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Abstract. We consider a general notion of coalgebraic game, whereby
games are viewed as elements of a final coalgebra. This allows for a
smooth definition of game operations (e.g. sum, negation, and linear im-
plication) as final morphisms. The notion of coalgebraic game subsumes
different notions of games, e.g. possibly non-wellfounded Conway games
and games arising in Game Semantics à la [AJM00]. We define various
categories of coalgebraic games and (total) strategies, where the above
operations become functorial, and induce a structure of ∗-autonomous
category. In particular, we define a category of coalgebraic games corre-
sponding to AJM-games and winning strategies, and a generalization to
non-wellfounded games of Joyal’s category of Conway games. This latter
construction provides a categorical characterization of the equivalence
by Berlekamp, Conway, Guy on loopy games.
Keywords: games, strategies, categories of games and strategies, Con-
way games, AJM-games

Introduction

In this paper, we consider a general notion of coalgebraic game, whereby games
are viewed as elements of a final coalgebra. This notion of coalgebraic game is gen-
eral enough to subsume various notions of games, e.g. possibly non-wellfounded
Conway games [Con01], and games arising in Game Semantics à la [AJM00].
Coalgebraic methods appear very natural and useful in this context, since they
allow to abstract away superficial features of positions in games, and to smoothly
define game operations as final morphisms.

The kind of games that we consider are 2-player games of perfect informa-
tion, the two players being Left (L) and Right (R). A game is identified with its
initial position. At any position, there are moves for L and R taking to new po-
sitions of the game. Contrary to other approaches in the literature, where games
are defined as graphs, we view possibly non-wellfounded games as points of a
final coalgebra of graphs, i.e. minimal graphs w.r.t. bisimilarity. This coalgebraic
representation is motivated by the fact that the existence of winning/non-losing
strategies is invariant w.r.t. graph bisimilarity. We formalize the notion of play
as a sequence of pairs move-position, and, on top of it, we define a strategy as a
function on plays. We focus on total strategies for a given player, i.e. strategies
that must provide an answer, if any, for the player. These differ from partial
strategies, in which the player can refuse an answer and give up the game. In



particular, we introduce and study winning/non-losing strategies, which provide
winning/non-losing plays when played against any counterstrategy.

In our general coalgebraic framework, we define and discuss various game
operations arising in the literature, i.e. sum and negation introduced by Con-
way [Con01] to analyze games such as Go, or Nim, and linear logic connectives
of Abramsky et al., see e.g. [Abr96,AJM00]. Coalgebraically, such operations
can be naturally defined as final morphisms, and they uniformly and naturally
subsume the corresponding original operations, allowing in particular for a com-
parison of operations arising in different contexts, such as Conway disjunctive
sum and tensor sum on AJM-games. Then, on the basis of these operations, we
discuss various categorical constructions, in the spirit of [Joy77], which gener-
alize categories of AJM-games as well as Joyal’s original category of Conway
games. In particular, we provide a general construction of a ∗-autonomous cate-
gory of possibly non-wellfounded games and (total) strategies, which subsumes
Joyal’s compact closed category as a full subcategory. Interestingly, our category
characterizes the equivalence on loopy games defined in [BCG82].

Constructions generalizing Joyal’s category to non-wellfounded games have
been previously considered in [Mel09,MTT09], but in the context of partial
strategies; hence they subsume Joyal’s category as a subcategory, but not as
a full subcategory, and the equivalence on games induced by the existence of
partial strategies becomes trivial. Solutions to the problem of defining a well-
behaved category of non-wellfounded games and total strategies have been pre-
sented in [HLR11], for the class of non-wellfounded Conway games where all
infinite plays are draws. The solution in the present paper is based on a different
and more general construction, and it applies to the class of mixed games (infinite
plays can be either winning for any of the players or draws). To our knowledge,
this is the first category of mixed games subsuming Joyal’s construction as a full
subcategory and capturing the original loopy equivalence of [BCG82].

