|MN Terms

AecC F:=0|Tz0 Contexts
o,TeF o n=... Types

P,QeLl P o= ... (unary) Predicates

where the variables iDom(A) occurring in M are bound in\P:A. M.
5
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The term\P:A.M is called goredicate abstractionThe intuition behind a generalized
p-redex of the shape\P:A.M) N is that the argumen¥ of the function can be propag-
ated in the bodyM, and the redex progresses Add, for a suitable substitutioA over
Dom(A), provided the unary predicafe holds onN. Otherwise the terns stuck The
languageGL is parametrized over a set of unary predicd®esvhich we do not specify.

Definition 2.2 (Auxiliary Functions) (i) Let ~: [£ — [C — GL]] be a function taking a
predicate? and a context\, and producing a term whose free variables are exactly
those inDom(A). We denotéP(A) simply byP.

(i) Let™: [£ — [C — [GL — Sub],]] be a function taking & and aA, and producing
a partial function that takes a term/ and produces a substitution ovBom(A),
provided M satisfiesP. Informally, P is a logical filter that constrains reductions.
We denot@(A) simply byﬁ.

The next definition introduces the standard notions of top-level, one-step, many3steps
reduction, and its congruence closure.

Definition 2.3 (One-step/Many-Steps Reduction, Congruence) (i) For every predic-
ate’P € L, the top-level reduction is defined as

Bp) AP:A.M)N —3, MP(N)  if P(N) holds

(i) LetC[—] denote a context with a “single hole” inside, defined as follows
Cl-]u=[-]| C[-]T | TC[-] | vP:A.C[-] | vP:C[-].T | A, 2:C[-]
Let C[M] be the result of filling the hole with the terid. The one-step evaluation
3, IS defined by the inference rule

M —pg, N

(Ctx)
C[M] =g, C[N]

(i) The many-step evaluation»z, and the congruence relatioag,, are respectively

defined as the reflexive-transitive and reflexive-symmetric-transitive closusg,of
We use—; to denotd J . - 3, Similarly —3 and=g will denote the unions of alt3,,'s
and all=3,’s, respectively.

2.2 The General Logical Framework

The General Logical Framework, callédF, is a dependent type system for the General
Typed Lambda CalculuSL. In a nutshell, there are two main generalizations with respect
to a standard dependent type theara LF:

(i) The LF product-typellz:o.7 is replaced inGLF by the more general constrained
product-typellP:A.7 that will be inhabited by a predicate-abstraction of the shape
AP:AM.

(i) Inthe typing rule for application one usually has that the final typ@faW is 7[N/x]
where the notatiofiN/z] means the meta-operation of substituting every occurrence
of = with the object termV. In GLF, this meta notation for the type of the applica-
tion is taken seriously and is represented yl& dependent-type not necessarily in
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eSS ¥ == 0|XaK|% fio Signatures
rAec T = (|T,z:0 Contexts
KeKk K = Type|OP:A.K|AP:A.K | KM Kinds
o,TeF o n= a|lIP:Ao | \XP:Ac |oc M Types (Families)
M,NeO M w= flxz|\XP:AM|MN Terms (Objects)

(Bp—Terms) (AP:A.M) N —3, M P(N)
(Bp—Types) (AP:A.7) N —5, 7 P(N)
(Bp—Kinds) (AP:A.K)N —g, K P(N)

Figure 1.GLF Syntax and Operational Semantics

normal form(AP:A.7) N. This term reduces to the dependent-tyﬁAE(N) if P(IV)

holds (and73(N) is a substitution), otherwise it gets stuck. Of course, if the reduc-
tion fires, via a standard type conversion rule, the reduced type is inhabited by the
applicationM N.

2.2.1 Syntax.
The syntax ofGLF families is defined as follows.

Definition 2.4 (GLF Types a.k.a. Families)
o,7€F ou=a|lIP:Ac | \XP:Aco|ocM Types

In the syntax,a is a constant type, or more generally, a curried type valued function,

ITP:A.7is a constrained product-typ®P:A.7 is a constructor for type families, aad\/

as usual, is the type family produced by applying a type family of higher kind to a term.
To complete the presentation GLF we need, as usual, suitable syntaxg@natures

contextsandkindsas follows.

Definition 2.5 (GLF Signatures, Contexts and Kinds)

eSS Yu=0|3XaK | fo Signatures
AecC I :=0|0,z0 Contexts
K ecK K = Type |IP:A.K | \P:A K | KM Kinds

In GLF, we irltroduce a reduction on kinds not in normal fofaP:A.K) M that, again,
reduces taK P(M) if and only if P(M) is satisfied. Figurd summarizes the syntax and
the operational semantics GLF.
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Signature rules

Family rules
Fel aKeX
I'kFya: K

(F-Var)

(S-Empty) [AFsP:o T,Abs7:Type
0 sig (F-Pi)
'y IIP:A.7 : Type
Yisig Fx K a & Dom(X _
& = g ( )(S-Kind) F,AF—Z'PIU F,A I—ETIK
¥, a:K sig (F-Abs)
'ty AP:AT:IIP:AK
> sl hso:OPAK
s o : Type Dom(X » 0 UmA.
o Type [ ¢ ()(S_Type) AbeP:r  ThkeM:7
Y, fiosig (F-Appl)
F'ky oM : (ANP:AK)M
Context rules
I'kFyo: K’
Y sig Iy K 'ty K=K’
(C-Empty) (F-Conv)
Fs 0 Tkyo: K
Fx T ’ 0 Object rules
I'kFx o: Type z & Dom(T"
(CType) FxI' fioeX
Fe I, zi0 ———————————— (0O-Const)
T |—g f e
Kind rules Fe2T' z:0€l
— (OVar)
Fe T I'byax:0
——— (K- Type) o
['Fy Type I'AbFsP:0 T,Abs M:T
_ (O-Abs)
IAbsPro TNAbs K P 'y AP:AM - 1ITP:A.T
I'ks OP:A.K
'y M :IIP:A.T
IAFsP:0 T, AFs K Ay P:o I'bs N:o
(K-Abs) (O-Appl)
'y AP:AK ks MN:(AP:AT)N
r |—2 H’PiAK r |—2 M:o
INAFsP:o 'Fxy N:o 'y 7:Type I'x o=37
(K-Appl) (0-Conv)
I'Fy (WP:AK)N ks M7
Figure 2. TheGLF Type System
2.2.2 Type System.
As usual, the type system fGLF proves judgments of the shape:
Y sig Fe T ks K 'kFo: K 'k M:o

The type system rules foGLF are presented in Figur2. Notice that rule schemas
(x-Pi), (x-Abs), and (x-Appl) are parametrized over the predic&e The inference rules
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make use of a notion of definitional equality, consisting of the following three forms of
auxiliary judgments:

'ty K =5 K’ K and K’ are definitionally equal kinds ii andX
'ky o=37 o andr are definitionally equal types ih andX
'ky M = N M andN are definitionally equal terms if andX

The first two of these relations are used directly; the third one is used to define the others.
We do not give the list of rules for these three judgments. These are standard but for the
fact that we have to consider multiple substitutions. By way of example we give only the
main rule(Type-Eq) for type equality:

Vy; € Dom(P(M)). [T, Aty P(M)(y;) : A(yi)] T,AbsP:oc Ty M:o

by (AP:A.7) M=37 P(M)

2.3 InstantiatingGL/GLF

The behavior ofGL and GLF strongly depend on the precise nature of the predicates in-
volved in abstractions. In general we can instantiate them as follows.

Definition 2.6 (General Predicate Sef) A General Predicate Set is
S2{(P;i, Ai, Pi, Pi) Yicz, Where™ and ™ are the functions of Definitiod.2

Definition 2.7 (General PredicateGLs/GLFs) For a givenS, a Predicate Lambda Cal-
culus (General Predicate Logical Framework), callédls (GLFg), can be obtained by
restricting (instantiating) the predicates to the ones declaref.in

A list of desired properties foGLFg follows. Leta be any judgment iGLFs.
Desiderata 1 (Desired Properties of:LFg)

Subderivation Property Any derivation of” iy, « has subderivations &f sig andtx, I';

¢ Any derivation of, a: K sig has subderivations df sig andty K

¢ Any derivation o, f:o sig has subderivations of sig andty, o : Type;

¢ Any derivation of-x, ', z:0 has subderivations of sig andT" -5, o : Type;

e Given a derivation of” -y, « and any subterm occurring in the subject of the judg-
ment, there exists a derivation of a smaller length of a judgment having that subterm
as a subject;

e fI'Fy o : K, thenl' by K;

e IfT'Fxy M : o, thenl by, o : Type.

Derivability of Weakening and Permutatiorif I' and A are valid contexts, and every de-
claration occurring inI" also occurs inA, thenI' ks, « impliesA ks a.

