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Abstract. In this paper, we model fresh names in the π-calculus us-
ing abstractions w.r.t. a new binding operator θ. Both the theory and
the metatheory of the π-calculus benefit from this simple extension. The
operational semantics of this new calculus is finitely branching. Bisimu-
lation can be given without mentioning any constraint on names, thus
allowing for a straightforward definition of a coalgebraic semantics. This
is cast within a category of coalgebras over algebras with infinitely many
unary operators, in order to capitalize on θ. Following previous work by
Montanari and Pistore, we present also a finite representation for fini-
tary processes and a finite state verification procedure for bisimilarity,
based on the new notion of θ-automaton. Finally, we improve previous
encodings of the π-calculus in the Calculus of Inductive Constructions.

Introduction

The π-calculus [15, 21] is a process calculus which provides a conceptual frame-
work for understanding mobility via name passing. Processes can communicate
in a network whose topology can change dynamically by passing, possibly lo-
cal, channel names. As for any other foundational calculus, we need strong
mathematical tools for expressing mobile systems and reasoning about their be-
haviours. However, due to the peculiar behaviour of mobile processes and names,
the well-known tools and techniques which have been developed successfully for
CCS-like languages cannot be straightforwardly extended to the π-calculus.

At the syntactic level, we have the problematic issue of binders and scope
of local names. At the operational semantic level, we have the issue of ensuring
freshness conditions for names. At the model-theoretic level, we have the issue
of providing a coalgebraic (final) semantics. Finally, from the practical point of
view, a finite representation for finitary processes is desirable [10,13,16].
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All the above issues have been considered in many previous papers. Often,
reformulations of the same calculus are introduced, in order to cope with these
problematic issues. The question is how to present “best” the calculus, in order
to achieve the mathematical structure we need for reasoning on its core computa-
tional aspects. The answer to this question depends on the metalogical formalism
in which we define the calculus. Recently, for the π-calculus many reformula-
tions, in different metalogics, have been presented. A first-order, de Bruijn-like
approach is adopted in [4,16], where processes can be equipped with explicit per-
mutations of names. A second-order approach, based on Higher-Order Abstract
Syntax, is adopted in [10,11,14], where most issues about freshness of names are
simplified, taking advantage of the metalogic notion of capture-avoiding substi-
tution. A somehow mid-way approach is in [7], where the reformulation is given
in the logic of Frænkel-Mostowski models of first-order set theory (i.e., sets with
atoms and permutations).

In this paper, we provide yet another formulation of the π-calculus with the
aim of expressing generation of fresh names at every level (syntactic, semantic
and implementative), and still keeping the metalogical overhead as low as possi-
ble. In fact, the calculus that we will present in Section 2, is just a conservative
extension of the ordinary π-calculus with a new unary binding operator θ; for
this reason, it is called the πθ-calculus. This extension is suggested by the higher
order presentations of the π-calculus as in [6, 10,11,14].

The new operator θ allows to explain “fresh” names as “locally θ-bound”
names. A transition which needs a fresh name is rendered as a transition to a
θ-abstracted process, i.e. where the fresh name is θ-bound. As we will see, many
aspects of the treatment of the theory and metatheory of the π-calculus will
benefit from this simple extension. Differently from the π-calculus, in the πθ-
calculus also actions are taken up-to α-conversion, thus yielding a finitely branch-
ing semantics w.r.t. fresh names. For example, while the π-process (νy)x̄y.P can

evolve via (νy)x̄y.P
x̄(z)−→ P{z/y} for any fresh name z (and thus it is infinitely

branching), the πθ-process has just one move (νy)x̄y.P
(θy)x̄y−→ (θy)P .

As we will see in Section 3, the encoding of both the syntax and the semantics
of the πθ-calculus in a logical framework based on Constructive Type Theory is
direct and natural. In particular, all side conditions of the operational semantics
are automatically dealt with by the metalanguage. With respect to previous
encodings of π-calculus [6,10,11], we need just one reduction judgement (instead
of two) and we do not need to introduce abstractions and concretions.

Bisimulation on the πθ-calculus can be given without any constraint on
bound names in labels. This allows for a direct re-use of the techniques in [1,2,19]
for defining a coalgebraic semantics. In particular, the semantics of a process is
finitely branching without being parametrized by the set of names of possible
partners, as was the case in [10]. Moreover, our semantics is finitary, in the sense
that any finitary process, i.e. with a bound degree of parallelism, gives rise to a
finite set of descendant processes, up-to vacuous bound names (i.e. abstracted
names which do not appear in the body of the process) and ordinary structural
congruence.
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In Section 4 we define the coalgebraic semantics within a category Alg1
ω of

structured coalgebras, following [16]. The algebra structure that we consider is
induced by a countable family of unary operators {ρi}i∈ω. The fact that our
coalgebraic semantics is in particular an algebra homomorphism allows us to
derive interesting properties on active names of processes in the final model.

In order to get a truly finite representation for finitary processes, in Section 5
we introduce the notion of θ-automaton. This is the counterpart, in our second-
order setting, of the notion of History Dependent Automaton of [16]. We associate
to each πθ-process a θ-automaton which is finite in case the original process is
finitary. States of θ-automata are given by collapsing the orbits of processes under
the action of vacuous θ-operators. We introduce a notion of bisimulation on the
states of θ-automata. Bisimilarity between π-calculus processes can be (finitely)
verified by checking the bisimilarity relation on the corresponding θ-automata.

Conclusions, related work, and directions for future work are in Section 6.

1 The π-calculus

In this section, we introduce briefly the π-calculus; see [15, 17] for more details.
In particular, we introduce the syntax of the language, the early operational
semantics, and the equivalence relation of early bisimilarity.

In the π-calculus there are only two primitive entities: names and processes
(or agents). Let N be an infinite set of names, ranged over by x, y. The set of
processes P, ranged over by P , Q, are closed terms (w.r.t. process variables Z)
defined by the abstract syntax:

P ::= 0 | x̄y.P | x(y).P | τ.P | (νx)P | Z | recZ.P | P1|P2 | [x = y]P

where the bound process variable Z must be guarded in recZ.P . The operators
are listed in decreasing order of precedence. The input prefix operator x(y) and
the restriction operator (νy) bind the occurrences of y in x(y).P and (νy)P
respectively. Thus, for each process P we can define the sets of its free names
fn(P ), bound names bn(P ) and names n(P ) , fn(P ) ∪ bn(P ). Processes are
taken up-to α-equivalence, which is defined as expected. Capture-avoiding sub-
stitution of a single name y in place of x in P is denoted by P{y/x}.

We denote by PX , where X is a finite set of names, the subset of π-calculus
processes whose free names are in X.

There is a plethora of slightly different labeled transition systems for the
operational semantics of the π-calculus, see e.g. [15,17,21]. Here, we present the
original one for early operational semantics [15]: the relation

µ−→ is the smallest
relation over processes satisfying the rules in Figure 1. (The right versions of
rules PAR, COM and CLOSE have been omitted.)