The coalgebraic notion of game in this paper generalizes the one introduced
in [HL11] for characterizing non-wellfounded Conway games. Coalgebraic meth-
ods for modeling games have been used also in [BM96], where the notion of
membership game has been introduced. This corresponds to a subclass of our
coalgebraic games, where at any position L and R have the same moves, and all
infinite plays are deemed winning for player II (the player who does not start).
However, no operations on games are considered in that setting. In the litera-
ture, various notions of bisimilarity equivalences have been considered on games,
see e.g. [Pau00,Ben02]. But, contrary to our approach, such games are defined
as graphs of positions, and equivalences on graphs, such as trace equivalences or
various bisimilarities are considered. Differently, defining games as the elements
of a final coalgebra, we directly work up-to bisimilarity of game graphs.
Summary. In Section 1, we introduce our framework of coalgebraic games and
strategies, and we instantiate it to Conway games and AJM-games. In Sec-
tion 2, we introduce and study general game operations, and in Section 3 we
present two parametric categories of games and strategies, subsuming as special
instances categories arising in Game Semantics as well as Joyal’s category of
Conway games. Conclusions and directions for future work appear in Section 4.
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1 Coalgebraic Games and Strategies

We consider a general notion of 2-player game of perfect information, where
the two players are called Left (L) and Right (R). A game x is identified with
its initial position; at any position, there are moves for L and R, taking to
new positions of the game. By abstracting from superficial features of positions,
games can be viewed as elements of the final coalgebra for the functor FA(X) =
P<κ(A×X), where A is a parametric set of atoms which encode information on
moves and positions, i.e. move names, and the player who has moved, and P<κ
is the set of all subsets of cardinality < κ. The coalgebra structure captures, for
any position, the moves of the players and the corresponding next positions.

We work in the category Set∗ of sets belonging to a universe satisfying the
Antifoundation Axiom, see [FH83,Acz88]. Of course, we could work in the cate-
gory Set of well-founded sets, but we prefer to use Set∗ so as to be able to use
identities rather than isomorphisms. Formally, we define:

Definition 1 (Coalgebraic Games). Let A be a set of atoms with functions:
(i) µ : A →M yielding the name of the move (for a set M of names),
(ii) λ : A → {L,R} yielding the player who has moved.
Let FA : Set∗ → Set∗ be the functor defined by FA(X) = P<κ(A × X) (with
usual definition on morphisms), and let (GA, id) be the final FA-coalgebra.
A coalgebraic game is an element x of the carrier GA of the final coalgebra.

The elements of the final coalgebra GA are the minimal graphs up-to bisimi-
larity. In the following, we often refer to coalgebraic games simply as games. We
call player I the player who starts the game (who can be L or R in general),
and player II the other. Once a player has moved on a game x, this brings to a
new game/position x′. We define the plays on x as the sequences of pairs, move-
position, from x; moves in a play are not necessarily alternating (this generality
will be useful in the sequel, in defining operations on games):

Definition 2 (Plays). A play on a game x0 is a possibly empty finite or infinite
sequence of pairs in A×GA, s = 〈a1, x1〉 . . . such that ∀n ≥ 0. 〈an+1, xn+1〉 ∈ xn.
We denote by Playx the set of plays on x and by FPlayx the set of finite plays.

The kind of strategies for a given player on which we focus are those that
always provide an answer, if any, of the player to the moves of the opponent
player. In this sense, such strategies are “total”, opposite to “partial strategies”,
where the player can possibly refuse an answer and give up the game. Formally,
strategies in our framework are partial functions on finite plays ending with a
position where the player is next to move, and yielding (if any) a pair in A×GA,
consisting of “a move of the given player together with a next position” on the
game x. In what follows, we denote by
– FPlayLIx (FPlayRIx ) the set of possibly empty finite plays on which L (R)
acts as player I, and ending with a position where R (L) was last to move, i.e.
s = 〈a1, x1〉 . . . 〈an, xn〉, λa1 = L and λan = R (λa1 = R and λan = L ).
– FPlayLIIx (FPlayRIIx ) the set of finite plays on which L (R) acts as player II, and
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ending with a position where R (L) was last to move, i.e. s = 〈a1, x1〉 . . . 〈an, xn〉,
λa1 = R (λa1 = L) and λan = R (λan = L).

