
Coalgebraic Semantics of an Imperative Class
Based Language?

Furio Honsell,1 Marina Lenisa1

Dipartimento di Matematica e Informatica, Università di Udine
Via delle Scienze 206, 33100 Udine, Italy.

tel. +39 0432 558417, fax: +39 0432 558499
e-mail: honsell,lenisa@dimi.uniud.it.

Abstract. We study two observational equivalences of Fickle programs.
Fickle is a class-based object oriented imperative language, which ex-
tends Java with object re-classification. The first is a contextual equiv-
alence of expressions with respect to a given program. We provide an
adequate coalgebraic semantics for it, which is compositional w.r.t. the
operators of the language. The second observational equivalence is de-
fined on programs implementing the same specification, given as an ab-
stract class. We introduce a coalgebraic description of classes which gives
a sound coinduction principle for this latter equivalence. To this end
we need to extend the original coalgebraic approach of H.Reichel and
B.Jacobs to deal with binary methods, i.e. methods which take more
than one instance of the hosting class as argument. This coalgebraic de-
scription induces in particular a coinductive observational equivalence on
objects of a program, where objects (states of a class) are taken to be
equal when the action of methods on them yield the same observations
and equivalent next states.

Introduction

In recent years, in the Global Computing Community, there has been growing
interest in class-based object oriented languages. In [DDDG02], the imperative
typed class-based language Fickle has been introduced, which extends Java with
re-classification. Re-classification allows objects to change class membership dy-
namically, while retaining their identity. In [DDDG02], a type system for Fickle
is presented, which is sound w.r.t. the operational semantics. In particular, even
though objects may be re-classified across classes with different members, there
will never be an attempt to access non-existing members.

In this paper, we carry out the study of Fickle, by focusing on observational
equivalences of expressions programs, classes, and objects. The results in this
paper apply also to Java and similar languages. We consider Fickle as a repre-
sentative of typed imperative class-based object oriented languages.
? Research supported by the UE project IST-2001-33477 DART, and the MIUR

Project COFIN 2001013518 Cometa.

A program in Fickle is a sequence of classes. Each class consists of a sequence
of fields (instance variables) and a sequence of methods. For simplicitly, we as-
sume that all fields are private, i.e. outside the hosting class they are accessibile
only through the methods; while all methods are public.

The first observational equivalence which we consider is on expressions. This
is a contextual equivalence, called ≈P , which is given w.r.t. a fixed program
P. The equivalence ≈P equates main methods which have the same behaviour
in any context, w.r.t. P. The second equivalence that we consider, called ', is
defined on programs P1, P2 implementing the same program specification P. As
a program specification we simply take a sequence of abstract classes with no
fields and a list of method declarations. A program P1 implements a program
specification P, whenever the method declarations in P1 correspond exactly to
the method declarations in P. Two programs P1, P2 implementing the same pro-
gram specification P are equated under the equivalence ' if and only if all main
methods behave in the same way w.r.t. P1 and P2.

In this paper, we study adequate coalgebraic semantics of Fickle programs
w.r.t. the equivalences ≈P and '.

Coalgebraic semantics originated with Aczel-Mendler, Rutten-Turi, for CCS-
like languages,[Acz88,AM89,Acz93,RT94], and it was further generalized to λ-
calculus, [HL95], higher-order imperative languages, [Len96], object-oriented lan-
guages in a functional setting, [Rei95,Jac96], π-calculus, [HLMP98].

The gist of the coalgebraic semantics paradigm (final semantics) is to view the
interpretation function from syntax to semantics as a final mapping in a suitable
category. To this end the semantics has to be construed as a final coalgebra for a
suitable functor F and the syntax has to be cast in form of an F -coalgebra. This
approach is driven by the operational semantics of the language, because it is the
semantics which determines the structure of the functor F . This is dual to the
syntax-driven approach of algebraic semantics (initial, denotational semantics),
where syntax is construed as an initial F -algebra and the semantics is defined
as an F -algebra. The main advantage of the coalgebraic semantics is that it
induces a behavioural equivalence on programs, which can be characterized as a
coalgebraic bisimilarity, i.e. as greatest coalgebraic bisimulation.

The relations between coalgebraic and algebraic semantics have been studied
in the general categorical setting of bialgebras by [TP97]. Bialgebras combine
an algebraic and a coalgebraic structure. When there is a connection between
the two structures, i.e. in the case of λ-bialgebras of [TP97], then the final
semantics coincides with the initial semantics, i.e. it is both compositional w.r.t.
the operators on the algebra and the equivalence induced is a bisimilarity.

In this paper, we introduce a simple coalgebraic semantics of programs di-
rectly driven by the operational semantics of Fickle expressions given in [DDDG02].
The coalgebraic semantics is adequate w.r.t. the contextual equivalence ≈P and
can be seen to be compositional w.r.t. language constructors.