The early operational semantics exploits four actions, defined by the syntax
(L 3) µ ::= τ | xy | x̄y | x̄(z). Their intuitive meaning is the following:
silent action: P τ−→ Q means that P can reduce itself to Q without interacting

with other processes;
free output: P

x̄y−→ Q means that P can reduce itself to Q emitting the name
y on the channel x;
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−
x(z).P

xy−→ P{y/z}
(IN)

−
τ.P

τ−→ P
(TAU)

P
xy−→ P ′ Q

x(y)−→ Q′

P |Q τ−→ (νy)(P ′|Q′)
y 6∈ fn(P ) (CLOSEl)

P
µ−→ P ′

(νy)P
µ−→ (νy)P ′

y 6∈ n(µ) (RES)

P
µ−→ P ′

P |Q µ−→ P ′|Q
bn(µ) ∩ fn(Q) = ∅ (PARl)

−

xy.P
xy−→ P

(OUT)

P
xy−→ P ′

(νy)P
x(y)−→ P ′

y 6= x (OPEN)

P
µ−→ P ′

[x = x]P
µ−→ P ′

(MATCH)

P{recZ.P/Z} µ−→ P ′

recZ.P
µ−→ P ′

(UNFOLD)

P
xy−→ P ′ Q

xy−→ Q′

P |Q τ−→ P ′|Q′
(COMl)

Fig. 1. Early Operational semantics of the π-calculus.

free input: P
xy−→ Q means that P can receive from the channel x the name y

and then evolve into Q;

bound output: P
x(z)−→ Q means that P can evolve into Q emitting on the

channel x a name z, which is bound in P (but not in Q); only upon synchro-
nization, z will be shared with the receiving agents and restricted again.

The functions fn(·) and bn(·) are extended to actions, by putting fn(x̄(z)) =
{x}, fn(xy) = fn(x̄y) = {x, y}, fn(τ) = bn(τ) = bn(xy) = bn(x̄y) = ∅,
bn(x̄(z)) = {z}. As usual, n(µ) , fn(µ) ∪ bn(µ).

The τ and free input and free output actions are called free, the remaining
ones are called bound. Note that actions are not taken up-to α-equivalence.

Definition 1 (Early Bisimilarity). A symmetric relation R over π-calculus
processes is an early bisimulation iff, for all processes P,Q, if P R Q then

for each P
µ−→ P ′ with bn(µ) ∩ fn(P,Q) = ∅ then there exists Q′ such

that Q
µ−→ Q′ and P ′ R Q′.

The early bisimilarity ∼ is the greatest early bisimulation.

2 The πθ-calculus

In this section, we introduce the πθ-calculus, an extension of the π-calculus,
where processes can be prefixed possibly by a finite sequence of the new binding
operator θ. This new operator can be used to take care of the allocation of fresh
names; essentially, it allows to model a fresh name using a bound name.

Syntax. The sets of πθ-processes Pθ and πθ-actions Lθ are defined as follows:

Pθ , {(θx1) . . . (θxn)P | P ∈ P, x1, . . . , xn ∈ N , n ≥ 0}
Lθ , {(θx1) . . . (θxn)µ | µ ∈ Lf ∪ Lb, x1, . . . , xn ∈ N , n ≥ 0}

where P is the set of π-calculus processes, Lf is the set of free actions, i.e.,
τ , free input and free output, and Lb is the set of bound actions, i.e. bound
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input, x(y), and bound output, x̄(y), where x( ) and x̄( ) bind y. By abuse of
notation, P,Q and µ will range also over Pθ and Lθ, respectively. We will use the
abbreviations (θ~x)P and (θ~x)µ for the process (θx1) . . . (θxn)P , and for the label
(θx1) . . . (θxn)µ, respectively, where P and µ are θ-free. The operator θ binds
the occurrences of x1 . . . xn in (θ~x)P and in (θ~x)µ. Both processes and labels are
taken up-to α-equivalence; hence, without loss of generality, x1, . . . , xn in ~x can
always be assumed to be all distinct (e.g., (θxx)P is the same as (θxy)P{y/x}).

The process (θx)P can be viewed as the representation of a process abstrac-
tion obtained by instantiating P with a fresh name; the name which has to be
fresh remains bound in P so that its freshness is guaranteed implicitly. In a sense,
θ-abstractions resemble the λ-abstractions of the alternative presentations of the
π-calculus in, e.g., [17, §5.5]. However, our aims are different; in fact, we do not
have a notion of “application” (i.e., concretion).

For X a finite set of names, we denote by PθX and LθX , the sets of πθ-processes
and πθ-labels whose free names are in X, respectively. The set of closed πθ-
processes is Pθ∅ . The occurrence (θxi) in the process (θx1 . . . xn)P is vacuous if
xi 6∈ fn(P ) or equivalently if the result of instantiating the occurrences of the
name xi in P with an arbitrary name produces always the same result.

Operational Semantics. The operational semantics of the πθ-calculus is given
by a family of relations. For X a finite set of names, the relation

−→→X⊆ PθX × LθX × PθX

is defined as the smallest relation satisfying the rules in Figure 2. By definition,

for any transition of the form (θ~x)P
(θ~y)µ−→→ X (θ~z)Q, we have fn((θ~y)µ, (θ~z)Q) ⊆

fn((θ~x)P ). Hence, if (θ~x)P is closed, then X can be set to ∅.
Note that there are two input rules, IN and INθ. In rule IN the bound name

is instantiated with a “previously known” name z in X. Rule INθ takes care of
the instantiation with a fresh name, by creating a new θ-bound name y. In this
way, all π-calculus input transitions differing by the choice of the new name are
collapsed (by α-rule) in a single transition, and the πθ-system becomes finitely
branching. As in rule INθ, also in rule OPEN, the allocation of a fresh name is
delegated to the constructor θ. The rules PAR and RES are duplicated, to take
into account the case in which a θ-bound name appears in the target process.3

We remark that processes (νx)P and (θx)P behave differently, in general.
Namely, rules RES and OPEN do not allow for output actions whose subject is
exactly x, while the process (θx)P could make an output transition under θ.

The following lemma clarifies the rôle of θ, and it is the counterpart of [15,
Lemma 3] for the πθ-calculus.