Formally, we define:

Definition 3 (Strategies). Let x be a game. A strategy σ for LI ( i.e. L acting
as player I) is a partial function σ : FPlayLIx → A × GA such that, for any
s ∈ FPlayLIx ,
– σ(s) = 〈a, x′〉 =⇒ λa = L ∧ s〈a, x′〉 ∈ FPlayx
– ∃〈a, x′〉. (s〈a, x′〉 ∈ FPlayx ∧ λa = L) =⇒ s ∈ dom(σ).
Similarly, one can define strategies for players LII, RI, RII.

We are interested in studying the interactions of a strategy for a given player
with the (counter)strategies of the opponent player. When a player plays on
a game according to a strategy σ, against an opponent player who follows a
(counter)strategy σ′, a play arises. Formally, we define:

Definition 4 (Product of Strategies). Let x be a game.
(i) Let s be a play on x, and σ a strategy for a player in {LI,LII,RI,RII}. Then s
is coherent with σ if, for any proper prefix s′ of s, ending with a position where
the player is next to move, σ(s′) = 〈a, x′〉 =⇒ s′〈a, x′〉 is a prefix of s.
(ii) Given a strategy σ on x and a counterstrategy σ′, we define the product of
σ and σ′, σ ∗ σ′, as the unique play coherent with both σ and σ′.

Notice that a play arising from the product of strategies is alternating.
We distinguish between well-founded games, i.e. well-founded sets as elements

of the final coalgebra GA, and non-wellfounded games, i.e. non-wellfounded sets
in GA. Clearly, strategies on well-founded games generate only finite plays, while
strategies on non-wellfounded games can generate infinite plays.

Strategies for a given player, as we have defined so far, simply provide an
answer (if any) of the player to all possible moves of the opponent. Intuitively,
a strategy is winning/non-losing for a player, if it generates winning/non-losing
plays against any possible counterstrategy. We take a finite play to be winning
for the player who performs the last move. While infinite plays are taken to be
winning for L/R or draws. Formally, we define:

Definition 5 (Winning/non-losing Play). Let ν : Playx → {0, 1,−1} be a
payoff function defined on plays of a game x.
(i) A play s is winning for player L (R) if ν(s) = 1 (ν(s) = −1).
(ii) A play s is a draw if ν(s) = 0.
(iii) A play s is non-losing for player L (R) if ν(s) ∈ {0, 1} (ν(s) ∈ {0,−1}).

Definition 6 (Winning/non-losing Strategy). Let ν : Playx → {0, 1,−1}
be a payoff function on x.
(i) A strategy σ on x for LI (LII) is winning (non-losing) for LI (LII) if for any
strategy σ′ for RII (RI), ν(σ ∗ σ′) = 1 (ν(σ ∗ σ′) ∈ {0, 1}).
(ii) A strategy σ on x for RI (RII) is winning (non-losing) if for any strategy σ′

for LII (LI), ν(σ ∗ σ′) = −1 (ν(σ ∗ σ′) ∈ {0,−1}).
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We will refer to the whole class of coalgebraic games, where plays can be
winning or draws, as mixed games; and we will call fixed games the subclass of
games where all plays are winning for one of the players.

The notion of strategy of Definition 3 is quite general, being defined on plays
which carry the information on moves and positions. Often, we are interested
in considering special classes of strategies, depending either on moves or on
positions (or even only on the last move/position). Here we collect the relevant
definitions. For any play s, we denote by s|A the sequence obtained by erasing
all positions, and by s|P the sequence obtained by erasing all moves from s.

Definition 7. Let σ be a strategy on a game x.
(i) σ is pos-independent if ∀s, s′ ∈ dom(σ). (s|A = s′|A =⇒ σ(s) = σ(s′)).