Unicity of Types and Kind® If I' s, M : o andI’ -5, M : 7, thenI' - o=3T;
o IfT |—2 o: K andTl l_E o K/, thenI’ |—2 KZﬁK’.
Transitivity If T', z:0, A by candT' by M : o, thenT', A[M /x| by, o[ M/ z].
Abstraction Typinge If I' -y K andI” is such thatDom(I') = Dom(I"), and for all
z € Dom(D), Ty T(w)=51" (2) andFy(I(z)) € Fu(I"(2)), thenl” Fs; K

9
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e If T' by o : K andI” is such thaDom(T') = Dom(I"), and for allz € Dom(T"),
I' by I'(x)=3I"(x) andFv(I'(z)) C Fv(I'(x)), thenI” k5 0 : K;

e If Ty M : AandI” is such thaDom(T') = Dom(I"), and for allz € Dom(T),
I' by I'(x)=3I"(x) andFv(I'(z)) C Fv(I'(x)), thenI” b5 M : A;

o If ' by AP:A.7: IP:A’.K, thenDom(A) = Dom(A’), and for allz € Dom(A),
we havel', A Fx, A(z)=3A/(z), andT, A s, P=4P ;

e If T Fy AP:A.M : TTIP:A’.7, thenDom(A) = Dom(A’), and for allz € Dom(A),
we havel', A Fs; A(z)=A/(z), andT, A -5, P=37",

e If Ty AP:A7: IIP:A.K, then,A s, P : o, andl, A by 7 : K;

o If I'Fxy AP:A.M : IIP:A.7, then,A Fx. P : 0, andl, A s M : 7.

Subject Reductior» If I' by, K and K —3 K, thenI -y, K7;
e IfI'Fy o : Kando —g 7, thenl' Fx 7 : K
e IfI'x M :0andM —g N, then' -5, N : 0.

Confluencee If K3 Ko and K —»3 K3, then there existd(, such thatK, 3 Ky,
and K3 —g3 Ky;
* If 01 g 09 andoy >3 03, then there exists, such thatry 3 04, andos 3 04,
o If M3 My and M;+—»3 M3, then there exists\/, such thatM,;+—g My, and
Mz 3 My.

Strong Normalizatione If I' Fyx;, K, thenK is strongly normalizing;
e If "ty o: K, theno is strongly normalizing;
e If "y M : o, thenM is strongly normalizing.

Judgments decidabilitylt is decidable whethel’ -5, « is derivable.

The following is about the most that one could prove for a General Logical Framework at
this stage of generality.

Conjecture 2.8 (General Properties ofGLF) The following properties are valid iGLF:
e Subderivation;

» Derivability of Weakening and Permutation;

¢ Unicity of Types and Kinds;

e Abstraction Typing;

e Subject Reduction.

2.4 Simple Examples

We illustrate the General Lambda Calculus and the General Logical Framework through
some simple instantiations. More lambda calculi and logical frameworks can be captured
by GLF, using appropriate general predicate §s

2.4.1 The Typed Lambda Calculus a la Church.

The seiSChurch is SChurCh 2 { ( True, , [m:a] , Tuex , T/I“IE )IEV }, WhereTruex is
Truey (M) 2 true (YM), andTrue, 2 z, andTrue, (M) 2 [M/z]. Notice that the fresh-
ness of the variable is enforced in the typing rules by the well-formedness of contexts.

10
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2.4.2 Plotkin’s Call-by-Value Lambda Calculus.
The setSs, is { ( Value, , [z:0], Value, , Value, )*<V }, whereValue, is

true if M is a variable or an abstraction

1>

Value, (M)
false otherwise

andValue, 2 z, andValue, (M) £ if M is a variable or an abstraction thgvl/z], else.L.

2.4.3 The Closed Typed Lambda Calculus.
The sefSy is { ( Closed, , [z:0], Closed, , Closed, )*¢V }, whereClosed, is

Closed, (M) 2 true if Fv(M) =10
osed, =
false otherwise

andClosed,, £ , anngse\dx(M) £ if Fv(M) = 0, then[M/x], else L.

2.4.4 The Rewriting Calculus a la Cirstea-Kirchner-Liquori.
The setSgry, is: { ( Matchp, , A; , Matchp, , Matchp, )€’ }, where the predicate
Matchp, is defined as follows.

true if 30;. Alg(P;; M) = 6; andNf(F;)
Matchp, (M) £
false otherwise

where

* the predicatdNf(F;) is true if and only ifP; has a—,;-normal form,
e Alg is essentially the matching algorithm defined BCKLO3] (where Fv(P;) =

Dom(4;)), which provides a substitution i/ matches with the patter®?, and fails,
otherwise, and

e Matchp, 2 P;, andMatchp, (M) 2 if 36;. Alg(P;; M) = 6;, thend;, else.L..

This calculus is equivalent to the classfohctional Pure Type Systems with Patterns of
[BCKLO3]. A specific version ofsLF, which features rather general shapes of patterns, but
nevertheless has a considerably rich theory of expressions, will be introduced and studied
in Section3.

2.4.5 The Edinburgh’s Logical Framework a la Harper-Honsell-Plotkin.
The setSir iS Schuren- The function] ] is essentially a function that replaces every
occurrence offrue,. by z.

2.4.6 The Closed Logical Framewo@tF.
The sefScyr is: o -
{( True, , [z:0], True, , True, )*<V, ( Closed, , [z:0], Closed, , Closed, )*<V },

11
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whereTrue, andClosed, are defined as before. The Closed Logical Framewihfkcom-
bines two notions ofi-reduction, the standar@reduction and the-reduction restricted
to closed arguments. This Logical Framework will be extensively studied in Sektion

3 The Pattern Logical Framework

Since the introduction of the Logical Framework iHHP93, blending dependent typed
lambda calculi with rewriting systems has been a major challenge, Gle&B8 JO91,

Dou92 KvOVR93 00s94 CKL01a BCKLO3, CPT03 Wac03. When the lambda calcu-

lus underpinning a logical framework features also rewriting rules, there is potential for
enhancing the pragmatic usability of the system. More natural and transparent encodings
can be provided (see Sectidjy and decision procedures, such as checking and encoding
equality, can be more easily automated.

In this section, we introduce the Pattern Logical Framework, cdtleld. This is a
uniform framework based on a dependent typed lambda calculus enriched with pattern
matching in lambda abstraction®LF can be viewed as an instance of the General Lo-
gical FrameworlGLF, by considering predicates corresponding’td- patterns, similarly
to what was done in Sectidhfor the Rewriting Calculus. In contrast to the simple lambda
calculus, the pattern-matching algorithm can either fire a substitution, or keep the com-
putation stuck, unless further substitutions are provided. E.g., for an algebraic cghstant
of typea — a, M = (A(fy):[y:al.y) x is stuck, but(A(f z):[z:a].M) (f (f3))—53.

As it is well known, since the seminal work o®ps90(, in untyped calculi, variables in
patterns can be bound only if they ocdinearly (i.e. at most once) andot actively(i.e.

not in functional position), otherwise confluence is lost. For this reason, alggbraic
patternsare often considered in the literatur€KL01b, BCKL0O3, Wac0g. The Pattern
Logical Framework that we present in this section features a larger set of patterns, essen-
tially corresponding to suitable normal forms satisfying linearity and inactivity conditions

of variables. For this calculus, we show confluence, subject reduction, and strong normal-
ization. The proof of strong normalization is technically quite difficult, and it is based on a
generalized computability argument which accommodates the possibility for an argument
to match the pattern after reduction.

3.1 PLF Terms

Since patterns occur dsndersin abstractions, the types of the “matchable” variables in
the pattern are decorated in suitable contaéxsa pattern lambda abstraction has the form
AP:A.M. In the following definition, we introduce theLF pseudo-syntax for kinds, fam-
ilies, objects and contexts.

12
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Definition 3.1 (PLF Pseudo-syntax)

Yes Y iu=0|3aK|% f:A Signatures
IAecC L :=0|T,z:A Contexts
K eK K = Type |IP:A.K | \P:A.K | KM Kinds
A B, CecF A n=a|IIP:AA|APAA|AM Families
M,N,Q € O M= flx| A\P:AM|MM Objects

whereP € Op C O andOp is a set ofpatterngo be defined (see Definitidhl0below).

In aPLF pattern abstractionP:A.M, P is thepatternto be matched) is the type context
containing the type of all the free variables@fandM is the usual body of the abstraction.
In aPLF pattern type-produdii P:A. A, object dependencies are spread much more than in
the standardlF. Namely,P is theobject patterrto be matchedA is the type context con-
taining the type of all the free variables Bf and A is the usual dependent type codomain,
containing possibly free occurrences of some free variabléy bence declared i.

As usual, application associates to the right. LEttange over any term in the calculus
(kind, family, object), and let the symboV” range over the set of bindefs\, IT}. To ease
the notation, we write’z:T .1, for va:[z:T}].T» in case of a variable-pattern (correspond-
ing to plain typed lambda calculus). As in ordinary systems dealing with dependent-types,
we suppose that, in the contdxtz:7', the variabler does not occur it and7". Dom(T")
andCoDom(T") are defined as usual. The definition of free variables needs to be rephrased
as follows.

Definition 3.2 (Free Variables) The sefv of free variables in terms, signatures and con-
texts is given by:

‘I'I
<
3

S~—
>

—
)

—

-n
<
N
v
>

3
1>

((Fv(P)UFv(T)) \ Dom(A)) UFv(A)

Fv(T) T>) Fv(T1) U Fv(T)

Ex: Fv( A Az:[z:ITw:a.a]l.x y):[y:a].2 ) = {z}.

We denote byBv(T') the set obound variable®f a termT’, i.e. the set of variables in the
term which are not free. Let denote bir the set of all variables, and Byar(7") the set

of both free and bound variables f Since we work modul@:-conversion, we suppose
that all bound variables of a term have different names, and therefore the domains of all
contexts are distinct.