Lemma 1. For all X finite, for all (θ~x)P ∈ PθX :

i) for all (θ~x)Q, (θ~x)µ: (θ~x)P
(θ~x)µ−→→ X (θ~x)Q iff P

µ−→→X∪{~x} Q;

ii) for all (θ~xy)Q, (θ~x)µ: (θ~x)P
(θ~x)µ−→→ X (θ~xy)Q iff P

µ−→→X∪{~x} (θy)Q.
3 Strictly speaking, the side conditions “z ∈ X” of rule IN and “y 6∈ fn(µ)” of rules

RES and RESθ are redundant, because they are always ensured by the type of −→→X .
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−
τ.P

τ−→→X P
(TAU)

−
x(y).P

xz−→→X P{z/y}
z ∈ X (IN)

−

x(y).P
x(y)−→→X (θy)P

(INθ)

−

xy.P
xy−→→X P

(OUT)

P
µ−→→X P ′

P |Q µ−→→X P ′|Q
µ ∈ Lf (PARl)

P
µ−→→X (θx)P ′

P |Q µ−→→X (θx)P ′|Q
(PARθ

l )

P
xy−→→X P ′ Q

xy−→→X Q′

P |Q τ−→→X P ′|Q′
(COMl)

P
xy−→→X

⊎
{y} P

′

(νy)P
x(y)−→→X (θy)P ′

(OPEN)

P{recZ.P/Z} µ−→→X P ′

recZ.P
µ−→→X P ′

(UNFOLD)

P
µ−→→X P ′

[x = x]P
µ−→→X P ′

(MATCH)

P
µ−→→X

⊎
{y} P

′

(νy)P
µ−→→X (νy)P ′

y 6∈ fn(µ), µ ∈ Lf (RES)

P
µ−→→X

⊎
{y} (θz)P ′

(νy)P
µ−→→X (θz)(νy)P ′

y 6∈ fn(µ) (RESθ)

P
x(y)−→→X (θy)P ′ Q

x̄(y)−→→X (θy)Q′

P |Q τ−→→X (νy)P ′|Q′
(CLOSEl)

P
µ−→→X

⊎
{x} Q

(θx)P
(θx)µ−→→ X (θx)Q

(THETA)

Fig. 2. Early Operational semantics of the πθ-calculus.

We can draw a precise correspondence between π- and πθ-derivations:

Proposition 1. For all X finite, for all ~z not in X, and P ∈ PX∪{~z}, x, y ∈ N :

– P
τ−→ Q iff (θ~z)P

(θ~z)τ−→→ X (θ~z)Q;

– P
x̄y−→ Q iff (θ~z)P

(θ~z)x̄y−→→ X (θ~z)Q;

– P
xy−→ Q iff

(
if y ∈ X ∪ {~z} then (θ~z)P

(θ~z)xy−→→ X (θ~z)Q else (θ~z)P
(θ~z)x(y)−→→ X (θ~zy)Q

)
;

– P
x̄(y)−→ Q iff (θ~z)P

(θ~z)x̄(y)−→→ X (θ~zy)Q.

The proof of Proposition 1 is straightforward by mutual induction on the
structure of derivations. In particular, when ~z is empty:

Corollary 1. For all X finite, for all P ∈ PX , for all x, y ∈ N :
– P

τ−→ Q iff P
τ−→→X Q;

– P
x̄y−→ Q iff P

x̄y−→→X Q;

– P
xy−→ Q iff

(
if y ∈ X then P

xy−→→X Q else P
x(y)−→→X (θy)Q

)
;

– P
x̄(y)−→ Q iff P

x̄(y)−→→X (θy)Q.

The relations −→→X can be seen as a family of coherent “approximations”
of the usual early operational semantics. We can recover this semantics by tak-
ing the union of all approximations: for µ action of the πθ-calculus, we define
µ−→→ ,

⋃
X

µ−→→X . Of course, we could drop safely the X parameter and consider
all the transition systems simultaneously, without any other consequence but
that the operational semantics would then be finitely branching only w.r.t. fresh
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names. At the moment, each −→→X is truly finitely branching, because the names
which can be chosen in the rule IN must belong to X, which is finite. We prefer
to keep the X parameter, in order to provide a sharper analysis of the system.

Bisimulation. We can now introduce a notion of bisimulation on πθ-processes,
which provides an alternative characterization of early bisimilar processes.

Definition 2 (Early θ-bisimilarity). Let X be a finite set of names. A sym-
metric relation RX ⊆ PθX ×PθX is an early θ-bisimulation at stage X iff, for all
P,Q ∈ PθX processes, P RX Q implies:

– if P
µ−→→X P ′, then there exists Q′ such that Q

µ−→→X Q′ and P ′ RX Q′.
The early θ-bisimilarity at stage X, ≈X , is the greatest early θ-bisimulation at
stage X. The early θ-bisimilarity ≈ is defined as ≈,

⋃
X ≈X .

Notice that the notion of early θ-bisimilarity depends, for generic processes,
on their free names. Again we could disregard X completely. Anyway, for θ-
closed processes, any reference to names disappears altogether. What is more
significant, however, is that for all (possibly open) processes, the side condition
on the freshness of names necessary for bound output in Definition 1 disappears,
being implicit in the fact that the new name is bound by θ in P ′, Q′. The price
to pay is that each time a fresh name is needed, an extra (possibly vacuous) θ
is generated, and the set of processes reached during the evolution of a finitary
process is finite, only up-to vacuous θ’s.

Example 1. Let us consider the recursive process P = recZ.(νy).x̄y.Z ∈ PX ,
where X = {x}. In the π-calculus, the process P can evolve into itself, i.e.

P
x̄(y)−→ P

x̄(y)−→ . . . while, in the πθ-calculus, P can evolve as follows:

P
x̄(y0)−→→ X (θy0)P

(θy0)x̄(y1)−→→ X (θy0y1)P
(θy0y1)x̄(y2)−→→ X (θy0y1y2)P −→→X . . .

Notice that the states reached by P after a finite number of transition steps
differ by a finite number of vacuous θ’s.

The following lemma can be viewed as the “higher order” version of Lemma 6
of [15], and it is instrumental to prove Theorem 1 below.

Lemma 2. Let (θ~x)P, (θ~x)Q ∈ PθX . Then (θ~x)P ≈X (θ~x)Q iff P ≈X∪{~x} Q .

As a main correspondence result, θ-bisimilarity is a conservative extension of
usual bisimilarity:

Theorem 1. Let P,Q ∈ P. Then P ∼ Q iff P ≈ Q.

Proof. Both directions are proved by coinduction, using Proposition 1.
(⇒) We prove that the relation

R = {((θx1 . . . xn)P, (θx1 . . . xn)Q | n ≥ 0, x1, . . . , xn ∈ N ∧ P ∼ Q}
is an early θ-bisimulation at stage X, for X ⊇ fn(P,Q).
(⇐) Using Lemma 2, we prove that the relation R = {(P,Q) | P ≈ Q} is an
early bisimulation. ut
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Remark 1. In the light of Lemma 2, one could wonder whether it is possible to
simplify our notion of early θ-bisimulation, by getting rid of redundant vacuous
θ’s. This would allows us to overcome the problem highlighted by Example 1.
But even if we restrict ourselves to processes whose occurrences of names are all
active4, independent elimination of vacuous θ’s is not safe, as we can see from
the counterexample below.