(ii) σ is move-independent if ∀s, s′ ∈ dom(σ). (s|P = s′|P =⇒ σ(s) = σ(s′)).

1.1 Conway Games. Conway (wellfounded) games are inductively defined
in [Con01] as pairs of sets x = (XL, XR), where XL (XR) is the set of next
positions to which L (R) can move. Such games are purely positional, no move
names are considered. In [BCG82], non-wellfounded games are considered, called
loopy or mixed games, but these are defined as graphs of positions, rather than
sets, i.e. graphs up-to bisimilarity. Here we extend the original set-theoretical
definition of [Con01], by representing possibly non-wellfounded Conway games
as coalgebraic games for A the two-element set {aL, aR}, where µaL = µaR = a,
λaL = L and λaR = R. These correspond to loopy games taken up-to graph
bisimilarity. Our coalgebraic approach is motivated by the fact that the existence
of winning/non-losing strategies is preserved under graph bisimilarity of loopy
games. Winning/non-losing strategies on Conway games correspond to (move-
independent) winning/non-losing strategies of Definition 6.

1.2 Game Semantics. In Game Semantics various notions of games are
used, here we focus on the basic games à la [Abr96,AJM00], called AJM-games.
We define an AJM-game as a tuple G = (MG, λG, PG,WG), where MG is the
set of moves, the function λG : MG → {O,P} specifies for each move if it is
an O (Opponent) or a P (Player) move; O and P move in strict alternation, O
starts the game; the set PG is a non-empty prefix-closed set of finite alternating
sequences of moves starting with an O-move, which represents the set of legal
positions. These correspond to the finite plays in our setting when positions are
omitted. We define P∞G as the set of infinite plays, i.e. infinite sequences whose
finite prefixes are legal positions. The winning condition for a player on a finite
play corresponds to the absence of moves for the other player, while any infinite
play is fixed to be winning either for O or for P via the predicate WG, which
holds on an infinite play s (WG(s) ↓) iff s is winning for P.

The underlying structure of any such game can be represented in our frame-
work by considering the tree of legal positions (plays). This can be viewed as an
element of our final coalgebra GA, provided we perform a bisimilarity quotient
on nodes (since the tree of plays is not necessarily minimal w.r.t. bisimilarity),
thus getting the graph of positions. Formally, we represent such games as follows:
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– P is player L and O player R, R starts the game;
– the set A includes atoms am for any m ∈MG s.t. µam = m, λam = λGm;
– nodes {xp}p∈PG

, xp = {(am, xp′) | p′ = pa ∈ PG}, are taken up-to bisimilarity;
– the initial position is xε;

– the payoff function ν is defined on infinite plays by ν(s) =

{
1 if WG(s) ↓
−1 otherwise.

Coalgebraic games representing AJM-games are fixed and have a special
structure: R starts, at any non-ending position only moves for R or L are avail-
able, for any move there is at most one arc labeled by that move, and along any
path in the game graph R/L moves strictly alternate. We call strict games such
subclass of coalgebraic games. They form a subcoalgebra of our final coalgebra.

Winning strategies on AJM-games are defined as suitable subsets of the le-
gal positions, see [Abr96] for more details, and hence they only depends on the
sequence of moves (pos-independent strategies in our setting). AJM-games to-
gether with winning strategies form a ∗-autonomous category C, see [Abr96].
The precise relationship between C and the corresponding category of coalge-
braic games is formalized in Section 3 via an equivalence of categories.

2 Game Operations

In this section, we show how to define various operations on coalgebraic games,
including sum, negation, and linear implication. In our framework, game op-
erations can be conveniently defined via final morphisms. These capture the
structure of compound games; the extra structure of the payoff function on infi-
nite plays of the compound game is obtained inductively from the payoff of the
components.