13
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Definition 3.3 (Substitutions) A substitutiord is a finite magM; /x4, ..., My, /xy]. The
application of a substitutio to a termI” extends the definition for the typed lambda
calculus (possibly by renaming bound variables)(a@:A.M)0 £ vP0:A0.M6, where
A6 denotes the point-wise extension of the substitution application to contexts. As usual
we letDom(f) £ [z1, ..., 7], andCoDom(9) £ |J Fv(M;).

i=1l...m

In what follows, we will consider onlgafe termsi.e. terms where the free variables occur-
ring in patterns arpreciselythe variables declared in the corresponding context. Formally:

Definition 3.4 (PLF Safe Terms) A PLF term 7" is safe if erc(7") holds, where the pre-
dicateerc(7'), Exact Pattern Conditigris defined by induction on the structure bfas
follows.

Erc(z) £ true

>

EPC(VP:A.T) (Dom(A) = Fv(P)) Nepc(P) Aepc(T') ANepc(A)

erc(Ty Tz) £ epc(Ty) A ErPc(Ty)

whereepc(A) holds if and only iferc(A) holds for all A € CoDom(A).

The above restriction is motivated by the fact that, if we allow free variables in patterns
which are not declared in the context, we loose confluence of the untyped system (see
Section3.3 for more details). Vice versa, if we allow more variables in the context, then
we loose subject reduction. Notice that substitutions applied to safe terms do not act on
patterns.

We still have to specify the syntax of patterns. In order to do this, we first need to
introduce the notion of matching between objects.

3.2 Matching and Operational Semantics

PLF features pattern abstractions whose application requires solving matching problems.
The next two definitions introduce the notions of matching system and matching algorithm.
Both are an easy modification of the ones presenteB@KL03]. The algorithm is first-

order, hence decidable.

Definition 3.5 (Matching System) (i) A matching system

T2 A M=y, N,

1=0...n

is a conjunction of matching equations, whevés idempotent, associative and com-
mutative. The sé¥ records the name of the free variables that are matchable, while
the setsW, record the names of bound variables appearing in abstractions which
cannot be matched.

(ii) A matching syster is solved by the substitutighif for all ¢ = 0...n, we have that
MZQ = Ni-

14
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(iii) A matching systerh is in normal form when it has the form

/\ X; -«gvz N; A /\ fj -«%}Vj fj

i=0..m §=0..n

>

T

(iv) A matching system in normal form is solvable and produces the substitution
[N1/z1 -+ N, /xy) if the following conditions are satisfied (otherwise the matching
fails)

(@) forall h,k = 0...n, if x5, = z; thenN, = N,. The rationale is to rule out
matching-clashes, e.g.<, y A z <) 2
(b) forall: =0...n,if z; € W,;, thenN; = z;. The rationale is to forbid to match
a bound variabler against a free ong, e.g.x < y
(c) foralli =0...n,if Fv(N;) " W; # 0, thenN; = z;. The rationale is to forbid
to match a free variable with a bound oney, e.g.x «2’ Y
Letsolve be a function that returns a substitution if a matching system in normal form
is solvable, and fails otherwise, i.e.

0 if T is solvable with 6

fail otherwise

solve(T) = {

Definition 3.6 (Matching Algorithm Alg) (i) The reduction~ is the compatible rela-
tion induced by the following two rules:

(Appl)
My Ny < My Ny ~ My <, Ma A Ny <) No

W £ U U Dom(A)

(Lbd/Prod)
VPAT) < vPAT ~ Ty <y Ts

In rule (Lbd/Prod), the conditionW 2 U U Dom(A) increases the set of bound
variables to be matched; moreover, since all free variable® iare declared in the
contextA, two abstraction/product terms match if and only if they have the same
pattern (up-ton-conversion).

(i) The reductiom~* is defined as the reflexive and transitive closure-ef Letnorm be
the function that reduces a matching system in normal form, or fails, i.e.

(1>

norm (T)

T if T ~* T and T’ is in normal form
fail otherwise

(iii) Let.Alg(M; N) be defined as follows.

fail if solve(norm(M «SV(M) N)) = fail

Alg(M;N) 2
solve(norm (M «EV(M) N)) otherwise

The matching algorithm is clearly terminating (since all rules decrease the size of terms),
deterministic (no critical pairs), and works moduleconversion and Barendregt’s hygiene-
convention.

15
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The matching algorithmdlg is sound, in the sense that, if the initial matching system
is solvable, then the substitution computedAly; solves this system.

Lemma 3.7 (Soundness afllg) If Alg(M;N) =6, thenM6O = N.

The next definition introduces the standard notions of one-step, many#stegakiction,
and the corresponding congruence relation.

Definition 3.8 (One/Many-Steps Reduction, Congruenceletd = Alg(P; N).
() The top-level rules are

(B-0bj)  (AP:AM)N s M6
(B—Fam) (AP:A.A)N —p3 A0

(8—Kinds) (AP:A.K) N 3 K60

(i) LetC[—] denote a pseudo-context with a “single hole” inside, defined on terms and
contexts as follows

C[-] == [-] | C[-]T | TC[-] | vP:A.C[-] | vP:C[-].T | vC[-]:A.T | A, 2:C[]

and letC[T'] be the result of filling the hole with the terfn The one-step evaluation
—g is defined by the following inference rule

T1 I—>ﬁ TQ
- ()
C[T1] —p C[T2]

(i) The many-step evaluation-3 and the congruence relatioas are defined respect-
ively as the reflexive-transitive and reflexive-symmetric-transitive closurezofBy
n—>g we denote the reflexive closure-of;.

3.3 PLF Patterns

In this subsection, we will characterize the set of patter@nwhich we left unspecified
in Definition 3.10 Such patterns will be objects in suitable normal form, satisfying the
following conditions:

» each free variable appears at most once (linearity condition);
* variables are not in functional position (non-activity condition).

The notion of normal form which we consider requires special care. Namely: terms are
taken to be in normal form whenever all redexessarastitution-stucki.e. they are stuck,
no matter what substitution is applied to the argument, formally:

Definition 3.9 (PLF Normal Forms) PLF contexts and terms in normal form are mutually
16
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defined as follows.

Nfe = Fa=0|T,z:A
Nfc > K == TypeK; ... K, | IP:AK | \PAK)NK; ... Ky,
Nfr > Ac=adA ... Ay |IIP:AA| (AP:AA)N A ... A,

Nfo > M,N == f My ... My |x My ... My | AP:AM | (AP:AM)N M, ... M,

where, the redexegs\P:A.K) N, and(AP:A.A) N, and(AP:A.M) N are "substitution-
stuck”, i.e., for any substitutiofi, Alg(P; N6) = fail.

Finally, we are in the position of characterizing the set of patterid®in
Definition 3.10 (PLF Patterns) Let Op be the set of objects defined by

Op £ {P € Nfp | Lrc(P; Fv(P)) = true A APc(P; Fv(P)) = false}

where, for any ternT” and finite set of variable¥,

* the predicate.pc(T'; V), Linear Pattern Conditigris defined by induction of’ as fol-
lows.

we(a/ f/a; V)
Lpc(vP:AT;V) = Lpc(P;Dom(A)) ALPc(A; VU Dom(A)) ALpc(T; VU Dom(A))

true

Lre(Ty To; V) £ Lee(Th; V) Apc(To; V) A (Fy(Ty) NFv(Ty) NV = )

* the predicateapc(T; V), Active Pattern Conditionis defined by induction o as fol-
lows.

false

Arc(z/f/a; V)
APC(VP:AT;V) & (P =x P, Ax € Dom(A)) V Apc(P; Dom(A))V
APC(T; VU Dom(A)) vV Apc(A; V U Dom(A))

APC(Ty T2; V) £ apc(Ty; V) V Apc(Ty; V)

At first sight, the above definitions of normal forms and patterns may seem a little awkward,
because of the requirement that only those redexes are considered, which are stuck no mat-
ter what substitution is applied to the argument. Somewhat surprisingly, such a restriction
is necessary to achieve confluence. Actually, any of the restrictions on patterns imposed in
Definition 3.10above can be hardly relaxed, apart from considering only well-typed terms.

In the following, we discuss in detail each condition, and possible extensions.

() Variables in functional position. It is well known, since Qos9Q, that allow-
ing variables in functional position breaks confluence. Here is a simple counter-
example: M £ (\(zy):[z:a—a,y:a].z) (12), wherel £ Az:a.z. Namely,M g

17
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(AMz y):[z:a—a,y:a].x) z, by reducing the argument, while —; |, by reducing the

outermost redex.

Linearity condition. Since Pos9(, it is also well-known that if we abandon the

linearity condition in patterns, we loose confluence of raw terinesdll PLF terms,

including also terms not typable in the type system of Se@idtelow). Namely, let

e Y 2 Ay 2z (z (yyx))) My:? \x:?.(z (yyx))) be the (hopefully untypable)
fix-point combinator

o N 2 \(f 2 2):[2:a].g be a term with a non-linear pattern

e M2Y(\y:? \x:?.N (fz(yx)))

s QEYM

Then, we have) —3 C g, andQ 3 g. Thus the system is not confluent. However,

one can check that the fix-point operaioris not typable in thePLF type system of

Section3.4 below. Hence the above counterexample does not apply to the case of

well-typed terms. Actually, we do not know whether the linearity condition may be

relaxed, without loosing confluence of well-typed terms. In this paper, we stick with

this condition, and we prove confluence for all raw terms.