Example 2. Let P =(νx)w̄x.(νy)x̄y.ūx.0, Q=(νx)w̄x.(νy)x̄y.ūy.0. Then P and
Q are not early bisimilar, because the last action of P consists in communicating
the first extruded name, while Q communicates the second extruded name. But
P and Q turn out to be erroneously equated if we eliminate vacuous θ’s. Namely,
after two transition steps P reduces to (θxy)ūx.0, and Q reduces to (θxy)ūy.0,
but, since θx is vacuous in the first process, while θy is vacuous in the latter, we
reduce ourselves to considering the pair of processes (θx)ūx and (θy)ūy, which
turn out to be α-equivalent and thus bisimilar.

3 Implementation of the πθ-calculus in Coq

In this section we sketch an implementation of the πθ-calculus in Logical Frame-
work based on a constructive Type Theory, such as the Edinburgh LF or Coq
[8,12]. This is a simplification of previous formalizations of the π-calculus [10,11],
because the encoding of operational semantics will not need an auxiliary transi-
tion system for bound actions, i.e., actions leading to processes with fresh names.

Following the HOAS methodology, we can delegate to the metalogic all the
bookkeeping aspects related to name generation and freshness. At the syntactic
level, α-conversion is inherited; at the semantic level, side conditions disappear,
and even the indexing of the transition relation is dealt with by the very shape
of the typing judgement.

Syntax. Names and variables will be represented by LF variables of specific
types Name and Var, without constructors. θ-free processes P are represented by
terms of type Proc, which is a subtype of type TProc representing the whole Pθ.
Constructors of these two types are as usual; in particular, all binding construc-
tors (input, restriction, recursion and θ) are represented by second-order term
constructors; hence α-conversion and capture avoiding substitution of names and
variables are inherited from the metalanguage.

Variable Name,Var : Set.
Inductive Proc: Set := nil : Proc
| output : Name -> Name -> Proc -> Proc
| input : Name -> (Name -> Proc) -> Proc
| tau : Proc -> Proc
| nu : (Name -> Proc) -> Proc

4 An occurence of a name is active in P if it appears explicitly in an action in the
evolution of P .

8



| inVar : Var -> Proc
| rec : (Var -> Proc) -> Proc
| par : Proc -> Proc -> Proc
| match : Name -> Name -> Proc -> Proc.

Coercion inVar : Var >-> Proc.
Inductive TProc : Set :=

inProc : Proc -> TProc | theta : (Name -> TProc) -> TProc.
Coercion inProc : Proc >-> TProc.

For X = {x1, . . . , xn} a finite set of names, we will denote by ΓX the typing
environment x1:Name,...,xn:Name, and by ProcX the canonical forms P of type
Proc such that ΓX ` P : Proc; similarly for TProc. Then:

Proposition 2. For each X ⊂ N finite, there are two compositional bijections
εX : PX → ProcX , and εθX : PθX → TProcX .

In the following, both encoding functions will be denoted by εX .

Semantics. In order to implement the early operational semantics in Figure 2,
we need to introduce the syntactic sorts of free and bound actions FAct, BAct,
and θ-actions TAct.

Inductive FAct : Set := ftau : FAct
| fout : Name -> Name -> FAct | fin : Name -> Name -> FAct.

Inductive BAct : Set := bout : Name -> BAct | bin : Name -> BAct.
Inductive TAct : Set := inFAct : FAct -> TAct
| inBAct : BAct -> TAct | theta_a : (Name -> TAct) -> TAct.

Coercion inFAct : FAct >-> TAct.
Coercion inBAct : BAct >-> TAct.

Let us denote again by εX the obvious encoding function for actions.
The transition relation P

µ−→X Q is represented by a predicate trans :
TProc -> TAct -> TProc -> Prop. All rules are encoded straightforwardly; see
Appendix A for the complete code. In particular, side conditions disappear,
because they are automatically dealt with by the metalanguage features. For
instance, rules (RES) and (RESθ) are encoded respectively as follows:

fRES : (P,Q:Name->Proc)(a:FAct)
((y:Name)(trans (P y) a (Q y))) -> (trans (nu P) a (nu Q))

bRES : (P:Name->Proc)(P’:Name->Name->Proc)(a:BAct)
((y:Name)(trans (P y) a (theta [z:Name](P’ z y)))) ->
(trans (nu P) a (theta [z:Name](nu (P’ z))))

The local name y is automatically fresh, different from any other existing name,
and in particular different from any name occurring in a. Notice that we do not
need to parametrize trans by the set of names, because this is automatically
represented by the variables of type name declared in the proof context:

Proposition 3. Let X ⊂ N be a finite set of names, and P,Q ∈ PθX . Then:

P
µ−→X Q ⇐⇒ ∃d. ΓX ` d : (trans εX(P ) εX(µ) εX(Q))
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4 Finitary Coalgebraic Semantics

In this section, we capitalize on the results of the previous sections, in order to
give a coalgebraic description of early bisimilarity which is both not parametrized
on sets of names as well as finitary (up-to structural congruence and vacuous
bound names) for finitary processes. We focus on closed πθ-processes, since, by
Lemma 2, bisimilarity of (possibly open) πθ-processes can always be reduced to
bisimilarity of θ-closed processes.

Recall that a T -coalgebra on a category C (e.g. Set), where T is an endo-
functor, is a pair (A,α), where A is an object of C and α : A → T (A) is an
arrow of C. A T -coalgebra morphism h : (A,α)→ (B, β) is an arrow h : A→ B
of C (e.g., a function when C = Set), such that β ◦ h = T (h) ◦ α.

According to the final semantics approach [1,2,19], the operational semantics
of a language is represented as a T -coalgebra for a suitable endofunctor T . If the
functor is “well-behaved,” then there exists a final T -coalgebra, say Ω = (Ω,αΩ).
Moreover, for any T -coalgebra (A,α), the unique arrow M : (A,α) → (Ω,αΩ)
induces an equivalence on A which can be characterized as the union of all T -
bisimulations on (A,α)–a T -bisimulation on (A,α) is the categorical counterpart
of the ordinary notion of bisimulation: it is a relation R ⊆ A×A for which there
exists an arrow γ : R → T (R), such that the projections π1, π2 can be lifted to
T -coalgebra morphisms from (R, γ) to (A,α).

In order to take advantage of the algebraic structure of θ-operators and be
able to capture the number of active names in processes, we work in a category
of structured coalgebras. We consider coalgebras over the category Alg1

ω of 1-ary
ω-algebras, which are algebras with an infinite family of unary operators.

Definition 3 (1
ω-algebra). A 1-ary ω-algebra (1

ω-algebra) is a set A, the car-
rier, with an infinite family ρA = {ρAi }i∈ω of unary operators ρAi : A→ A, closed
under composition. The category of 1

ω-algebras Alg1
ω is defined as follows:

– objects are 1
ω-algebras

– morphisms f : (A, ρA) −→ (B, ρB) are all functions f : A→ B in Set, which
preserve the algebraic structure, i.e. f ◦ ρAi = ρBi ◦ f for all i ∈ ω.