Then, following [Rei95,Jac96], we provide an alternative coalgebraic descrip-
tion of Fickle programs, where classes are modeled as coalgebras, whose carriers
represent the objects (states) of the classes. The coalgebra models the evolu-

2

tion of the objects under the action of methods. The interest of this coalgebraic
model lies in the fact that it determines behavioural equivalences on objects
and classes (programs), which can be characterized as bisimilarity equivalences.
In particular, the coalgebraic model gives a notion of equivalence between class
implementations of the same class specification. In [Jac97,Jac97,HHJT98], coal-
gebraic refinement of classes has been studied.

Howevr, in the original coalgebraic approach only a single class in isolation
is considered and the setting is purely functional. Moreover, binary methods, i.e.
methods which take another instance of the hosting class as argument, cannot be
described, since they would produce a contravariant occurrence of the variable
in the corresponding functor. Extensions of the coalgebraic paradigm to mixed
functors have been considered in [Tew00], but they are rather complex and they
cover only a restricted range of cases.

In this paper, we extend the approach of [Rei95,Jac96], in order to model, in
an imperative setting, general programs, i.e. sequences of classes possibly related
by inheritance, mutual definitions, etc. In order to account for the store we model
the evolution of objects together with their references.

In order to deal with binary methods, we model methods as graphs instead of
functions, thus turning a (contravariant) function space functor into a (covariant)
relations functor.

Our coalgebraic description of programs yields naturally a notion of equiv-
alence

·' on programs satisfying the same specification, which is expressed in
terms of coalgebraic bisimulations between “initial” objects. Finally, we com-
pare the equivalence

·' to the observational equivalence '.

Synopsis.
In Section 1, we recall the syntax and the operational semantics of Fickle and

we introduce the observational equivalences on programs, which we will study.
In Section 2, we introduce an adequate compositional coalgebraic semantics of
Fickle expressions. In Section 3, we study a coalgebraic description of programs
in the style of [Rei95,Jac96], together with the induced behavioural equivalences.
Final remarks and directions for future work appear in Section 4. In Appendix
A, some preliminaries on coalgebraic semantics are presented.

Acknowledgement. The authors would like to thank M.Dezani for helpful discus-
sions.

1 The Language Fickle

In this section, first we recall the syntax and the operational semantics of the
language Fickle (see [DDDG02] for more details). Then we introduce the obser-
vational equivalences on programs which we will study.

1.1 Syntax

Fickle syntax is summarized in Table 1. A Fickle program is a collection of
class definitions. A class definition may be preceded by the keyword state or

3

root. State classes describe the properties of an object while it satisfies some
conditions; when it no longer satisfies these conditions, it can be explicitly re-
classified to another (state or root). Root classes abstract over state classes. Any
subclass of a state or a root class must be a state class. Objects of a state class
c may be re-classified to a class c’, where c’ must be a subclass of the uniquely
defined root superclass of c. Objects of a non-state, non-root class c behave like
Java objects, i.e. they are never re-classified. The type of fields may be either
boolean or integer or a non-state class. Thus fields may point to objects which
change class, but these changes do not affect their type. In contrast, the type
of this and parameters may be a state or root class; these variables may also
point to objects which change class, and these changes affect their type.

Objects are created with the expression new c, where c is any class. Re-
classification expressions, id⇓c, set the class of id to c, where c must be a state
or a root class.

Methods declarations have the shape:

t m (t1x1, . . . , tqxq){c1, . . . , cn}{ e }

where t is the result type, t1, . . . , tq are the types of the formal parameters
x1, . . . , xq and e is the body. The list of root classes c1, . . . , cn are the effect,
i.e. the root classes of all objects that may be re-classified by invocation of that
method.

For simplicitly, we assume all fields in the classes to be private, i.e. to be
accessible from outside the class only through the class methods. On the contrary,
we take all methods in a class to be public.

progr := class∗

class := [root | state] class c extends c { field∗ meth∗ }

field := type f

meth := type m (par∗) eff { e }

type := bool | int | c

par := type x

eff := { c∗ }

expr := if e then e else e | var:=e | e;e | sVal
this | var | new c | e.m(e∗) | id⇓c

var := x | e.f

sVal := true | false | null

id := this | x
Table 1. Syntax of Fickle

4

Example 1 (Lists in Fickle, [Dro02]). The Fickle program below consists of
three classes: the root class List (which is abstract, since it contains only a
sequence of method declarations) together with two subclasses, EmptyList and
NonEmptyList. This program uses the re-classification, e.g. in the method in-
sertFront of the class EmptyList.