Substitution-stuck redexeBhe reason for allowing in patterns only substitution-stuck
redexes, and not simply stuck redexes, is that, in this way, patterns can match only
arguments where the corresponding redexes will never fire. Otherwise, if we in-
clude patterns of the shagaP;:A.P,) P3; P', where onlyAlg(Py; P;) = fail, i.e.

only the present reduction is stuck, we loose confluence. The following term gives
a counterexamplé/ £ (A((AL:0.)) z):[z:a—a].z) (Al:0.1) ). Namely, by redu-

cing the outermost redex, we g&f —;3 |, while, by reducing inside the argument,

M g (A((AL:0) z):[x:a—a).x) |

Exact Pattern Conditionin this paper, we consider only terms where the variables oc-
curring in patterns are precisely the variables declared in the corresponding contexts.
Namely, by relaxing this condition tev(P) C Dom(A), we loose subject reduction.
E.g., fromz:A F (Az:[z:A,y:Bl.y) x : (Az:A.B) z, by reducing both the term and

the type, we have:A + y:B, which is not derivable. On the other hand, one could
think of havingDom(A) C Fv(P), i.e. patterns can contain free variables, which can

be bound outside, and hence they can be substituted during reductions, as the variable
y in the following term(Ay:a.A(f x y):[z:a].y) z 5 A(f = 2):[x:a].z But this causes
problems when combined with untypable fix-points, since, as noticaac(3, the
non-linear termV in item (i) above can be mimicked in this setting, even under the
linearity pattern condition. Namely, |&t/ £ \z:a.\z:0.g. ThenM behaves asV of

item (i), sinceM Ny Ny —g (AN1:0.9) Ny 3 g if and only if Ny = Ny. ThusM,
combined with the untypable fix-point operailior breaks confluence of raw terms.

Pattern reductions.The counterexample in iteniii() above also shows that extend-

ing the class of patterns beyond normal forms, by allowing reductions in patterns is
potentially dangerous. In this perspective, in order to preserve confluence when re-
ductions in patterns are permitted, a possible solution is that of allowing reductions
to fire only when the pattern is a normal form in the sense of DefinBid@ This
corresponds to partially fixing a reduction strategy. Howekeeductionsn patterns
deserve special discussion.

(vi) K-reductions in patternsA K-redexis a redex AP:A.M) N, whereAP:A.M is a

18
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K-abstractioni.e. Fv(M) C Fv(P). When a K-redex is reduced, (parts of) the argu-

ment is erased. As a consequence, the Exact Pattern Condition is violated, and bound

variables may become free. Here is an example:

M 2 (N((\z:a.y) 2):[y:a—a, z:a].y 2) (Ax:a.f) g) Then, by reducing the pat-
~———— ~————

tern P and tr]:e argumentV, and then rej\éucing the outermost redex, we get
M —3(\y:[y:a—a, z:al.y z) f 3 f z,i.e. 2 comes out of its scope!

To avoid this problem, we could simply block K-reductions in patterns, but then we
also need to block pattern matching when the pattern contains a K-redex. Otherwise,
we loose confluence, the terid above being a counterexample. Namely, by redu-
cing the outermost redex\/ 3z f g, while, by reducing the argumem¥, we get

M g (M(Az:a.y) 2):[y:a—a, z:a].y z) f, which is not reducible anymore.

The above discussion shows that reaching confluence regardless typability is a rather brittle
property, and can be lost even for small extensions of the definition of patterns. On the basis
of all this, in Definition3.10above, we have carefully devised a notion of pattern, and cor-
responding reduction, which we will see satisfies the confluence property, but nevertheless
is considerably general. In our case, confluence holds already for raw terms. This turns out
to be particularly handy in proving strong normalization.

In particular, our definition of patterns guarantees the validity of the Matching Preserva-
tion Lemma and the Substitution Lemma below, which are crucial for proving confluence
and some fundamental properties of fheF type system, such as subject reduction and
strong normalization.

The Matching Preservation Lemma (which can be proved by induction on patterns)
expresses the fact that matchings are preserved both undezductions, and substitutions
of the argument,.e.:

Lemma 3.11 (Reduction/Substitution Preserve Matching) (i) If Alg(P; N) = 6 and
N —g N’, then there exist’ such thatdlg(P; N') = ¢’ andd 3 ¢/

(i) 1If 6 = Alg(P;N), then, for all§ such thatVar(9) N CoDom(#) = (), there exists
9 = Alg(P; N§); moreover, for allT’, we havel'§) = T66'.

Using Lemma3.11(ii), we can prove:
Lemma 3.12 (Substitution) If T'+—3 7" andd +—3 0, thenT0 —3 T"0".

The proof of confluence is a suitable application of the usual argument bapadadiel
reductionof [Tak89. As pointed out above, confluence holds for raw terms, provided they
satisfy the suitable restrictions on patterns introduced so far.

Theorem 3.13 (Confluence)The relation—; is confluent. O
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Signatures rules
— (S-Empty)
0 sig

Y sig
Fs. K a ¢ Dom(X)

(S-Kind)
¥, a:K sig

Ysig by A:Type f ¢ Dom(X)
>, f:Asig

Contexts rules

>l sig

(C-Empty)
Fx 0

Fs T
I'ts A: Type z & Dom(I")

(C-Type)
I—E P, x:A

Kind rules
Fe T
I' k5 Type
IAbs P:A T,Abg K
'k IIP:AK
[LAbs P:A T,AFg K
'k APAK

(K-Type)

(K-Pi)

(K-Abs)

T by, IP:AK
I AFs P:ATFsN: A

(K-Appl)
'y (AP:A.K)N

Families rules

Fe I aK el

(F-Var)
I'btya: K

IN'AFs P:B T',Ably A: Type

(F-Pi)
I'Fy IIP:AA : Type

I AFs P:B T,Als A: K

(S-Type)

(F-Abs)
't APAAIIPAK

'ty A IIP:A K

I'Ars P:B TFxN:B

(F-Appl)
ks AN : (AP:A.K)N

Fky A: K’

ks K Iy K=3K'

(F-Conv)
'k A K

Object rules

FxT' x:Ael
'k z: A

Fe D fiAeX
Thy f: A

[LAbs P:B T,Abxs M: A
ks AP:A M TIP:AA

(O-Var)

(O-Const)

(O-Abs)

't M IIP:AA

I'AFy P:B TFeN:B

(O-Appl)
'k MN: (AP:AA)N

ks M: A
Fl—thTyperl—E A:ﬁB

(0-Conv)
Ths M:B

Figure 3. ThePLF Type System
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3.4 PLF Type System

PLF involves type judgments of the following shape:

Y sig (X is a valid signaturg
Fx T (T"is a valid context irb)
kFy K (K isakind inI" andX)

'y A: Type (Ais has kindK in T andX)

'y M: A (M is has typed in I andX)

The typing rules oPLF are presented in Figui@ As remarked in the introduction, rules
(F-Appl), (O-Appl) do not utilize metasubstitution as in standaf but rather introduce
an explicit type redex. Ruled-Conv), and(O-Conv) allow to recover the usual rules, if
the reduction fires.
Strictly speaking, one should mention also the auxiliary equality judgments, but in view
of the fact that confluence holds also over non well-typed terms, we do not need contexts
and signatures in the equality judgments, and therefore they can be safely “swept under the
rug”.

LetT Fy « be any judgment in the system. Lemn®ag4 3.15 3.16 3.17below are
the instantiations of Conjectuge8to PLF.

Lemma 3.14 (Subderivation Property) ¢ Any derivation ofl" -y « has subderivations
of ¥ sigandbx T

* Any derivation of, a: K sig has subderivations df sig andts, K;
e Any derivation of, f: A sig has subderivations df sig andbx;, A : Type;
¢ Any derivation of-x, I', z: A has subderivations df sig andI" -y A : Type;

¢ Given a derivation of' -y, o and any subterm occurring in the subject of the judgment,
there exists a derivation of a smaller length of a judgment having that subterm as a
subject;

o f "y A: K, thenl Iy K;
e If'Fyx M : A, thenl' by A : Type.

Lemma 3.15 (Permutation) If 'y, 2: A, A, y:B, T2 Fx «, thenT'y,y:B, A, x:A, Ty by
«a, provided thatr ¢ Fv(A) U Fv(B).

Lemma 3.16 (Weakening)If I' Fx, aand- T', A, thenl', A Fy, a.

Lemma 3.17 (Unicity of Typesand Kinds) If I" Fx T : T3 andT' Fx T : T5, then

T by Ti=5T5.

Lemma 3.18 (Transitivity) If T, 2:A;A by aandD Fxy M : A, thenT', A[M/x] tx

a[M/x].

Lemma 3.19 (Abstraction Typing) ¢ If I' by, T (or I Fx T : T') andI” is such that
Dom(T") = Dom(I"), and for allz € Dom(T"), I' ks, T'(x)=6I"(z) and Fv(I'(z)) C
Fv(I'(x)), thenl Fx T" (or IV b5 T : T);
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o If 'ty AP:A.T : TIP":A’.T', thenDom(A) = Dom(A’), and for allz € Dom(A), we
havel', A by, A(x):gA'(x), andl’, A by, PZBP/;

o fI' by AP:AT :IIP:AT thenl,Abs P:oandl, A b T : T".
We are now ready to prove that typing is preserved by reduction.

Theorem 3.20 (Subject Reduction) (i) If I' sy, K and K +—3 K’, thenI -y, K.
(i) fI'+x A: KandA —yg B, thenl' -y B : K;
(i) fI'Fx M : AandM +—g N, thenl' b, N @ A.

3.5 Strong Normalization

Let SN = SN® U SN¥ U SN be the set of strongly normalizing terms. This section is
devoted to the proof of the following theorem:

Theorem 3.21 (Strong Normalization) (i) If Ty, K, thenK e SN*;
(i) Ty A: K, thenA € SN7;
(i) fTFx M : A, thenM e SNO.