The set Pθ∅ of closed πθ-calculus processes can be endowed with a structure
of a 1-ary ω-algebra:

Proposition 4. For n ∈ ω, let us denote by πn : n → n a permutation of
{1, . . . , n}. For m ≥ n, let πn|m be the extension of πn to a permutation on m

with the identity on {n + 1, . . . ,m}. For |~x| = n, we let πn[~x] , xπn1 . . . xπnn.
The prefix permutation operator ρπn : Pθ∅ → P

θ
∅ is defined as follows:

ρπn((θ~x)P ) ,

{
(θπn||~x| [~x])P if |~x| ≥ n
(θ~x)P otherwise .

Composition ρπn ◦ρπm of prefix permutations is defined as ρπn|m ◦ρπm , when
m = max(m,n), and as ρπn ◦ ρπm|n otherwise. Let {ρi}i∈ω be an enumeration

of the set ρ = {ρπn | πn : n→ n, n ∈ ω}, then (Pθ∅ , {ρi}i∈ω) is a 1
ω-algebra.
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The operational semantics induces a structure of coalgebra on the ω-algebra
of closed πθ-processes for a functor similar to the one used for CCS:

Definition 4. Let T : Alg1
ω → Alg1

ω be the functor defined by the canonical
extension to arrows of the function:

T (A, ρA) , (℘f(Lθ ×A), ρ℘f(Lθ×A)) ,

where, for any u ∈ ℘f(Lθ ×A), πn : n→ n,
ρ℘f(Lθ×A)
πn (u) = {((θπn||~x| [~x])µ, ρπna) | ((θ~x)µ, a) ∈ u} .

Proposition 5. Let α : (Pθ∅ , ρ)→ T (Pθ∅ , ρ) be defined as follows:

α(P ) , {(µ,Q) | P µ−→→∅ Q}
Then, Cπθ , (Pθ∅ , ρ, α) is a T -coalgebra.

Since T is a lifting of the corresponding polynomial functor, by Theorem 7
of Appendix B, we have:

Proposition 6. The functor T has a final coalgebra Ω = (Ω, ρΩ , αΩ).

Remark 2. One may wonder whether Proposition 5 still holds if we consider
other constructors in the algebraic structure beside ρ’s. The point is that α has
to be a morphism between 1

ω-algebras, i.e. it has to respect the algebraic struc-
tures. This holds for ν, |, thus providing an alternative proof of the fact that
bisimilarity is a congruence w.r.t. ν, |. But it does not hold in the case of input
prefix, of course. For example, let us consider the operator ιzx(·) = z(x).· act-
ing on processes as follows: ιzx((θ~y)P ) , (θ~yz)z(x).P . If P = (θyw)ȳw, then
α(ιzx(P )) 6= T (ιzx)(α(P )), whatever is the action of ιzx on labels.

Using Lemma 2 and Theorem 1, we can easily prove that:

Theorem 2. Let P,Q ∈ P be such that (θ~x)P, (θ~x)Q ∈ Pθ∅ . Then P ∼ Q iff
there exists a T -bisimulation, R, on the coalgebra Cπθ such that (θ~x)P R (θ~x)Q.

The following proposition characterizes T -bisimilarity by finality, and hence,
by Theorem 2, also bisimilarity on π-calculus processes.
Proposition 7. The equivalence induced by the unique morphism M : Cπθ −→
Ω coincides with the union of all T -bisimulations on the T -coalgebra Cπθ.

Finally, we can put to use the 1
ω-algebraic structure of coalgebras. In [16], the

richer structure of coalgebras given by permutation algebras was used to show
that the support of the interpretation of a π-calculus process in the final model
amounts exactly to the active names of the process. In our setting we can obtain
a similar result:

Proposition 8. For (θ~x)P ∈ Pθ∅ , the family {ρΩi (M(P ))}i has at most n!/k!
distinct elements, where n = |~x| and k is the number of active names of P .

Proof. (Outline) The action of ρ-operators commutes with the final semantics.
By definition of active names, swapping non-active names in the θ-prefix does not
change the bisimilarity class of the process. Therefore, the number of distinct
elements in the family {ρΩi (M(P ))}i is bounded by the number of different
permutations of n objects, k of which are equal. ut
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5 θ-automata

In this section, drawing inspiration from [16], we introduce a notion of automa-
ton, called θ-automaton, for representing in a finite way the evolution of finitary
πθ-processes. These are processes whose descendants have a bounded number of
possible parallel actions (degree of parallelism):

Definition 5 (Finitary Process). The degree of parallelism deg(P ) of a πθ-
process P is defined as follows (for π a generic action prefix):

deg(0) = deg(Z) , 0 deg(π.P ) , 1 deg(P | Q) , deg(P ) + deg(Q)

deg((νx)P ) = deg((θx)P ) = deg([x = y]P ) = deg(recZ.P ) , deg(P )

A process P ∈ PθX is finitary if max{deg(P ′) | P µ1−→→X . . .
µi−→→X P ′} <∞. For P

finitary, let us denote the maximum degree of any descendant5 of P by deg(P ).

Structurally congruent πθ-processes will be represented by the same state:

Definition 6 (Structural Congruence). The structural congruence ≡ on π-
calculus processes is the smallest congruence that satisfies the following:

(par) P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
(res) (νx)0 ≡ 0 (νx)(P | Q) ≡ P | (νx)Q, if x 6∈ fn(P )

(νx)(νy)P ≡ (νy)(νx)P (νx)π.P ≡ π.(νx)P, if x 6∈ fn(π)
(match) [x = x]P ≡ P [x = y]0 ≡ 0
(unfold) recZ.P ≡ P{recZ.P/Z}

where π stands for a generic action/matching prefix.
The πθ-processes (θ~x)P , (θ~x)Q are structurally congruent (also denoted by

≡) if and only if P ≡ Q.

For each class S ⊆ Pθ of congruent processes, let us fix a representative
process P such that |fn(P )| = min{|fn(Q)| | Q ∈ S}.

Moreover, since processes differing by vacuous θ’s will be collapsed in the
same state of the θ-automaton, we need to introduce a canonical representative
for classes of congruent processes together with all processes differing by vacuous
θ’s. For the sake of simplicity, but without loss of generality by Lemma 2, we
introduce θ-automata only for closed πθ-processes.

Definition 7. A πθ-process (θx1 . . . xn)P ∈ Pθ∅ is canonical if it is the repre-
sentative of a ≡-class and xi ∈ fn(P ), for all 1 ≤ i ≤ n. Let can(Pθ∅ ) denote the
set of canonical πθ-processes.