abstract root class List extends Objects{
abstract insertFront(int i){List};
abstract getFront(){List};
abstract setFront(int i){List};
abstract setLast(List x){ }; ...}

state class EmptyList extends List{
void insertFront(int i){List}{
this⇓NonEmptyList; contents:= i; next := new EmptyList; }
int getFront (){}{ throw new ListException; } ...}

state class NonEmptyList extends List{
int contents;
List next;

NonEmptyList insertFront(int i){}{
NonEmptyList second:= new NonEmptyList;
copyTo(second); contents:= i; next:=second; }
int getFront(){List}{
int result := contents; next.copyTo(this); return result;}
List copyTo(NonEmptyList x){ } {
x.contents := contents; x.next:=next; } ...}

1.2 Operational Semantics

The operational semantics is given in terms of a SOS “big-step” relation −→,
which rewrites pairs of expressions and stores w.r.t. to a program P into pairs
of values, exceptions, or errors, and stores. The expression which is evaluated
is meant to represent the special method main (external to P) from which the
execution of the program starts. The signature of the rewriting relation is:

−→ : store → expr × store → (val ∪ dev)× store

Stores map this to an address, variables of base type to values, variables
of class type to addresses, and addresses to objects. Stores have to be finite,
i.e. collections of mappings with finite domain. Notice in particular that, in the
store, addresses point to objects, but not to other addresses. Thus in Fickle, as
in Java, pointers are implicit, and there are no pointers to pointers. We denote
stores with σ, addresses with ι, exceptions and errors with dv.

5

store , ({this} →fin addr) ∪ (varid →fin val) ∪ (addr →fin object)

val , sVal ∪ addr

dev , {nullPntrExc, stuckErr}

object , {[f1 : v1, . . . , fr : vr]c | f1, . . . , fr field identifiers, v1, . . . , vr ∈ val ,

c class name}

Before introducing the rewriting rules, we need to define some operations on
objects and stores. For object o , [f : 1 : v1, . . . , fl : vl . . . fr : vr]c, store σ, value
v, address ι, identifier or address z, field identifier f, we define:

– field access: o(f) ,

{
vl if f = fl for some l ∈ 1, . . . , r,
Udf otherwise

– object update: o[f 7→ v] 7→ [f : 1 : v1, . . . , fl : v . . . fr : vr]c,
where fl = f for some l ∈ 1, . . . , r,

– store update: σ[z 7→ v](z) = v, σ[z 7→ v](z′) = σ(z′) if z′ 6= z.

We use the convention that σ(ι)(f) = Udf , whenever σ(ι) = Udf .
Tables 2, 3 and 4 list the rewrite rules of the operational semantics.
The evaluation of the expression new c in a store σ extends σ with a new

canonical address.
In the rule for method call, e0.m(e1, . . . , en in Table 2, we use the the function

M(P, c,m) that returns the definition of method m in class c going through the
class hierarchy (see [DDDG02] for more details).

For re-classification expressions, id ⇓ d, we find the address of id, which
points to an object of class c. We replace the original object by a new object of
class d. We preserve the fields belonging to the root superclass of c and initialize
the other fields of d according to their types. The term R(P, t), defined by

R(P, t) =

{
c if t is a state class and c is the root superclass of t
t otherwise ,

denotes the least superclass of t which is not a state class, if t is a class, and
denotes t itself if t is not a class.

1.3 Observational Equivalences

Various notions of observational equivalences on Fickle programs are naturally
induced by the operational semantics. First of all, one can define a contextual
equivalence on main methods w.r.t. a given program P, by evaluating the expres-
sions corresponding to the bodies of the main methods in any expression context
C[], and by observing the output value. A context is simply an expression with
a hole. As observable values, we take values of base types, i.e. obsval , bool∪int .

6

(e, σ) −→P (true, σ′′) (e, σ) −→P (false, σ′′)
(e1, σ

′′) −→P (v, σ′) (e2, σ
′′) −→P (v, σ′)

(if e then e1 else e2, σ) −→P (v, σ′) (if e then e1 else e2, σ) −→P (v, σ′)

(e, σ) −→P (ι, σ′′)
(e′, σ′′) →P (v, σ′′′)

σ(x) 6= Udf σ′′′(ι)(f) 6= Udf

(e, σ) −→P (v, σ′) σ′ , σ′′′[ι 7→ σ′′′(ι)[f 7→ v]]
(x := e, σ) −→P (v, σ′[x 7→ v]) (e.f := e′, σ) −→P (v, σ′)

(e1, σ) −→P (v′, σ′′) (e, σ) −→P (ι, σ′)
(e2, σ

′′) −→P (v, σ′) σ′(ι)(f) 6= Udf
(e1; e2, σ) →P (v, σ′) (e.f, σ) →P (σ′(ι)(f), σ′)

σ(id) 6= Udf
(id, σ) −→P (σ(id), σ) (v, σ) −→P (v, σ)