On mixed games, we define a notion of sum, inspired by Conway disjunctive
sum; while, on fixed games, we define a notion of sum subsuming the tensor
product of Game Semantics. The two notions of sum have the same coalgebraic
structure, and only differ by the definition of the payoff on infinite plays. This
neatedly emerges from the analysis carried out in our coalgebraic framework.

Sum. We start by defining the coalgebraic structure of the sum of two games. On
the sum game, at each step, the next player selects any of the component games
and makes a legal move in that component, the other component remaining
unchanged. The other player can either choose to move in the same component
or in a different one. Notice that in this way, even if the play on the sum game
agrees with turns of L and R, the subplays in the single components may not
agree with turns, in general.

Definition 8 (Sum, coalgebraic structure). The sum of two games is given
by the final morphism + : (GA × GA, α+) −→ (GA, id), where the coalgebra
morphism α+ : GA × GA −→ FA(GA × GA) is defined by:
α+(x, y) = {〈a, 〈x′, y〉〉 | 〈a, x′〉 ∈ x} ∪ {〈a, 〈x, y′〉〉 | 〈a, y′〉 ∈ y}.
That is: x+ y = {〈a, x′ + y〉 | 〈a, x′〉 ∈ x} ∪ {〈a, x+ y′〉 | 〈a, y′〉 ∈ y}.
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Two kinds of sum arise from the above coalgebraic definition, by suitably
defining the payoff function on infinite plays:
(i) Mixed sum ⊕. This is defined on mixed games, and it is inspired by Conway
disjunctive sum. The payoff of an infinite play will be 1 (−1) if all infinite plays
in the components have payoff 1 (−1), it will be 0 otherwise.
(ii) Fixed sum ⊗. This is defined on fixed games and it generalizes the tensor
product of Game Semantics. The payoff of an infinite play is 1 (winning for L)
iff all infinite subplays in the components have payoff 1, it will be -1 otherwise.
This “asymmetric” definition is motivated by the interpretation of the linear
logic tensor connective.

Notice that, on both sums, since plays which agree with turns do not nec-
essarily induce subplays on the components which agree with turns, in order to
define the payoff on infinite plays, we need the payoff on all plays of the com-
ponents, also those non conformed to turns. This is the reason for such a liberal
definition of plays in Section 1. But, if we restrict ourselves to coalgebraic strict
games, which correspond to games of Game Semantics, then any play on the
sum game which agrees with turns induces subplays with the same property in
the components.

Negation. The negation is a unary game operation, which allows us to build
a new game, where the roles of L and R are exchanged. Let us assume that the
set of atoms A is closed under an involution operation, i.e., for any a ∈ A, let
a ∈ A be such that λa = λa, νa = −ν(a), µa = µa, where L = R and L = R.
The coalgebraic definition of game negation is as follows:

Definition 9 (Negation). The negation of a game is given by the final mor-
phism − : (GA, α−) −→ (GA, id), where the coalgebra morphism α− : GA −→
FA(GA) is: α−(x) = {〈a, x′〉 | 〈a, x′〉 ∈ x}. That is: x = {〈a, x′〉 | 〈a, x′〉 ∈ x}.
The payoff on infinite plays of x is taken to be opposite to the payoff on x.

Clearly, winning/non-losing strategies for a given player on x become win-
ning/non-losing strategies for the opponent player on x, and x = x, i.e. negation
is involutive. Notice that both mixed and fixed games are closed under negation.
But strict games are not, of course.

Linear implication. Using the two notions of sum, and negation, we can now
define two linear implications:

Definition 10 (Linear Implications). We define
(i) on mixed games: the linear implication x→ y as the game x⊕ y;
(ii) on fixed games: the linear implication x( y as the game x⊗ y.