Let ‖·‖ : Pθ∅ → can(Pθ∅ ) be defined by ‖(θx1 . . . xn)P‖ , (θy1 . . . ym)P ′, where
P ′ is the representative of the equivalence class of P , x1 . . . xn = ~z0y1~z1 . . . ym~zm,
|~zi| ≥ 0, and {y1, . . . , ym} = fn(P ′). We define the reindexing6 ξ((θx1 . . . xn)P ) ∈
M(n,m) as follows: ξ((θx1 . . . xn)P )(i) = j ⇐⇒ xi = yj.
5 A process Q is a descendant of P if P −→→∗X Q, where −→→∗X is the reflexive and

transitive closure of −→→X .
6 Where M(n,m) denotes the set of partial strict monotone functions from {1, . . . , n}

to {1, . . . ,m}.
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For a canonical process (θ~x)P , we define its orbit as the set orbit((θ~x)P ) ,
{(θ~z0x1 . . . ~zn−1xn~zn)P ′ ∈ Pθ∅ | P

′ ≡ P ∧ |~z0|, . . . , |~zn| ≥ 0 ∧ ∀i, j.xj 6∈ ~zi}.

Definition 8 (θ-automaton). Let P ∈ Pθ∅ . The θ-automaton AP induced by
P is the triple (S, ‖P‖, 7→), where:
– S is the set of states. Each state is the orbit of the canonical process corre-

sponding to a descendant of P , and it is denoted by the canonical represen-
tative itself.

– ‖P‖ is the initial state.
– 7→⊆ S × Lθ × S is the transition relation defined by:

P1
µ7→ P2 iff there exists P ′2 such that P1

µ−→→∅ P ′2 and ‖P ′2‖ = P2 .

In order to prove the fundamental Theorem 3 below, which motivates the
notion of θ-automaton, we first need the following technical definition.

Definition 9. Let P be a πθ-process (possibly with free process variables). The
set of subprocesses of P is defined as sub(P ) , {P} ∪ sub′(P ), where:

sub′(0) = sub′(Z) , ∅ sub′(P |Q) , sub(P ) ∪ sub(Q)

sub′(π.P ) = sub′([x = y]P ) = sub′((νx)P ) = sub′((θx)P ) , sub(P )

sub′(recZ.P ) , {Q{recZ.P/Z} | Q ∈ sub(P )}

Lemma 3. If P ∈ Pθ, then the set sub(P ) is finite, and for all Q ∈ sub(P ):
sub(Q) ⊆ sub(P ).

Theorem 3. Let (θ~x)P ∈ Pθ∅ be a finitary process. Then A(θ~x)P is finite.

Proof. Let n0 = deg(P ), and Q be any descendant of (θ~x)P . Then, by definition
of ≡, either Q admits a canonical form Q ≡ (θ~z)(ν~y)(Q1| . . . |Qn), where n ≤ n0,
and Qi are sequential processes (i.e., non-null processes whose top operator is
either an action prefix or a non-trivial matching) or Q ≡ (θ~z)0. Moreover, by the
definition of the transition system, each component Qi is a subprocess of P , up-
to-≡ and (possibly non injective) name substitution, i.e. Qi ≡ Piσ, for a name
substitution σ, and Pi is a subprocess of P . Since the subprocesses of P are finite,
then there are only finitely many possible Qi, up-to bijective name substitutions.
Moreover, the number of free names in Qi is bounded by the number of (either
free or bound) names in P , n(P ), and hence the number of non vacuous ν’s and
θ’s in (θ~z)(ν~y)(Q1 | . . . | Qn) is bounded by n0 × |n(P )|. Hence, the number of
descendants Q of a finitary process is finite, up-to-≡ and vacuous θ’s. ut

One can easily check that the θ-automaton corresponding to (the θ-closure
of) the recursive process of Example 1 is finite (actually it consists of exactly
one state and one transition edge).

One could develop a complete theory of θ-automata, and recover classical
results, such as minimalization. But here we shall only investigate how to use
θ-automata in order to devise an effective procedure for establishing bisimilarity
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of πθ-processes. Given two processes, in order to use the induced θ-automata to
check bisimilarity, we need to keep track, at each step, of the correspondence
between θ-bound names in the canonical processes (Example 2 shows that elim-
ination of vacuous θ’s could otherwise compromise bisimilarity). To this aim, we
use a finitary reindexing function, mapping the positions of variables which have
to be identified in the two processes. Let us denote byM the set

⋃
n,m∈ωM(n,m):

Definition 10 (Indexed Bisimilarity). Let A = (S, P0, 7→), A′ = (S ′, Q0, 7→′)
be θ-automata. An indexed bisimulation R ⊆ S × M × S ′ is a relation such
that, for (θ~x)P ∈ S, (θ~y)Q ∈ S ′, for f ∈ M(|~x|, |~y|), if ((θ~x)P, f, (θ~y)Q) ∈ R
then: let dom(f) = {i1, . . . , ik}, ~x = ~u0xi1~u1 . . . xik~uk, ~y = ~v0yf(i1)~v1 . . . yf(ik)~vk,
~x ∩ ~y = ∅, ~z = ~u0~v0xi1~u1~v1 . . . xik~uk~vk,

– if (θ~z)P
(θ~z)µ−→→ ∅ (θ~z)P ′, then there exists (θ~z)Q′ such that

• (θ~z)Q{xi1/yf(i1), . . . , xik/yf(ik)}
(θ~z)µ−→→ ∅ (θ~z)Q′

• (‖(θ~z)P ′‖, f ′, ‖(θ~z)Q′)‖ ∈R, where f ′ = ξ((θ~z)Q′) ◦ (ξ((θ~z)P ′))−1.

– if (θ~z)P
(θ~z)µ−→→ ∅ (θ~zz′)P ′, then there exists (θ~zz′)Q′ such that

• (θ~z)Q{xi1/yf(i1), . . . , xik/yf(ik)}
(θ~z)µ−→→ ∅ (θ~zz′)Q′

• (‖(θ~zz′)P ′‖, f ′, ‖(θ~zz′)Q′)‖ ∈R), where f ′ = f1 ∪ f2,
f1 = ξ((θ~zz′)Q′) ◦ (ξ((θ~zz′)P ′))−1 and

f2 =

{
{(max(dom(f1)) + 1,max(cod(f1)) + 1)} if z′ ∈ fn(P ′) ∩ fn(Q′)
∅ otherwise

– ((θ~y)Q, f−1, (θ~x)P ) ∈R .

The indexed bisimilarity, ', is the greatest indexed bisimulation. We say
that the automata A and A′ are f -bisimilar if (P0, f,Q0) ∈', for some f ∈
M(|~x|, |~y|).

Using Lemma 2, one can prove that:

Theorem 4. Let P,Q ∈ P{x1,...,xn}. Then, P ∼ Q iff A(θ~x)P and A(θ~x)Q are
f-bisimilar, for f = ξ((θ~x)Q) ◦ (ξ((θ~x)P ))−1.

If the sets of states S and S ′ of the automata are finite, then indexed bisim-
ulations are finite objects.