FS(P, c) = {f1, . . . , fr}
vl initial for F(P, c, fl) (∀l ∈ {1, . . . , r})
ι is new in σ
(new c, σ) −→P (ι, σ[ι 7→ [f1 : v1, . . . , fr : vr]

c])

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , n})
σn(ι) = [. . .]c

M(P, c,m) = t m(t1x1, . . . , tnxn) φ { e }
σ′ = σn[this 7→ ι, x1 7→ v1, . . . , xn 7→ vn]
(e, σ′) −→P (v, σ′′)
(e0.m(e1, . . . , en), σ′) −→P (v, σ′′[this 7→ σn(this), x1 7→ σn(x1), . . . , xn 7→ σn(xn)])

σ(id) = ι
σ(ι) = [. . .]c

FS(P,R(P, c)) = {f1, . . . , fr}
vl = σ(ι)(fl) (∀l ∈ {1, . . . r})
FS(P, d) \ {f1, . . . , fr} = {fr+1, . . . , fr+q}
vl initial for FS(P, d, fl) (∀l ∈ {r + 1, . . . r + q}) (id, σ) −→P (null, σ′)

(id ⇓ d, σ) −→P (ι, σ[ι 7→ [f1 : v1, . . . , fr+q : vr+q]
d) (id ⇓ d, σ) −→P (null, σ′)

Table 2. Operational Semantics: execution without exceptions and errors

7

(e, σ) −→P (null, σ′)
(e.f := e′, σ) −→P (nullPntrExc, σ′)
(e.f, σ) −→P (nullPntrExc, σ′)
(e.m(e1, . . . , en), σ) −→P (nullPntrExc, σ′)

(e, σ) −→P (v, σ′)
v 6= true and v 6= false σ(x) = true or σ(x) = false
(if e then e1 else e2, σ) −→P (stuckErr, σ′) (x ⇓ c, σ) −→P (stuckErr, σ)

(e, σ) −→P (v, σ′)
v 6= null

σ(x) = Udf v 6∈ addr
(x, σ) −→P (stuckErr, σ) (e.f, σ) −→P (stuckErr, σ′)
(x := e, σ) −→P (stuckErr, σ) (e.f := e′, σ) −→P (stuckErr, σ′)
(x ⇓ c, σ) −→P (stuckErr, σ)

(e, σ) −→P (ι, σ′′)
(e, σ) −→P (ι, σ′) (e′, σ′′) −→P (v, σ′)
σ′(ι)(f) = Udf σ′(ι)(f) = Udf

(e.f, σ) −→P (stuckErr, σ′) (e.f := e′, σ) −→P (stuckErr, σ′)

(e0, σ) −→P (ι, σ0)
(e0, σ) −→P (v, σ0) (ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , n})
v 6= null σn(ι) = [. . .]c

v 6∈ addr or σ0(v) = Udf M(P, c,m) = Udf
(e0.m(e1, . . . , en), σ) −→P (stuckErr, σ0) (e0.m(e1, . . . , en), σ) −→P (stuckErr, σn)

Table 3. Operational semantics: generation of exceptions and errors

8

(e, σ) −→P (dv, σ′) or
((e, σ) −→P (true, σ′′) and (e1, σ

′′) −→P (dv, σ′)) or
((e, σ) −→P (false, σ′′) and (e2, σ

′′) −→P (dv, σ′))
(if e then e1 else e2, σ) −→P (dv, σ′)

(e1, σ) −→P (dv, σ′) or ((e1, σ) −→P (v, σ′′) and (e2, σ
′′) −→P (dv, σ′))

(e1; e2, σ) −→P (dv, σ′)

(e, σ) −→P (ι, σ′′)
(e, σ) −→P (dv, σ′) (e′, σ′′) −→P (dv, σ′)
(x := e, σ) −→P (dv, σ′) (e.f := e′, σ) −→P (dv, σ′)
(e.f, σ) −→P (dv, σ′)
(e.m(e1, . . . , en), σ) −→P (dv, σ′)
(e.f := e′, σ) −→P (dv, σ′)

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , q}, q < n)
(eq+1, σq) −→P (dv, σq=1)
(e0.m(e1, . . . , en), σ) −→P (dv, σq+1)

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , n})
σn(ι) = [. . .]c

M(P, c,m) = t m(t1x1, . . . , tn : xn) φ { e }
σ′ = σn[this 7→ ι, x1 7→ v1, . . . , xn 7→ vn]
(e, σ′) −→P (dv, σ′′)
(e0.m(e1, . . . , en), σ) −→P (dv, σ′′[this 7→ σn(this, x1 7→ σn(x1), . . . , xn 7→ σn(xn)])

Table 4. Operational semantics: propagation of exceptions and errors

9

Definition 1 (Contextual Equivalence). Let ≈P⊆ expr×expr be defined by

e ≈P e′ ⇐⇒ ∀C[] ∀σ ∀v ∈ obsval . (C[e], σ) ⇓P v ⇔ (C[e′], σ) ⇓P v .