The proof of the above theorem is based on a non-trivial extension of the stabolard
putability Argumento accommodate the presence of patterns in the syntax. For technical
reasons, in this section we find convenient to work in the equiv@eRtsystem with the
more informative lambda pattern abstractioR:A: B.T, whereB is meant to be the type
inferred for P. We will omit B when it is irrelevant in proofs.

Definition 3.22 (Comp Sets) « Let Comp? be the set obbject computability candidates
defined as follows.
N € Comp? if and only if A satisfies:
(c1) N C SN9;
(c2) YN € SN®. 2 N,andf N € \;
(c3) N is closed under the rule

QpsQ Alg(P;Q)=0 (MON N CoDom(A),Q € SN
(A\P:AM)QN € N

(c4) N is closed under the rule
VQ'. [Q—pQ = Alg(P; Q') = fail] CoDom(A),M,Q, N € SN
(AP:AM)QN e N

* LetComp” be the set ofamily computability candidategefined as follows.
N e Comp” if and only if A satisfies:
(c1) N C SN%;
(c2) VN € SN .a N € N;
(c3) N is closed under the rule

Q—3Q Alg(P;Q) =6 (AO)N € N CoDom(A),Q € SN
(AP:A.A)QN € N
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(c4) N is closed under the rule
VQ'. [Q—pQ = Alg(P;Q') = faill CoDom(A),A,Q,N € SN
(AP:ALA)QN e N

The rule in(c3) above captures the case when there exéstsntuallya possible matching
between the pattern and the argument, while the rule4n captures the case wheever
there will be a matching. In what follows, we denote ByC (@ the fact that there exist
Q', 6 such that) — 3 Q" andd = Alg(P;Q'), and byP £ @ the fact that, for all)’ such
that@ — 3 Q', we haveAlg(P; Q') = fail.

The following lemma holds.

Lemma 3.23 SN® € Comp® andSN” € Comp”.

The next definition, together with Lemn325below, give an interpretation of families in
Comp?, and of kinds inComp”. Such interpretation is defined by induction on families
and kinds. The complexity measutnefor families and kinds is given by the number of
family/kind metaoperators likes.g. v' and the hidden application metaoperai@;

m(a) =0 m(Type) =0 m(TM)=m(T)+1 m(VPAT)=m(T)+1

Notice that, in particularA and A9 have the same complexity.

Definition 3.24 (Family and Kind Interpretation) e Let[—]” be the family interpreta-
tion function defined by induction on families as follows.

[a N]F = SN [vP:A:B.A) =

{M‘Qem iMQG{U{[[Aenf|Q~»5Q'A9:A59<Ps@/>} otherwise}}

[AP:AAMN] = .
UL (A0)NT” | Mg M' N0 = Alg(P; M')}  otherwise

« Let[—]* be the family interpretation function defined by induction on kinds as follows.

[Type NJ* =SNF  [vP:A:B.K]F =

. SN” if PIZQ
{A pelpl e {U{[[KH]]’C | Qres @ 10 = Alg(P; @) otherwise}}

[AP:AK)MNIJF = _
U{I(KO) NT* | Mg M' A0 = Alg(P; M')}  otherwise
Then the following lemmas hold:
Lemma 3.25 (i) For every familyA, we have] A]7 € Comp?;
(i) For every kindK, we have] K ¥ € Comp”.
Lemma 3.26 (Soundness df [7/[ J*) () If A~ B, then[A]” =[B]”;
(i) If K5 K', then] K% = [ K']*.
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Lemma 3.27 (Key Lemma) Let " be a context, and letv; € [T'(z;)]”, for all z; €
Dom(T"). Then:

(i) fI'Fy K, thenK[N /x| € SN¥;
(i) FTFy A: K, thenA[N /z] € [ K[N/x]]*;
(iiy Ty M : A, thenM[N/x] € [A[N/x]]”.

By Lemma3.27, using the fact that variables belong to any se€imp®, we can prove
the Strong Normalization Theoregn21

Finally, we are in the position of proving thRt.F can be used as a framework for proof
checking.

Theorem 3.28 (Judgements decidability)lt is decidable whether thé’LF judgment
I' by, v is derivable.

4 The Closed Logical Framework

In this section, we investigate the Closed Logical Framew@il, introduced in Sec-
tion 2.4as an instance diLF. We recall thaCLF is obtained fronGLF by considering the
setScrr £ { ( True, , [z:0], True, , True, ), (Closed, , [z:0], Closed, , Closed, )}
This instantiation ofGLF amounts to a logical framework which features the standard
rule as well as a restrictggirule that fires only when the argument is closed. In Sedijon
we will provide a very interesting application GLF as a Logical Framework.

The Closed Logical Framework is an example of an interesting class of Logical Frame-
works, which arise when we instantidi&F to systems which feature standatdaeduction
together with a restricted-reductioni.e.

(Bv) (Ax.M)N —g, M[N/X] provided N € V

whereV is a set ofvalues Gordon Plotkin was the first to introduce this kind of restric-
tion in the call-by-value lambda calculus?1p73, in order to discuss the observational
equivalence of the SECD machine. Other restricted lambda calculi were introduced in
the literature, to analyze the behavior of special classes of téenstrongly normalizing
terms. However the simultaneous combination of both the stanglart 5, was rarely
discussed, let alone in a typed context. Once again we point out that the special nature of
the type system, which records potential reductions which have not yet fired, is the crucial
ingredient, which makes this enterprise worthwhile.

It is interesting to point out that, in what follows, everything goes through, provided
the setV of values is closed under standatdeduction and non-overlapping substitutions
which derive from the reductions involveice. provided the appropriate form of Lemmi&s
below holds.

In discussingCLF, for the sake of brevity, we writ€losed,, by xy andTrue, by . We
also letz € {z,zp}.

4.1 CLF Terms

In the next definition, we introduce the pseudo-syntax for kinds, families, objects and con-
texts.
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Definition 4.1 (CLF Pseudo-syntax)

eSs Y u=0]3aK|%f:A Signatures
AecC r :==0|I,z:A Contexts
KekK K = Type |IT:A. K | \z:AK | KM Kinds
A B,CeF A w=a|lIT:A.B | \XT:AB| AM Families
M,N,Q € O M:=flx| XZ:AN|MN Objects

4.2 Operational Semantics

Definition 4.2 (One/Many-Steps, Congruence) et ©” be the set of closed objects.

() The top-level rules are

(B—0bj)  (Az:A.M)N —3 M[N/z] (Azg:A.M)N —5 M[N/z] if N € O°
(B—Fam) (A\z:A.B)N —5 B[N/z] (Azg:A.B)N —3 B[N/z] if N € O°
(B—Kinds) (\z:A.K)N —5 K[N/z] (Azg:A.K)N —3 K[N/z] if N € O°

(i) one-step, many-steps reduction and congruence are defined as usual.

The two notions ofg-reduction inCLF, namely standarg-reduction and restricteg@-
closed reduction, nicely combine, in the sense that a poteptddsed reduction is pre-
served under application of any substitution (coming from another, possibly standard re-
duction).

Lemma 4.3 (Closure under Reduction and Substitution)lf N € 0%, then, for any sub-
stitutiond, N9 € ©%. Moreover, for anyV andT, and for anyd such thatr ¢ CoDom(6),
we havel'[N/x]6 = TO[NO/z].

Using the above lemma, one can prove the following substitution lemma.

Lemma 4.4 (Substitution) If T+3 7" andf 3 0, thenT0 —3 T"0'.

Using Lemma4.3and the Substitution Lemma above, and following the standard argu-
ment based on parallel reduction, one can prove:

Theorem 4.5 (Confluence)The relation—; is confluent. O

4.3 CLF Type System
CLF involves classical type judgments of the following shape:

Y sig Fs T 'ty T 'y A: Type ks M: A
The typing rules ofCLF are given in Figurd. As was the case fd?LF, we have also here
the auxiliary equality judgments Fx M =3 N. As for PLF, confluence holds for raw
terms, hence equality judgments are unproblematic. Due to the simplicity of predicates,
the metatheory o€LF follows from that ofLF [HHP93, with minor modifications. The
following gallery of results holds:
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Signatures rules

— (S-Empty)
0 sig

Ysig Fx K a ¢ Dom(X)

(S-Kind)
Y, a:K sig

Y sig
ks A: Type ¢ € Dom(X)

(S Type)
X, A

Contexts rules
> sig
Fs 0

(C-Empty)

Fx T
I'ts A: Type T ¢ Dom(I")

s T, 7:A (e

Kind rules
Fe T
I' Fy Type
I, 7:Abs K
' [IT:A.K
I'N'zAbby K
ks \T:AK
'ty IIZ:AK Ty N: A
Ity (A\T:A.K)N

(K-Type)

(K-Pi)

(K-Abs)

(K-Appl)

Families rules
FeI' aaK el
I'Fya: K
I'Z:B ks A: Type
'y lIz:B.A : Type
INz:BFy A: K
I'tx; A\z:B.A:1lz:B.K
I'xs A:llIz:B.K T'kx N:B
'ty AN: (A\@:B.K)N

(F-Var)

(F-Pi)

(F-Abs)

(F-Appl)

Thy A: K/
Tty K TDhy K=K’

F'kFy A: K

(F-Conv)

Object rules
Fe ' A€l
I'ts7T: A
Fe T f:AeX
'k f: A
I''z:BFy M : A
't A\z:B.M :1Iz:B.A
I'bky M :TIZ:BA THy N: B

(O-Var)

(O-Const)

(O-Abs)

(O-Appl)
'tk MN: (\T:B.A)N
't M: A
'y B:Type I' by A=3B
(O-Conv)

'y M: B

Figure 4.CLF Type System

Proposition 4.6 (Gallery) (i) Subderivation Property;

(i) Derivability of Permutation and Weakening;

(i) Unicity of Types and Kinds;
(iv) Transitivity;

(v) Abstraction Typing;

(vi) Subject Reduction.
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Strong Normalization follows from strong normalization of standaFd observing that
[B-reduction restricted to closed arguments is a special case of thegptanfuction.