Notice that mixed sum satisfies the equality x⊕ y = x⊕ y, hence the linear
implication x→ y amounts to x⊕ y, while the corresponding equality for fixed
sum does not hold. More precisely, the coalgebraic structure of the game x( y
coincides with the coalgebraic structure of x⊗ y, but the winning condition on
infinite plays is different, namely an infinite play is winning for L on x ( y iff
the subplay on x or that on y is infinite and winning for L, while an infinite play
is winning for L on x⊗ y iff all infinite subplays on x and y are winning for L.
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3 Game Categories

The fine analysis of game operations carried out in Section 2 allows us to pro-
vide two very general categorical constructions arising from such operations on
games. In particular, we provide a category XA of fixed games and winning
strategies, parametric w.r.t. the set of atoms A, which is ∗-autonomous, and a
symmetric monoidal closed category YA of mixed games, also parametric w.r.t.
A, obtained by analyzing mixed games via pairs of fixed games. A special in-
stance of XA is obtained by instantiating A as shown in Section 1.2, in order
to recover (up-to bisimilarity) AJM-games. A significant result that we obtain,
which clarifies the relationships between the original AJM-games and their rep-
resentation in our framework, is an equivalence between the category of games
and winning strategies of [Abr96] and our category of strict coalgebraic games
and pos-independent strategies. On the other hand, the category YA of mixed
games is related to Conway games. Namely, by suitably instantiating A, we get
a category whose objects correspond to the (non-wellfounded) mixed Conway
games of [BCG82], a full subcategory of which is Joyal’s compact closed cate-
gory. Remarkably, the equivalence on mixed games induced by the morphisms of
our category coincides with the equivalence defined in [BCG82] on loopy games.
To our knowledge, this is the first category of mixed games subsuming Joyal’s
construction as a full subcategory and capturing the original loopy equivalence.

The category XA of fixed games. The notions of sum and linear implica-
tion on fixed games give rise to a ∗-autonomous category XA that generalizes
categories of AJM-games and winning strategies.

Definition 11 (The Category XA).
Objects: fixed games.
Morphisms: σ : x→ y winning strategy for LII on x( y.

Identities on XA are the copy-cat strategies, and closure under composition
is obtained via the swivel-chair strategy. I.e., given winning strategies for LII, σ
on x( y, τ on y ( z, the composition strategy, τ ◦ σ on x( z, is obtained by
using the “swivel chair”, as follows. Assume R opens on x ( z, playing either
in z or in x, e.g. assume R opens in z. Then consider the L move given by the
strategy τ on y ( z: if such L move is in z, then we take this as the L answer
in the strategy on τ ◦ σ; if the L move according to σ is in the y component of
y ( z, then, using the “swivel chair”, we can view this move as an R move in
the y component of x ( y. Now L has a next move in x ( y, according to τ .
If this move is in the x component, then we take this as the L answer in τ ◦ σ;
otherwise, if the L move is in y, then we use our swivel chair, viewing this as
a move of R in the y component on y ( z, and so on. Since both σ and τ are
winning strategies, by the winning condition on infinite plays on the ( game,
spelled out at the end of Section 2, we are guaranteed that the dialogue between
the y components does not go on forever, and eventually the L move according
to σ or τ will be on z or x. This is the L answer to the starting R move in the
strategy τ ◦ σ. Then, we go on in the same way, for any possible next R move.
Associativity of composition is also proved by a standard argument.
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Fixed sum gives rise to a tensor product on XA, which determines a structure
of a symmetric monoidal closed category; in particular the identity x⊗ y ( z =
y ( (x ( z) holds, this latter following from the definition of the ( game
and from the fact that negation is involutive. Negation is also functorial, and,
together with tensor, provides a ∗-autonomous structure on XA, namely we have
in particular the identity x⊗ y ( z = x( (y ⊗ z). Summarizing:

Theorem 1. The category XA is ∗-autonomous.

The above construction encompasses categories used in Game Semantics.
Namely, let C be the category of AJM-games and winning strategies of [Abr96],
and let us instantiate the parameter A of XA with the set of moves M for such
games, getting the category XM . If we consider the subcategory SXM of strict
games and pos-independent winning strategies, then we obtain the following
equivalence of categories:

Theorem 2. The category SXM of strict games and pos-independent winning
strategies is equivalent to the category C of AJM-games and winning strategies.