The contextual equivalence ≈P on expressions e,e’ induces an equivalence
between a program P together with a main method whose body is the expression
e, and the same program P together with a main method whose body is the
expression e’.

In Section 2, we will provide an adequate compositional semantics of Fickle
expressions w.r.t. the equivalence ≈P .

In the definition of the observational equivalence ≈P , the program P is fixed.
This is a bit restrictive. An interesting issue is that of establishing equivalences
between different programs P1, P2, which implement the same program speci-
fication. A simple notion of program specification can be taken to be a list of
abstract classes with no fields and a sequence of method declarations. Then a
program P1 implements a program specification P, when the method declarations
in P1 correspond exactly to the method declarations in P. One could consider a
more sophisticated notion of program specification, involving a first-order logic
for expressing conditions on the fields. This would be useful for studying pro-
gram refinement (see e.g. [ST97]). But, for our purposes, our simpler definition
is sufficient.

Two programs P1, P2, implementing the same program specification P, can
be taken to be equivalent, when for any possible main method, they evaluate to
the same value:

Definition 2 (Program Equivalence). Let P1, P2 implement the same pro-
gram specification P. We define the equivalence ' by:

P1 ' P2 ⇐⇒ ∀e ∀v ∈ obsval . (e, ∅) ⇓P1 v ⇔ (e, ∅) ⇓P2 v .

In Section 3, we will present a coalgebraic description of Fickle programs,
yielding an equivalence between implementations of a specification, which can
be characterized as a coalgebraic bisimilarity.

2 A Coalgebraic Semantics of Fickle Expressions

The coalgebraic semantics of expressions which we define is directly induced by
the operational semantics. It is induced by a constant functor. However, the
coalgebraic perspective is rather useful since it allows us to gain an interesting
characterization of the equivalence induced by the semantics. Moreover, this
semantics is compositional and adequate w.r.t. ≈P .

One can endow the set of expressions with a structure of coalgebra induced
by the operational semantics. Let us consider be the following (constant) functor
H : Set → Set :

HX , store → ((addr + bool + int + dev)× ŝtore + 1) ,

10

where ŝtore denotes the set of restricted stores, obtained by restricting the
domain of the function addr →fin object to those addresses which are directly
or indirectly images of an identifier. An address is indirectly associated to an
identifier if it is associated to a field of a field of . . . of an object. This definition is
justified by the fact that, as noticed at the beginning of Subsection 1.2, addresses
are not directly observable in the language, but only through identifiers.

Definition 3 (Coalgebraic Semantics). i) Let (expr , αe) be the H-coalgebra
defined by

αe(e) ,

{
σ 7→ (v, σ1) if (e, σ)→P (v, σ̂1)
∗ otherwise

where σ̂1 ∈ ŝtore denotes the restriction of the store σ1.
ii) Let MP : (expr , αe) → (ΩH , αΩH) be the unique morphism into the final
H-coalgebra (ΩH , αΩH).

Proposition 1. The coalgebraic semanticsMP induces the following bisimilar-
ity equivalence:

e
·
≈P e′ ⇐⇒ ∀σ ∀v. (e, σ)→P (v, σ1) ∧ (e′, σ)→P (v, σ′1) ∧ σ̂1 = σ̂′1 .

One can easily check that:

Lemma 1.

e
·
≈P e′ ⇐⇒ ∀σ, σ′, σ1, σ

′
1. σ̂ = σ̂′ ⇒ (e, σ)→P (v, σ1) ∧ (e′, σ′)→P (v, σ′1) ∧ σ̂1 = σ̂′1 .

Hence MP can be equivalently defined as

MP : expr → ŝtore→ ((addr + bool + int + dev)× ŝtore + 1)

Moreover:

Lemma 2.
·
≈P is a congruence, i.e.: e

·
≈P e′ =⇒ ∀C[]. C[e]

·
≈P C[e′] .

Corollary 1 (Compositionality). MP is compositional.

Theorem 1 (Adequacy). For all expressions e, e′,

e
·
≈P e′ =⇒ e ≈P e′ .

However, we conjecture that the semantics MP is not fully abstract. Intu-
itively, there are cases in which the output store is affected, but not the output
value.

11

3 Coalgebraic Description of Fickle Programs

In this section, we give a coalgebraic account of Fickle programs. Following
[Rei95,Jac96], we model classes as coalgebras, where the carrier represents the
objects (states) of the classes, and the coalgebra structure is determined by
the operational semantics of the methods. The coalgebra structure captures the
evolution of the objects under the action of methods.