Theorem 4.7 (Strong Normalization forCLF) (i) If ' by, K, thenkK e SN¥;
(i) Iy A: K, thend € SN7;
(iiiy T s M : A, thenM e SNO. O

5 Putting GLF to use: Examples

In this section we illustrate by means of a few simple examples Rbfvand CLF can

be conveniently used as Logical Frameworks. Clearly, more experiments are necessary in
order to assess in full generality the potential of such Frameworks. But we are confident that
already these very simple encodings of logical systems, which are problematic in standard
LF, make the point concerning the usability of the new Frameworks. Further possible
developments will be mentioned in Sectién We assume the reader familiar with the
pragmatics of Logical Frameworks. An elementary introduction appear&HinP92).

Most of the papers cited in the Introduction provide further interesting material.

5.1 Case AnalysisiRLF

Case analysis can be handled very easily and neatBLi by taking advantage of the
pattern matching facilities. For instance, in order to encodeLR the predecessor, for
the classical (untyped) term rewriting system over the constant integerirtypé) —

0, (succ x) — x), we can simply write\0:int.0 and A(succ z):[z:int].z. Following van
Oostroom Pos9(, and BCKLO3], we can take advantage of having functions-as-patterns.
Namely, projections for pairs can be neatly defined as follows.

Pi; 2 A(A\z:bool.z z y):[x:A, y:B].x Piy £ A(A\z:bool.z xy):[z:A, y:Bl.y
wherebool is the constant boolean type.

5.2 Plotkin's Call-by-value Lambda Calculus.

For lack of space, we will provide only one example encoding to illustrate how patterns can
increase the usability of Dependent Type Theory as a metalanguage for encoding logical
systems. Another encoding appearsliflR05]. Plotkin’s call-by-value lambda calculus
(Av-calculus) Plo79 differs from the traditional lambda calculus in the formulation of
theg, -reduction rule, namely\z. M) N —3, M[N/z] provided thatV is a value, that is a
variable or an abstraction. Thereduction rule is the usu@hxz. M ) —, M, providedr ¢
Fv(M), since variables are intended to range over values. Although interesting encodings
of Plotkin’s \,-calculus do exist in standatdF, the price to pay is to introduce an auxiliary
machinery for representing syntactic subcategori@siMIP92]. In PLF we can present
alternate encodings of Plotkin’g -calculus which safely do away with subcategories, as in
the signature appearing in Figuseln the signature:, of Figure5 standard abbreviations

are in usei.e. infix notation, operators precedentke;: A.B = A — B, if x ¢ FV(B), as

n times

well as the following onesv™ foro — ... — o andv'C[z]:[z:0] for vC[z°].
All the constants are self-explicatory but fbrThis constructor denotes values, and
coherently, the domain of theam constructor takes as arguments only functions whose
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Syntactic Categories
0 : Type
Constructors and Judgments
: 0? Lam : IIf:[II!z°.0]. 0 App : 03 =: 0— 0— Type
Axioms and Rules
Eqeg Iz’ z=2x
Edgymm : 2. IIy°. (2 = y) — (y = z)
EQians : Mz y?. 112°. (z =y) — (y = 2) — (x = 2)
Equy :Hz? Iyl I2°. Tw®. (z =y) — (z =w) — (Appzz = Appy w)
Betav :ILf:[II!z°.0]. IIy°. App (!(Lam f)) ('y) = f (ly)
Xiv  IIf:[II1z.0]. IIg:[II!z°.0].
(1122, £ (12) = g (1) — ({(Lam f) = !(Lam g))
Etav :IIz° !(Lam (A('y°).App (Iz) (ly))) =z

Figure 5. The signaturg, for Plotkin's A,-calculus inPLF

argument has to have the pattern of a value. Please notice the essential use of patterns. The
rationale of this signature is clarified by the following adequacy theorem:

Theorem 5.1 (Adequacy and Faithfulness).et =r (o) be the set oPLF terms in normal
form of typeo in the contex” = [z;:0, ..., x,:0], and let

al—]r:Av[z1,...,z,) — Er(o) be the bijective function defined as follows.
lz if M =z
[M]r = { App[PIr[Q]r if M=PQ

I(Lam (Mz°.[ Plz] 1 2:0)) if M = \z.P[z]

and let, M = N denote the standard equational theory for PlotkitXs-calculus
[Plo75. The following holds:

() T'tx, [M]r : ois provable if and only if\/ € A,[x1,...,x,] (i.e. the set of terms
in A, withz, ..., z, free variables).

(i) A by, P : [M]r = [N]r is provable, forA 2 y;:[Mi]r = [Ni]r,...,

Yn:[ My, Jr = [ Nn Jr and someP, iff My = Ny, ..., M,, = N, b, M = N.
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Propositional Connectives and Judgment

o: Type O: o - 0? 0: 02 True : 0 — Type

Propositional Axioms

A;  :TIg°. TIy°. Trued O (¥ O ¢)

Ay TIg° IIyp°. 116°. True(¢p D (v D 0)) D (¢ DY) D (¢ D)
Az :Tg? IIy?. True(— O =¢) O (¢ D ¢) D ¥
Modal Axioms

K :T¢? T1y°. TrueD(¢ O ¢) O (—¢ D —))

4 :TI¢°. TrueO¢ D O0¢

T :1¢°. Truede¢ O 6

Rules

MP :T1¢°. IIy°. Trueg O Trueg D ¢ — Truey
NEC : I1¢°. Ilzy:Trueg. TrueOo

Figure 6. The signaturE s, for classicS4 modal logic in Hilbert style irCLF

5.3 Modal Logics

The expressive power of the Closed Logical Framework allows to encode smogdédyf
proof, i.e. rules which apply only to premises which do not depend on any assumption, such
as the rule ohecessitationn Modal Logic, as well asules of derivation such asmodus
ponens It uses a constrained-abstraction in rules of proof and a standargbstraction
in rules of derivation.

We shall not develop here the encodings of all the plethora of modal logics, in Hilbert
and Natural Deduction style, which appear AHMP98]. By way of example, we shall
only give the signature for classicél, in Hilbert style, which features necessitation as a
rule of proof, namely

0D+ o

0+ O

The predicateClosed, 2 “x is a term with no free variables” is precisely what is needed
to encode it correctly.

The signature_g, encoding the modal logis, in CLF is presented in Figuré Stand-
ard abbreviations are in use. Notice that, apart from the encoding of the rule oNNEGHf
all the remaining constants are standard. We can easily show that:

Theorem 5.2 (Logical Adequacy)¢q,...,¢, Fs, ¢ if and only if 3M. T', True¢pq,
...y Truegn Fxg M : Truey, wherel’ = X;:0,..., Xi:0 for X; free propositional vari-
ables ing, ..., ¢n, 1.

(NEC)
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Adequacy of proof encodings IGLF is usually straightforward. On the other hand, when
explicit encodings of the closure judgment are givehfto achieve adequacy one needs
to prove that there exists at most one derivation of such a judgment.

6 Conclusions and Directions for Future Work

In this paper, we have introduced a general Logical Framework which subsumes the Logical
FrameworkLFof [HHP93, and generates new Logical Frameworks. These can feature a
very broad spectrum of generaliz8dreductions, together with an expressive type system
which records when such reductions do not fire. The key ingredient in the typing system is
a decomposition of the standard term-application rule.

We have instantiated our Framework to two important case-studies. The Pattern
Lambda CalculusPLF, which arises from the tradition 0fCJos9Q CKLOla CKLO1b,
BCKLO3], and the Closed Logical Framewof{ F. For both calculi we have have stud-
ied in depth the language theory, proving major metatheoretical results, such as subject
reduction, confluence, strong normalization. In both cases we achieve decidability, which
legitimates them as metalanguages for proof checking and interactive proof editing. Fi-
nally, we have illustrated the usability and expressivity of such Frameworks giving some
examples of encodings which where hitherto problematic in staridaréve believe that
our metalogical Framework has some considerable potential, but more experiments need
to be done to show this. A thorough comparison with existing work is also mandatory.
Among various results, we prove also strong normalization via reducibility candidates, for
a pattern lambda calculd®dLF. This problem was left open irBICKLO3], already for a
weaker subsystem. A strong normalization proof for a weaker systemPiblarappears
in [Wac03. Here is a rather rhapsodic list of comments and directions for future work.

» Formalize the notion of predicaf, still preserving generality.

e We conjecture that confluence and strong normalization properties can be established
for a generic predicate calculus, provided that the various notions of reductions nicely
combine, in the sense thatp,-reductions are preserved both under, -reductions
of the argument and application to the argument of any substitution coming from other
reductions.

e Case analysis iRLF should be compared with that of inductive typesQuog.