Proof. The equivalence between the categories SXM and C is given by the func-
tor H : C → SXM , which, for a game in C, yields the coalgebraic game obtained
by performing a bisimilarity quotient on the tree of legal positions. Winning
strategies of C, which are defined on legal positions (i.e. plays where positions
are omitted, in our setting) are naturally mapped to pos-independent winning
strategies in SXM , providing a one-to-one correspondence. Moreover, each strict
coalgebraic game is the image of an AJM-game via H. ut

The category YA of mixed games. Defining a category of mixed games and
non-losing strategies is not straightforward, the reason being that non-losing
strategies are not closed under composition. The situation has been analyzed in
[HLR11] for hypergames, i.e. non-wellfounded Conway games where all infinite
plays are draws. The solution proposed there is to restrict the class of morphisms
to non-losing fair strategies. This category is symmetric monoidal with the mixed
sum ⊕ as tensor product, but it is not monoidal closed; moreover the categorical
construction does not immediately extend to the whole class of mixed games.
Here, by exploiting the investigation on operations carried out in Section 2, we
propose a different solution, which is inspired by the analysis of mixed Conway
games x in terms of pairs of fixed games, 〈x−, x+〉, [BCG82]. The idea is to
represent mixed games as pairs of fixed games obtained by considering all draws
to be winning for R or for L respectively, and to work with fixed tensor product
and the corresponding linear implication in the single components. We carry
out this construction in the full generality offered by our framework, building a
∗-autonomous category YA, parametric w.r.t. A.

Definition 12. Let x be a mixed game. We define the pair 〈x−, x+〉 of fixed
games as follows: x− is obtained from x by taking all infinite plays which are
draws on x to be winning for R; x+ is obtained from x by taking all infinite plays
which are draws on x to be winning for L.
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Notice that each mixed game is uniquely determined by its corresponding
pair of fixed games. In particular, for fixed games x, we have x = x− = x+.

Definition 13 (The Category YA).
Objects: pars of fixed games x = 〈x1, x2〉.
Morphisms: pairs of winning strategies for LII, 〈σ1, σ2〉 : 〈x1, x2〉 → 〈y1, y2〉.

Mixed games are objects in the above category YA. This inherits from XA
all constructions, hence:

Theorem 3. The category YA is ∗-autonomous.

Moreover, YA restricted to well-founded games is compact closed. Namely,
the copy-cat strategy induces natural winning strategies for LII on x ⊗ x ( 0
and 0 ( x⊗ x, where 0 denotes the empty game, for any well-founded game x.
Thus we have:

Theorem 4. The full subcategory of YA, consisting of well-founded games and
winning strategies, is compact closed.

As shown in Section 1.1, non-wellfounded Conway games can be represented
in our framework by instantiating A to an appropriate 2-element set. Let us
denote by Y2 the corresponding category. As a corollary of Theorem 3 we get:

Corollary 1. The category Y2 of non-wellfounded Conway games is ∗-autonomous.

Moreover, by restricting to well-founded games, we obtain Joyal’s category
as a full subcategory, and from Theorem 4 we have:

Corollary 2 ([Joy77]). The category of Conway games and winning strategies
is compact closed.

Game Equivalences. Having defined games as a final coalgebra, games are
already taken up-to bisimilarity, thus abstracting from superficial features of
positions. Bisimilarity is a first structural equivalence on game graphs, but on
top of this one can define various equivalences and congruences, by looking at
strategies. Such equivalences arise in many conceptually different ways, and they
have been studied for Conway games and hypergames in [HL11,HLR11].

Our categorical constructions give rise to interesting notions of (pre)equiva-
lences on games induced by the morphisms, and defined by:

x ≤YA y iff there exists a winning strategy for LII on x( y .
Notice that, since XA is a full subcategory of YA, the (pre)equivalence in-

duced by XA coincides with the restriction on fixed games of ≤YA .
Identities on the category YA correspond to reflexivity of ≤YA , closure un-

der composition corresponds to transitivity, while functoriality of tensor and
negation ensures congruence of ≤YA w.r.t. the corresponding operations.