This model will naturally induce a coinductive equivalence on objects of a
program P. Moreover, program implementations P1, P2 of the same specification
will be modeled by coalgebras for the same functor. Therefore, our coalgebraic
description will induce also a notion of equivalence on program implementations,
given in terms of coalgebraic bisimulations between “initial” objects.

In order to model the evolution of objects in an imperative setting, we need
to account also for their references in the store. Moreover, objects, as they are
defined in Section 1, possibly contain references to other objects in the fields.
Thus we need to consider an enriched notion of object, which is prima facie a
finite set closed under referred objects. Formally, such notion of enriched objects
w.r.t. a Fickle program P is defined as follows.

Definition 4. i) Let refobject be defined by:

(refobject 3) o ::= (ι, [f1 : w1, . . . , fr : wr]c) ,

where wi is a value of base type, if fi is of base type, an element of refobject,
otherwise.
ii) Let refobject be the set of all pairs (o,O), where o ∈ refobject, and O ⊆fin

refobject is a minimal coherent set closed under referred object generated by o,
i.e.

– (closure) o ∈ O, and, for all o′ ∈ O, any object o′′ referred by o′ (i.e. o′′ is
associated to a field in o′) is in O;

– (coherence) for all o′, o′′ ∈ O, if π1(o′) = π1(o′′), then π2(o′) = π2(o′′);
– (minimality) if o′ ∈ O, then o′ is (possibly indirectly) referred by o.

In what follows, we simply denote by o an element (o,O) of refobject .
Now, we endow the set refobject of enriched objects of P with a coalgebra

structure for the functor induced by the methods as follows:

Definition 5. Let P , c1, . . . , cn, where ci , {fi1; . . . fihi ;mi1; . . . ;miki}.
i) Let F : Set → Set, be defined by

F , ΠijFij ,

where Fij : Set → Set is determined by the method mij (t1x1, ..., tqxq) {
c′1, . . . , c

′
p}{e} of the class ci as follows:

FijX , [[t1]]× . . .× [[tq]]→ (([[t]] + {nullPntrExc, stuckErr})×X + 1) ,

12

where [[ti]] =


bool if ti = bool
int if ti = int
X otherwise .

ii) α : refobject → F (refobject) is defined by

α , 〈αij〉ij ,

where αij : refobject → Fij(refobject) is defined by

αij(o) , a 7→

{
(v, σ1[this]) if (e, σ[this 7→ o,x 7→ a]) −→P (v, σ1)
∗ otherwise ,

where, by abuse of notation, σ[this 7→ o,x 7→ a] denotes the store σ in which
the object corresponding to the refobject o has been associated to the identifier
this, and σ has been updated according to the refobject o. Similarly for refobject
parameters.

However, the functor Fij (and hence F) is not guaranteed to be covariant.
Namely, binary methods produce contravariant occurrences of X in the definition
of Fij . An example of a binary method is the method equal : c× c→ bool , which
takes another instance of the hosting class as argument. The second occurrence
of c produces a contravariant occurrence of X in FX , . . .×(X→ (bool +dev)×
X)×. . .. Therefore, the coalgebraic approach does not apply. We propose to turn
contravariant occurrences in covariant by modeling methods as graphs instead
of functions, i.e. in the case of the method equal, FX , . . . × P(X × (bool +
dev) × X) × This allows us to apply the standard coalgebraic approach,
provided we move to a category where the functor F so defined admits a final
coalgebra, e.g. the category Class∗ of classes of non-wellfounded sets of [Acz88].
Then we can define the coalgebraic semantics of P as the unique morphism
[[]]P : (refobject , α) → (ΩF , αΩF) into the final F -coalgebra (ΩF , αΩF). An
interesting issue now arises, namely that of studying the equivalence induced
by [[]]P on objects of P.

3.1 Coalgebraic equivalence on Objects

The equivalence induced by [[]]P on objects can be characterized as follows:

Theorem 2. The coalgebraic semantics [[]]P : (refobject , α) → (ΩF , αΩF) in-
duces the following bisimilarity:

o ∼P o′ ⇐⇒
∀ method m : e in P. ∀σ ∃σ′. σ ∼P σ′ ∧ (e, σ[this 7→ o]) −→P (v, σ1) ∧
(e, σ[this 7→ o′]) −→P (v, σ′1) ∧ σ1[this] ∼P σ′1[this] ,

where σ ∼P σ′ is the extension to stores of ∼P , i.e. ∀x : t, t base type. σ(x) =
σ′(x) and ∀x : c. σ(x) ∼P σ′(x), where, by abuse of notation, by σ(x) we denote
the “extended” object in refobject associated to x.