* InstantiateGLF so as to provide a more natural encoding of the Natural Deduction

introduction ruleof Prawitz:
ork ¢

—— (O-Intro)
O+ Og¢

E.g. if we introduce a new predicateccurs, £ “z is a term whose free variables occur

only in subterms of typdrueOy for somey”, then O-Intro becomes:

O-1 : II¢:0. ITIOccurs,:[z: Trueg]. Truedg.

e Section3.3shows that there is no strong notion of pattern reduction. Still, can we allow
reductions in patterns under specific strategegs,only where the pattern is in normal
form according to Definitior8.9 and does not contain K-redexes?
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¢ Can the linearity restriction in patterns be relaxed, still preserving confluence and strong
normalization over well typed patterns?

e Our results should scale up to all the system®i@KLO03], i.e. to systems corresponding
to the full Calculus of Construction€H8§|.

* Is there an interesting Curry-Howard isomorphismPaF and more generally for sys-
tems blending rewriting facilities and higher order calculi?

* InstantiateGLF in order to give sharp encodings of relevance and linear logics?

e Extend existing proof assistants based on dependent type systen®nq, with pattern
matching facilities as if?LF, and more generally witGLF.

* Among the various calculi with patterns, versianka Curry of PLF should be explored
and compared e.g. with the pattern calculus recently introducelkivq.
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Appendix

Proof of Lemm&.11

By induction onP.

e P = f or P = z, then the thesis is immediate.

o P = fP1 ... P,. Then,N = fN1 ... Np,with0; = Alg(Pi;Ni), 0= L_JZ 0;, and
N; n—>§ N/, for all i (and, for exactly one, N; —3 N/). By induction hypothesis, for
all i, there exist®;, such that, = Alg(P;; N;), andf; —3 0. Now, by the linearity
hypothesis onP, the ¢;’s are all coherent, thus we can defifie2 U, #;, such that
0 =Alg(fPy ... Py, fN| ... N!).

o P = )\PliA.PQ. Then,N = )\PliA.NQ, with 0 = .Alg(P7 N) = .Alg(PQ;NQ),
O(x) = =z, for all z € Fv(P), and A\P;:A.Ny +—3 AP:A.N; = N’. By in-
duction hypothesis, there exift§ such that’ = Alg(P»; Ny) andf —36’, hence
0 = Alg(P; N').

o P = ()\PlAPQ) P P, with Alg(Pl;ng) = fail, for all 6. Then, N =
(AP;:A.N3) N3 N, and Alg(Py; N3) = fail, andd = 6; U 63 U 0, wheref; =
Alg(Py; N2), andfy = Alg(Ps; N3), and@ = Alg(P; N) (61,62, 0 are the identity
on the free variables aP;), and(AP;:A.Ny) N3 N +—5 (AP1:A.Nj) Ny N’ = N'.
By induction hypothesis, there exi#t = Alg(P», N3), and¢, = Alg(Ps, N3), and
0' = Alg(P, N') such that); —3 6], andf, —; 65, and6 3 6. By the linearity
hypothesis orP, thed.’s are all coherent, thus we hagez | J, 0 = Alg(P; N').

We proceed by induction oR.

e P = f. Then, the thesis is immediate.

e P =z, andd = [N/z], andd = [N6/z]. Then, the thesis follows by proving, by
induction on7’, that, if @ does not overlap withV/z|, thenT[N/z|0 = TO[NO/x].
eP=fP ...P,. Then,N = f Ny ... N,, andd = |J, 0;, andf; = Alg(P;; N;),
for all 7. By induction hypothesis, for all there exist®, = Alg(P/; N/), such that,
for all T, we haveTd,0 = Teég. Then, the thesis follows by the fact that thgs
(5;’3) are all coherent, since patterns satisfy the linearity condition on variables.
e P = A\Pi:A.P,, andf = Alg(P;N). Then,f(x) = z, for all = € Fv(P),
N = AP;:A.No, andd = Alg(P»; N2). By induction hypothesis, for ang non-
overlapping withd (in particulard does not overlap with the bound variablesry;
there existd, such thad = Alg(P,, N26), and, for allT, we haveT0f = 60 .
Hence, we also havé — Alg(APy:A. Py, A\P;:A0.N20).

e P = (A\P:A.P,) P3 P, andf = Alg(P;N). Then,N = (AP;:A.N3) N3 N,
with § = 01 U 6, U 8, wheref, = Alg(Py; N3), andfy = Alg(P3; N3), and@ =
Alg(P; N) (andéy, 62, 8 are the identity on the free variables Bf). By induction
hypothesis, for any non-overlappirty there exis@/1 = Alg(Py, N20), and?2 =
Alg(Ps, N30), 8 = Alg(P, N’), such that, for alll’, we haveT0f = T69'. By
the linearity hypothesis o, the #!’s are all coherent, thus we havéz |, ¢, =
Alg(P; N"). 0

Proof of Confluence Theorel3

Definition A.1 (Parallel Reduction) The parallel reduction=3 is defined in FigureA.1
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T:>/3T/ N:>5N/

(Parp) (Parz)
T =5T TN =3 T N
T:>5TIA:>@A/ A:>5A/T:>5T’N:>5N/ .Alg(P;NI):Q
(Par3) (Par4)
VP:AT =5 vP:A.T (AP:AT)N =5 T'6

Figure A.1. Parallel Reduction
It is easy to prove that:

Lemma A.2 (Relations) 3 C =3 C 3.

By LemmaA.2 above, in order to prove the confluence of thg relation, it is enough
to prove the diamond property of the parallel reductiep. To this aim, we need the
following mappinge, and a number of instrumental lemmas.

Definition A.3 (Diamond) We define> by induction (point-wise extended to contexts):

.’130

>

x

>

(VP:AT)® = VP:A°T®

(T N)® 2 T°N°® if T'is not an abstraction
T°0 if Alg(P;N°) =146
(AP:AT)N)® 2 ! “49(_ P N°)
(AP:A.T)° N°® otherwise

Lemma A.4 ForanyT, we havel' =3 T°.

The following lemma is the counterpart of Lem®4.1(i) for =3, and it expresses the fact
that matchings are preserved unégj-reductions.

Lemma A.5 (Parallel Reduction Preserves Matching)lf § = Alg(P; N) and N =3
N, then there existd', such that’ = Alg(P; N') and§ =3 0'.

Lemma A.6 (Parallel Substitution) If T =3 7" and =3 ¢', thenT0 =3 T"¢’.

Proof By induction on the derivation @f =3 7" . If T =3 T is obtained by an application

of rule (Pary), then the thesis follows by proving thatdiss ¢', then for allT, T0 =3 T'¢'
(which can be shown by straightforward induction’6h The remaining cases are dealt
with straightforwardly using the induction hypothesis, except for the case where the last
rule applied in the derivation i$Par4), i.e.:

A=A Ti=5T] N=3N Ag(P;N)=0
(Para)

T=M\PATY)N=3T0=T

By induction hypothesish\d =3 A’0’, andT10 =4 176, and N0 =3 N'6’. Moreover,
by Lemma3.11(ii), there existsd = Alg(P; N'¢"). Thus, by rule(Pars), we have
(AP:A0.T10) N0 =5 T|0'8 = T|6¢', by Lemma8.11(ii). This concludes the proof. O

Lemma A.7 (Diamond Property) If Ty =3 15, thenTy =35 T7.
Proof By induction on the derivation dfy =3 T>. If the only rule applied in the derivation
is (Pary), then the thesis follows by Lemma4. If the last rule in the derivation i§Par»)
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or (Par3), then the thesis follows by induction hypothesis. Finally, let us consider the case
when the last rule in the derivation {®ar,), i.e.:

A:>5AI TéﬁT’ NégN/ Alg(P;N/):9

(Parg)
Ty = (A\P:AT)N =3 T'0 =Ty

By induction hypothesis)\’ =3 A°, and7’ =3 T7°, and N’ =3 N°. Hence, by
LemmaA.5, there exist®)’ = Alg(P; N°), andf =3 6#'. Thus, by definition of )°,
we havel? = T°¢', and, by the Substitution Lemni&p =5 T°¢’. O

Finally, TheorenB.13follows by LemmasA.2 andA.7.

A.3 Proof of Subject Reduction Theor&8mR0

Proof of Lemma Abstraction Typing 3.19By induction on derivations. O
The proof of Subject Reduction Theore®r20 follows by induction on the structure of
derivations, using Abstraction Typing and Transitivity. O

A.4 Proof of Strong Normalization Theoreh?21

Proof of Lemma 3.23 We only prove thasN® € Comp®. The proof ofSN” € Comp”
being similar. The seSN? clearly satisfiegc1) and (c2). We prove thaSN® satisfies
property (c3). Let assume thaf 3 @', and Alg(P; Q') = 0, and(M6#)N € SN©,

and CoDom(A), and @ € SN. We have to prove thatA\P:A.M)Q N € SN°.

We proceed by induction on the lengths of the minimal derivations to normal forms of
(M,Q, N,CoDom(A)), lexicographically ordered. I/, Q, N, CoDom(A) are all nor-

mal forms, then the thesis is immediate. Otherwise, let us consider all possiple
reductions starting fromiA\P:A.M)@Q N. We have to prove that the reduced terms are
strongly normalizing. There are various cases:

e AP:AM)QN 53 (AP:AM')QN. Since M6 € SN°, by hypothesis, and
M0 M'6, by Lemma3.12 then M'0 € SN®. Thus, by induction hypothesis,
(AP:A.M'")Q N € SN°;

o A\P:AM)QN —3 (AP:A.M)Q" N. Then, sincedlg(P;Q") = 6, by Conflu-
ence Theorem and Lemn®all(i), there exists), such thatQ” g Q, and there ex-
ists ¢, such that?’ = Alg(P;Q), and@ —; @'. Thus, since by Lemma.12
M5 M@, andM6 € SN, then alsal/6’ € SN®. Hence, by induction hypothesis,
(AP:A.M)Q" N € SN%;

e AP:AM)QN 5 (AP:AM)QN’, or A\P:A.M)QN —5 (AP:A.M)QN.
Then, the thesis follows by induction hypothesis.