Theorem 5. Let A(θ~x)P = (S, ‖(θ~x)P‖, 7→) and A(θ~x)Q = (S ′, ‖(θ~x)Q‖, 7→′),
for P,Q ∈ P{x1,...,xn} finitary. Then P ∼ Q iff there exists an indexed bisimu-
lation R ⊆ S ×M(k, k)× S ′, with k = max(deg(P )× |n(P )|,deg(Q)× |n(Q)|),
such that (‖(θ~x)P‖, f, ‖(θ~x)Q‖) ∈ R, where f = ξ((θ~x)Q) ◦ (ξ((θ~x)P ))−1.

Notice that k is an upper bound of the domain of the reindexing functions
between all descendents of P and Q. Thus, since M(k, k) is finite, there are only
finitely many candidate relations to be indexed bisimulations. Hence, we have
an algorithm for deciding bisimilarity of finitary processes.
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6 Final Remarks and Directions for Future Work

In this paper, we have introduced the πθ-calculus, a conservative extension of
the π-calculus, which allows to explain away the mechanism of name creation by
means of a new unary binding operator. We have used the πθ-calculus to give
a coalgebraic description of early bisimilarity. This semantics is finitary, in the
sense that it is finitely branching and moreover, for any finitary process, the set
of descendants is finite, up-to vacuous θ’s and structural congruence. Moreover,
the πθ-calculus has a direct and clean implementation in Logical Frameworks
based on Constructive Type Theory.

Furthermore, we have also introduced θ-automata which we use to get a
truly finite representation for finitary processes, by equating in a single state a
process together with all the processes differing from it by sequences of vacuous
θ’s and structural congruence. We could push further the study of θ-automata, by
introducing a general notion of θ-automaton, independent from the π-calculus.
Standard results on automata such as minimalization could then be naturally
recovered. Moreover, there should be a corresponding notion of transition system,
generalizing the transition system of the πθ-calculus.

In [16], an alternative finitary coalgebraic semantics for the π-calculus is
proposed for early bisimilarity, and a corresponding notion of automaton, the
History Dependent Automaton, is discussed. The problem of generating a fresh
name in bound output transitions is solved by applying a suitable permutation
on the names of the process, so as to guarantee that a special concrete name is
always fresh in the permuted process. This latter name is the new name used in
the bound output transition. In a loose sense, this can be viewed as a first-order
approach, whereas the one using θ-closure operators of this paper is second-order.

The final coalgebra considered in [16] has the structure of a permutation
algebra. This allows e.g. to show that the support of the interpretation of a
π-calculus process in the final model consists exactly of the active names of
the given process. In our presentation, the final coalgebra has the structure of
a 1-ary ω-algebra, and the counterpart of the result on the support of [16] is
Proposition 8: in the 1

ω-algebra of the final model, there are only finitely many
different ρi-closures of the interpretation of a closed process P , corresponding to
the number of different prefix permutations of the active names of P .

In this paper we have considered early bisimilarity, but similar techniques
can be used to account for late and weak bisimilarities. Moreover, it would be
interesting to explore also denotational (i.e. compositional) models for early/late
congruences based on the πθ-calculus. We expect to get simpler models than the
ones based on functor categories.

Finally, due to the “symbolic” nature of our operational semantics, it would
be interesting to compare it to other symbolic approaches that are at the basis
of different π-calculus implementations and tools, e.g. [9, 20].
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A Coq code

Variable Name,Var : Set.
Inductive Proc: Set :=

nil : Proc
| output : Name -> Name -> Proc -> Proc
| input : Name -> (Name -> Proc) -> Proc
| tau : Proc -> Proc
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| nu : (Name -> Proc) -> Proc
| inVar : Var -> Proc
| rec : (Var -> Proc) -> Proc
| par : Proc -> Proc -> Proc
| match : Name -> Name -> Proc -> Proc.

Coercion inVar : Var >-> Proc.
Inductive TProc : Set :=

inProc : Proc -> TProc
| theta : (Name -> TProc) -> TProc.

Coercion inProc : Proc >-> TProc.

Inductive FAct : Set :=
ftau : FAct

| fout : Name -> Name -> FAct
| fin : Name -> Name -> FAct.

Inductive BAct : Set :=
bout : Name -> BAct

| bin : Name -> BAct.
Inductive TAct : Set :=

inFAct : FAct -> TAct
| inBAct : BAct -> TAct
| theta_a : (Name -> TAct) -> TAct.

Coercion inFAct : FAct >-> TAct.
Coercion inBAct : BAct >-> TAct.

Inductive trans : TProc -> TAct -> TProc -> Prop :=
TAU : (P:Proc)(trans (tau P) ftau P)

| fIN : (P:Name->Proc)(x,y:Name)(trans (input x P) (fin x y) (P y))
| bIN : (P:Name->Proc)(x:Name)(trans (input x P) (bin x) (theta P))
| OUT : (P:Proc)(x,y:Name)(trans (output x y P) (fout x y) P)
| fPARl : (P,Q,P’:Proc)(a:TAct)

(trans P a P’) -> (trans (par P Q) a (par P’ Q))
| bPARl : (P,Q:Proc)(P’:Name -> Proc)(a:Name -> TAct)

(trans P (theta_a a) (theta P’)) ->
(trans (par P Q) (theta_a a) (theta [x:Name](par (P’ x) Q)))

| fPARr : (P,Q,P’:Proc)(a:TAct)
(trans P a P’) -> (trans (par Q P) a (par Q P’))

| bPARr : (P,Q:Proc)(P’:Name -> Proc)(a:Name -> TAct)
(trans P (theta_a a) (theta P’)) ->
(trans (par Q P) (theta_a a) (theta [x:Name](par Q (P’ x))))

| COMl : (P,P’,Q,Q’:Proc)(x,y:Name)
(trans P (fin x y) P’) ->
(trans Q (fout x y) Q’) ->
(trans (par P Q) ftau (par P’ Q’))

| COMr : (P,P’,Q,Q’:Proc)(x,y:Name)
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(trans P (fin x y) P’) ->
(trans Q (fout x y) Q’) ->
(trans (par Q P) ftau (par Q’ P’))

| OPEN : (P,P’:Name -> Proc)(x:Name)
((y:Name)(trans (P y) (fout x y) (P’ y))) ->
(trans (nu P) (bout x) (theta P’))

| UNFOLD: (P:Var->Proc)(P’,Q:Proc)(a:TAct)
(subst (rec P) P P’) ->
(trans P’ a Q) ->
(trans (rec P) a Q)

| MATCH : (x:Name)(P,Q:Proc)(a:TAct)
(trans P a Q) -> (trans (match x x P) a Q)

| fRES : (P,Q:Name->Proc)(a:FAct)
((y:Name)(trans (P y) a (Q y))) ->
(trans (nu P) a (nu Q))

| bRES : (P:Name->Proc)(P’:Name->Name->Proc)(a:BAct)
((y:Name)(trans (P y) a (theta [z:Name](P’ z y)))) ->
(trans (nu P) a (theta [z:Name](nu (P’ z))))

| CLOSEl: (P,Q:Proc)(P’,Q’:Name->Proc)(x:Name)
(trans P (bin x) (theta P’)) ->
(trans Q (bout x) (theta Q’)) ->
(trans (par P Q) ftau (nu [y:Name](par (P’ x) (Q’ x))))

| CLOSEr: (P,Q:Proc)(P’,Q’:Name->Proc)(x:Name)
(trans P (bin x) (theta P’)) ->
(trans Q (bout x) (theta Q’)) ->
(trans (par Q P) ftau (nu [y:Name](par (Q’ x) (P’ x))))

| THETA : (P,Q:Name->TProc)(a:Name->TAct)
((x:Name)(trans (P x) (a x) (Q x))) ->
(trans (theta P) (theta_a a) (theta Q)).