13

Notice the alternation of quantifiers ∀σ ∃σ′ . . . in the above characterization
of ∼P , which is induced by the powerset. The equivalence ∼P is covariant, in the
sense that it can be viewed as the greatest fixed point of the operator on relations
naturally associated to it. Under suitable conditions on P, the “contravariance
which is missing” in the functor F , can be recovered in the notion of bisimilarity,
in the sense that ∼P can be alternatively characterized as an equivalence whose
associated operator is not monotone:

Theorem 3 (Contravariancy of ∼P). If all the fields of the objects are ob-
servable (i.e. there are methods returning the value of the fields), then

o ∼P o′ ⇐⇒
∀ method m : e in P. ∀σ ∼P σ′. (e, σ[this 7→ o]) −→P (v, σ1) ∧
(e, σ[this 7→ o′]) −→P (v, σ′1) ∧ σ1[this] ∼P σ′1[this] .

3.2 Coalgebraic Equivalence of Programs

The coalgebraic description of programs given above yields a natural notion of
equivalence between program implementations P1, P2 of the same specification
P. Namely, if P1 and P2 are implementations of the same specification P, then
P1, P2 are described by coalgebras for the same functor F , (refobjectP1

, αP1) and
(refobjectP2

, αP2), respectively.

Definition 6. The programs P1, P2 implementing the same specification P are
coalgebraic equivalent, P1

·' P2, if, for any initial object (i.e. an object with
the fields set to initial values) o1 ∈ refobjectP1

there is an initial object o2 ∈
refobjectP2

such that there exists a coalgebraic bisimulation R⊆ refobjectP1
×

refobjectP2
such that (o1, o2) ∈R, and vice versa.

An interesting question which remains to be addressed is what are the rela-
tions between the equivalence ' of Subsection 1.3 and the coalgebraic equiva-
lence

·'. We conjecture that
·'⊆'.

4 Final Remarks and Directions for Future Work

In this paper we have considered various notions of observational equivalences
on Fickle programs, and corresponding coalgebraic equivalences. In particular,
we have defined a compositional (coalgebraic) semantics of expressions, which
is adequate w.r.t. a contextual equivalence of programs. Moreover, we have ex-
tended the coalgebraic description of [Rei95,Jac96] to imperative programs, also
capturing binary methods.

In the future, we plan to:

– use the coalgebraic semantics of expressions of Section 2 to give an alternative
proof to type soundness of [DDDG02];

14

– extend the coalgebraic description of Fickle programs of Section 3 to bialge-
bras, modeling method constructors as algebra operations;

– study coalgebraic program specification and refinement (cfr. class specifica-
tion of [Jac97,Jac97a]); which properties are preserved under coalgebraic
refinement?

– study labeled transition systems for defining the operational semantics of
Fickle and give corresponding coalgebraic semantics;

– extend the coalgebraic model to other advances OO features (mixin, mod-
ules, . . .).

References

[Acz88] P.Aczel. Non-well-founded sets, CSLI Lecture Notes 14, Stanford 1988.
[Acz93] P.Aczel. Final Universes of Processes, MFPS’93, Brookes et al. eds., LNCS

802, 1993.
[AM89] P.Aczel, N.Mendler. A Final Coalgebra Theorem, in Category Theory and

Computer Science, D.H.Pitt et al. eds., Springer LNCS 389, 1989, 357–365.
[Dro02] S.Drossopoulou, Three Case studies in FickleII ,

Tech. rep., Imperial College. Available from
http://www.di.unito.it/∼damiani/papers/dor.html.

[DDDG02] S.Drossopoulou, F.Damiani, M.Dezani-Ciancaglini, P.Giannini. More dy-
namic object re-classification: FickleII , ACM Transactions On Program-
ming Languages and Systems 24(2), 2002, 153–191.

[HHJT98] U.Hensel, M.Huisman, B.Jacobs, H.Tews. Reasoning about Classes in
Object-Oriented Languages: Logical Models and Tools, European Sympo-
sium on Programming, C.Hankin ed., Springer LNCS 1381, 1998, 105–121.

[HL95] F.Honsell, M.Lenisa. Final Semantics for Untyped Lambda Calculus,
TLCA’95 Conf. Proc., M.Dezani, G.Plotkin eds., Springer LNCS 902,
Berlin 1995, 249–265.

[HLMP98] F.Honsell, M.Lenisa, U.Montanari, M.Pistore. Final Semantics for the π-
calculus, PROCOMET’98, D. Gries et al. eds, Chapman & Hall, 1998.

[Jac96] B.Jacobs. Objects and Classes, co-algebraically, Object-Orientation with
Parallelism and Book Persistence, B.Freitag et al. eds., Kluwer Academic
Publishers, 1996, 83–103.

[Jac97] B.Jacobs. Behaviour-refinement of object-oriented specifications with coin-
ductive correctness proofs, TAPSOFT’97, M.Bidoit, et. al. eds., Springer
LNCS 1214, 1997, 787–802.