Interestingly, the equivalence ≤Y2
captured by our category Y2 of mixed

Conway games coincides with the loopy game equivalence of [BCG82].
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Definition 14 (Loopy Equivalence). For x, y mixed games, we define:
x ≤l y iff there are non-losing strategies for LII on x− ⊕ y− and x+ ⊕ y+.

Then we have:

Theorem 5. For mixed games x, y, x ≤l y ⇐⇒ x ≤Y2
y .

Proof. We prove that x− ⊗ y− (x+ ⊗ y+) has a winning strategy for LII iff

x− ⊕ y− (x+ ⊕ y+) has a non-losing strategy for LII. Equivalently, x− ⊗ y−
(x+ ⊗ y+) has a winning strategy for RII iff x− ⊕ y− (x+ ⊕ y+) has a non-losing
strategy for RII. This follows since, for fixed games, x⊗y has a winning strategy
for R (I or II) iff x⊕ y has a non-losing strategy for R (I or II). ut

4 Final Remarks and Directions for Future Work

We have considered a general notion of coalgebraic game, whereby non-wellfoun-
ded games are viewed as elements of a final coalgebra. This allows for a unified
treatment of games arising in different settings, in particular Conway games
and AJM-games, and it helps in shedding light on the relationships between
them. We have introduced and studied general notions of categories of games
and strategies, subsuming Joyal’s category of Conway games as well as categories
used in Game Semantics. Categorical equivalences have been defined, providing
in particular a characterization of the equivalence on loopy games of [BCG82].

Here is a list of further comments and directions for future work.
Partial strategies. In this paper, we have considered total strategies, but in con-
texts such as Game Semantics, often partial strategies are considered. Categories
of games and partial strategies in the spirit of Joyal’s category have been studied
e.g. in [HS02,Mel09,MTT09]. Partial strategies could be naturally modeled in
our framework. It would be interesting to investigate the relationships between
partial and total strategies in generality. Intuitively, partial strategies should
allow to approximate total strategies up to plays of certain length.
Exponential. The general categorical constructions carried out in the present
paper provide symmetric monoidal closed and ∗-autonomous categories, which
allow to model fragments of Linear Logics. We claim that mixed games can be
endowed with an exponential operation, endowing YA with a structure of linear
category. The exponential operation can be defined by !x = Σ∞xR, where xR is
obtained from x by erasing all L-opening moves, and Σ∞ is an “infinite sum”
operation, which can be defined via a suitable generalized coiteration schema.
Games with payoff on a partially ordered set. In [San02], partial infinite games are
introduced. Various operations are defined, including a kind of sum operation.
A precise comparison with our categorical sums has still to be investigated.
Generalizing the coalgebraic framework. Coalgebraic games can be further gen-
eralized, by encoding more information in the parameter set A, e.g. the payoff or
the turn of the players. These allow us to model a wider range of games, including
automata games and games arising in Economics. It would be also interesting
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to investigate a generalization for non-perfect information games. An approach
could be that of explaining them using the notion of coalgebra morphism.
Coinductive specification of strategies. One can give a coinductive definition of
the set of strategies for a player, via corecursive equations. Intuitively, if we
denote by SL(s) the set of strategies for L starting on the play s, a strategy in
SL(s), where s ends with the current position 〈a, x〉, amounts to: either the empty
strategy, if L has no move in the position x; or a strategy for L in SL(s〈a′, x′〉),
where 〈a′, x′〉 ∈ x and a′ is a L move, if L is next to move in the current position
〈a, x〉, i.e. a strategy in Σ〈a′,x′〉∈x.λa′=LSL(s〈a′, x′〉); or a collection of strategies
for L, for any possible R move from the current position 〈a, x〉, if R is next to
move, i.e. a collection of strategies in Π〈a′,x′〉∈x.λa′=RSL(s〈a′, x′〉).
It would be interesting to formalize the above idea.
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