B Coalgebras over 1-ary ω-algebras

The aim of this section is to prove that all functors on Alg1
ω which are liftings

of a polynomial functor on Set admit final coalgebra.
We could give a direct construction using (hyper)set-theoretic tools; however,

the categorical setting enlightens the connections with the general treatment of
(co)algebraic theories [3, 18].

Definition 11 (Algebraic Functor). An endofunctor T : Alg1
ω −→ Alg1

ω is
algebraic if respects the algebraic structure, that is, if f : (A, ρA) → (B, ρB),
then for all i ∈ ω, we have Tf ◦ ρTAi = ρTBi ◦ Tf .

The next step is to relate coalgebras of endofunctors over Set to coalgebras
of endofunctors over Alg1

ω.

Definition 12. Let T : Set −→ Set and V : Alg1
ω −→ Set be two functors. An

algebraic functor T ′ : Alg1
ω −→ Alg1

ω is a lifting of T along V , if V ◦T ′ ∼= T ◦V .
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Lifted functors are particularly important, by virtue of the following results.

Theorem 6. Let C,D be two categories and F : C −→ D be a functor with a
left adjoint. Let T : C −→ C and T ′ : D −→ D be two functors such that there
exists a natural isomorphism φ : F ◦ T ∼−→ T ′ ◦ F . If (A,α : A→ TA) is a final
T -coalgebra, then (FA, φA ◦ Fα : FA→ T ′(FA)) is a final T ′-coalgebra.

Proof. The adjoint pair G a F can be lifted to a pair of adjoint functors between
the categories of T - and T ′- coalgebras. Since any functor with a left adjoint
preserves limits and the final object is a limit, then the final object of the former
category is preserved in the latter. ut

The category of 1
ω-algebras can be seen in the setting of Lawvere’s algebraic

theories [3, Chap. 3]. In fact, Alg1
ω corresponds to the category of models over

the algebra specification given by the free monoid of ω unary operators:

Proposition 9. Alg1
ω
∼= Mod〈{ρ̄i|i∈ω}∗,{ρρ′(x)=ρ̄(ρ̄′(x)),εx=x}〉.

As a consequence, Alg1
ω enjoys several important properties [3, 3.7.8]:

Lemma 4. The forgetful V : Alg1
ω −→ Set has a left adjoint F : Set −→ Alg1

ω.

Essentially, the left adjoint F is the free algebra construction: the carrier of FA
is the set {ρi1 . . . ρina | a ∈ A, n, i1, . . . , in ∈ ω}. By virtue of this adjunction
F a V and Theorem 6, we have the following result (see also [5]):

Proposition 10. Let T : Set −→ Set be a functor, and T ′ : Alg1
ω −→ Alg1

ω be a
lifting of T along the forgetful functor V : Alg1

ω −→ Set. Let UT : T -Coalg −→
Set and UT ′ : T ′-Coalg −→ Alg1

ω be the obvious forgetful (underlying) functors.

1. The forgetful functor VT : T ′-Coalg −→ T -Coalg, defined as VT (A, ρA, α) ,
(A,α) and VT (f) = f , has a left adjoint FT : T -Coalg −→ T ′-Coalg such
that UT ′ ◦ FT = F ◦ UT .

2. If UT has a right adjoint RT : Set −→ T -Coalg, then this lifts to a functor
RT ′ : Alg1

ω −→ T ′-Coalg which is the right adjoint of UT ′ , and such that
RT ◦ V = VB ◦RT ′ .

Proposition 11. Let T : Set −→ Set be a functor such that the forgetful UT :
T -Coalg −→ Set has a right adjoint RT . Let T ′ : Alg1

ω −→ Alg1
ω be a lifting of T

along the forgetful V : Alg1
ω −→ Set. Then there exists both the final T -coalgebra

and the final T ′-coalgebra; moreover, the forgetful VT : T ′-Coalg −→ T -Coalg
maps the final T ′-coalgebra onto the final T -coalgebra.

T -Coalg

UT

		

FT

⊥
--
T ′-Coalg

UT ′





VT

mm

Set

RT `

II

F

⊥
,,

T

LL Alg1
ω

RT ′ `

II

V

kk

T ′

SS

Proof. Right adjoints preserve limits, and final
objects are limits. Since Set has final object (1),
the final T -Coalg is RT (1). By Prop. 10, there ex-
ists the right adjoint RT ′ : Alg1

ω −→ T ′-Coalg,
which maps the final object 1 of Alg1

ω to the final
object of T ′-Coalg, that is the final T ′-coalgebra.
Since VT : T ′-Coalg −→ T -Coalg is a right adjoint, the final object of T ′-Coalg
is mapped to the final object of T -Coalg, i.e. the final T -coalgebra. ut

An important class of functors in Set is that of polynomial functors:
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Definition 13. A functor F : Set −→ Set is polynomial if it is definable as a
composition of finite products, finite coproducts and finite powerset.

Proposition 12. Let T : Set → Set be a polynomial endofunctor. Then, the
forgetful functor U : T -Coalg −→ Set has a right adjoint R : Set −→ T -Coalg.

Proof. Following [18], it suffices to prove that ℘f(−) is bounded, which is true
because the subsets assigned by ℘f(−) are finite. ut

Essentially, R is the coproduct of generators construction [18, §10].
Finally, we state the main result of this section:

Theorem 7. Let T : Set −→ Set be a polynomial functor and T ′ : Alg1
ω −→

Alg1
ω be a lifting of T along the forgetful functor V : Alg1

ω −→ Set. Then, there
exist both the final T -coalgebra ΩT and the final T ′-coalgebra ΩT ′ . Moreover, the
forgetful functor VT maps ΩT ′ onto ΩT .

Proof. Follows from Propositions 12 and 11. We have only to show that the func-
tor on Alg1

ω by the same polynomial of T is a lifting of T , which is easy by inspec-
tion. For instance: V (℘f(A, ρA)) = V (℘f(A), ρ℘f(A)) = ℘f(A) = ℘f(V (A, ρA)).

ut
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