[Jac97a] B.Jacobs. Invariants, Bisimulations and the Correctness of Coalgebraic Re-
finements, Algebraic Methodology and Software Technology, M.Johnson ed.,
Springer LNCS 1349, 1997, 276–291.

[JR96] B.Jacobs, J.Rutten. A tutorial on (co)algebras and (co)induction, Bulletin
of the EATCS 62, 1996, 222–259.

[Len96] M.Lenisa. Final Semantics for a Higher Order Concurrent Language,
CAAP’96, H.Kirchner et. al. eds., LNCS 1059, 1996, 102–118.

[Rei95] H.Reichel. An approach to object semantics based on terminal co-algebras,
MSCS 5, 1995, 129-152.

[Tew00] H.Tews. Coalgebras for Binary Methods, CMCS’2000, ENTCS 33, 2000.
[Rut00] J.J.M.M.Rutten. Universal coalgebra: a theory of systems, TCS 249(1),

2000, 3–80.

15

[RT94] J.J.M.M.Rutten, D.Turi. REX Conference Proceedings, J.de Bakker et al.
eds., LNCS 803, 1994, 530–582.

[ST97] D.Sannella, A.Tarlecki. Essential concepts of
algebraic specification and program development, Formal Aspects of Com-
puting 9, 1997, 229–269.

[TP97] D.Turi, G.Plotkin. Towards a mathematical operational semantics, 12th

LICS, IEEE, Computer Science Press, 1997, 280–291.

A Coalgebraic Preliminaries

In this section, we recall the notion of coalgebra, coalgebra morphism, coalgebraic
bisimulation, and the main result of the coalgebraic paradigm, which chara-
cterizes equivalences induced by morphisms into final coalgebras as coalgebraic
bisimilarities, i.e. greatest coalgebraic bisimulations. For more details, see e.g.
[JR96].

Definition 7. Let F : C → C. A F -coalgebra is a pair (X,αX), where αX :
X → FX is an arrow in C. F -coalgebras can be endowed with the structure of
a category by defining F -coalgebra morphisms as follows. f : (X,αX)→ (Y, αY)
is an F -coalgebra morphism if f : X → Y is an arrow of the category C such
that the following diagram commutes

X
f //

αX

��

Y

αY

��
F (X)

F (f)
// F (Y)

Before introducing the notion of F -bisimulation, we introduce the notion of
span:

Definition 8. A span (R, r1, r2) on objects X,Y consists of an object R in C,
and two ordered arrows, r1 : R → X and r2 : R → Y .
Spans on objects X and Y can be ordered as follows:

(R, r1, r2) ≤ (R′, r′1, r′2) ⇐⇒ ∃f : R → R′. ∀i = 1, 2. ri = r′i ◦ f .

The notion of binary relation is expressed, in a general categorical setting, as
an equivalence class of monic spans. As pointed out in [TP97], F -bisimulations
on F -coalgebras can be simply taken to be spans in the category of F -coalgebras.
The following definition due to [TP97], generalizes the original definition of
[AM89].

Definition 9 (F -bisimulation). Let F be an endofunctor on the category C.
A span (R, r1, r2) on objects X,Y is an F -bisimulation on the F -coalgebras
(X,αX) and (Y, αY), if there exists an arrow of C, γ : R → F (R), such that
((R, γ), r1, r2) is a coalgebra span, i.e.

16

X

αX

��

R
r1oo r2 //

γ

��

Y

αY

��
F (X) F (R)

F (r1)
oo

F (r2)
// F (Y)

In Set one often only considers bisimulations which are relations, i.e. spans
(R, r1, r2) for a relation R⊆ X × Y . Notice that every span (R, r1, r2) in Set
can be regarded as representing the image 〈r1, r2〉(R) ⊆ X × Y . The order on
spans corresponds to relational inclusion of images. Furthermore, the image of a
(span) bisimulation is a (relational) bisimulation (see e.g. [Rut00], Lemma 5.3).

When the two F -coalgebras (X,αX) and (Y, αY) in the definition above co-
incide, we will simply say that the span is an F -bisimulation on the F -coalgebra
(X,αX).

The following theorem generalizes the fact that, in set-theoretic categories,
equivalences induced by unique morphisms into final coalgebras can be charac-
terized coinductively as the greatest F -bisimulations.

Theorem 4. Suppose that F : C → C has a final F -coalgebra (ΩF , αΩF). Let
(X,αX) be a F -coalgebra, and let M : (X,αX)→ (ΩF , αΩF) be the unique final
morphism. If F preserves weak pullbacks, then
i) for all F -bisimulations (R, r1, r2) on (X,αX), M◦ r1 =M◦ r2;
ii) the kernel pair of M is an F -bisimulation on (X,αX).

17