Using a similar (simpler) argument, one can prove St satisfies alsqc4). O

Proof of Lemma 3.25 We prove a stronger statement for itéfr), (we omit the proof
of item (2), since it is similar): for any family4, and for any substitutiod, we have
[A8]7 € Comp®. We proceed by induction oA.

e A = a N. Then, the thesis follows by definition ﬂ)f]]f, using LemméB.23

e A= vP:A:B.A. Then,[A0]7 =
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SN© if P
M|Qe[B])F = MQe _ _ TPEQ
U{TA'00]7 | Q—5Q N0 = Alg(P;Q")} otherwise
We have to check thgtAd | satisfies conditiongc1—c4) in Definition 3.22
e (c1,c2) follow from the fact that, by induction hypothesfsA’66 7 € Comp®, for all
0,0.
e (c3) We have to prove that\P:A’.M')Q' N’ € [A#]”, whenever there exists
Q", such thatQ'+—3Q", andd = Alg(P’;Q"), and (M) N’ € [A¢]”, and
CoDom(A'), Q' € SN°. By definition of [ A9 ], we have(A\P":A’.M") Q' N’ € [ A0 ]*
if, forany Q € [ B]”,
SN© ifPZQ

APA MYQ'N'Q € _ B
( Jene {U{[[Aleeﬂf | Qr—>3Q" N0 = Alg(P';Q")} otherwise
Thus, letQ be such thaf) € [ B]”, two cases can arise

() P Z Q. Since(M'0)N' € [A0]”, by definition of [40]”, we have that
(M'9) N'Q € SN, and sinceSN® ¢ Comp?, SN satisfies conditiorfc4), and
hence \P":A’.M') Q' N’ Q € SN°.

i) There exists)”, such that) — 3 Q”, andd = Alg(P’; Q""). Then, sincéM’'0) N’ €

(ii) Y Q—5Q 9(P;Q
[ A0]7, by definition of[ A0 7, we have(M'0) N’ Q € U{[A'00]” | Q3 Q" A
0 = Alg(P';Q")}. Since, by induction hypothesifA06]” satisfiesc3), we have
(APA' M) Q' N'Q e U{[A'00] | Q5 Q" NG = Alg(P';Q")}.

e (c4) Let CoDom(A"),M',Q'", N’ € SN, and P’ Z @Q'. We have to prove that
(AP:A’.M')Q' N' € [A0]”. To prove this, by definition of A0]”, it is sufficient
to show the following two facts: le € [ B]”, then

(i) if PZ Q,then(A\P:A".M') Q' N'Q e SNY;

(i) otherwise(AP":A".M")Q' N'Q € U{[A'00]” | Q5 Q" NI = Alg(P";Q")}.

Fact(1) above follows by the fact th&N® e Comp satisfies(c4). Fact(2) follows
since, by induction hypothesis, eatH6d |7 also satisfiegc4).
Finally, letA = (AP:A.A’) M N. Then,

(48] = SN© if PIZ M6
U1 40017 | MO M" NG = Alg(P'; M")} otherwise

Now, one can easily check thpt6 |7 satisfies(c1—c4), by applying the induction
hypothesis td A’06]”. O

Proof of Lemma 3.26 We prove a stronger statement for itéir) (we omit the proof of
item (2), which is similar): if A~ 5 B, andd —» 3 0, then[ A0 > = [ B0’ ]”. We proceed
by induction on the number of reduction stepstbof- 3 B.

Base case.

e A = B. Then, we prove by induction on the structure #4fthat, if § —36’, then
[A0]F =[A0']”.

e A = alN. Then, the thesis is immediate.

e A= vP:A:B.A. Then,[ (vP:A:B.AN] =
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{M Qe[[B]]F;»MQe{

and[[ (vP:A:B.AN0' T =
SN? if P
M|Qe[B]F = MQe _ _ TPYQ
U{TA00]7 | Q—5Q AO = Alg(P;Q")} otherwise
Now, fromé +— 4 6’, using LemméB.12 we havesd 3 6’6. Thus, by induction hypo-
thesis,

SN© ifPZQ
U{TA'00]7 | Q—5Q N0 = Alg(P;Q")} otherwise

[A'06] =[A'06]

and hence the thesis follows immediately.
e A= (AP:A.A")MN,then

[(AP:A0.A'0)(MO)(N6) T =

SN© if PZ M6
{U{[[(A’%)(NG)]]]E | MO M" NG = Alg(P; M")}  otherwise
and
[(AP:A0.A'0") (MO (NO) ] =

SN if PZ M0’
{U{[[(A’O’Gl)(NG’) 17| MO —5 M" NG = Alg(P; M")} otherwise

Now, in order to show that A0 |7 = [ A9’ |7, itis sufficient to prove the following fact:
Fact (*): wheneven/6—; M” andd = Alg(P; M"), then there exisb/”” and@ such
that M o' — 5 M", 6 = Alg(P; M™), andé}—»@?.

Namely, if Fact (*) holds, then, by the Substitution Lem®d2 we havedd g 9’?’,
and, by induction hypothesi§,A’00 " = [A'6'9' |*. But Fact (*) above follows from
the Confluence Theorefi13and Lemma3.11(i), using the fact that, by the Substitution
Lemma3.12 M6 g M0’

Induction Step.

e A 3 B+ B'. Then, by induction hypothesi§,B¢'|* = [B'¢']”. Thus, we are
left to show that, ifA 3 B, andf—»gz6’, then[ A9]” = [ B#']”. This is shown by
induction on the structure of.

e A = alN. Then, the thesis is immediate from the definitiorf of”.

e A =vP:A A —5 vP:A''B'. Then, the thesis follows by induction hypothesis, using
an argument similar to that used for dealing wittof the same shape in the Base Case.
e A= (\P:A.A")MN. Then, there are two subcases:

(i) A= (A\P:A.A)M N —5 (\P:A.B")M' N’ = B;
(i) A=(A\P:AA)MN —5 AON = (A N)J = B, whered = Alg(P; M).
In case (), one can reason as in the Base Case. Let us prove the thesis in)case pave:
[A0]7 = {[(AN)II)" | MOrs5 M" NG = Alg(P; M)} ()
and
[BO']F =[(A' N)3o']”.
Using the Confluence Theoret1l3 Lemma3.11(i), and the induction hypothesis, one
can show that all the elements in equation (*) above coincide. Moreover, by the Base
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Case, we hav§ B0' ] = [BO]” = [(A' N)80]”. But then, sincd = Alg(P; M),

by Lemma3.1X(ii), we have that there exists = Alg(P; M6), such that(A’ N)§o =
(A'IN)00. Thus,[ BO']T = [(A' N)§O] = [(A' N)§O]" = [ A0]”. O

Proof of Lemma 3.27. We prove itemg1), (2), (3) by mutual induction on the derivations
of the judgments. We only deal with object rules, since the other rules can be dealt with
similarly.

(O-Var) Immediate, since if'y,z:A, 'y b5 z : A, thenz ¢ Fv(A).
O-Const) Immediate.

(
(O-Conv) The thesis follows by induction hypothesis and by Len816
(

O-Abs)
[LAbs P:B T,Abs M: A
'k AP:A:B.AM :1IP:A.A
We have to prove thd\P:A[N /z|.M[N /z]) € [[IP:A[N /z].A[N /] ]” (1)
Let@ € [ B]. Then statement (1) is true if the following two predicate are true:
() 3Q Q3 QN Alg(P; Q)=0]=(\P:A[N /z].M[N/z]) Q € [ A[N /]0]";
(iy PZQ = (AP:A[N/z].M[N/z])Q € SN°.
e Proof of (). By Lemma3.25 [ A[N/z]0]” € Comp®, hence] A[N/x]0]” satis-
fies condition(c3) of Definition 3.22 Thus, for proving AP:A[N /x| M|[N /x]) Q €
[A[N/x]0]”, it is sufficient to prove thaCoDom(A[N/z]), and@ € SN, and
M[N/z]0 € [A[N/z]0]”. Now, sinceQ € [B]”, then, by Lemma3.25 we
getQ € SNY. Moreover,CoDom(A[N/x]) € SN’ since by the Subderivation
Property3.14 for each familyA’ € CoDom(A), there exists a smaller derivation of
I +» A’ : K; hence, we can apply the induction hypothesis to this latter deriv-
ation. Finally, M[N/x]0 € [A[N/x]0]”, by induction hypothesis, noticing that
Dom(#) = Dom(A).
e Proof of (i). By induction hypothesisM [N /x] € [A[N/x]]”. Moreover, by
Lemma3.25 we get[ A[N/x]]” € SN, hence in particulad/ [N /x] € SN°.
Thus, sinceSN® is closed undefc4), using the Subderivation Properyl4 we get
(AP:A[N/z].M[N/z]) Q € SN°.
(O-Appl)

(O-Abs)

I'ks My :IIP:AA T AR P:B T’k My B
FI—Z M1 M2 . ()\PAA) MQ

(O-Appl)

We have to prove thathM; My)[N /x] € [(AP:A[N/x].A[N/x]) My[N/x]]” (2)
By induction hypothesis, we havel; [N /x| € [IIP:A[N /z]. A[N /z]]”, with P ¢
[ B[N /x]]”, andMs[N /x] € [ B[N /z]]”. Now statement (2) follows by definition
of [TIP:A[N /z].A[N /z]]”. O
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